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Abstract

Many modeling tasks from disparate domains can be framed in the same way, com-
puting spherical signals from geometric inputs, for example, computing the radar
response of different objects or navigating through an environment. This paper
introduces G2Sphere, a general method for mapping object geometries to spherical
signals. G2Sphere operates entirely in Fourier space, encoding geometric structure
into latent Fourier features using equivariant neural networks and outputting the
Fourier coefficients of the continuous target signal, which can be evaluated at any
resolution. By utilizing a hybrid GNN-spherical CNN architecture, our method
achieves a much higher frequency output signal than comparable equivariant GNNs
and avoids hand-engineered geometry features used previously by purely spherical
methods. We perform experiments on various challenging domains, including radar
response modeling, aerodynamic drag prediction, and policy learning for manipu-
lation and navigation. We find that G2Sphere outperforms competitive baselines in
terms of accuracy and inference time, and we demonstrate that equivariance and
Fourier features lead to improved sample efficiency and generalization. The source
code is available at: https://github.com/ColinKohler/geometry2sphere.
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Figure 1: Spherical Domains. Across many different domains learning high-frequency spherical
signals is a challenging task. (a) In the radar response domain, we learn a function F'x (u;), which
maps the input geometry X and the radar viewing angle u; to the radar response. (b) In the
aerodynamics domain, we learn a function F'x (u;), which maps the input geometry X and the airflow
direction u; to the corresponding drag coefficient. (c) In the control domain, we learn a function
Fx (u;), which maps the environmental geometry X and the control action u; to their value.

1 Introduction

Many 3D modeling problems from different domains require solving a common problem, mapping
detailed local geometric information to global spherical functions. In this paper, we consider several
examples, such as simulating the radar response of an object, predicting the drag characteristics of
a vehicle, or modeling an optimal control policy for manipulation (Fig[I). Modeling these types
of signals is challenging because it requires a very fine discretization of the domain to accurately
capture high-frequency information, such as sharp specular reflections in radar. This can make
traditional numerical solvers and simulators expensive [2]]. In practice, these approachs limits the
potential applications as they are too slow for use in many domains such as inverse radar modeling or
high-frequency robot controllers.

Deep learning is a potentially more efficient approach, but current methods also struggle with
inefficiency and overfitting. For example, one method of using neural networks to model spherical
output signals is to output a tensor of regularly sampled values across the sphere using a spatial
grid such as Healpix [25]]. However, a large number of samples is necessary to attain a high spatial
resolution over the sphere and even then, the model can easily overfit to the specific sample locations.
Furthermore, these large input and output spaces can lead to other compounding issues, such as
training instability and computational costs [S6]. An alternate strategy is to use implicit models,
which represent functions in a continuous manner and can be queried at any coordinate rather than
outputting values at predefined coordinates. Implicit models have the advantages of being resolution
independent, but are relatively inefficient, requiring both a large amount of data and training to achieve
good performance[22]. Furthermore, implicit models have been shown to be prone to overfitting to
the training coordinates [[18]] and lose the geometric relationship between the input and output spaces.

In this work, we seek to address these challenges by introducing G2Sphere, a more accurate, general,
and efficient approach to mapping object geometries to spherical functions. We model the output
signal in Fourier space as a linear combination of spherical harmonic (SH) basis functions, enabling
simultaneous prediction of the continuous output function at any resolution. Although previous
work has modeled mappings from geometric inputs to spherical functions using spherical harmonics,
they rely on predefined mappings to convert geometry to spherical input [20, [26]. In contrast,
G2Sphere uses learned spherical embeddings for geometric inputs that are both more general and
more flexible. Furthermore, G2Sphere maintains the geometric structure between the input geometry
and the output signal by operating entirely in Fourier space and enforcing the end-to-end SO(3)-
equivariance. G2Sphere leverages equivariant graph convolutions [24}40] to encode the geometry,
spherical convolutions [[15]] to render the spherical signal, and pointwise MLP non-linearities to model
high-frequency information in the output space. This combination alleviates issues with existing
equivariant GNN approaches which have been limited to lower-frequency modeling, primarily due to
computational constraints.

Our contributions are as follows:

* A novel SO(3)-equivariant architecture, G2Sphere, for mapping complex geometric inputs
to high frequency, continuous spherical functions, utilizing Fourier decomposition.



* Empirical demonstration of the improved accuracy, flexibility, and efficiency of G2Sphere
across a wide range of challenging domains, including radar response and aerodynamic drag
of 3D meshes, and policy learning for 2D and 3D control.

* Demonstration of zero-shot super-resolution ability and generalization to novel meshes.

* In policy learning, an inference time of only 9ms compared to the 156ms of Diffusion
Policy, a leading state-of-the-art approach, enabling our policy to achieve a high-frequency
controller.

2 Related works

Fourier Transform in Machine Learning The Fourier transform (FT) is an important tool in a
wide range of mathematical and engineering applications ranging from solving differential equations
[L6] to quantum mechanics and signal processing [3]. Fourier transforms have also been extensively
utilized in machine learning. In image processing and pattern recognition the FT has been used to
speed up convolutional neural networks [42], to improve feature representation [47], and to increase
the resolution of generative adversarial networks [31]. Lee-Thorp et al. [37] uses the FT in the more
modern transformer architecture to improve tokenization and improve performance. Li et al. [38]
combine neural operators with the Fourier transform to create the Fourier Neural Operator (FNO) to
solve a number of challenging PDE systems and Bonev et al. [7]] extend this work to the Spherical
FNO, which they use to model weather systems. G2Sphere and Spherical FNO have a number of
notable differences. First, the trainable layers of G2Sphere operate entirely in Fourier space, whereas
SFNO also has parallel trainable layers operating in the spatial domain. Additionally, SFNOs are
typically used to model dynamical systems which have similar continuous input and output spaces,
while G2Sphere maps discrete geometric inputs to continuous outputs.

Equivariant Neural Networks Equivariant neural networks constrain their layers to respect
transformations under a symmetry group [[14} 23] 61]. Neural networks equivariant to the 3D rotation
group SO(3) are used for classifying shapes [20} [15]], classifying protein structures [62]. determining
3D orientation [36]] , and predicting features of atomic systems [54} 8} 139]. Similar to our method, all
these approaches use steerable kernel bases and perform equivariant operations, such as convolutions
or tensor products, but almost all are limited to harmonics of low degree (< 10). As such, G2Sphere
is capable of capturing significantly more detail and fine-grained structure due to our use of a much
higher maximum frequency (= 40). Esteves et al. [20] and Cohen et al. [15] model data over the
sphere, but use a predefined mapping to convert the input into a spherical signal. They also focus on
learning functions with low-dimensional discrete outputs, e.g. classification. Ha and Lyu [26] also
uses a predefined mapping to convert brain geometry to spherical signals and a spherical UNet with
frequency up-sampling to do segmentation. Lee and Cho [36]] extracts features from 2D images using
a resnet and projects them onto a sphere before applying spherical convolutions. They also operate at
a fixed low maximum frequency of 5. Unlike these methods, G2Sphere uses a learned mapping to
convert object geometries to spherical signals, enabling the broad applicability of G2Sphere, enabling
the use of the same model for a wide range of applications.

Spherical Domains Spherical functions naturally arise in a number of disparate domains including
physical modeling and decision-making tasks. In the radar response domain (Fig. [Th), the reflected
response from a 3D object is a function defined over the sphere, where each direction corresponds to
an incident wave direction. In the aerodynamic domain (Fig. [Tb), the drag function can be represented
as a spherical signal, capturing how air resistance varies across orientations of a body in flow. Current
machine learning methods for reconstructing radar and aerodynamic signatures do not explicitly
model the inherent geometric and physical symmetries of 3D objects, e.g., rotational and permutation
symmetries [63), 46 164, [19]]. Geometric deep learning has emerged as a class of algorithms that can
address some of these challenges by directly encoding symmetry and other physical priors into neural
networks [60, 9} 6, 23]], but applications to settings that map fine 3D geometries to corresponding
high-frequency signals like radar and aerodynamics has been lacking. Similarly, control policies
can be framed as functions over spherical action domains (Fig. [Tk), particularly when considering
continuous action spaces and geometric state spaces. While several recent works have explored
incorporating geometric structure into policy learning [58) 28} 29} [29]], they primarily focus on
extending prior methods using equivariant neural networks, whereas G2Sphere redefines the value
function as a composition of harmonic basis functions.



3 Background and Problem Statement

Problem Setting We consider the problem of mapping 3D geometric data, such as object meshes
or point clouds, to spherical signals representing physical systems, such as radar response or drag.
We consider spherical signals as continuous functions f: S — R where S is the 1-sphere or
2-sphere and c is the number of channels in the signal. Given some input geometry X C R3,
the objective is to learn a functional mapping F' : X + fx. Since full observations of fx are
rare in practice, we assume a data set consisting only of partially observed output. That is, a

dataset D = {(X;, {us;}, {y”})}fv:ljjuzl, where samples consist of meshes or point clouds X;,
a set of viewing directions {Uij}, where each u;; € S? and the value of the spherical signal
¥ij = fx,(usj) € R at each u;;. Since the output signals are only partially observed, we consider

generalization to new viewing directions u;; and new geometries X;;.

Equivariance The value fx (u) may be considered as a property of the geometry X defined with
respect to viewing direction u € S?. We assume that both the geometry X and the direction u are
defined with respect to the same coordinate frame. Thus if the coordinate frame is rotated, both X
and u are rotated, and fx (u) = frx(Ru) should be invariant. This property is equivalent to the
equivariance of the functional mapping F’; if X is rotated to RX, the spherical signal fx is rotated
to frx = Rfx, preserving the relationship between the input geometry and the output signal. That
is, F(RX) = RF(X). This property can be enforced in the model architecture to ensure that the
learned model respects this property. Since the composition of equivariant functions is equivariant, it
is sufficient to ensure that each component of the architecture is equivariant.

SO(3)-Equivariant Neural Networks. For physical 3D systems, since the orientation of the
coordinate frame is arbitrary, many task functions f should be SO(3)-equivariant. Broadly speaking,
there are two types of SO(3)-equivariant models; those which focus on modeling high frequency
spherical signals such as Spherical CNN or Spherical Fourier Neural Operator 15 7] which have been
applied to weather prediction and GNN-based approaches such as Equiformer [39] which specialize
in lower frequency signals over geometric graphs, e.g. in materials property prediction. In spherical
CNNs, features are defined as signals f: X — R, where X = SZor X = SO(3). The model
architecture consists of alternating layers of SO(3) group convolutions and pointwise activations
applied on SO(3) or S2. In GNN-based approaches, features are defined as node embeddings
that transform according to SO(3)-irreducible representations. Linear layers are implemented via
messaging passing, where node features are tensored with spherical harmonic embeddings of their
relative positions and then projected back to irreps using Clebsh-Gordan coefficients [23]. Non-
linearities are typically implemented as radial or gated equivariant activations.

Spherical Fourier Features Cohen et al. [15] provide an efficient solution for handling SO(3)-
equivariant signals in the Fourier domain using the truncated basis of spherical harmonics Y., for
signals defined over S? and Wigner D-matrix coefficients D}, for signals over SO(3). Writing

f: SO(3) — R in terms of the D! , and then truncating to a given frequency [ < L gives the

approximation f(g) ~ Sk 2L 2Ll Dl (g). The SO(3) group convolution can be
=0 m=0 n=0 “mn"~"mn

efficiently computed in the Fourier domain in terms of the coefficients {c!,,,} by convolution theorem.
See Cohen et al. [15] for additional details on the SO(3) group convolution.

4 Method

A G2Sphere model consists of two key components: (1) an encoder, which compresses the input data
into a compact latent representation, and (2) a decoder, which decomposes this latent representation
into the spherical output using spherical harmonics (Fig. [2). Encoder-decoder architectures such as
U-Net [65] and Transformers [S5]] are attractive methods for prediction tasks with high-dimensional
inputs, such as 3D geometric data, due to latent space compression. The encoder-decoder design
is a good fit for our problem since we map between two different types of geometric data. It also
allows us to match the geometry of the input and output spaces to the architecture of the encoder
and decoder. Using these learned and generalizable mappings from geometry to spherical signals,
G2Sphere can be applied to tasks that were previously unattainable or computationally prohibitive
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Figure 2: G2Sphere Architecture. Illustration of the G2Sphere (G2S) model. First, the geometric
input is converted from real space (red dotted-line) to Fourier space (blue dotted line) using an
SO(3)-equivariant encoder. We decode this spherical latent representation into a set of Fourier
coefficients ¢!, representing the continuous spherical signal. Finally, these coefficients are combined
with a grid of pre-computed harmonic basis functions to convert back to real space.

under previous methods [20} [15,40]]. We detail the exact implementations utilized in our experiments
in Appendix

4.1 Encoder

In a G2Sphere model, the first step is to encode the local and global information of the 3D input into
Fourier space, thereby ensuring that Euclidean and permutation symmetries are correctly respected
within our model. This is accomplished by utilizing an equivariant neural network encoder, with
the exact architecture varying depending on the type of input data. Broadly speaking, we define 3D
geometric data as information that describes the shape, position, and spatial properties of objects in
three-dimensional space. This can include various types of data including point clouds, voxel grids,
object meshes, and RGB-D images. When dealing with dense inputs, such as point clouds or object
meshes, equivariant transformers such as Equiformer V2 [40] are used. However, when dealing with
voxel grids or RGB-D images, E'(n)-equivariant Steerable CNNs [61} [T1] are a more natural choice.
These types of models are constrained to use low-frequency spherical features, i.e. 1,4, < 10, due to
the computational costs of higher-frequency features scaling significantly when applied on a per node
basis. In each case, the input signal is initially spatially dispersed in R? and at the end of the encoder
is aggregated into a single feature vector representing the multi-channel spherical signal in Fourier
space.

In Figure [2| we illustrate a G2Sphere model with mesh inputs which uses Equiformer V2 [40], a
SO(3)-equivariant transformer commonly used on 3D geometric data, as the encoder. The mesh
is embedded as a geometric graph with node and edge features. The node feature at node ¢ is
the position x; € R? and the edge features are the spherical harmonic embedding of the relative
positions e;; = Y! (x; —x;), where Yl R? — R2+1 are the spherical harmonics and i, j are vertices
connected by an edge. Then a set of node-wise spherical features are learned over the graph which
are mean pooled to form a multi-channel spherical latent space.

4.2 Decoder

Once the input has been projected into Fourier space using the encoder, we use operations that
preserve the SO(3) symmetry of the latent representation. Specifically, we use SO(3)-equivariant

group convolutions to form a Spherical CNN [15] decoder. The output of the final layer of the decoder
f represents an N-channel signal over S in the Fourier domain. That is, fj, = (cﬁm)ifféf o are the
coefficients of the spherical harmonics up to frequency L for 1 < k < K. To convert the signal back
to real space, we apply the inverse Fourier transform and evaluate these K signals on the 2-sphere, at

a position specified by spherical coordinates (6, ¢). That is,

L 2041 K
i@, (zzw ckm) |
=0 m=0 k=1

where Y}, are the spherical harmonics of degree [ and order m. In practice, we pre-compute the
spherical harmonics basis functions at the desired grid resolution to allow for fast evaluation. See
Appendix [D|for additional details on our harmonics implementations.



Table 1: Mesh to Spherical Functions. Mean square error of G2Sphere (G2S) and baselines on the
radar and drag domains. Performance is averaged across 3 random seeds with £ standard error.

Domain  Mesh Type Transformer Equiformer Spherical CNN G2S G2S+TSNL
Frusta 0.201 £ 2e-4  0.271 £ 3e-4 0.438 £1e-6  0.221 = 1e-5 0.195 % 9e-4

Radar Asym 0.179 £ 5e-4  0.257 £ 6e-4 0.496 £ 1le-6  0.123+2e-4 0.128 +4e-4
Drag Pods 0.064 £ 1e-2 0.0672+£4e-3  0.075+3e-4 0.062+2e-3 0.064 & 6e-3

One drawback to using harmonics to approximate functions in this manner is that if the maximum
frequency L is low, then their resolution will also be low. The SH excel at capturing smooth, low-
frequency components, but struggle with sharp features or discontinuous behavior unless a large
number of harmonics are used, i.e. high L. As a result, traditional equivariant decoder architectures,
which operate with a relatively small number of harmonics (L < 10), struggle in domains where
higher output fidelity is required. G2Sphere uses two techniques to improve output fidelity: frequency
up-sampling where we gradually increase the frequency from the encoder’s frequency L., to the
output frequency Lg.. and trainable spherical non-linearities (TSNL) [7], where an MLP is applied
pointwise across the sphere resulting in arbitrarily high frequency. We implement a more general
version of TSNL than Bonev et al. [[7] by applying inverse Fourier transform for each frequency !
separately, giving the MLP more input channels.

Trainable spherical non-linearity (TSNL) To further increase L in the output space, we apply a
learned MLP non-linearity pointwise to the spherical output signal. That is, given decoder outputs

cfm, we apply the FT to each frequency [ separately yielding f = (Ziﬁ;l) erlcfgm) pp a K- L

channel spherical signal f: S? — RX'L. Let M be a trainable MLP M : RXZ — R¢. The final
output is then evaluated at u € S? as M (f(u)). This allows the maximum frequency of the output
signal M o f to be unbounded when using typical non-linearities inside /. While this could also be
achieved by setting M to be a single fixed non-linearity, a trainable M is more controllable and can
introduce higher frequencies without adding artifacts.

The TSNL is equivariant up to the sampling error introduced by the inverse Fourier Transform used
to convert from the frequency domain features to real space signals on a fixed spherical grid. Since
M is applied identically at each point in the sphere, it is SO(3) equivariant by construction. While
the use of a finite spherical sampling can introduce minor numerical artifacts, these lead to negligible
equivariance error in practice. This approximation is common in many equivariant architectures such
as SFNO [7], Spherical CNN [15]], and Gauge Equivariant Mesh CNNss [17]. Notably, Cohen et al.
[L5] explicitly measure this equivariance error and find it to be minimal (< 2e — 6).

Frequency Up-sampling Inspired by Ha and Lyu [26], while increasing L in the decoder, we
gradually reduce the number of channels in our latent representation (See Appendix [G). To maintain
equivariance during this operation, we need to account for the relationship between the Fourier
and real space. This is accomplished through the use of a regular non-linearity (as in [[L5] or [17]]),
where we map the signal to real space using the inverse Fourier transform (IFT), apply a point-wise
non-linearity to the values of the spherical signal, and then perform the Fourier transform (FT),
with higher frequency resolution, to convert back to the frequency domain. As with the TSNL, this
operation is SO(3)-equivariant up to the same minor sampling error introduced by the IFT, which is
negligible in practice. By combining a number of these non-linearities in our decoder, we are able to
achieve a much higher maximum frequency (up to L = 40) than previous works using equivariant
architectures with dense geometric inputs, e.g. object meshes [} 133]]. This frequency upsampling
mechanism is a key architectural component that enables our model to produce high-fidelity, fine-
grained reconstructions, directly contributing to the improved high-resolution radar outputs shown in
Figure [3|and discussed in Section[5.1]

5 Experiments

To demonstrate the generality of G2Sphere, we systematically evaluate across three different domains:
two supervised learning domains, where we learn a mapping from object meshes to spherical radar and
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Figure 3: Left: Radar Response. Outputs generated by the ground truth first-principles simulator,
two baseline methods and G2Sphere. G2Sphere does a good job in reconstructing the overall
projected shape characteristics and correctly capturing both types of radar scattering responses
whereas the Transformer model underfits and the Equiformer model overfits. Right: Zero-Shot
Super-Resolution. G2Sphere trained on 60 x 20 and tested on 180 x 20.

drag signals, and a policy learning domain, where we learn a mapping between states and state-action
values. These evaluations benchmark the performance of G2Sphere on dense (e.g., radar response)
and sparse (e.g., drag coefficient) spherical signals and with complex (object mesh) and simple
(object keypoint) input geometries. G2Sphere consistently outperforms the prior state-of-the-art in all
domains. In the following, we provide an overview of each domain, our evaluation methodology, and
our key findings.

5.1 Radar and Drag Modeling from Meshes

Many modeling tasks take an object mesh as input and predict a physical property of that object. If
the property depends on a direction vector, that is, a spherical coordinate (6, ¢), then the output may
be represented as a continuous function defined on the 2-sphere. We evaluate the performance of
G2Sphere against baselines on two such tasks, predicting radar response and aerodynamic drag.

Radar Prediction Due to the expense of collecting real-world radar data, we simulate radar
responses for a variety of different meshes using a physical optics method to approximate the
electromagnetic waves [4]]. Specifically, we generate two mesh datasets, Asym and Frusta. See Fig.
[10] for examples. The Asym dataset is a collection of randomly scaled basic shapes (cubes, cylinders,
and spheres), with randomly generated protrusions to make the radar response asymmetric. The
Frusta dataset represents a collection of complex 3D shapes, where each mesh is a combination of
several basic components stacked together to form roll-symmetric objects. Due to this symmetry, we
evaluate each frusta mesh over 360 orientations on the non-symmetric axis, 6 € [0, 27| to generate
the associated radar responses. The Asym meshes are evaluated over both axes, 8 € [0, 27], ¢ € [0, 7],
where 6 is discretized over 60 values and ¢ over 20.

Drag Prediction We use a high-performance Computational Fluid Dynamics (CFD) simulator to
generate a Pods dataset of mesh and drag coefficient samples of pod-like geometrical shapes. There
are some differences relative to the radar dataset. First, as drag-coefficients are of most interest for
flying objects (e.g. aircraft) the drag coefficients are only simulated for a cone in the front of the
objects with 0, ¢ € [—20,20]. Secondly, a large contributing factor in the drag coefficients are the
set of flight conditions (altitude, speed, etc.) which we treat as global parameters and append to the
latent representation after encoding the mesh. The Pods dataset contains 10,000 samples (mesh,
flight conditions, drag) each with a single drag coefficient for a specific angle (6, ¢), which defines
the orientation of the incoming flow relative to the centerline of the Pod shape. Additional details on
the radar and drag datasets can be found in Appendix [}

G2Sphere Architecture We use Equiformer v2 [40] to encode the input mesh into a set of latent
representations for each vertex in the mesh. These latent vectors are then combined into a single
feature vector using a global average pooling layer. The decoder is a spherical CNN with several
layers of spherical convolutions followed by the spherical non-linearity introduced in Sec. 2] to
upsample the frequency from L.y, to Lgje.. We use L., = 5 for both tasks but use Lg.. = 40 for
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Figure 4: Generalizing to Unseen Objects. Full drag prediction on test sample not included in the
Pods dataset. Unlike in our training dataset, we compute the entire drag prediction from —20 to 20
degrees (shown in radians here). Despite being trained on single coordinate points, G2Sphere is able
to reconstruct the general shape of the drag function, whereas the baseline implicit models overfit to
specific points.

the radar domain and Lg.. = 5 for the drag domain. We examine two variants of G2Sphere, one with
the trainable spherical non-linearity (G2S+TSNL), and one without (G2S).

Baselines We compare the performance of G2Sphere against three competitive baselines for
processing meshes, Transformer, Equiformer, Spherical CNN. The Transformer model is inspired by
other prominent mesh-based transformer architectures [52, 141}, 21]]. It tokenizes the mesh into spatial
and structural descriptors as in [21]], and uses a transformer encoder with an MLP decoder to generate
the predicted response. The Equiformer [40] model resembles the G2Sphere, but directly maps the
latent representation to the discrete set of spherical values. The Spherical CNN model uses a
ray-based method to map the input geometries onto the sphere, followed by a series of spherical
convolutions. This can be considered a G2Sphere model where the learned encoder mapping is
replaced with a predefined map. We use explicit models for the radar prediction task, where the
baseline models output the full radar response for a given mesh. For the drag prediction task, we
use implicit models where the coordinates are passed as input to the baseline models and appended
onto the latent representation. This is necessary as, unlike in the radar domain, our drag dataset only
has partially observed outputs and therefore lacks the dense targets required by explicit models. See
Appendix |Gl for additional information on model architectures and training.

G2Sphere performance We report the performance of G2Sphere and the baselines on both radar
and drag tasks in Table[T} G2Sphere obtains the lowest mean squared error compared to any of the
baseline methods. Further, as the complexity of the task increases from the roll-symmetric Frusta
shapes to Asym shapes, the difference in performance between G2Sphere and the baselines increases.
This implies that G2Sphere is more adept at predicting dense output spaces than methods that output
discrete values. While exact error rates for radar prediction vary depending on the task specifications,
the Transformer baseline and G2Sphere fall within the most commonly cited 10 to 20% error range
[30]. Fig. 3] (Left) shows examples of the spherical radar signals generated by each model using
meshes from the Asym dataset. When comparing the predictions generated by the equivariant models
(Equiformer and G2Sphere), we can clearly see that G2Sphere captures significantly more detail and
fine-grained structure which we attribute to the higher maximum frequency. Additionally, we can see
that the Spherical CNN does very poorly, suggesting that the ray-based mapping from geometry to
sphere does not capture the geometric information required for the radar prediction task. Similar to
the radar task, we find that G2Sphere is able to achieve good performance on the drag task despite
being trained on a sparse set of coordinate values. We note that all of our models achieve an error of
around 6%, which falls within the single-digit percentage errors benchmark for aerodynamics [43]].
In the following, we explore two interesting zero-shot capabilities of G2Sphere.

Zero-Shot Super-Resolution. G2Sphere outputs coefficients of Fourier basis functions and thus gives
a continuous spherical signal which can be evaluated at arbitrary resolution. Therefore, G2Sphere
can be trained on only low resolution radar data and evaluated at a higher resolution, i.e. a zero-shot
super-resolution task. Fig. [3] (Right) shows an example where we train G2Sphere on 61 x 21 (§ x ¢)
resolution radar data and transfer to 180 x 21 resolution. G2Sphere is the only model among the
benchmarks (Transformer, Equiformer) that can do zero-shot super-resolution.



Table 2: Policy Performance. Comparison of G2Sphere (G2S) against baselines on the PushT and
PyBullet Drone domains. We compare max performance and, in parentheses, the average of last 10
checkpoints, each averaged across 50 different initializations. G2Sphere significantly outperforms
both an equivariant IBC model and the Diffusion Policy.

Domain Task IBC E-IBC Diffusion NE-G2S G2S
Fixed 0.85(0.81) 0.98(0.95) 0.95(0.91) 0.97 (0.95) 1.0 (0.98)
PushT
Random 0.62 (0.54) 0.81(0.76) 0.71(0.69) 0.74 (0.70)  0.92 (0.89)

FlyToTarget 0.94 (0.87) 0.98(0.92) 0.96(0.94) 1.00(0.95) 1.00(0.97)
PyBullet Drones
FlyThroughGate  0.90 (0.83)  0.94 (0.87)  0.94(0.92)  0.92(0.90)  0.98 (0.95)

Generalization to unseen Object Geometries. Our drag dataset contains only a single drag
coefficient corresponding to a single (¢, ¢) for each object. In this experiment, we evaluate G2Sphere’s
ability to generalize to objects held out during training and predict the full drag response cone,
(0, %) € [—20, 20]. Fig. |4 shows the generalization capability of G2Sphere when compared to the
baselines. When compared to these implicit baseline models, G2Sphere demonstrates a stronger
ability to generalize, effectively capturing the overall shape of the drag cone and producing more
accurate predictions. Although all the baseline models perform well on the training data, here we see
that they have overfit to specific (6, ¢) coordinates, resulting in poor generalization.

5.2 Policy Learning

In order to demonstrate the flexibility of G2Sphere for high-frequency continuous spherical signal
learning, we apply G2Sphere on four policy learning tasks from two benchmarks [22] 48]]. Although
there are many potential policy learning algorithms to which we could apply G2Sphere, in this work
we explore the application of G2Sphere to behavioral cloning (BC) [49]. BC casts the policy learning
task as a supervised learning problem where the agent learns to imitate a set of expert demonstrations.
Following Florence et al. [22], we formulate BC as a conditional energy-based modeling (EBM) [35]
problem. EMBs define a policy through an energy function which assigns an energy value to each
state-action pair. We compare G2Sphere to two prominent EBM policy learning methods, Implicit
Behavior Cloning (IBC) [22] and Diffusion Policy [13], and demonstrate that G2Sphere outperforms
these baselines both in terms of final performance and sample efficiency.

Training spherical value functions We use techniques from the EBM literature to train our
G2Sphere EBM. Given a dataset of state-action samples {s;,a;}, where s; € R and a; € RM,
we aim to learn an energy function E : RV* — R. We train using contrastive learning [34] by

generating a set of non-expert actions a;- and utilizing an InfoNCE-style loss function [45] where the

model must predict the true expert action a; from the non-expert actions a;.

The actions a are 2D or 3D velocity vectors normalized to be in the unit ball. In order to model
the energy function in Fourier space, we decompose a into an action magnitude ||a|| and an action
direction & = a/|a|| € S<. For 2D actions, the energy function is evaluated

Ey(s,a) = > (Fy(s:))h, B, (a),

L,m

where Fj is a G2Sphere model outputting Fourier coefficients ¢/, and B! are polar harmonics
(Appendix [E), which gives a basis of functions over the unit ball. For 3D actions, the magnitude is
treated as an implicit variable and Ey(s,a) = >, . (Fy(ss, [lall))}, Yk (@).

G2Sphere architecture Following Chi et al. [[13], we use keypoint observations which reduce
the underlying geometries of objects in the scene to a set of keypoints that capture the spatial and
structural information in the environment. Although we could still use an equivariant GNN encoder,
given the small size and lack of variability of the input, an equivariant MLP is simpler. In the PushT
domain, we have 2D keypoints and actions and therefore use SO(2)-equivariant linear layers. The
PyBullet Drones domain is a 3D navigation task, and we use SO(3)-equivariant linear layers. The
decoder remains a spherical CNN but with a small modification for the 2D domains to perform



Table 3: Inference Speed (ms). Comparison of inference speeds (ms) on an Nvidia Titan.
Domain IBC E-IBC Diff NE-G2S G2S

Drones 32 83 156 3 9

convolutions on the 1-sphere. To separate the impact of equivariance and representing the output in
Fourier space, we consider a non-equivariant version of G2Sphere (NE-G2S) where we replace the
equivariant MLPs with normal MLPs but still output the Fourier coefficients. Additional architectural
and training details for both G2Sphere and the baselines can be found in Appendix [G|

PushT Adapted from [22} [13]], the PushT task (Fig. requires pushing a T-shaped block (gray)
to a fixed target (green) with a circular end-effector (blue). Object geometries are represented by a
series of keypoints denoting the pose of the agent, block, and goal. We examine two variants: a fixed-
goal variant where the target pose is always set to the pose in Fig. and a randomized-goal variant
where the target pose is randomly sampled within the workspace. The metric for performance is
target coverage area between the block and the goal pose. We compare the performance of G2Sphere
against two versions of IBC, standard (IBC) and equivariant (E-IBC), and Diffusion Policy. The
results are shown in Table[2] We find that G2Sphere outperforms all other methods using the best
checkpoints almost always achieves a perfect score in the fixed-variant. Additionally, we can see that
the addition of equivariance stabilizes training instability leading to more consistent performance.

PyBullet Drones We use the PyBullet Drones benchmark Panerati et al. [48] to study the perfor-
mance of G2Sphere in a 3D positional control domain. Specifically, we examine two tasks of varying
difficulty, FlyToTarget (Fig.[13b) and FlyThroughGate (Fig. [13c). In the FlyToTarget task, the drone
must take off from a landed configuration and fly to the target position. In the FlyThroughGate task,
the drone is initialized in a flying configuration and must fly through a gate which is randomly posed
around the drone. The observation space is composed of 4 keypoints for the drone, 4 keypoints for the
gate, and a single keypoint for the target position. The action space is a delta motion from the current
position which is passed to a PID controller. The agent operates at 30hz and the PID controller
at 240hz. The results are shown in Table [2] We see that similar to the PushT results, G2Sphere
outperforms all other methods and provides increased training stability.

Inference Speed It is critical to have a fast inference speed for many closed-loop real-time control
tasks, such as robotic control. One of the known drawbacks to diffusion is that the denoising process
requires a number of steps to optimize the trajectory. This is somewhat mitigated in the Denoising
Diffusion Implicit Models (DDIM) approach[[13]], which has enabled relatively fast inference times
of 100ms. However, this does limit diffusion policies from many high-frequency control tasks, such
as policies enabled with force-feedback. G2Sphere, on the other hand, has extremely fast inference
time due to our use of grids of pre-computed harmonic function values, which can accurately predict
the energy distribution in a single forward pass. Table [3|demonstrates the differences in inference
speed for G2Sphere, IBC, and diffusion, with equivariant G2Sphere taking only 9ms compared to
156ms for Diffusion Policy.

6 Conclusion

In this work, we present G2Sphere, a novel approach to learning mappings from complex geometric
inputs to continuous spherical signals. We evaluated G2Sphere across a wide range of challenging
domains including radar response prediction, drag modeling, and policy learning for navigation
and demonstrated improved performance on all tasks. By employing a fully SO(3)-equivariant
architecture that learns the mapping from object geometry directly to the spherical Fourier domain,
G2Sphere helps close the gap in learning high-fidelity spherical signal representations from geometric
data. Additionally, we demonstrated G2Sphere is capable of zero-shot super-resolution, full-resolution
generalization to unseen geometries, and vastly improved inference times.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: While we are planning on releasing both the code and datasets in this work if
accepted, they are subject to an internal review process which must be complete first which
will began upon acceptance of this work (if accepted).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide these details in the appendix for each of the experiments ran.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our tables show the mean and standard error for a number of runs with different
random seeds.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the CPUs/GPUs utilized for our training/testing in the Training
details section of the appendix. We include the compute required for the experiments in this
work and also an estimate of the overall compute used during the course of research.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and this work adheres to the
relevant sections.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [NA]

Justification: This work focused on the technical applications of a specific type of modeling
and none of the application domains have broad societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not deal with either data or models that have a high risk for
misuse as it is primally considered with the modeling of spherical signals via the Fourier-
based methods.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The existing assets used in this work have both their original works cited and
when code is used urls are provided to the repositories.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: While we are planning on releasing both the code and datasets in this work if
accepted, they are subject to an internal review process which must be complete first which
will began upon acceptance of this work (if accepted)

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve either crowdsourcing or human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This work does not involve either crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Reproducibility statement

To ensure reproducibility, we have documented and made accessible all resources utilized by this
work. Our source code, datasets, and visualization methods are provided for transparency. We
have provided additional training and model architectural details for both G2Sphere and the various
baselines in Appendix |G| The techniques utilized to generate our high-quality synthetic data used
in the experiments in Sec. [5.1]is detailed in Appendix [J} Similarly, the details for the expert data
used for policy learning experiments can be found in Appendix [K]alongside additional environmental
details such as the sources for the environment implementations. Finally, the design decisions and
implementation details of our harmonics implementation tailored to equivariant neural networks are
discussed in Appendix

B Limitations and discussion

There are a number of limitations which future work could improve upon. First, in regards to the
radar and drag domains, the output fidelity of G2Sphere is heavily dependent on the maximum
harmonic frequency of the model. Unfortunately, current implementations of the spherical harmonics
in equivariant network architectures result in an cubic increase in computational requirements as the
harmonic frequency increases, thereby limiting the expressivity of our model. However, there do
exist more efficient methods for calculating the spherical harmonics which would allow for increased
maximum frequencies in future work [57}50]. Similarly, in this work we model the radial component
of the spherical coordinates by either outputting a discrete set of spheres for different radii or by
including it as an implicit variable. An alternate method would be to incorporate the radial component
into the Fourier basis functions allowing for efficient computation of the all spheres continuously
within some defined radial bounds [59]]. Finally, in this work we only explore 2D and 3D positional
control policies and have omitted full 6DoF pose control. The model can be extended to 6DoF by
applying inverse FT over SO(3) instead of S2.

C Group theory

Equivariance A function is equivariant if it respects the symmetries of its input and output spaces.
Specifically, a function F': X — Y is equivariant with respect to a symmetry group G, if it commutes
with all transformations g € G, F'(pz(9)x) = py(g)F(x), where p, and p, are the representations
of the group G that define how the group element g € G acts on x € X and y € Y respectively. An
equivariant function is a mathematical way of expressing that F' is symmetric with respect to G if
we evaluate I for various transformed versions of the same input, we should obtain transformed
versions of the same output.

SO(3)-Equivariant Neural Networks For 3D physical systems, since the orientation of the
coordinate frame is arbitrary, many task functions f should be SO(3)-equivariant. For neural
networks to incorporate this sort of geometric reasoning, it is necessary to parameterize signals
f: X — R, where X = S% or ¥ = SO(3) in a way that is both computationally efficient and easy to
apply rotations to. Cohen et al. [15]] provide an effective solution using the truncated basis of spherical
harmonics Y}, for signals defined over S? and Wigner D-matrix coefficients D!, ,, for signals over

SO(3). Writing f: SO(3) — R in terms of the D!, and then truncating to a given frequency [ < L

gives the approximation f(g) = ZlL:O Zil;é il;rol c..DL . (g). The SO(3) group convolution

can be efficiently computed in the Fourier domain in terms of the coefficients {c!, . } by convolution
theorem. See Cohen et al. [15] for additional details on the SO(3) group convolution.

Circular and spherical harmonics The Circular Harmonics (CH) describe functions on the
1-sphere (i.e. the circle S'). They are solutions to Laplace’s equation over S* defined v;(6) =
e where 6 is the angular coordinate [59]. In terms of group theory, the circular harmonics
define irreducible representations for the 2D rotation group SO(2). Therefore, they are useful for
constructing SO(2)-equivariant neural networks by representing circular signals as a combination of
fixed CH basis functions and learnable CH coefficients [61]].
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The Spherical Harmonics (SH) extend the CH to describe functions on the surface of the 2-sphere S2.
Similar to the CH, they are orthonormal solutions of Laplace’s equation on S2, defined:

2041 —m)! :
+ wl’#(cos@)e””’,

l —
Kn(ev(b) - 47_(_ (l +m>'

where 6 is the polar angle, ¢ is the azimuth angle, [ is the degree, m is the order and P!, is the
associated Legendre function [I]. The SH describe irreducible representations of the group SO(3) of
3D rotations. They are useful for creating SO(3)-equivariant features for SO(3)-equivariant deep
learning [23]].

D Harmonics implementations

In this section, we describe the details of our PyTorch harmonics packages which implements the
Polar and Spherical Harmonics used in this work. While there are a number of existing spherical
harmonics implementations [7]], they are tailored to the tasks that they solve, e.g. PDEs, and
therefore do not integrate well with the equivariant neural networks used in this work (e.g. e3nn or
escnn). Additionally, there are, to the best of our knowledge, no PyTorch implementations of the
Polar Harmonics (detailed in Appendix [E). To address these shortcomings, we developed our own
differentiable implementations of the Polar and Spherical harmonics in PyTorch which we utilize
throughout this work. The design goals of this package were two fold: (1) allow for the efficient
integration of the harmonics with the output of e3nn or escnn and (2) enable the calculation of the
harmonics on both a pre-defined grid of coordinates and at specific coordinates.

There are two considerations to make when tailoring our package to fit together with e3nn and
escnn. First, these equivariant neural networks model the Fourier coefficients as the irreducible
representations of the symmetry group and, therefor, our implementation needs to use the same
representations. We note that this restriction makes a number of previous implementations such as
Bonev et al. [[7] a poor fit as they use different derivations of the harmonics with different Fourier
coefficient specifications. Secondly, because these equivariant models typically operate in real space,
we need the harmonics to be in real space as opposed to complex. For example, we use the sin and cos
form of the circular harmonics (Appendix @) to match the dimensionality of the SO(2) irreducible
representations.

The second goal of our package is enable efficient batch computation of the harmonics over many
values. We require the ability to both compute the harmonics at specific coordinates (commonly used
during training to match the partial views u in our dataset) and to pre-compute a grid of harmonics
values at pre-defined coordinates (typically used at inference time to decrease computation time). In
order to achieve this, when instantiating the harmonics, a grid of harmonics values are pre-computed
at the desired resolution and a number of intermediate variables are saved during this process. These
intermediate variables are specific to the type of harmonics but, in general, they are components of
the harmonics independent to the coordinates such as the normalization constants and Fourier mode
components. This pre-computation allows for the efficient evaluation of the harmonics and reduces
training times.

E Polar Fourier transform

In this section we derive the Polar Harmonics Basis functions used in our 2D policy learning
experiments by performing Fourier analysis on the Polar coordinates. We would ideally like for
these functions to be decomposed into radial and angular components such that we can view this
decomposition as an extension of the normal Fourier transform. We can fulfill this requirement by
requiring the basis functions to take the separation-of-variables form:

f(p;8) = P(p) (). M
E.1 Basis functions
The angular component of the basis function is simply:
1

®y(¢) = Eel’”% 2)
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where [ is an integer. However, this definition resides in the complex domain, and when using
equivariant neural networks, it is advantageous to be in the domain of real numbers. Therefore, we
will instead use the sine-cosine form:

O)(¢) = (cos(l¢) + sin(lg)), 3)

5~
3

where [ > 0. The associated transform in angular coordinates is simply the normal 1D Fourier
Transform.

We will rely on Bessel functions to match the functions of arbitrary spatial frequency required by the
radial component of the Polar basis function. Using the Bessel function as a basis gives rise to the
l-th order Fourier-Bessel series:

1
V Nlm

where Ny, is a normalization constant and k;,,, is the k™ zero of J;.

Pin(p) = Ji(kimp), 4

E.2 Polar Fourier transform

By combining these radial and angular components we can form the complete basis function for the
polar Fourier transform:

\Ijlm(pa d)) = le(p)qjl(w)v Q)

where P;,,, is defined by Eq. #and ¥; by Eq.[2] As ¥,,,, forms an orthonormal basis on the region
p < a, we refer to it as the Polar Harmonics. A function defined over polar coordinates, f(p, ¢),
can be expanded using the polar Fourier transform with the Polar basis function, ¥,,,,,, and Polar
coefficients, Pj,,,:

inf inf
fo0) = [ [ Pt v)mam, ©)
where
inf 27

While this infinite transform is of theoretical interest, in practice we instead use the transform defined
on a finite region, e.g. the unit-circle. That is, a function f(p, ¢), where p < a can be defined as:

inf inf
f(pv (b) = Z —o qujlm(pvw)v (8)
m=1"'=
where )
P, = , )97, (p, dpde. 9
) /0/0 f(p, )91, (p, &) pdpd ©)

F Spherical Fourier Transform

Functions defined on the 2-sphere S? are commonly expanded in a basis of spherical harmonics
Y, yielding coefficients that compactly capture angular variation up to degree I,,4,. They are
orthonormal solutions of Laplace’s equation on S?, defined:

20+ 1 (1 —m)!
A (I +m)!

Y!(6,¢) = P! (cosf)e™?,

where 6 is the polar angle, ¢ is the azimuth angle, [ is the degree, m is the order and P!, is the
associated Legendre function [1]]. The SH describe irreducible representations of the group SO(3) of
3D rotations. They are useful for creating SO(3)-equivariant features for SO(3)-equivariant deep
learning [23] and underlay many spherical convolution methods, where learnable filters act on these
coefficients to extract multi-scale features from spherical signals.
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(a) Explicit Model (b) Implicit Model (c) G2Sphere Model

Figure 5: Modeling Spherical Functions. (a) The explicit model outputs a fixed grid of predictions
to approximate the continuous function f,.. (b) The implicit model learns f, by conditioning on both
input x and coordinate point u. (¢) G2Sphere decomposes f, into a set of learned Fourier coefficients
;" and spherical harmonics Y,™. This enables prediction of f, at any coordinate point w.

G Training details

In this section we provide additional details about the model architectures and training process for the
experiments in Sec. [5] Broadly speaking our models fall into three categories: explicit models (Fig.
[Bh), implicit models (Fig[Bb), and our G2Sphere model (Fig[5k). In the radar prediction domain, the
baselines are explicit models using a grid of regularly spaced spherical viewing angles. As mentioned
in Section@ the drag prediction domain is limited by the data and, therefor, implicit models are
used for the baseline methods. The same base architecture is used when modifying the models to
be explicit or implicit with a few small changes to modify the input/ output spaces (see Fig. [5|for
additional details). Finally, in the policy learning experiments, the IBC baseline uses implicit models
whereas the diffusion policy uses an explicit model. All models were trained until convergence
measured by loss in the supervised learning domains and policy performance in the policy learning
domains. All of our experiments are run on a high-performance cluster using either one or two Nvidia
Xeon-g6-volta GPUs with 32GB of memory. Each node has a Intel Xeon Gold 6248 2.4 GHz CPU
with 128GB of RAM and 1TB of local storage. Each experimental run required approximately 8
GPU-hours, and the total compute for all reported experiments was around 300 GPU-hours. Including
preliminary experiments and ablations not included in the final paper, the full research project used
approximately 500 GPU-hours.

G.1 Mesh-to-Sphere

G.1.1 Transformer

The Transformer architecture is composed of a mesh face embedding layer, transformer encoder, and
an MLP decoder. The mesh face embedding layer takes individual mesh faces as an input and uses
geometric features like vertex position and normal direction to calculate an embedded representation
of the face. The application of this layer to the mesh generates a sequence of embedded faces; a
learned classification embedding is prepended to this sequence. A standard transformer encoder
as introduced in Vaswani et al. [[53]] is then applied to the embedded sequence to transfer global
information about the mesh faces to the classification embedding; after this operation, the MLP
decoder is used to convert the classification embedding into the radar response. We train using the
Adam optimizer [32] with the best learning rate and its decay were chosen to be 5e~% and 1e =
respectively. We use a batch size of 4.

G.1.2 G2Sphere

For the mesh-to-sphere domain, the G2Sphere model uses Equiformer v2 to encode the object
mesh into Fourier space. We use the equiformer architecture from Liao et al. [40] with 4 layers
where each layer a feature dimension of 128, a [,,,4, of 5, and 4 attention heads. We then use a
global mean pooling head to compress the node features returned by Equiformer into a single latent
representation of size 128. The decoder is a 5 layer Spherical CNN [[15] with the feature dimensions
[128,64, 32,16, K], where K is the number of output channels in the spherical signal, and I, 4
dimensions [5, 10, 15, 20, 40]. We use the ReLU [] activation in our SO(3)-activation layers in the
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Spherical CNN. We train using the Adam optimizer [32] with the best learning rate and its decay
were chosen to be 17% and 0.95 respectively. We use a batch size of 4.

G.1.3 Equiformer

The Equiformer baseline has the same encoder architecture as G2Sphere but a slightly different
decoder architecture. The Spherical CNN decoder in Equiformer, has 6 layers where the feature
dimensions are [128, 64, 32, 16, K], where K is the number of output channels in the spherical signal,
and 1,4, dimensions [5,5,5,5, 5]. We use the ReLU [] activation in our SO(3)-activation layers
in the Spherical CNN. At the end of the Spherical CNN, a final spherical convolution converts the
latent representation into the explicit grid of output values. We use the ReLU [] activation in our
SO(3)-activation layers in the Spherical CNN. We train using the Adam optimizer [[32] with the best
learning rate and its decay were chosen to be 1~% and 0.95 respectively. We use a batch size of 4.

G.2 Policy learning
G.2.1 G2Sphere

In the 2D and 3D policy learning domains, our observations are a set of 2D/3D keypoints which
describe the objects in the scene. Therefore, we use much simpler models than in the mesh-to-
sphere domain. Specifically, we use SO(2) and SO(3)-equivariant MLPs as both our encdoers and
decoders. In the PushT domain, we use a 4-layer SO(2)-equivaraint MLP for our encoder with
a 512-dimensional latent representation and a 4-layer, 512-feature dimension, SO(2)-equivariant
spherical CNN with as the decoder. This SO(2) spherical CNN is essentially a series of spherical
convolutions on the 1-sphere as opposed to the 2-sphere. Both encoder and decoder use a L4
of 3. Similarly in the PyBullet Drones domain, we use a 4-layer SO(3)-equivaraint MLP for our
encoder with a 256-dimensional latent representation and a 4-layer, 256-feature dimension, spherical
CNN decoder. Both encoder and decoder use a L,,,,, of 5. Both models use a dropout [53]] of 0.1
while training. We train using the Adam optimizer [32] with the best learning rate and its decay were
chosen to be 174 and 0.95 respectively. We use a batch size of 256 and train our contrastive loss
using 256 negative samples.

G.2.2 IBC

We use two IBC models in our policy learning experiments: a non-equivariant version which uses
standard MLPs and a equivariant version which uses SO(2) or SO(3)-equivariant MLPs. The non-
equivaraint IBC is comprised of a 4 layer MLP encoder and a 4 layer MLP decoder both with 1024
feature dimensions. The implicit actions are appended onto the latent representation after it has been
encoded. The equivariant version of IBC, has the same structure as the non-equivariant model but
uses a feature dimension of 512 and a L,,,,, of 3 and 5 (for the 2D and 3D domains respectively).
We train using the Adam optimizer [32] with the best learning rate and its decay were chosen to be
1=% and 0.95 respectively. We use a batch size of 256. The contrastive loss is generated using 256
negative samples following Florence et al. [22]]. We use a dropout [53] of 0.1 while training. At
inference time, we perform 3 iterations of Derivative-Free Optimization [22] using 4096 samples to
select the best action.

G.2.3 Diffusion

We use the implementations from [[13] [MIT License] for our Diffusion models, specifically, we use
the transformer-based architectures. The transformer has 8 layers with 4 heads where each token is
embedded as a 256 feature vector. We use the Square Cosine Schedule proposed in iDDPM [44]
which is cited as the best performing noise scheduler in Chi et al. [13]. We train using the Adam
optimizer [32] with the best learning rate and its decay were chosen to be 1~* and 0.95 respectively.
We use a batch size of 256. We use 100 denoising diffusion iterations for both training and inference.
At inference time the model predicts the next 16 actions of which 8 are executed.
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Table 4: Lge. Ablation. Mean square error of G2Sphere using increasing maximum output harmonic
frequencies. As the output frequency of the decoder increases the performance of the G2Sphere
model improves. Performance is averaged across 3 training seeds.

Asym Ldec =5 Ldec =10 Ldec =25 Ldec =40

G2S 0.383 0.218 0.148 0.123
(a) Ground Truth (b) Lgec =5 (c) Lgee = 10 (d) Lgec = 25 (e) Lgec = 40

Figure 6: Effect of L., on Fidelity. As the maximum frequency of the decoder increases so does
the accuracy of the G2Sphere prediction. At Lg.. = 5 we see that most of the features of the signal
are lost and we are only capable of modelling the general high/low signals. However, as we increase
to Lgec > 5 we can see the features getting sharper as the output frequency increases.

H Maximum frequency ablations

A unique capability of G2Sphere is its ability to leverage the maximum harmonic frequency L to
control bias of the model. A higher L captures more fine details and higher-frequency components of
the underlying function which can lead to a more complex and accurate approximation. Therefore
when trying to predict the high-frequency radar response function, we find that the higher the L the
more accurate our predictions become (Table ] Fig. [6). However, we note that this is only possible
due to the large scale radar datasets which have responses over the entire sphere for each mesh. In
contrast, in domains where we lack these dense outputs, such as the drag and policy learning domains,
we find a lower L can combat overfitting by providing a smoother, lower-detailed approximation of
the underlying function (Fig. [7).

I Multimodality

Learning from human demonstrations presents a significant challenge to BC due to the challenge of
modeling the multi-modal distributions common in human actions [22} 51,27, [13]]. One advantage
of G2Sphere is the ability to control the maximum multimodality of the policy via the maximum
frequency. At a high level, the maximum frequency describes the amount of energy in the basis
function associated with that maximum frequency. From a practical point of view, this means that
the higher the frequency the more complicated a function you are able to model. G2Sphere takes
advantage of this by setting the maximum angular frequency to at least the amount of multimodality

Ground Truth
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Figure 7: Effect of Lg4.. on Generalization. As the maximum frequency of the decoder increases,
G2Sphere starts to overfit to the sparse data samples in the Drag domain. As a result, the G2Sphere
model with a lower output frequency generalizes better to new data.
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(a) N-Paths (b) IBC (c) G2S (d) Diff

Figure 8: Multimodal Behavior. From the start state (blue) there are two paths (top row) and four
paths (bottom row) to the goal state (green). When using high enough angular frequency (L = 2,
L = 4), G2Sphere learns all paths and commits to a path at the start of each rollout. Diffusion Policy
exhibits a similar behavior but shows some bias towards certain paths whereas IBC fails to learn due
to an equal distribution of expert path data.

(a) N=2, L=2 (b) N=4, L=4

Figure 9: Energy Landscape. We visualize the energy landscapes generated with the G2Sphere on
the N-Paths domain with N = 2 and N = 4, respectively.

present in the task. We illustrate this behavior using the simple N-Paths task where the agent must
navigate to the goal (green) using one of the N available paths. Fig. [9 shows that by setting the
maximum frequency to the multimodality present in 2-Paths and 4-Paths, the energy landscape
generated by G2Sphere is able to model each of the multimodal trajectories. Additionally, Fig. [§]
shows example trajectories generated by G2Sphere, E-IBC, and Diffusion. We note that G2Sphere
is the best at matching the multimodality present in the task and is equally likely to take any of the
N-paths, while diffusion shows bias towards certain paths and IBC fails to commit to any of the paths.

L AN

(a) Asym Mesh (b) Frusta Mesh (c) Pods Mesh

Figure 10: Object Meshes. Example object meshes used in the mesh-to-sphere experiments. The
Asym and Frusta meshes are used in the radar prediction domain and the pods meshes are used in the
aerodynamics prediction domain.
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Figure 11: Radar Simulator. (a) Cross section of random 3D object mesh. (b) The range profile for
20° viewing angle. (c) The corresponding static radar pattern.

J Dataset generation

J.1 First-Principle RF model

Due to the scarcity of available real-world and simulated radar data for training radar models, we
simulate our own benchmark dataset. To generate ground truth data, we use the physical optics
approximation method [4], which provides a linear approximation of the more general and highly non-
linear scattering formulation for electromagnetic waves. A simple operator that describes physical
optics response across the illuminated section of an object for perfectly reflecting material as,

" _
F(z, k)= ;—W /R3 e 2R @Y) gy,

where the incident wave number is k = 27/, A is the wavelength, and the observation unit vector is,
2 = (sin 6 cos ¢, sin 6 sin ¢, cos 9),

for @ € [0, 7] and ¢ € [0, 27]. We note that the approximation is valid only in high frequency regions
such that k << 27/D, where D is the length of the longest side of the object.

As we are particularly interested in far-field sensing, the physical optics approximation is useful as
a fairly accurate and flexible simulation tool for training data generation. The simulation input is a
parameterized mesh object (an example cross section shown in Fig. [TT[a)). The simulation calculates
the the physical optics response for given observation line-of-sight and frequency and the total radar
response of the object is equal to the sum of the individual triangle responses that are visible to the
radar. Simulations for this work required generating the response across a linear set of frequencies to
emulate a Linear Frequency Modulated (LFM) waveform, where the center frequency is 3e9Hz and
bandwidth is 4e8Hz using circular polarized waves with orientation RL.

The Radar Cross Sec. (RCS) for each triangle is calculated using legacy software [[10]. The simulation
produces a radar observation, r € R (Fig. b)) for a given viewing angle. The observation is
the normalized magnitude of the range-profile as described in Sec. III of Chance et al. [12]. All the
normalized range profiles are then stacked across varying radar viewing angles to generate what is
referenced as a radar static pattern (Fig. [[T[c)). Note that fixing the radar line-of-sight and rotating
the object would generate the same radar static response.

We utilize two different mesh datasets for our experiments. The first is the Frusta dataset. Each object
in this dataset is defined by a series of stacked frusta objects, in which adjacent frusta share the same
radius to ensure a continuous object. To generate a diverse set of objects, we vary both the number of
frusta components and the radial parameters for each frusta. To introduce additional object and radar
response diversity, we also vary the ends of the frusta object to either be flat planes, half spheres, or
one of each.

While the Frusta dataset provides objects with complex forms, it is also rotational symmetric along
the roll axis. To address this issue, we also generate the Asym. This dataset consists of three different
base shapes; cubes, cylinders, and spheres. Each object is randomly scaled across it’s independent
dimensions; to ensure diversity, no random scaling is repeated within object class. After the scaling,
the mesh is duplicated and subdivided to decrease the relative size of mesh faces. A group of adjacent
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Figure 12: Aerodynamics Simulator. Ground truth drag coefficients generated by the numerical
CDF simulator.

faces is selected at random from the overall set of mesh faces on the subdivided copy; these faces are
then extruded by a random amount in the average normal direction of the selection. This extruded
protrusion is then added to the original mesh using the union operation, resulting in an object without
any rotational symmetries.

Using these methods, we generate a dataset of X objects for the Frusta dataset, and 30,000 objects
for the Asym dataset, evenly distributed across the underlying classes. Each dataset is divided 90/10
between train/validation and test sets. Since the meshes resulting from the Frusta generation method
are large relative to the capacity of neural network models (maximum size of 4500 faces), frusta
meshes are decimated to 50% of their face count using quadratic decimation for training and testing.

J.2 Aerodynamic simulation and data

The aerodynamic dataset consists of "pod-like" shapes defined parametrically by varying shape
parameters such as: length, diameter, bluntness, and cross-section asymmetry using Latin Hypercube
Sampling. Flight conditions including altitude, Mach number and Reynolds number were also
selected using Latin Hypercube Sampling, where altitude ranges from O to 50 kilofeet, Mach number
ranges from 0.05 to 0.5, and Reynolds number ranges from 10° to 5 x 10%. For each shape permutation
a high-quality computational grid is algorithmically generated. The minimum cell size is defined
to provide over 100 cells across the length of each shape, and 50-100 volume cells to resolve the
boundary layer down to the viscous sublayer, i.e. ¥+ = 1, where y ™1 is the wall coordinate commonly
used in defining the law of the wall. Generation of drag force data is based on a Computational Fluid
Dynamics (CFD) simulator for which we solve the Reynolds-Averaged Navier-Stokes (RANS) mass,
momentum and energy equations through the NASA FUN3D simulation framework. Turbulence
is modeled using the Spalart-Allmaras model with a freestream turbulence intensity of 3 percent.
The van Albada flux limiter with the low-diffusion flux splitting “LDFSS” flux construction method.
Simulations are run until a relative residual tolerance of 102 is met for the mass, momentum, energy,
and turbulence governing equations.

The Pods dataset contains 10, 000 samples of (mesh, flight conditions, drag) tuples, each with a single
drag coefficient for a specific angle 6, ¢ € [—20, 20], which defines the orientation of the incoming
flow relative to the centerline of the Pod shape.

K Policy learning environments

PushT We generate 100 expert demonstrations for both the fixed and randomized PushT tasks.
All demonstrations were generated by a single human operator familiar with the task. Each episode
terminates either after the task is completed or the maximum number of steps (500) is reached. We
use the PushT implementation found in Chi et al. [[13] which can be found here: https://github.
com/real-stanford/diffusion_policy|[MIT License].
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(a) PushT. (b) FlyToTarget. (c) FlyThroughGate.

Figure 13: Policy Learning Domains. The tasks from our policy learning benchmarks. The fixed-
goal variant of PushT is shown in (a). The target position to fly to is shown as a red ball in (b) and the
gate to fly through is shown in red in (c).

PyBullet Drones We generate 50 expert demonstrations for both the FlyToTarget and FlyThrough-
Gate tasks. All demonstrations were generated by an expert policy which has access to the underlying
simulation state. We add a small amount of uniformly sampled noise, e ~ U(0, 1), to each action
from the expert policy. Each episode terminates either after the task is completed or the maximum
number of steps (300) is reached. We use the PyBullet Drones implementation found in Panerati et al.
[48]] which can be found here: https://utiasdsl.github.io/gym-pybullet-drones/ [MIT
License].

L. Example radar response outputs

In Fig. |14] we highlight representative examples generated by the ground truth simulator, transformer,
equiformer, and G2Sphere on the Frusta dataset. We note that although G2Sphere still produces
the best predictions, the difference between G2Sphere and the transformer baseline is much less
pronounced on this dataset. This aligns with the result in Table[T] which shows that the performance
of the transformer baseline and G2Sphere to be similar.
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Figure 14: Frusta Radar Predictions. Radar response predictions on the Frusta dataset. Due to the
roll symmetry in the Frusta dataset we plot the spherical outputs as static patterns. G2Sphere is best
able to capture both the overall structure of the response and also the speculars (bright horizontal
lines).
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