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Abstract

Dispersion of the embeddings on the d-
dimensional hypersphere is a process of finding
a configuration that preserves semantic informa-
tion while pushing unrelated vectors away from
each other without the need for negative exam-
ples. Such a formulation can be connected to the
finding configuration of the points such that the
minimum distance between two distinct points
is maximal, which is a well-known open math-
ematical problem called the Tammes problem.
When dealing with high-dimensional spaces and
extremely large numbers of points, as in the text
embeddings learning, there is typically no optimal
solution, contrary to the Tammes problem, where
the optimal solution exists for particular values
of N and d. Moreover, embeddings learning is
mostly done in Euclidean space, which is at odds
with the goal of directional dispersion. In this
work, we revisit existing algorithms and propose
new ones to find a sub-optimal solution for em-
beddings dispersion by defining the Riemannian
optimization problem on the hypersphere.

1. Introduction

Dispersion? of the embeddings encouraging spreading out
a large amount of high-dimensional embeddings vectors
on the surface of the d-dimensional unit hypersphere (Liu
et al., 2021). The need for separation is motivated by
the recently found issues with clumping embeddings to-
gether while using angular distances. Such clustering of
the points negatively impacts the performance of the down-
stream tasks (Wang & Isola, 2020; Liu et al., 2021; Trosten
et al., 2023; Tokarchuk & Niculae, 2023). Mettes et al.
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*In the literature, the term “uniformity” is also used. How-
ever, to highlight the difference with samples from the Uniform
distribution, we use “dispersion” instead.

(2019) also argue that directly minimized maximum similar-
ity of the points on the hypersphere is superior to uniformly
obtained samples (Hicks & Wheeling, 1959; Muller, 1959),
since it encourages separation between points. Having em-
beddings explicitly modeled to be on the unit hypersphere
enables making use of dispersion (Liu et al., 2021) and is in
line with using angular distance.

In general, the problem of spreading N points on the sur-
face of d dimensional sphere, such that the angular distance
between two distinct points is maximal, is an open mathe-
matical problem known as the Tammes problem (Tammes,
1930). The optimal solutions for this problem are known for
small values of d and N (Fejes, 1943; Danzer, 1986; Waer-
den van der & Schiitte, 1951; Robinson, 1961; Musin &
Tarasov, 2012; 2015). The Tammes problem can also be for-
mulated as a problem of finding a spherical code (Conway
et al., 1999) with minimal cosine similarity value for given
d and N. There are known numerical solutions for several
values of NV and d for spherical codes problem (Cohn, 2024).
However, we typically deal with a large number of dimen-
sions and many points when learning, e.g., text embeddings
for ML tasks. Thus, we can rely on gradient optimization
methods to approximate the optimal configuration on the
hypersphere.

We study several regularization terms in order to find a
sub-optimal solution to the dispersion problem on the unit
hypersphere. In particular, we reinterpret Maximum Mean
Discrepancy (MMD, Gretton et al., 2012a) as a method for
dispersing an arbitrary number of high-dimensional points,
adapt Lloyd’s algorithm (Lloyd, 1982), and propose sliced
dispersion that directly exploits properties of the hyper-
sphere. We showcase the performance of those regularizing
by approximating optimal Tammes problem solutions and
learning dispersed target embeddings for continuous-output
neural machine translation (CoNMT). We chose CONMT
since recently Tokarchuk & Niculae (2023) showed that it
is fairly sensitive to the dispersion of the target embeddings.

2. Dispersion on the Hypersphere

2.1. Notation and Background

We denote by S, the d-dimensional hypersphere embedded
in R je,S; = {x € R | ||z|| = 1}. For u,v €
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R+ we denote their Euclidean inner product by (u, v) :=
Zfill u;v;. The hypersphere is an embedded Riemannian
submanifold of R%t!. The tangent space of the sphere at
a point z is TSy == {v € R | (z,0) = 0} ~ R,
and the Riemannian inner product on it is inherited from
R4, ie., for u,v € T,;Sy, (u,v), = (u,v). The geodesic
distance on a hypersphere is d(z,2’) = cos™((z,2')). As
a special case, for d = 1 it is more convenient to work in an
isomorphic angular parametrization, i.e., S; ~ {0 | -7 <
0 <} with d(0,0") = |0 — ¢’|: the embedding of S; into
R? is given by § — (cosf,sinf)). We reserve the use of
Greek letters 7, 0, ¢ for 1-d angles. We denote by II,, the
set of permutations of (1,...,n).

We use roman capitals, i.e., X = (x1,...,%,), to denote
an (ordered) collection, or configuration, of n points on the
same sphere, i.e., each x; € S;. We use sans-serif capitals,
i.e., Y, to denote a random variable.

2.2. Measures of Dispersion

To measure the dispersion of the set of embeddings X on
unit hypersphere, we consider two different metrics.

Minimum distance. Dispersion requires that no two
points be too close, suggesting a minimum distance metric:

min

dminX =
( ) zi,x; €EX,i#£]

where d(x;, ;) is the geodesic distance from §2.1.

Spherical variance. Spherical variance (Jammalamadaka
& Sengupta, 2001; Mardia, 1975) originates from direc-
tional statistics and is defined for finite X C Sy as

svar(X) =1 — R, where R = 1/7121'717 2

Spherical variance is a key quantity in the Raleigh test for
uniformity on the hypersphere S; (Mardia & Jupp, 1999, p.

206-208), which uses (d + l)nﬁ2 as test statistic.

The presented dispersion measures offer complementary
perspectives of the dispersion of the embeddings, but are
insufficient when considered in isolation. The minimum
distance only depends on the two closest embeddings: em-
beddings can be spread out in a near perfect configuration,
whilst having a minimum distance close to zero. Simi-
larly, large spherical variance does not imply well dispersed
embeddings (consider embeddings clustered around two
antipodes.) In addition, neither method is well-suited for
gradient optimization. The gradient of d,,;,, depends only
on the closest pair of points and would lead to impractically
slow algorithms. As for spherical variance, since the Eu-
clidean gradient of R is orthogonal to the surface of the
hypersphere S, its Riemannian gradient is null.

2.3. MMD/Kernel Entropy

The distribution of perfectly dispersed embeddings is simi-
lar to a uniform distribution on the hypersphere. Dispersing
embeddings can then be seen as minimizing the ‘distance’
between the embedding distribution and the uniform dis-
tribution Unif(S;). The Raleigh test for uniformity is not
well suited for this purpose as discussed in the previous
section. An alternative statistical test for uniformity can
be derived from the maximum mean discrepancy (MMD),
which measures the distance between two probability distri-
butions (Gretton et al., 2012b). Lemma 1 implies that the
squared MMD between the distribution of the embeddings
and the uniform distribution on the sphere can be computed
using embeddings only, up to a constant.

Lemma 1 (MMD? and spherical embeddings.) Ler p
be any distribution on Sy and let k be a kernel on Sgsuch
that k(x,y) = f((z,y)) for some function f: [—1,1] —
R. Assume all random variables are independent. Up to
a normalizing constant c € R, we have

MMD?[p, Unif(S4)] = Ex x~p [E(X, X)] — c.

The proof of Lemma 1 is deferred to Appendix A.1.

Using the radial basis function kernel k(z,y) =
exp (—)\ |z — y||2) in the result of Lemma 1, we see that

minimizing the estimated squared MMD of the embeddings
and the uniform distribution is equivalent to minimizing

1 n n
M(X) = m;§exp(7<$u$,i>)7 (3)
o

where X C Sy is a set of n embeddings and v := 2\ > 0.
The intuition for M (X)) is that the embeddings are pushed
away from each other when minimizing M (X), thereby
improving the uniformity of the embedding distribution.
The parameter y determines the emphasis on the distance
between embeddings, i.e., a larger ~ results in a larger em-
phasis on close embeddings.

The regularizer M (X) is related to the partial loss func-
tion used by Trosten et al. (2023) to disperse image rep-
resentation embeddings for few shot learning, as well as
the energy-based approaches to Tammes and Thompson
problem (Gautam & Vaintrob, 2013). In particular, the ex-
ponential of the energy optimized by Trosten et al. (2023);
Wang & Isola (2020) differs from M by a constant. Our
work thus provides a perhaps more direct justification of
their objective.

2.4. Lloyd’s Algorithm

An alternative formulation comes from casting maximal dis-
persion as quantization of a uniform measure. Quantization
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refers to the problem of approximating a given measure by
an empirical measure supported at a few centers. When
the given measure is uniform over some support set, the
optimal centers are spread out uniformly over the support;
and can be calculated by Lloyd’s algorithm (Lloyd, 1982),
henceforth Lloyd, which iteratively moves each centroid
to the center of mass of its Voronoi cell. When the given
measure is another empirical measure, quantization is equiv-
alent to k-means clustering. When the space is Rieman-
nian and not Euclidean, both quantization and clustering
generalize readily with an adequate choice of distance (Le
Brigant & Puechmorel, 2019). While Lloyd’s algorithm and
k-means are originally batch algorithms, stochastic gradi-
ent versions have been developed (Bottou & Bengio, 1995;
Sculley, 2010), including, independently, in the Riemannian
case (Le Brigant & Puechmorel, 2019). In general, given a
domain D, which could be a manifold or a compact subset of
one (for quantization), or a discrete dataset (for clustering),
the n optimal centroids are a minimizer of

1
L(X) = Ey.unit(m) [min §d2(Y7 :cj)] . 4)

jE€[n]

A stochastic gradient of the Lloyd regularizer can be ob-
tained by drawing m uniform samples on D. Intuitively,
each cluster center is pulled toward the barycenter of the
uniform samples assigned to it; an approximation to the true
Voronoi barycenter.

For dispersion on the sphere, we take D = S;. While tradi-
tionally Lloyd’s algorithm corresponds to minimizing L(X)
alone, we propose using L(X) as a regularizer to move
X closer to optimal Voronoi centers of the sphere, while
also minimizing some main task-specific objective. The
complexity of this regularizer is controlled by the number
of samples: For efficiency, m should be much less than n,
in which case most cluster centers are not updated in an
iteration. However, unlike for MMD, the stochastic gradient
takes into account all of X through the cluster assignment.

2.5. Sliced Dispersion

The previously discussed algorithms are generally applica-
ble to other manifolds. We now show how using properties
of the sphere we may obtain an alternative algorithm for
embeddings dispersion. The key idea is that, while in 2 or
more dimensions it is hard to find the location of n evenly
distributed points, on S; this can be done efficiently: The
following set of angles is one optimal configuration:

n+1 27k
+—.
n

(I):(¢17'~'a¢n)

where ¢ = —7

*More generally, the target measure need not be uniform. Le
Brigant & Puechmorel (2019) discuss more general conditions for
the existence of a minimizer.

Any other optimal configuration must be a rotation of this
one, i.e. T + @ for 7 € (—m, ). followed by a permutation
of these angles. Given a permutation o € II,, denote &, =
(<Z5a(1), ce (bg(n)). We can then write the set of all possible
ordered optimally-dispersed configurations as

DSy ={1+®, | 7€ (-mm),cell,}. (5
Given an ordered configuration of angles © =

(61,...,0,) C S;, we define its (angular) distance to the
maximally-dispersed set as:

n 1 .
Yo 5li—0*©

i=1

d*(©,D,S;) = min
6€D,5

Lemma 3 defined and proved in Appendix A.2 shows that
any configuration of angles can be efficiently projected to
its nearest maximally-dispersed configuration. We defer all
proofs in this section to Appendix A.2.

In arbitrary dimensions, a similar construction is not possi-
ble, since the optimal configurations do not have tractable
characterizations. We instead slice a high-dimensional
spherical dataset along a great circle; similar to Bonet et al.
(2023). The following result gives the geodesic projection.

Lemma 2 (Projection onto great circle.) Let p,q € Sy
with (p,q) = 0. Two such vectors determine a unique
great circle S,q C Sq defined by:

Spq = {cos(8)p +sin(f)q | -7 <0 <7} ~S;.
The nearest point on Sy, to a given x € Sq is:

projg  (z) = arctan2 ((z, q), (z,p)) - )

A well-dispersed configuration over S; should remain fairly
well-dispersed along any slice on average. If we denote
proig,, (X) = (projg,, (71), . proig,, (). we may cap-
ture this intention by the following measure:

S(X)=Ey,q dQ(prOjSpq (X)anSpq)} ) ®)

where d? is defined in eq. (6), and the expectation is over
orthogonal pairs p, g. The following proposition efficiently
computes stochastic gradients of S.

ege pq . ~xPq
Proposition 1 Denote 0" = projs (;), and 0,
the corresponding dispersion maximizer computed using
Lemma 1. The Riemannian gradient of S is given by:

~xPq (Tj, — (T,
gradzi S(X) =Epq (eipq — 0, ) < p>(21 < (J>129



On the Matter of Embeddings Dispersion on Hyperspheres

3. Experimental Results
3.1. Approximate Solution for Tammes Problem

We evaluate our proposed dispersion methods by approx-
imating the known solution to the Tammes problem for
N = 14 (Musin & Tarasov, 2015) in three dimensions,
by considering the minimum angle between points of the
optimal configuration. Uniformly sampled points were dis-
persed using the proposed in Section §2 regularizers using
Riemannian Adam for 2.5k epochs. Parameters for individ-
ual regularizers can be found in Appendix B.1.
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r T T T
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Figure 1. Minimum angles distributions for various points arrange-
ments with d=3 and N=14. Optimal Solution shows the angle for
known optimal solution equal to 55.6705700°. Random Init. rep-
resents points drawn from the uniform distribution on the sphere.
MMD, Sliced and LLoyd are performed over the Random Init.

The minimum angles of the points distributed using the
MMD regularizer are close to the optimal minimum angle
as shown in Figure 1. The Lloyd regularizer follows closely,
but seems to approximate the solutions less accurately. The
sliced dispersion regularizer, however, seems to approximate
the solutions worse than the other two regularizers for N =
14. Results of approximation on other values of N and d
can be found in Appendix B.1

3.2. Continuous-Output Neural Machine Translation

Continuous-Output NMT (CoNMT, Kumar & Tsvetkov,
2019) reformulates machine translation as a sequential con-
tinuous regression problem of predicting the embedding of
the next word, instead of the more usual discrete classifi-
cation formulation. Tokarchuk & Niculae (2023) recently
showed that dispersion plays an important role and greatly
impacts performance. We follow closely their setup and
apply the dispersion regularizers in order to achieve good
dispersion. Pre-trained embeddings comes from the well-
trained discrete model. We present results for WMT 2016
ro-en with 612k training samples. Table 1 shows the BLEU

score results on newstest2016 for CONMT models with
different target embeddings Ev, alongside dispersion mea-
sures defined in §2.2

We conduct two types of experiments. First we train a
vanilla transformer model (Vaswani et al., 2017). Resulting
embeddings are in Euclidean space, so we project it onto
the sphere by dividing to the norms of embeddings. To
spread out the embeddings we then use Riemannian opti-
mization on the sphere with geoopt (Kochurov et al., 2020)
using three different regularizers. We refer to this as ‘offline’
methods in Table 1. Second, we train transformer model
with embeddings explicitly modeled to be on the sphere
using Riemannian optimization. In this case, we can apply
dispersion regularizers directly during optimization. Ap-
pendix B.2.1 contains further embedding training details.

Tgt. Emb. Ey svar(Ey) 1t dmin(Ey) 1T BLEU?

euclidean (proj.) 0.191 0.014 27.8
+offline MMD 0.599 0.372 29.7
+offline Lloyd 0.585 0.004 27.7
+offline Sliced 0.979 0.106 29.6

spherical 0.797 0.014 29.8
+MMD 0.799 0.014 29.9
+Lloyd 0.799 0.026 29.8
+Sliced 0.999 0.471 29.9

Table 1. Impact of the dispersion of the target embeddings on the
CoNMT results. We report BLEU scores on the newstest2016 for
ro-en. Beam size is equal to 5.

Spreading out the projected embeddings results into the
BLEU score improvement with MMD and Sliced dispersion.
For all dispersion regularizers, we can see that svar(Ey)
is increasing. However, d,i, (Evy) decreases for the Lloyd
regularizer, which seemingly also impacts the BLEU score.

We also highlight that training target embeddings on the hy-
persphere with Riemannian optimization, even without any
regularizer, gives better dispersion “by default” according
to spherical variance. When adding dispersion regularizers,
there are no significant fluctuations in svar(Ev ), except for
the Sliced regularizer. We leave thorough investigation of
the observed behaviour for the future work.

4. Conclusion

Our work presents and compares three regularizers for dis-
persing points on the sphere; one equivalent to a popular
method (MMD) and two novel ones (Lloyd and Sliced).
Our experimental results show that these methods can ap-
proximate the Tammes problem solution, and also allow
improvement on the CONMT task, which uses cosine dis-
tance both for training and decoding. We want to extend the
variety of the task in the future.
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A. Appendix
A.1. MMD Dispersion: Proofs
A.1.1. MMD? AND SPHERICAL EMBEDDINGS: PROOF OF LEMMA 1

The squared MMD of two probability distributions p and g is equal to (Gretton et al., 2012b, Lemma 6)
MMD?[p, ¢] = Ex xp k(X X)] = 2Exp g [K(X, Y)] + Ey,yg (Y, Y.

We show that the last two expectations are constant, when p is a distribution on the hypersphere S; and ¢ is Unif(S,). Let
2,72 € Sy and let Q be a rotation matrix such that Qz = 2’. Note that Y ~ Unif(S,) if and only if Q7Y ~ Unif(S,), and
(Qz,2) = (2,QT z). It then follows that

EYNUnif(Sd) [k(z7 Y)] = IEYNUnif(Sd) [k(zl7 Y)L

since k(x,y) = f((z,y)). Hence, there exists a ¢ € R such that for all z € S5 we have

EYNUnif(Sd) [k(Z, Y)] =c.

Consequently, Ex..,, y~units,) [k(X, Y)] = cand Ey vy unit(s,)[k(Y,Y’)] = c. The desired result follows immediately.

A.2. Sliced Dispersion: Proofs

A.2.1. OPTIMAL 1-D DISPERSION
Lemma 3 Optimal 1-d dispersion. The projection

n

arg minz 5(01 —6;)?
@EDnSl i=1

is given by 9: = T + ¢o-1(;), where o is the permutation s.t. 0,1y < 0,2) < ... < Og(p), and 7% = 2:191" The
projection can be calculated in O(nlogn), the dominating cost being sorting the angles.

We aim to prove the assertion that the projection

arg minz —(0; — 6;)*
©eD,.S1 j—1

Zi 0

n

is given by 9: = 7" + ¢g-1(;), Where o is the permutation st 0,(1) < 0,2) < ... < Oy, and 7 =

By definition, per eq. (5), O = 7 + &, and thus we may write the problem equivalently as

) 1
arg min Z 3 (Gi = o(i) — 7)2 .

TE[—m,m),0€Il, P

Finding the permutation. In terms of o the objective takes the form — . 6;¢, ;) +const, so we must find the permutation
that maximizes ), 0;¢,(;) = >_; 05—1(;)®i- By the rearrangement inequality (Hardy et al., 1952, Thms. 368-369), since ¢;
is in ascending order, this sum is maximized when 6,-1;) is in ascending order; so the optimal o must be the inverse of the
permutation that sorts ©.

Finding 7. Ignore the constraints momentarily, and set the gradient of the objective to zero:

% >, %(ei =~ o) = 7)* = D (T + boy — 0:) =0, implying nT =3 60;= > 6 =3 6

% A

the last equality by choice of the zero-centered reference configuration ®. Since all 6; € [—m, ), so is their average, and
thus the constraints are satisfied, concluding the proof.
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A.2.2. PROJECTION ONTO A GREAT CIRCLE
The projection we seek to compute is

projs () = arg min d?((cos(#)p + sin(8)q, ).
—r<0<m

Since the geodesic distance satisfies d?(-,-) = arccos (-, -) and arccos is strictly decreasing on (—1,1), we have

projs () := arg max (cos(#)p + sin(0)q, x).
pa —m<0<m

As a side note, this shows that it doesn’t matter whether we use geodesic or Euclidean distance to define this projection.
Setting the gradient to zero yields

cos(0){q, ) = sin(0)(p, ),
or equivalently tan(f) = (g, z)/(p, z). The unique solution on [—, 7) is given by the arctan2 function.
A.2.3. GRADIENT OF SLICED DISTANCE

We first compute the Euclidean gradient of the desired expression:
V., S(X) = Vu.Ep [dz(projqu (X), DuSpq)] - ©)
First, by writing

LT
d*(©, DySpq) = Irgnz 5(0: = 0:)?

we see this may be interpreted as an Euclidean projection and

0
00;

d*(©, D,,Spq) = (0; — 07).

But 0; = projs,_(z;) and we can write
99 _ rojs  (x;)
ox; n ox; PrOJs, o\

o 891 an—l <Q7$>
{p.x)q — (g, 2)p
(q,2)* + (p,z)?

Putting the two together via the chain rule yields

V.. 8(X)= (0" — ;" {p2i)q — (¢, zi)p "
i ( ) (z 7 )<q,$z>2+<p,xl>2 ( )

Notice that the second term is a vector in R+ that is orthogonal to x; because:

(i, (p, wi)q — (q, x3)p) = (P, x:){q, xs) — (g, z) (P, xi) = 0.

Therefore,
grad, S(X) =V, S(X).

B. Applications
B.1. Approximation of the Tammes problem solution

The MMD regularizer was minimized using maximum batch size, learning rate 5 - 1072; v = 20. The sliced dispersion
regularizer used a single randomly generated axis during each epoch. The Lloyd regularizer was used with 200 samples.
Both the sliced dispersion regularizer and the Lloyd regularizer were used with learning rate 5 - 1072,

We report results of approximating the Tammes problem solution in 3-dimensions with N = (13,14, 24). As shown in
Figure 2.
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Figure 2. Minimum angles distributions for various points arrangements with d=3 and N={13,14,24}. Optimal Solution shows the
angle for known optimal solution equal to 57.1367031° for N=13, 55.6705700° for N=14 and 48.53529763° for N=24. Rand. Init.

represents the points generated uniformly at random on the surface of the sphere. MMD, Sliced and LLoyd are performed over the Random
Init.

B.2. CoONMT
B.2.1. EXPERIMENTAL SETUP

Results are reported on WMT#: 2016 Romanian— English (ro-en) translation task with 612K training samples. For subword
tokenization we used the same SentencePiece (Kudo & Richardson, 2018) model for all language pairs, specifically the one
used in the MBart multilingual model (Liu et al., 2020).

We used fairseq (Ott et al., 2019) framework for training our models. Baseline discrete models are trained with cross-
entropy loss, label smoothing equal to 0.1 and effective batch size 65.5K tokens. Both discrete and continuous models are
trained with learning rate 5 - 10~%, 10k warm-up steps.

We measure translation accuracy using SacreBLEU? (Papineni et al., 2002; Post, 2018). All models are trained for 50k
steps, and we report results on the best checkpoint according to validation BLEU score.

4https://wwwz.statmt.org/
Snrefs: lcase:mixedleff:noltok: 1 3alsmooth:explversion:2.3.1
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