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Abstract
Scientific computing is an essential tool for sci-
entific discovery and engineering design, and its
computational cost is always a main concern in
practice. To accelerate scientific computing, it is
a promising approach to use machine learning (es-
pecially meta-learning) techniques for selecting
hyperparameters of traditional numerical meth-
ods. There have been numerous proposals to this
direction, but many of them require automatic-
differentiable numerical methods. However, in re-
ality, many practical applications still depend on
well-established but non-automatic-differentiable
legacy codes, which prevents practitioners from
applying the state-of-the-art research to their own
problems. To resolve this problem, we propose a
non-intrusive methodology with a novel gradient
estimation technique to combine machine learn-
ing and legacy numerical codes without any mod-
ification. We theoretically and numerically show
the advantage of the proposed method over other
baselines and present applications of accelerating
established non-automatic-differentiable numeri-
cal solvers implemented in PETSc, a widely used
open-source numerical software library.

1. Introduction
Scientific Machine Learning (SciML) is an emerging re-
search area, where scientific data and advancing Machine
Learning (ML) techniques are utilized for new data-driven
scientific discovery (Baker et al., 2019; Takamoto et al.,
2022; Cuomo et al., 2022). One of the important topics
in SciML is ML-enhanced simulation that leverages the
strengths of both ML and traditional scientific computing,
and recently numerous methods have been proposed to this
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direction (Karniadakis et al., 2021; Thuerey et al., 2021;
Vinuesa & Brunton, 2022; Willard et al., 2022). These hy-
brid methods can be categorized into two groups according
to how they are trained: separately or jointly.

In the first group, ML models are trained separately from
numerical solvers and combined after training. Typically,
they are trained to predict the solution of the target prob-
lem, and the solver uses the prediction as an initial guess
(Ajuria Illarramendi et al., 2020; Özbay et al., 2021; Huang
et al., 2020; Vaupel et al., 2020; Venkataraman & Amos,
2021). However, as shown in Arisaka & Li (2023), using the
prediction as an initial guess while ignoring the property of
the solver can lead to worse performance than a traditional
non-learning choice. In addition to learning initial guesses,
ML models can be used to learn other solver parameters
such as preconditioners. To train them, one can use certain
objectives as the loss fucntion that reflect the performance
of the solver, such as the condition number of the precon-
ditioned matrix (Sappl et al., 2019; Calı̀ et al., 2023) and
the spectral radius of the iteration matrix (Luz et al., 2020).
This approach is effective and efficient because the models
can be trained without running solvers. However, it requires
some domain knowledge to design effective objectives, and
derived methods are applicable to specific problems and
solvers.

In the second group, to which this paper belongs, ML mod-
els are trained jointly with running numerical solvers. This
approach is more general and straightforward than the first
group, because the ML model can learn from actual solver’s
behavior through their gradients that represent how ML
model’s output affects solver’s output. For example, in Um
et al. (2020), authors propose a framework to train neural
networks with differentiable numerical solvers and report a
significant error reduction by correcting solutions using neu-
ral networks trained with PDE solvers. In Hsieh et al. (2018)
and Chen et al. (2022), neural networks are trained to learn
parameters of numerical solvers by minimizing the residual
obtained by running the iterative solver with the learned
parameters. Furthermore, Arisaka & Li (2023) proposed a
general gradient-based learning framework to combine ML
and numerical solvers, which can be applied to a wide range
of problems and solvers.
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However, a main limitation of the second training approach
is that it requires the gradients of the outputs of the nu-
merical solvers with resepect to their parameters that ML
models are learning to tune. There are two difficulties in
computing the gradients. First, despite the recent progress
in learning-enhanced simulations, numerical computations
in many practical applications are still performed by non-
automatic-differentiable programs, including established
open source libraries such as OpenFOAM (Jasak, 2009) and
PETSc (Balay et al., 2023), original legacy codes devel-
oped and maintained in each community, and commercial
black-box softwares such as ANSYS (Stolarski et al., 2018).
Therefore, to compute their gradients, users need to modify
existing codes to add the feature or reimplement them in
deep learning frameworks for enabling automatic differenti-
ation. It is an arduous task and is even impossible for black-
box softwares. Second, even for differentiable numerical
methods implemented in deep learning frameworks, it can
be difficult to compute the gradients using backpropagation.
This is because the computation process of the numerical
methods can be very long, and the computation graph for
backpropagation can be too large to fit into memory.

To overcome this limitation, we propose a novel methodol-
ogy, called non-intrusive gradient-based meta-solving (NI-
GBMS), to accelerate legacy numerical solvers by combin-
ing them with ML without any modification (Figure 1). Our
proposed method expands the gradient-based meta-solving
(GBMS) algorithm in Arisaka & Li (2023) to handle legacy
non-automatic-differentiable codes by a novel gradient esti-
mation technique using an adaptive surrogate model of the
legacy codes.

Our main contributions can be summarized as follows:

1. In Section 3, we propose a non-intrusive methodol-
ogy to train neural networks (meta-solvers) for ac-
celerating legacy numerical solvers jointly with their
non-automatic-differentiable black-box routines. To
develop the methodology, we introduce an unbaised
variance reduction technique for the forward gradient
using an adaptive surrogate model to construct the con-
trol variates.

2. In Section 4, we theoretically and numerically show
that the training using the proposed method converges
faster than the training using the original forward gra-
dient in a simple problem setting.

3. In Section 5, we demonstrate an application of the pro-
posed method to accelerate established non-automatic-
differentiable numerical solvers inmplemented in
PETSc, resulting in a significant speedup. To the
best of our knowledge, this is the first successful joint
training of neural networks as meta-solvers and legacy
solvers.

2. Related Work
ML-enhanced Simulation ML-enhanced simulation is
a priority research direction in SciML (Baker et al., 2019).
One approach is to use ML to correct the output of tradi-
tional methods. For example, Dresdner et al. (2022) use neu-
ral networks to learn the correction for traditional spectral
solvers in fluid simulations. In Huang et al. (2023), a neural
network is used to correct time integration errors and en-
ables to take a larger time step, reusulting in acceleration of
solving ODEs. Another complementary approach is to use
ML to learn the input of traditional methods. For instance,
Guo et al. (2022) develop a learning-enhanced Runge-Kutta
method for solving ODEs. Chen et al. (2022) use a neural
network to generate smoothers of the Multi-grid Network.
In particular, this paper follows the meta-solving frame-
work, which is proposed in Arisaka & Li (2023) to combine
ML and numerical methods, and expand it to handle non-
automatic-differentiable black-box solver implementations.

Forward Gradient The forward gradient is a projection
of the gradient on a radom perturbation vector, and it gives a
low-cost unbiased estimator of the gradient (Belouze, 2022).
It is expected to be a possible alternative to the backpropaga-
tion algorithm, but its high variance is considered as a main
limitation of the method (Baydin et al., 2022). To reduce
the variance, several approaches have been proposed. Ren
et al. (2022) showed that the activity-perturbed forward gra-
dient has lower variance than the original weight-perturbed
forward gradient. Bacho & Chu (2024) and Fournier et al.
(2023) proposed variance reduction methods by trading off
the unbiasedness. In this paper, we propose a novel unba-
iased variance reduction approach that is orthogonal to these
works.

Black-box Functions and Neural Networks Our con-
trol variate approach is inspired by Grathwohl et al. (2017),
where the authors construct a gradient estimator using the
control variates for a specific class of black-box loss func-
tion written as L(θ) = Ep(b|θ)[f(b)]. It is not applicable
to deterministic cases because their method is based on the
score-function estimator (Williams, 1992). On the other
hand, our method is based on the forward gradient and ap-
plicable to any (mathematically) differentiable function. For
more general approach, Jacovi et al. (2019) proposed the
Estimate and Replace approach, where a neural network
is trained by minimizing the difference between its output
and the black-box function’s output and used to bypass the
black-box function during the backward computation. This
method is simple but biased whereas ours is (asymptotically)
unbiased because we use it for improving the quality of the
forward gradient of the black-box function rather than re-
placing the gradient. We will show our advantage over this
simple replacement approach in Section 4 and Section 5.
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3. Methodology
3.1. Meta-solving

Our non-intrusive framework can be viewed as a wrapper
of a legacy numerical solver to be compatible with deep
learning (Figure 1). To describe our method, we follow the
meta-solving framework introduced in Arisaka & Li (2023).
Suppose that we have task space (T , P ) and numerical
solver f with paramter θ. We want to train neural network
Ψ with weight ω, called meta-solver, to generate a good
parameter θ of the solver f for each task τ ∈ T . The solver
performance is measured by loss function L. Then, the
meta-solving problem is defined as follows:

Definition 3.1 (Meta-solving problem (Arisaka & Li,
2023)). For a given task space (T , P ), loss function L,
solver f , and meta-solver Ψ, find ω which minimizes
Eτ∼P [L(τ, f(τ ; Ψ(τ ;ω)))].

For instance, τ is to solve a linear system Ax = b, f
is the Jacobi method starting from an initial guess θ =
x0, Ψ is a neural network to generate a good initial guess
θ of the solver f to solve τ , and L is a surrogate of the
number of iterations to converge. To train Ψ, Arisaka & Li
(2023) proposed a gradient-based approach assuming that
∇f can be computed efficiently. However, as mentioned
in Section 1, the solver f in practice can be a legacy code
or commercial black-box software, which does not support
automatic differentiation.

3.2. Forward Gradient

To compute the gradient of legacy numerical solvers without
backpropagation, we utilize the forward gradient, a low-cost
estimator of the gradient.

Definition 3.2 (Forward gradient (Belouze, 2022)). For a
differentiable function f : Rd → R and a vector v ∈ Rd,
the forward gradient gv : Rd → Rd is defined as

gv(θ) = (∇f(θ) · v)v. (1)

In Section 3 and Section 4, we describe and analyze our
method using the definition for scalar functions, but it can
be easily extended to vector-valued functions, which will be
presented in Section 5. We also note that the original for-
ward gradient is computed using forward mode automatic
differentiation (Baydin et al., 2018), but we use the follow-
ing finite difference approximation for legacy numerical
solvers:

gv(θ) ≈ gv,ϵ(θ) =
f(θ + ϵv)− f(θ)

ϵ
v, (2)

where ϵ is a small positive scalar.

The advantage of the forward gradient is its unbiasedness
and low computational cost in terms of both time and mem-

ory. It is easily shown that if random vector v’s scalar com-
ponents vi are independent and have zero mean and unit
variance for all i, then the forward gradient gv(θ) is an un-
biased estimator of ∇f(θ), i.e. E[gv(θ)] = ∇f(θ). As for
the computational cost, the forward gradient of automatic-
differentiable function f such as neural networks can be
computed in a single forward computation using forward
mode automatic differentiation. Even if a function f is im-
plemented in legacy codes without forward mode automatic
differentiation, the forward gradient can be computed using
Equation (2) at the cost of evaluating f twice. Note that
the computation cost is equivalent to the cost of backprop-
agation, but it can be computed in parallel. Moreover, to
compute the forward gradient, we do not need to store the
intermediate values for backpropagation.

However, despite the above advantage, the practical use
of the forward gradient is limited because it suffers high
variance, especially in high-dimensional cases. Baydin et al.
(2022) shows that the best possible variance is achieved by
choosing vi’s to be independent Rademacher variables, i.e.
P (vi = 1) = P (vi = −1) = 1/2 for all i, in which case
the variance is equal to

E[∥gv(θ)−∇f(θ)∥2] = (d− 1)∥∇f(θ)∥2, (3)

which is very large for large d. This high variance in fact
hinders the training process, and we will investigate the
effect of the variance in Section 4 and Section 5.

3.3. Control Variate Forward Gradient

To alleviate this problem, we introduce a novel approach to
reduce the variance while keeping it unbiased. The key idea
is to construct control variates using a surrogate model f̂
whose gradient∇f̂ is easy to compute.

Definition 3.3 (Control variate forward gradient). For dif-
ferentiable functions f : Rd → R, f̂ : Rd → R, and a
random vector v ∈ Rd, the control variate forward gradient
hv : Rd → Rd is defined as

hv(θ) = gv(θ)− ĝv(θ) + Ev[ĝv(θ)], (4)

where ĝv(θ) = (∇f̂(θ) ·v)v. Similarly, we define its finite
difference approximation hv,ϵ using gv,ϵ as

hv,ϵ(θ) = gv,ϵ(θ)− ĝv(θ) + Ev[ĝv(θ)]. (5)

Note that we use the finite difference approximation only
for gv but not for ĝv because the surrogate model f̂ will
be implemented in deep learning frameworks with auto-
matic differentiation. The method of control variates is a
classical and widely used variance reduction technique (Nel-
son, 1990). In the control variates method, to reduce the
variance of random variable X of interest, we introduce
another random variable Y which has high correlation to
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Figure 1. The overall architecture of non-intrusive gradient-based meta-solving

Algorithm 1 Non-intrusive gradient-based meta-solving

Input: (P, T ): task space, Ψ: meta-solver with weight ω, f : legacy solver, f̂ : surrogate model with weight ϕ, L: loss
function, Opt: optimizer for Ψ, Ôpt: optimizer for f̂ , P̂ : distribution of v, ϵ: positive scalar, S: stopping criterion
repeat
τ ∼ P , v ∼ P̂ ▷sample task τ and random vector v from P and P̂

Forward computation:
θ ← Ψ(τ ;ω) ▷generate solver parameter θ by Ψ

y← f(θ), y+ ← f(θ + ϵv) ▷solve task τ twice by f using parameter θ and θ + ϵv

d← y+−y
ϵ ▷compute the directional derivative of f by finite difference approximation

ŷ, d̂← ForwardAD(f̂ ,θ,v) ▷compute the output and directional derivative of f̂ by forward mode AD
L← L(y), L̂← (d− d̂)2 ▷compute main loss L and surrogate model loss L̂

Backward computation:
h← dv − d̂v +∇θ f̂(θ) ▷compute control variate forward gradient
∇ωL← ModifiedBackprop(L,ω,h) ▷compute ∇ωL by backpropagation while replacing ∇θf(θ) with h

∇ϕL̂← Backprop(L̂,ϕ) ▷compute ∇ϕL̂ by backpropagation
Update:

ω ← Opt(ω,∇ωL), ϕ← Ôpt(ϕ,∇ϕL̂) ▷update ω and ϕ by Opt and Ôpt using ∇ωL and ∇ϕL̂, respectively
until S is satisfied

X and known mean E[Y]. Then, X −Y + E[Y] is used
as a variance-reduced estimator of X. The key idea of our
method is to use the forward gradient of the surrogate model
ĝv as Y so that Ev[ĝv(θ)] = ∇f̂(θ) can be computed by
backpropagation.

The following theorem shows that the control variate for-
ward gradient is still unbiased under the same assumption
in Belouze (2022). Furthermore, if the surrogate model f̂
is close to the numerical solver f , then the control variate
forward gradient hv successfully reduces the variance of
the original forward gradient gv.

Theorem 3.4 (Improvement by hv). If vi’s are independent
and have zero mean and unit variance, then hv(θ) is an
unbiased estimator of∇f(θ), i.e.

E[hv(θ)] = ∇f(θ). (6)

Furtheremore, if vi’s are independent Rademacher vari-
ables, then the mean squared deviation of hv(θ) is mini-

mized and equal to

E[∥hv(θ)−∇f(θ)∥2] = (d−1)∥∇f(θ)−∇f̂(θ)∥2. (7)

The proof is found in Appendix A.2. Equation (7) shows
the improvement from Equation (3) of the original forward
gradient. In Equation (3), there is no controllable term,
whereas in Equation (7), the variance can be reduced by
choosing a good surrogate model f̂ . We remark that the
finite difference version hv,ϵ is not unbiased due to gv,ϵ but
asymptotically unbiased as ϵ tends to 0. The error of the
finite difference version is analyzed in Appendix A.3.

3.4. Non-intrusive Gradient-based Meta-solving

The remaining problem is how to obtain a surrogate model
f̂ . To this end, we propose a novel algorithm, called Non-
Intrusive Gradient-Based Meta-Solving (NI-GBMS, Algo-
rithm 1). Its main workflow is the same as the original
gradient-based meta-solving (Arisaka & Li, 2023), but it is

4



Accelerating Legacy Numerical Solvers by Non-intrusive Gradient-based Meta-solving

capable of handling legacy solver f whose gradient is not
accessible. In NI-GBMS, we implement surrogate model f̂
by a neural network with weight ϕ and adaptively update it
while training meta-solver Ψ. For training f̂ , we use

L̂(ϕ) =
(
∇θf(θ) · v −∇θ f̂(θ;ϕ) · v

)2
(8)

as a surrogate model loss. This loss function is more suit-
able for our purpose than other losses that minimize the
error of outputs f(θ) and f̂(θ) (Jacovi et al., 2019). By con-
trast, our L̂ is designed to minimize ∥∇f(θ)−∇f̂(θ)∥2 =
∥E[gv(θ)− ĝv(θ)]∥2, which determines the variance of the
control variate forward gradient in Equation (7). Then, the
control variate forward gradient is used as an approximation
of ∇f to compute∇ωL for updating meta-solver Ψ.

We remark important characteristics of NI-GBMS. The most
significant one is its non-intrusiveness as the name suggests.
It enables us to integrate complex legacy codes and commer-
cial black-box softwares into ML as they are. In addition,
the adaptive training strategy of the surrogate model f̂ is
another advantage. By updating f̂ during the training of
meta-solver Ψ, it can automatically adapt to the changing
distribution of θ generated by the meta-solver Ψ. Finally,
we note that the extra computational cost of training f̂ is neg-
ligible compared to the cost of executing numerical solver
f , which is the bottleneck of our target problem setting.

4. Analysis
To investigate the convergence property of NI-GBMS, we
consider the simplest case, where a black-box solver f itself
is minimized over its parameter θ, i.e. minθ f(θ). This is a
special case of Algorithm 1, where the meta-solver Ψ is a
constant function that returns its parameter ω = θ, and the
loss function L is f(θ) itself. This can also be considered
that we directly optimize the solver parameter θ for a single
given task τ . The optimization algorithm Opt for training
Ψ is a variant of the gradient descent, which uses the control
variate forward gradient hv(θ) instead of the true gradient
∇f(θ), i.e. θk+1 = θk−αhv(θk), where α is the learning
rate.

4.1. Theoretical Analysis

For the considered setting, we have the following conver-
gence theorem. Note that it is shown for the exact version of
Algorithm 1, where hv is used instead of its finite difference
approximation hv,ϵ. The expectation E[·] in the theorem is
taken over all randomness of v through the training process.

Theorem 4.1 (Convergence). Let f : Rd → R be µ-
strongly convex and L-smooth. Denote the global minimizer
of f by θ∗. Consider the sequence (θk)k∈N and (f̂k)k∈N
generated by NI-GBMS.

(a) (No surrogate model) Suppose that f̂k = f̂ ≡ 0 for
all k ∈ N. If α ∈ (0, 1

Ld ], then the expected optimality
gap satisfies the following inequality for all k ∈ N:

E[f(θk)−f(θ∗)] ≤ (1−αµ)k(f(θ0)−f(θ∗)). (9)

(b) (Fixed surrogate model) Instead of f̂ ≡ 0 in (a),
suppose that fk = f̂ for all k ∈ N and f̂ satis-
fies supθ∈Rd{∥∇f(θ)−∇f̂(θ)∥2

∥∇f(θ)∥2 } ≤ r for some r ∈
[0, 1). Then, we have the same inequality as Equa-
tion (9) with an improved range of learning rate
α ∈ (0,min{ 1µ ,

1
Ldr}].

(c) (Adaptive surrogate model) Suppose that we have

E[∥∇f(θk)−∇f̂k(θk)∥2] ≤ ξk∥∇f(θ0)−∇f̂0(θ0)∥2
(10)

for some ξ ∈ (0, 1). If α ∈ (0, 1
µ ], then the expected

optimality gap satisfies the following inequality for all
k ∈ N:

E[f(θk)− f(θ∗)] ≤ Cρk, (11)

where

C = max{αLd∥∇f(θ0)−∇f̂0(θ0)∥
2

µ
, f(θ0)−f(θ∗)}

(12)
and

ρ = max{1− αµ, ξ}. (13)

The proofs are presented in Appendix A.2. Theorem 4.1
compares our method to the original forward gradient and
shows our advantage. In (a), f̂ does nothing and the control
variate forward gradient hv reduces to the original forward
gradient gv. This case corresponds to the original forward
gradient descent (Belouze, 2022). The best convergence
rate of (a) is 1− µ

Ld , which becomes worse as the dimension
d increases due to the increasing variance of gv. The case
of (b) represents the situation of having a fixed surrogate
model f̂ and shows the improvement by the control forward
gradient with the surrogate model f̂ . In this case, the ef-
fective best convergence rate is 1 − µ

Ldr . Although it still
depends on the dimension d, it is improved by the factor of
the relative error r between ∇f and ∇f̂ . Note that we have
1
Ld ≤ min{ 1µ ,

1
Ldr} because d ≥ 1, r ∈ [0, 1), and µ ≤ L

(Bottou et al., 2018). The case of (c) represents a more ideal
situation where the gradient of the surrogate model ∇f̂ is
converging to the gradient of the target function ∇f with
convergence rate ξ. In this case, f(θk) converges to f(θ∗)
with the convergence rate ρ = ξ, which can be independent
of the dimension d. In summary, the convergence rate of the
proposed method can be improved as the surrogate model f̂
becomes closer to the target black-box solver f , and it can
be independent of the dimension d in the ideal case.
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Table 1. Objective values obtained using different gradient estimators. Boldface indicates the best performance except for the case of ∇f .

(a) Sphere function

gradient d = 2 d = 8 d = 32 d = 128

∇f 1.56e-12 5.88e-12 2.37e-11 9.55e-11
∇f̂ 9.77e-01 1.41e-02 3.67e-07 2.89e-02
gv,ϵ 1.61e-06 6.86e-03 5.88e-01 3.68e+01
hv,ϵ (ours) 7.33e-12 8.63e-11 2.36e-09 1.36e-07

(b) Rosenbrock function

gradient d = 2 d = 8 d = 32 d = 128

∇f 1.18e-05 5.98e-01 5.61e-01 6.06e-01
∇f̂ 2.23e+01 6.64e-04 7.56e-01 1.91e+02
gv,ϵ 9.06e-03 1.08e+00 1.40e+01 1.68e+02
hv,ϵ (ours) 6.73e-04 3.40e-01 4.11e-01 7.86e-01

(a) The convergence plot. (b) Cosine similarity to the true gradient ∇f .

Figure 2. The convergence plot and cosine similarity (Sphere function d = 128). The shadowed area represents a range from 10% to 90%.

4.2. Numerical Experiments

Under the same problem setting, we conduct numerical ex-
periments using two test functions, Sphere function (Molga
& Kwietnia):

f(θ) =

d∑
i=1

θ2i (14)

and Rosenbrock function (Rosenbrock, 1960):

f(θ) =

d−1∑
i=1

[
100

(
θi+1 − θ2i

)2
+ (θi − 1)

2
]

(15)

with the dimension d = 2, 8, 32, 128. For surrogate model
f̂ , we use a convolutional neural network because the rela-
tion of θ coordinates is local. To update the surrogate model
f̂ , the Adam optimizer (Kingma & Ba, 2015) with learning
rate 0.01 is used as Ôpt. Note that the surrogate model f̂
is trained online during minimizing f without pre-training.
The main optimizer Opt is also the Adam optimizer with
α = 0.1 for Sphere function and α = 0.01 for the Rosen-
brock function. The number of optimization steps is 250 for
Sphere function and 50,000 for Rosenbrock function. For
comparison, we also test using the true gradient ∇f , the
gradient of the surrogate model ∇f̂ (Jacovi et al., 2019),
and the forward gradient gv,ϵ (Belouze, 2022) instead of
our control variate forward gradient hv,ϵ. We set finite dif-
ference step size ϵ = 10−8. The initial parameter θ0 is
sampled from the uniform distribution on [−1, 1]d. The ran-
dom vector v is sampled from the Rademacher distribution.

We optimize 100 samples and report the average of their
final objective values in Table 1. Other details are presented
in Appendix A.4.

Table 1 shows the advantage of our method. For all cases in-
cluding high dimensional cases, our control variate forward
gradient hv,ϵ successfully minimize the objective function
f to comparable values with the best achievable baseline,
the true gradient ∇f . By contrast, the performance of the
original forward gradient gv,ϵ degrades quickly as the di-
mension increases. The performance of the gradient of the
surrogate model ∇f̂ is not stable. Although it can perform
better than the true gradient∇f (e.g Rosenbrock function
with d = 8) thanks to its bias, its performance is worse
than our hv,ϵ for most cases. Figure 2 illustrates the typical
behavior of each gradient estimator. In the illustrated case,
the original forward gradient gv,ϵ fails to minimize the ob-
jective function f because of its high variance, which is also
shown in a low cosine similarity to the true gradient ∇f in
Figure 2b. The gradient of the surrogate model∇f̂ shows
unstable convergence behavior in Figure 2a and unstable
cosine similarity in Figure 2b. Our control variate forward
gradient hv,ϵ resolves these undesired behaviors and shows
stable convergence and high cosine similarity. Although
it takes some time for the surrogate model f̂ to fit f , the
convergence speed after fitting is comparable to the true
gradient ∇f .
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5. Application: Learning Parameters of
Legacy Numerical Solvers

In this section, we present applications of NI-GBMS to
learn good initial guesses of iterative solvers implemented
in PETSc, the Portable, Extensible Toolkit for Scientific
Computation (Balay et al., 2023), which is widely used
for large-scale scientific applications but does not support
automatic differentiation.

5.1. Toy Example: Poisson Equation

Problem setting Let us consider solving 1D Poisson equa-
tions with different source terms repeatedly. Our task τ is
to solve the 1D Poisson equation with the homogeneous
Dirichlet boundary condition:

− d2

dz2
u(z) = bτ (z), z ∈ (0, 1) (16)

u(0) = u(1) = 0. (17)

Using the finite difference scheme, we discretize it to obtain
the linear system Ax = bτ , where A ∈ RN×N and x, bτ ∈
RN . Thus, our task τ is represented by τ = {bτ}. We use
two task distributions P and Q described in Appendix A.4.
The main loss function is a surrogate loss for the number of
iterations L̃δ presented in (Arisaka & Li, 2023), which is
defined recursively as:

L̃(k+1)
δ (τ ;ω) = L̃(k)

δ (τ ;ω) + σ(Lk(τ ;ω)− ϵ), (18)

L̃(0)
δ (τ ;ω) = 0, (19)

where δ is a given target tolerance, σ is the sigmoid function,
andLk is the k-th step loss. ForLk, we use the relative resid-
ual ∥bτ −Axk∥ / ∥bτ∥, where xk is the solution after k
iterations, so the training does not require any pre-computed
solutions and is conducted in a self-supervised manner. The
solver f is a legacy iterative solver with an initial guess θ
for the Poisson equation. We use the Jacobi method fJac
and the geometric multigrid method fMG (Saad, 2003) im-
plemented in PETSc, and their tolerance δ is set to 10−3

and 10−8 respectively. The meta-solver Ψ parameterized
by ω generates the initial guess θτ for each task τ . We
use a fully-connected neural network ΨGBMS for Ψ. We
implement surrogate model f̂ by a fully-connected neural
network. Then, we train ΨGBMS to minimize L̃δ using Algo-
rithm 1. Other details, including network architecture, the
parameters of PETSc solvers, and training hyperparameters,
are presented in Appendix A.4.

Baselines For the purpose of comparison, we have five
baselines: Ψ0, ΨSL, ΨGBMS trained with∇f , ΨGBMS trained
with∇f̂ , and ΨGBMS trained with gv,ϵ. Ψ0 is a non-learning
baseline that always gives initial guess θ = 0, which is
a reasonable choice because uτ (0) = uτ (1) = 0 and

Table 2. The average number of iterations to converge. Boldface
indicates the best performance except for the case of ∇f .

Ψ gradient f = fJac f = fMG

Ψ0 - 173.00 90.06
ΨSL - 175.71 78.62
ΨGBMS ∇f 53.64 39.29

∇f̂ 106.65 52.59
gv 66.76 59.06
gv,ϵ 66.85 59.09
hv 44.92 42.76
hv,ϵ (ours) 45.15 43.06

Figure 3. The learning curves of the case fMG. They are trained
using a same random seed and hyperparameters except for the
gradient estimator.

Eτ∼P [uτ ] = 0. ΨSL is an ordinary supervised learning
baseline whose network architecture is the same as ΨNN.
It is trained independently of the solver f by minimizing
the relative error ∥x̂− xτ∗∥ / ∥xτ∗∥, where x̂ is the predic-
tion of Ψ and xτ∗ is the pre-computed reference solution
of task τ . Note that ΨSL does not require the gradient of
the solver f . ΨGBMS trained with ∇f is considered as the
best achievable baseline, which is available when the solver
f is implemented in deep learning frameworks. ΨGBMS
trained with ∇f̂ is a baseline trained using the gradient
of the surrogate model∇f̂ , which can be computed easily
by backpropagation but is biased. This corresponds to the
training approach proposed in Jacovi et al. (2019). ΨGBMS
trained with gv,ϵ is a baseline trained with the forward gra-
dient gv,ϵ, which is applicable to legacy solvers but suffers
high variance. We also check the difference between the
exact forward gradients (gv,hv) and the finite difference
approximation (gv,ϵ,hv,ϵ). For training the baselines re-
quiring automatic differentiation, we implement the Jacobi
method and the geometric multigrid method using PyTorch
so that they are differentiable and equivalent to the solvers
in PETSc.
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Results Table 2 presents the average number of iterations
to converge starting from the initial guesses generated by
each trained meta-solver. For both Jacobi and multigrid
solvers, the proposed method achieves comparable results
to the best achievable baseline (ΨGBMS trained with ∇f )
and outperforms other baselines by a large margin. The
gap between ΨSL and ΨGBMS trained with ∇f shows the
importance of incorporating the solver information into the
training of Ψ and necessity of the proposed method for
legacy solvers. Table 2 also shows that there is no signifi-
cant difference between the exact forward gradients and the
finite difference approximation. Figure 3 shows the learning
curves of the case of the multigrid method. Their behaviors
are similar to the ones shown in Figure 2a: gv,ϵ suffers slow
training,∇f̂ is unstable, and hv,ϵ converges similarly to∇f
after some delay for fitting f̂ . In summary, ΨGBMS is suc-
cessfully trained jointly with non-automatic-differentiable
solvers using the proposed method, and reduces the number
of iterations from the solver-independent supervised learn-
ing baseline ΨSL by 74% for the Jacobi method and 45%
for the multigrid method.

5.2. Advanced Examples

To demonstrate the versatility and performance of NI-
GBMS, we also consider more advanced examples, 2D
biharmonic equation and 3D linear elasticity equations, us-
ing FEniCS (Alnæs et al., 2015). In these examples, we
accelerate the algebraic multigrid method fAMG in PETSc,
which is one the most practical linear solvers (Stüben, 2001),
by learning initial guesses using NI-GBMS. Details are pre-
sented in Appendix A.4.

Biharmonic Equation The biharmonic equation is a
fourth-order elliptic equation of the form: ∇4u = bτ in
Ω, where ∇4 is the biharmonic operator, Ω is a domain
of interest. Let Ω be [0, 1]2 and boundary conditions be
u = ∇2u = 0 on ∂Ω. The source term bτ is sampled from
a task distribution P presented in Appendix A.4. The equa-
tion is discretized using finite elements, and the discretized
linear system is solved by the algebraic multigrid method
fAMG in PETSc.

Linear Elasticity Equations The linear elasticity prob-
lem is described by the following equations:

−∇ · σ(u) = bτ in Ω, (20)
σ(u) = λ tr(ϵ(u))I + 2µϵ(u) (21)

ϵ(u) =
1

2

(
∇u+ (∇u)T

)
(22)

where Ω = [0, 1]3 is an elastic body, u is the displacement
field, σ is the stress tensor, ϵ is strain-rate tensor, λ and µ
are the Lamé elasticity parameters, and bτ is the body force.

Table 3. The average number of iterations to reach relative residual
tolerance δ = 10−5.

Biharmonic Eq. Elasticity Eq.

Default PETSc 73.74 88.71
Enhanced by NI-GBMS 31.54 25.61

We consider clamped bodies deformed by their own weight
by letting u = (0, 0, 0)T at x = 0 and bτ = (0, 0,−ρτg),
where ρτ is the density and g is the gravitational acceleration.
The density ρτ is sampled from the log uniform distribution
on [10−2, 102], which determines our task space. Then, the
equations are discretized using finite elements and solved
by fAMG.

Results The performance improvement by NI-GBMS is
shown in Table 3, where the average number of iterations
is reduced from the default initial guess, which is the zero
vector, by 57% for the biharmonic equation and 71% for
the linear elasticity equations. This result demonstrates the
versatility and performance of NI-GBMS for more advanced
problem settings.

6. Discussion
Wall-clock Time Although we have not conducted de-
tailed wall-clock time analysis, we note the actual compu-
tation time for the case of f = fMG in Section 5.1. As for
the inference time, the non-learning baseline Ψ0 takes 9.0
seconds for solving 10,000 tasks while ΨGBMS trained with
hv,ϵ takes 5.5 seconds. Note that this is similar to the ratio
of the number of iterations, Ψ0 : ΨGBMS = 90.06 : 43.06,
because the inference cost of Ψ is neglectable compared
to the cost of f . About the training time, training ΨGBMS
for 100 epochs takes 24 minutes with hv,ϵ and 27 minutes
with gv,ϵ. Interestingly, training with hv,ϵ is faster than gv,ϵ
even though hv,ϵ requires additional cost of evaluating and
training surrogate model f̂ . This reduction of training time
comes from the acceleration of f during training. Since hv,ϵ

gives better approximation of ∇f than gv,ϵ, meta-solver Ψ
can faster learn good initial guesses. As a result, the compu-
tational cost of f is reduced more quickly, leading to a de-
crease in total training time, even considering the additional
costs associated with the surrogate model. This advantage
can be more significant in practical problems where the cost
of f is more dominant in the total computational cost. Note
that the experiments are conducted using the following hard-
wares: Intel Xeon W-3335 CPU @ 3.40GHz and NVIDIA
GeForce RTX 3090.

Total Cost Saving Considering the result of f = fJac in
Section 5.1 under two different scenarios, we estimate how
much NI-GBMS can save the total number of iterations. The
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first scenario is Train-and-Solve, where the cost of training
and the saving by the trained model are considered sepa-
rately. As for training cost, we train the meta-solver for
100 epochs, and each epoch contains 5,000 tasks. During
training, we need to solve each task twice to evaluate gv,ϵ,
and each solution requires about 105 iterations on average.
In total, the training requires 105 million iterations. After
training, the trained model saves 128 iterations per task.
Thus, if the model is used for more than 0.82 million tasks,
the training cost pays off. Note that it is a reasonable num-
ber in practical applications such as incompressible flow
simulations. The second scenario is Train-by-Solve, where
we train the meta-solver while solving actual target tasks.
In other words, there is no separation of training and de-
ployment. It is possible because the training can be done in
unsupervised manner. Suppose we want to solve similar one
million Poisson equations. Without NI-GBMS approach,
solving all equations takes 173 million iterations. However,
with NI-GBMS, we can solve them faster even considering
the training cost. For example, we train the meta-solver
while solving the first half, which requires 105 million it-
erations. Then, we stop training and use it for solving the
last half, which requires 22.5 million iterations. In total,
solving all equations takes 127.5 million iterations, which is
26 % less than the case without NI-GBMS. Furthermore, we
obtain the trained meta-solver which can be used for other
tasks for free.

7. Conclusion
In this paper, we proposed NI-GBMS, a novel methodology
to combine meta-solvers parametrized by neural networks
and non-automatic-differentiable legacy solvers without any
modification. To develop this, we introduced the control
variate forward gradient, which is unbiased and has lower
variance than the original forward gradient. Furthermore,
we proposed a practical algorithm to construct the control
variate forward gradient using an adaptive surrogate model.
It was theoretically and numerically shown that the pro-
posed method has better convergence property than other
baselines. We applied NI-GBMS to learn initial guesses
of established iterative solvers in PETSc, resulting in a sig-
nificant reduction of the number of iterations to converge.
Our proposed method expands the range of applications of
neural networks, and it can be a fundamental building block
to combine modern neural networks and legacy numerical
solvers.

In future work, we will explore more sophisticated archi-
tectures of the surrogate model, which can leverage our
prior knowledge of the solver and problem and lead to better
performance. For example, one can build surrogate model
f̂ = f̂2 ◦ f̂1 using two building blocks f̂1 and f̂2, where f̂1
is the same algorithm as legacy solver f but implemented

in a deep learning framework and working on a smaller
problem size, and f̂2 is a neural network to correct the dif-
ference between f and f̂1. In addition, we will apply the
proposed method to learn multiple hyperparameters simul-
taneously (e.g. initial guess and preconditioner). Toward
this end, a preliminary experiment for learning precondi-
tioners is presented in Appendix A.5. Beyond scientific
computing applications, our proposed method can be useful
to the problems of learning to optimize (Chen et al., 2021),
where memory limitation often becomes a practical bottle-
neck because the computation graph tends to be too large
for backpropagation. We expect that this limitation can be
overcome by the proposed method using the high-quality
gradient estimation without storing intermediate values.
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A. Appendix
A.1. Implementation

The source code of the experiments is available at https://github.com/arisakaso/nigbms.

A.2. Proofs

Proof of Theorem 3.4. To lighten the notation, we omit θ dependence. Denoting ith component of gv by gvi,

E[gvi
2] = E

[
(∇f · v)2v2

i

]
(23)

= E

( ∂f

∂θi

)2

vi4 +
∑
j ̸=i

(
∂f

∂θj

)2

vi2vj2 + 2
∑
k<l

∂f

∂θk

∂f

∂θl
vi2vkvl

 (24)

=

(
∂f

∂θi

)2

E[vi
4] +

∑
j ̸=i

(
∂f

∂θj

)2

E[vi
2]E[vj

2] + 2
∑
k<l

∂f

∂θk

∂f

∂θl
E[vi2]E[vk]E[vl] (25)

=

(
∂f

∂θi

)2

(1 + Var[vi2]) +
∑
j ̸=i

(
∂f

∂θj

)2

(26)

=

(
∂f

∂θi

)2

Var[vi2] + ∥∇f∥2. (27)

Hence,

E[hvi
2] = E

[
(gvi − ĝvi + E[ĝvi])

2
]

(28)

= E

((∇f · v)vi − (∇f̂ · v)vi +
∂f̂

∂θi

)2
 (29)

= E

((∇f −∇f̂) · v)vi +
∂f̂

∂θi

)2
 (30)

= E

((∇f −∇f̂) · v)2 v2i + 2
(
(∇f −∇f̂) · v

)
vi

∂f̂

∂θi
+

(
∂f̂

∂θi

)2
 (31)

= E
[(

(∇f −∇f̂) · v
)2

v2i

]
+ 2E

[
((∇f −∇f̂) · v)vi

] ∂f̂

∂θi
+

(
∂f̂

∂θi

)2

(32)

=

(
∂f

∂θi
− ∂f̂

∂θi

)2

Var[vi
2] + ∥∇f −∇f̂∥2 + 2

(
∂f

∂θi
− ∂f̂

∂θi

)
∂f̂

∂θi
+

(
∂f̂

∂θi

)2

(33)

=

(
∂f

∂θi
− ∂f̂

∂θi

)2

Var[vi
2] + ∥∇f −∇f̂∥2 + 2

∂f

∂θi

∂f̂

∂θi
−

(
∂f̂

∂θi

)2

. (34)
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Therefore,

E[∥hv −∇f∥2] (35)

=E[∥hv∥2]− ∥∇f∥2 (36)

=

d∑
i=1

E[hvi
2]− ∥∇f∥2 (37)

=

d∑
i=1

(
∂f

∂θi
− ∂f̂

∂θi

)2

Var[vi2] + d∥∇f −∇f̂∥2 + 2∇f · ∇f̂ − ∥∇f̂∥2 − ∥∇f∥2 (38)

=

d∑
i=1

(
∂f

∂θi
− ∂f̂

∂θi

)2

Var[vi2] + (d− 1)∥∇f −∇f̂∥2 (39)

This is minimized when Var[vi2] = 0 for all i, which implies vi’s are independent Rademacher variables. Then, the
minimized deviation is

E[∥hv −∇f∥2] = (d− 1)∥∇f −∇f̂∥2. (40)

Proof of Theorem 4.1. To prove Theorem 4.1, we introduce Lemma A.1 and Lemma A.2.

Lemma A.1. If f : Rd → R is L-smooth, then for all k ∈ N, we have

E[f(θk+1)]− f(θk) ≤ −α∥∇f(θk)∥2 +
α2Ld

2
∥∇f(θk)−∇f̂k(θk)∥2. (41)

Proof. Since f is L-smooth, we have

f(θk+1)− f(θk) ≤ ∇f(θk) · (θk+1 − θk) +
L

2
∥θk+1 − θk∥ (42)

= α∇f(θk) · hv(θk) +
α2L

2
∥hv(θk)∥ (43)

Then, taking expectations with respect to v at the kth step and using Equation (6) and Equation (7), we have the desired
inequality.

Lemma A.2 (Polyak (1963)). µ-strong convexity implies µ-Polyak-Łojasiewicz inequality:

2µ(f(θ)− f(θ∗)) ≤ ∥∇f(θ)∥2 (44)

Proof. The proof can be found in Bottou et al. (2018).

Now let us prove Theorem 4.1.

(a) When f̂k ≡ 0, Equation (41) reduces to

E[f(θk+1)]− f(θk) ≤ −α∥∇f(θk)∥2 +
α2Ld

2
∥∇f(θk)∥2 (45)

= −α(1− αLd

2
)∥∇f(θk)∥2 (46)

≤ −α

2
∥∇f(θk)∥2 (47)

≤ −αµ(f(θk)− f(θ∗)). (48)

Subtracting f(θ∗), taking total expectations, and rearranging, this yields

E[f(θk+1)− f(θ∗)] ≤ (1− αµ)E[f(θk)− f(θ∗)]. (49)

By applying this inequality repeatedly, the desired inequality follows.
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(b) When supθ∈Rd{∥∇f(θ)−∇f̂(θ)∥2

∥∇f(θ)∥2 } ≤ r, Equation (41) reduces to

E[f(θk+1)]− f(θk) ≤ −α∥∇f(θk)∥2 +
α2Ldr

2
∥∇f(θk)∥2. (50)

Then, the rest of the proof is the same as (a)

(c) By Lemma A.2, Equation (41) gives

E[f(θk+1)]− f(θk) ≤ −2αµ(f(θk)− f(θ∗)) +
α2Ld

2
∥∇f(θk)−∇f̂k(θk)∥2. (51)

Subtracting f(θ∗), taking total expectations, and rearranging, this yields

E[f(θk+1)− f(θ∗)] ≤ (1− 2αµ)E[f(θk)− f(θ∗)] +
α2Ld

2
E[∥∇f(θk)−∇f̂k(θk)∥2]. (52)

Using the assumption Equation (10), we have

E[f(θk+1)− f(θ∗)] ≤ (1− 2αµ)E[f(θk)− f(θ∗)] +
α2Ldr

2
ξk∥∇f(θ0)−∇f̂0(θ0)∥2 (53)

≤ (1− 2αµ)E[f(θk)− f(θ∗)] + αµCξk, (54)

where

C = max{αLd∥∇f(θ0)−∇f̂0(θ0)∥
2

µ
, f(θ0)− f(θ∗)}. (55)

Using this inequality, we prove Equation (11) by induction. For k = 0, we have

E[f(θ1)− f(θ∗)] ≤ (1− 2αµ)(f(θ0)− f(θ∗)) + αµC (56)
≤ ρC. (57)

Assume Equation (11) holds for k. Then, we have

E[f(θk+1)− f(θ∗)] ≤ (1− 2αµ)Cρk + αµCξk (58)

≤ Cρk

(
1− 2αµ+ αµ

(
ξ

ρ

)k
)

(59)

≤ Cρk (1− 2αµ+ αµ) (60)

≤ Cρk+1. (61)

A.3. Analysis for the finite difference approximation

Theorem A.3. Let vi’s be independent Rademacher variables and f : Rd → R be L-smooth. Then, we have the following
bounds for the control variate forward gradient hv,ϵ(θ) for all θ ∈ Rd:

∥E[hv,ϵ(θ)]−∇f(θ)∥ ≤
ϵLd3/2

2
, (62)

and

E[∥hv,ϵ(θ)−∇f(θ)∥2] ≤
ϵ2L2d3

4
+ 2(d− 1)

ϵLd3/2

2

∥∥∥∇f(θ)−∇f̂(θ)∥∥∥+ (d− 1)
∥∥∥∇f(θ)−∇f̂(θ)∥∥∥2 (63)
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Proof. Since f is L-smooth, we have

|f(x)− f(y)−∇f(y) · (x− y)| ≤ L

2
∥x− y∥2 (∀x,y ∈ Rd). (64)

This inequality with θ + ϵv and θ yields

|f(θ + ϵv)− f(θ)−∇f(θ) · ϵv| ≤ L

2
∥ϵv∥2 (65)

=
ϵ2Ld

2
. (66)

We denote Dv,ϵ(θ) := f(θ+ϵv)−f(θ)
ϵ − ∇f(θ) · v. Note that |Dv,ϵ(θ)| ≤ ϵLd/2. Using this inequality, we can show

inequality (62) as follows:

∥E[hv,ϵ(θ)]−∇f(θ)∥ = ∥E[gv,ϵ(θ)− ĝv(θ) + E[ĝv(θ)]]− E[gv(θ)]∥ (67)
= ∥E[gv,ϵ(θ)− gv(θ)]∥ (68)
≤ E[∥gv,ϵ(θ)− gv(θ)∥] (69)

= E[
∥∥∥∥f(θ + ϵv)− f(θ)

ϵ
v − (∇f(θ) · v)v

∥∥∥∥] (70)

= E[|Dv,ϵ(θ)| ∥v∥] (71)

≤ ϵLd

2
d1/2 (72)

=
ϵLd3/2

2
. (73)

Next, we show inequality (63). To simplify the notation, we omit the argument θ. Then, we have

E[∥hv,ϵ −∇f∥2] = E[∥(gv,ϵ − gv) + (hv −∇f)∥2] (74)

= E[∥Dv,ϵv + (hv −∇f)∥2] (75)

= E[∥Dv,ϵv∥2] + 2E[Dv,ϵv · (hv −∇f)] + E[∥hv −∇f∥2] (76)

= E[Dv,ϵ
2 ∥v∥2] + 2E[Dv,ϵv · (gv − ĝv +∇f̂ −∇f)] + (d− 1)

∥∥∥∇f −∇f̂∥∥∥2 (77)

= E[Dv,ϵ
2 ∥v∥2] + 2E[Dv,ϵv · (gv − ĝv)] + 2E[Dv,ϵv] · (∇f̂ −∇f) + (d− 1)

∥∥∥∇f −∇f̂∥∥∥2 (78)

= E[Dv,ϵ
2 ∥v∥2] + 2E[Dv,ϵv · ((∇f −∇f̂) · v)v] + 2E[Dv,ϵv] · (∇f̂ −∇f) + (d− 1)

∥∥∥∇f −∇f̂∥∥∥2
(79)

= E[Dv,ϵ
2 ∥v∥2] + 2E[Dv,ϵ((∇f −∇f̂) · v) ∥v∥2] + 2E[Dv,ϵv] · (∇f̂ −∇f) + (d− 1)

∥∥∥∇f −∇f̂∥∥∥2
(80)

= dE[Dv,ϵ
2] + 2dE[Dv,ϵ((∇f −∇f̂) · v)] + 2E[Dv,ϵv] · (∇f̂ −∇f) + (d− 1)

∥∥∥∇f −∇f̂∥∥∥2 (81)

= dE[Dv,ϵ
2] + 2(d− 1)E[Dv,ϵv] · (∇f −∇f̂) + (d− 1)

∥∥∥∇f −∇f̂∥∥∥2 (82)

≤ d(
ϵLd

2
)2 + 2(d− 1)

ϵLd3/2

2

∥∥∥∇f −∇f̂∥∥∥+ (d− 1)
∥∥∥∇f −∇f̂∥∥∥2 (83)

=
ϵ2L2d3

4
+ 2(d− 1)

ϵLd3/2

2

∥∥∥∇f −∇f̂∥∥∥+ (d− 1)
∥∥∥∇f −∇f̂∥∥∥2 . (84)
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A.4. Details of numerical examples

A.4.1. DETAILS OF SECTION 4.2

Surrogate Model In Section 4.2, our surrogate model f̂ has two convlutional layers with 64 filters, followed by a global
average pooling and a fully connected layer with 64 units. The kernel size is 1 for the Sphere function and 3 for the
Rosenbrock function. The activation function is GELU (Hendrycks & Gimpel, 2016).

Results The standard deviation of the objective values are presented in Table 4, and convergence plots are shown in
Figure 4.

A.4.2. DETAILS OF SECTION 5.1

Task In both of P and Q, solution uτ has the following form:

uτ (z) =

N∑
i=1

ci sin (iπz), (85)

where ci’s are sampled from different distributions. The task distribution P used for the Jacobi solver is the same as the one
in Arisaka & Li (2023). For the Jacobi solver, the task difficulty is determined by how much of each frequency sin(iπz) is
contained in the solution u because the solver reduces the error in each frequency sin(iπz) at a rate of | cos(iπ/(N + 1))|.
Considering this property, the distribution P is defined as the mixture of two distributions P1 and P2, where P1 is designed
to give large coefficients ci for i with large | cos(iπ/(N + 1))| and small coefficients for i with small | cos(iπ/(N + 1))|,
and P2 is designed oppositely. Specifically, P1 gives ci ∼ N (0,

∣∣∣N+1−2i
N−1

∣∣∣), P2 gives ci ∼ N (0, 1 −
∣∣∣N+1−2i

N−1

∣∣∣), and
P = 0.01P1 + 0.99P2. Thus, P generates difficult tasks from P1 with low probability and easy tasks from P2 with high
probability. Arisaka & Li (2023) showed that GBMS has a significant advantage in such situations where the task difficulty
varies widely. Based on the same design principle, we designed Q for the multigrid solver with the weighted Jacobi smoother
(ω = 2/3). Because the weighted Jacobi solver reduces frequency sin(iπz) at a rate of |1− ω + ω cos(iπ/(N + 1))|, we
modified Q accordingly. Specifically, the task distribution Q is a mixture of two distributions Q = 0.01Q1 +0.99Q2, where
Q1 gives ci ∼ N (0, 1− i

N ) and Q2 gives ci ∼ N (0, i
N ). We sampled 15,000 tasks from each distribution of P and Q, and

evenly and randomly split them into training, validation, and test sets. Since each task is sampled i.i.d., there is no data
leakage issue. The discretization size is N = 31 in the experiments.

Solver The solver fJac solves Ax = b by updating the solution xk to xk+1 = (I −D−1A)xk +D−1b, where D is the
diagonal of A. The solver fMG is the simplest two-level multigrid solver, which updates the solution xk to xk+1 by the
following procedure:

1. Pre-smoothing: 2 iterations of the weighted Jacobi method for the current solution x = xk.
2. Compute the residual r = b−Ax.
3. Restrict the residual rc = I2h

h r to the coarse grid.
4. Solve Acec = rc by the weighted Jacobi method with 4 iterations.
5. Prolongate the error ec to the fine grid e = Ih

2hec.
6. Correct the solution x← x+ e.
7. Post-smoothing: 2 iterations of the weighted Jacobi method to obtain xk+1.

Table 4. The standard deviations of objective values obtained using different gradient estimators.

(a) Sphere function

gradient d = 2 d = 8 d = 32 d = 128

∇f 1.61e-12 3.02e-12 5.23e-12 1.04e-11
∇f̂ 2.09e-03 7.38e-06 1.36e-07 1.88e-04
gv,ϵ 1.57e-05 2.71e-02 3.44e-01 5.86e+00
hv,ϵ (ours) 9.11e-12 7.28e-11 6.42e-10 1.17e-07

(b) Rosenbrock function

gradient d = 2 d = 8 d = 32 d = 128

∇f 4.49e-05 1.42e+00 1.38e+00 1.43e+00
∇f̂ 1.44e-01 9.66e-07 3.77e-02 6.72e+01
gv,ϵ 3.59e-02 3.47e+00 9.85e+00 1.94e+01
hv,ϵ (ours) 9.95e-04 1.08e+00 1.20e+00 1.52e+00
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Table 5. The standard deviations of the results in Table 2.
Ψ gradient f = fJac f = fMG

ΨSL - 1.83 0.86
ΨGBMS ∇f 0.70 0.45

∇f̂ 1.35 3.85
gv 1.70 0.22
gv,ϵ 1.68 0.19
hv 1.09 0.60
hv,ϵ (ours) 0.71 0.62

Here, Ih
2h is the linear prolongation

Ih
2h =

1

2



1
2
1 1

2
1 1

2
. . .

1
. . .

1
2

1


∈ R(N−1)×(N/2−1), (86)

I2h
h is the weighted restriction

I2h
h =

1

4



1 2 1
1 2 1

1 2 1
. . .

1 2 1


∈ R(N/2−1)×(N−1), (87)

and Ac = I2h
h AIh

2h is the restriction of A to the coarse grid.

Meta-solver The meta-solver Ψ is a fully-connected neural network with one hidden layer with 512 units and SiLU
activation function (Elfwing et al., 2018). It takes the right-hand side bτ as input and gives the coefficients ci’s in
Equation (85) to construct initial guess θτ .

Surrogate Model In Section 5.1, our surrogate model f̂ is a fully-connected neural network with three hidden layers with
1024 units and GELU activation function. It takes the initial guess θτ and the solver’s output ûτ as input.

Training We use the Adam optimizer for all training. For the Jacobi method, we use learning rate 10−5 for the meta-solver
and 5.0 × 10−4 for the surrogate model. For the multigrid method, we use learning rate 10−6 for the meta-solver and
5.0× 10−4 for the surrogate model. For the supervised baseline, we use learning rate 10−4. The batch size is set to 256
for all training, and the number of epochs is set to 100. The best model is selected based on the validation loss. The finite
difference step size ϵ is set to 10−12 for all training. We conducted the experiments with 3 different random seeds.

Results The standard deviations of the results Table 2 are presented in Table 5.

A.4.3. DETAILS OF SECTION 5.2

Task The problem formulation is based on the demos in the DOLFIN documentation (noa). For the Biharmonic equation,
we use a triangular mesh of the 2D unit square [0, 1]2, where we have 3 cells in each direction, so the total number of
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triagles is 2× 3× 3 = 18. For the finite element family, we use the standard Lagrange family with degree 2. For solving
the biharmonic equation, a discontinuous Galerkin approach is used to weakly impose continuity of the normal derivative.
For the linear elasticity, we use a tetrahedral mesh of the 3D cube [0, 1]3, where we have 3 cells in each direction, so the
total number of tetrahedra is 6× 3× 3× 3 = 162. For the finite element family, we use the standard Lagrange family with
degree 1.

For the biharmonic problem, the source term bτ has the following form:

bτ (x, y) = c1 sin(c2πx) sin(c3πy), (88)

where

c1 ∼ LogUniform([10−2, 102]), (89)
c2 ∼ DiscreteUniform([1, 2, 3, 4, 5]), (90)
c3 ∼ DiscreteUniform([1, 2, 3, 4, 5]). (91)

The number of tasks for training, validation, and test are all 5, 000 for both problem settings.

Solver The algebraic multigrid solver fAMG is constructed by Geometric algebraic multigrid preonditioner PCGAMG and
Richardson iterative method KSPRICHARDSON in PETSc (Balay et al., 2023). Because AMG is implemented in PETSc as
a preconditioner, we need to use it with the Richardson method: xk+1 = xk +B(b−Axk), where B is the application of
the preconditioner. We use PCGAMG and KSPRICHARDSON with their default parameters, which gives a standard v-cycle
algebraic multigrid solver. Specifically, the solver fAMG is constructed by setting the following PETSc options:

• -ksp type richardson
• -ksp initial guess nonzero True
• -pc type gamg

Other options are set to default values.

Meta-solver The meta-solver Ψ is a fully-connected neural network with one hidden layer with 1024 units and SiLU
activation function for both biharmonic and elasticity problem.

Surrogate Model Surrogate model f̂ is a fully-connected neural network with three hidden layers with 512 units and
GELU activation function for both biharmonic and elasticity problem. It takes the initial guess θτ and the solver’s solution
as input.

Training We use the Adam optimizer for all training. For the biharmonic problem, we use learning rate 10−5 for the
meta-solver and 5.0×10−4 for the surrogate model. For the elasticity problem, we use learning rate 10−4 for the meta-solver
and 10−4 for the surrogate model. The batch size is set to 256 for all training. We train them for 1,000 epochs and reduce
the learning rate by a factor of 0.1 at 500 and 750 epochs. The best model is selected based on the validation loss.

A.5. Learning Preconditioners

Beyond learning initial guesses, NI-GBMS can also learn preconditioners. Here, we use NI-GBMS to solve linear elasticity
problems similar to the one in Section 5.2. The difference from Section 5.2 is that we use the conjugate gradient (CG)
method with incomplete Cholesky preconditioner as the solver f and learn the diagonal shift parameter of the incomplete
Cholesky preconditioner. We follow the same experimental settings as in the section 4.2 of Arisaka & Li (2023) except for
the solver implementation and training methodology. Against the differentiable solver in Arisaka & Li (2023), which is
implemented in a deep learning framework, our solver f is implemented in PETSc and non-automatic-differentiable. Thus,
we train the meta-solver Ψ using NI-GBMS. Note that it has only one scalar parameter (diagonal shift) resulting in hv = gv.

The performance of NI-GBMS is almost the same as the performance reported in Arisaka & Li (2023). The meta-solver
trained using NI-GBMS reduces the number of iterations by 54% from a non-learning baseline, while the one in Arisaka &
Li (2023) reduces it by 55%. Although this experiment is simple, it shows that NI-GBMS is applicable to learning other
hyperparameters beyond initial guesses.
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(a) sphere2D (b) sphere8D

(c) sphere32D (d) sphere128D

(e) rosenbrock2D (f) rosenbrock8D

(g) rosenbrock32D (h) rosenbrock128D

Figure 4. Convergence plots. The horizontal axis is the number of Adam steps, and the vertical axis is the objective value.
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