
AdapTable: Test-Time Adaptation for Tabular Data
via Shift-Aware Uncertainty Calibrator

and Label Distribution Handler

Changhun Kim1,2∗ Taewon Kim1∗ Seungyeon Woo1,3 June Yong Yang1 Eunho Yang1,2
1Korea Advanced Institute of Science and Technology (KAIST) 2AITRICS 3Skelter Labs

{changhun.kim, maxkim139, oox1987, laoconeth, eunhoy}@kaist.ac.kr

Abstract

In real-world scenarios, tabular data often suffer from distribution shifts that
threaten the performance of machine learning models. Despite its prevalence and
importance, handling distribution shifts in the tabular domain remains underex-
plored due to the inherent challenges within the tabular data itself. In this sense,
test-time adaptation (TTA) offers a promising solution by adapting models to target
data without accessing source data, crucial for privacy-sensitive tabular domains.
However, existing TTA methods either 1) overlook the nature of tabular distri-
bution shifts, often involving label distribution shifts, or 2) impose architectural
constraints on the model, leading to a lack of applicability. To this end, we propose
AdapTable, a novel TTA framework for tabular data. AdapTable operates in two
stages: 1) calibrating model predictions using a shift-aware uncertainty calibrator,
and 2) adjusting these predictions to match the target label distribution with a label
distribution handler. We validate the effectiveness of AdapTable through theoretical
analysis and extensive experiments on various distribution shift scenarios. Our
results demonstrate AdapTable’s ability to handle various real-world distribution
shifts, achieving up to a 16% improvement on the HELOC dataset. Our code is
available at https://github.com/drumpt/AdapTable.

1 Introduction

Tabular data is one of the most abundant forms across various industries, including healthcare [27],
finance [48], manufacturing [23], and public administration [17]. However, tabular learning models
often face challenges in real-world applications due to distribution shifts, which severely degrade
their integrity and reliability. In this regard, test-time adaptation (TTA) [29, 33, 53, 37, 38, 6] offers a
promising solution to address this issue by adapting models under unknown distribution shifts using
only unlabeled test data without access to training data.

Despite its potential, direct application of TTA without the consideration of characteristics of tabular
data, results in limited performance gain or model collapse. We identify two primary reasons for this.
First, representation learning in the tabular domain is often hindered by the entanglement of covariate
shifts and concept shifts [32]. Consequently, TTA methods leveraging unsupervised objectives, which
rely on cluster assumption often fail or lead to model collapse. Second, these approaches often do not
take label distribution shifts into account, a key factor in the performance decline within the tabular
domain. This issue is further aggravated by the tendency for predictions in the target domain to be
biased towards the source label.

To address these issues, we propose AdapTable, a novel TTA approach tailored for tabular data.
AdapTable consists of two main components: 1) a shift-aware uncertainty calibrator and 2) a label

*Equal contribution.

Table Representation Learning Workshop at NeurIPS 2024.

https://github.com/drumpt/AdapTable

Figure 1: Latent space visualization with t-SNE comparing (a) tabular data [17] and (b) image
data [5]. Reliability diagrams of (c) underconfident and (d) overconfident scenarios are shown. All
experiments are conducted using an MLP architecture.
distribution handler. Our shift-aware uncertainty calibrator utilizes graph neural networks to assign
per-sample temperature for each model prediction. By treating each column as a node, it captures not
only individual feature shifts but also complex patterns across features. Our label distribution handler
then adjusts the calibrated model probabilities by estimating the label distribution of the current target
batch. This process aligns predictions with the target label distribution, addressing biases towards
the source distribution. AdapTable requires no parameter updates, making it model-agnostic and
thus compatible with both deep learning models and gradient-boosted decision trees, offering high
versatility for tabular data.

We evaluate AdapTable under various distribution shifts and demonstrate AdapTable consistently
outperforms baselines, achieving up to 16% gains on the HELOC dataset. Furthermore, we provide
theoretical insights into AdapTable’s performance, supported by extensive ablation studies. We hereby
summarize our contributions:

• We analyze the challenges of tabular distribution shifts to reveal why existing TTA methods
fail, highlighting the entanglement of covariate, concept shifts, and label distribution shifts
as key factors in performance degradation.

• Building on these analyses, we introduce AdapTable, a first model-agnostic TTA method
specifically designed for tabular data. AdapTable addresses label distribution shifts by
estimating and adjusting the label distribution of the current test batch, while also calibrating
model predictions with a shift-aware uncertainty calibrator.

• Our extensive experiments demonstrate that AdapTable exhibits robust adaptation perfor-
mance across various model architectures and under diverse natural distribution shifts and
common corruptions, further supported by extensive ablation studies.

2 Analysis of Tabular Distribution Shifts

In this section, we examine why prior TTA methods struggle with distribution shifts in the tabular
domain. First, we note that deep learning models’ latent representations do not follow label-based
cluster assumptions due to the entanglement of covariate and concept shifts, causing TTA methods
relying on these assumptions [53, 29, 37] to falter in tabular data. Second, we identify label distribution
shift as a key driver of performance degradation under distribution shifts, as discussed further in
Section 2.1 and Section 2.2.

2.1 Indistinguishable Representations

We first reveal that deep tabular models fail to learn distinguishable embeddings. In Figures 1 (a)
and (b), we visualize the embedding spaces of models trained on two datasets: HELOC [17], a pure
tabular dataset, and Optdigits [5], a linearized image dataset. Notably, the deep learning models’
representations adhere to the cluster assumption by labels only in the image data, not in the tabular
data.

We attribute this unique behavior of deep tabular models to the high-frequency nature of tabular
data. In the tabular domain, weak causality from inputs X to outputs Y due to latent confounders Z
often leads to vastly different labels for similar inputs [20, 32]. For instance, cardiovascular disease
risk predictions based on cholesterol, blood pressure, age, and smoking history are influenced by
gender as a latent confounder, resulting in different risk levels for men and women despite identical
inputs [35, 10]. This leads to high-frequency functions that are difficult for deep neural networks,
which are biased toward low-frequency functions, to accurately model [4].

2

Figure 2: Label distribution of (a) source domain, (b) target domain, (c) estimated label distribution
using pseudo labels, and (d) corrected label distribution of AdapTable are shown using MLP on
HELOC dataset.
Consequently, prior TTA methods, which rely on cluster assumptions and primarily target input
covariate shifts, show limited performance gains. Figure 7 demonstrates that these methods fail to
improve beyond the vanilla performance of the source model due to the lack of a cluster assumption.

2.2 Importance of Label Distribution Shifts

Second, we find that label distribution shift is a primary cause of performance degradation, and
accurate estimation of target label distribution can lead to significant performance gains. A recent
benchmark study, TableShift [17] have emphasized that label distribution shift is a primary cause of
performance degradation in tabular data. Specifically, They investigated the relationship between three
key shift factors—input covariate shift (X-shift), concept shift (Y |X-shift), and label distribution
shift (Y -shift)—and model performance, and discovered that label distribution shifts are strongly
correlated with performance degradation. Our analysis in Section G further reveals that these shifts
are highly prevalent in tabular data. This underscores the need for a test-time adaptation method that
addresses label distribution shifts by estimating the target label distribution and adjusting predictions
accordingly.

Moreover, we visualize model predictions in Figure 2 and observe that, similar to other domains [55,
25, 39], the marginal distribution of output labels is biased toward the source label distribution. Given
that tabular models are often poorly calibrated (Figure 1), we conduct an experiment using a perfectly
calibrated model, which yields high confidence for correct samples and low confidence for incorrect
ones. As shown in Table 1, our label distribution adaptation method significantly improves under
these conditions. This underscores the need for an uncertainty calibrator specific to tabular data.
Table 1: Key findings demonstrate that uncertainty calibration enhances the performance of the label
distribution handler.

Method HELOC Voting

Source 47.6 79.3
AdapTable 63.7 79.6
AdapTable (Oracle) 90.1 84.7

3 AdapTable

This section introduces AdapTable, the first model-agnostic test-time adaptation strategy for tab-
ular data. AdapTable uses per-sample temperature scaling to correct overconfident yet incorrect
predictions; by treating each column as a graph node, it employs a shift-aware uncertainty calibrator
with graph neural networks to capture both individual and complex feature shifts (Section 3.2). It
also estimates the average label distribution of the current test batch and adjusts the model’s output
predictions accordingly (Section 3.3). We also provide a theoretical justification for how our label
distribution estimation reduces the error bound in Section 3.4. The overall framework of AdapTable
is depicted in Figure 3.

3.1 Test-Time Adaptation Setup for Tabular Data

We begin by defining the problem setup for test-time adaptation (TTA) for tabular data. Let fθ :
RD → RC be a pre-trained classifier on the labeled source tabular domain Ds = {(xs

i , y
s
i)}i ⊂

Xs × Ys, where each pair consists of a tabular input xs
i ∈ X = RD and its corresponding output

class label ysi ∈ Y = {1, · · · , C}. The classifier takes a row xi ∈ RD from a table and returns
output logit fθ(xi) ∈ RC . Here, D and C are the number of input features and output classes,
respectively. The objective of TTA for tabular data is to adapt fθ to the unlabeled target tabular
domain Dt = {xt

i}i = Xt during inference, without access to Ds. Unlike most TTA methods that

3

Numerical
Column

Categorical
Column

+

𝒔𝒕 =	𝒙𝒊 − 𝝁𝒔𝒐𝒖𝒓𝒄𝒆

Original Prediction

𝑻
𝟐. 𝟓
𝟏. 𝟕
𝟎. 𝟖

⋮

Per-sample
Temperature Scaling

Source Model

Label Distribution HandlerShift-Aware Uncertainty Calibrator

Label
Distribution
Handler

Calibrated Prediction
+

Current Batch
Label Distribution

Prev Batch Next Batch

Final Prediction

Figure 3: The overall pipeline of the AdapTable framework. AdapTable employs a per-sample
temperature scaling to correct overconfident predictions by treating each column as a graph node,
enabling a shift-aware uncertainty calibrator with graph neural networks to capture both individual
and complex feature shifts (Section 3.2). It also estimates the label distribution of the current test
batch and adjusts the model’s predictions accordingly (Section 3.3).

fine-tune model parameters θ with unsupervised objectives, our approach directly adjusts the output
prediction fθ(x

t
i).

3.2 Shift-Aware Uncertainty Calibrator

This section describes a shift-aware uncertainty calibrator gϕ : RC × RD×N → R+ designed to
adjust the poorly calibrated original predictions pt(y|xt

i) = softmax(fθ(xt
i)), where softmax(z)i =

exp(zi)/
∑

i′ exp(zi′) normalizes the logits. Our shift-aware uncertainty calibrator lowers the con-
fidence of overconfident yet incorrect predictions, thereby 1) facilitating better alignment of these
predictions with the estimated target label distribution, and 2) mitigating their impact on the inaccurate
estimation of the target label distribution.

Conventional post-hoc calibration methods [41, 50] typically take solely the original model prediction
fθ(x

t
i) as input and return the corresponding temperature Ti without taking input variations into

account. We argue that this can be suboptimal as it fails to account for the uncertainty arising from
variations in the input itself. Instead, our gϕ not only considers fθ(xt

i) but also incorporates xt
i with

the shift trend st of the current batch as additional inputs. Capturing the common shift patterns within
the current batch enables a more accurate reflection of the uncertainty caused by the overall shift
patterns within the current batch.

In detail, the shift trend st = (stu)
D
u=1 ∈ RD×N is defined for a specific column index u as follows:

stu =
(
xt
iu −

1

|Ds|

|Ds|∑
i′=1

xs
i′u

)N
i=1
∈ RN . (1)

Here, stu represents the difference between the values of the u-th column within the current test batch
and the average values of the corresponding column in the source data. Using stu for each column u,
we define a shift trend graph where each node u represents a column, and each edge captures the
relationship between different columns; the node feature for each node u is defined as stu, and the
adjacency matrix is represented by an D ×D all-ones matrix.

A graph neural network (GNN) is then applied to the graph formed above, enabling the exchange of
shift trends between different columns through message passing. This process generates a column-
wise contextualized representation, which is then averaged to produce an overall feature representation
that encompasses all columns. Finally, the averaged node representation is concatenated with the initial
prediction fθ(x

t
i) to yield the final output temperature Ti. This GNN-based uncertainty calibration

not only captures shifts in individual columns but also sensitively detects correlation shifts occurring
simultaneously across different columns, which are common in the tabular domain. A more detailed
explanation of the architecture and training of the shift-aware uncertainty calibrator can be found in
Section B.

4

3.3 Label Distribution Handler

This section introduces a label distribution handler designed to accurately estimate the target label
distribution for the current test batch and adjust the model’s output predictions accordingly. This
approach is empirically justified by our observation that the marginal distribution of model predictions
pt(y) in the target domain tends to be biased towards the source label distribution ps(y), as discussed
in Section 2.2 and illustrated in Figure 2.

A straightforward solution to correct this bias is to simply multiply pt(y)/ps(y) to align the marginal
label distribution [3]. Specifically, given pt(y|xt

i) = softmax(fθ(xt
i)), the adjusted prediction would

be:
norm(pt(y|xt

i)pt(y)/ps(y)) (2)
where norm(z)i = zi/

∑
i′ zi′ normalizes the unnormalized probability. However, we find two

major issues: 1) pt(y|xt
i) is often poorly calibrated and 2) overconfident yet incorrect predictions

significantly hinder the accurate estimation of the target label distribution pt(y) (Section 2.2).

To tackle these challenges, we propose a simple yet effective estimator p̄i(y|xt
i) defined like below:

p̄i(y|xt
i) =

p̃t(y|xt
i) + norm

(
p̃t(y|xt

i)pt(y)/ps(y)
)

2
. (3)

The key differences between the original Equation 2 and our Equation 3 are: 1) we use the calibrated
prediction p̃t(y|xt

i) instead of the original prediction pt(y|xt
i) to enhance uncertainty quantification,

and 2) we combine the calibrated estimate p̃t(y|xt
i) with the distributionally aligned prediction

norm(p̃t(y|xt
i)pt(y)/ps(y)) for more robust estimation.

Given the already-known source label distribution ps(y), we now explain the step-by-step process for
estimating p̃t(y|xt

i) and pt(y). pt(y|xt
i) is calibrated into p̃t(y|xt

i) through a two-stage uncertainty
calibration process. Specifically, for a current test batch {xt

i}Ni=1, we calculate shift trend st using
Equation 1 and get per-sample temperature Ti = gϕ(fθ(x

t
i), s

t) using shift-aware uncertainty
calibrator gϕ to capture overall distribution shifts, as well as correlation and individual column
shifts within the current batch. Here, we define the uncertainty δi of fθ(xt

i) as a reciprocal of the
margin of the calibrated probability distribution softmax(fθ(xt

i)/Ti). We then measure the quantiles
for each instance xi using δi within the current batch and recalibrate the original probability with
T̃i, resulting in p̃t(y|xt

i) = softmax(fθ(xt
i)/T̃i). This process calibrates predictions by leveraging

relative uncertainty within the batch. Our temperature T̃i is defined as:

T̃i =

T if δi ≥ Q

(
{δi′}Ni′=1, qhigh

)
1/T if δi ≤ Q

(
{δi′}Ni′=1, qlow

)
1 otherwise,

(4)

where Q(X, q) is a quantile function which gives the value corresponding to the lower q quan-
tile in X , T = 1.5ρ/(ρ − 1 + 10−6) is a temperature with source class imbalance ratio ρ =
maxj ps(y)j/minj ps(y)j , and qlow and qhigh represent the low and high uncertainty quantiles, re-
spectively. This two-stage uncertainty calibration comprehensively evaluates the current batch and
estimates relative uncertainty using st, gϕ, and T̃i.

Meanwhile, the target label distribution pt(y) is estimated as follows:

pt(y) = (1− α) · 1
N

N∑
i=1

pde
t (y|xt

i) + α · poe
t (y), (5)

where pde
t (y|xt

i) = norm
(
pt(y|xt

i)/ps(y)
)

is a debiased target label estimator that departs from
ps(y), and poet (y) is an online target label estimator, initialized as uniform distribution and updated
as:

poe
t (y) = (1− α) · 1

N

N∑
i=1

p̄t(y|xt
i) + α · poe

t (y) (6)

from the current batch to the next, with a smoothing factor α. This online target label estimator
leverages label locality between nearby test batches, making it effective for accurately estimating
the next batch’s target label distribution. A more detailed explanation of AdapTable is provided in
Section B.

5

Table 2: The average balanced accuracy (%) and macro F1 score (%) with their standard errors
for both supervised models and TTA baselines are reported across six datasets including natural
distribution shifts within the TableShift [17] benchmark. The results are averaged over three random
repetitions.

HELOC Voting Hospital Readmission ICU Mortality Childhood Lead Diabetes

Method bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

k-NN 62.0 ± 0.0 40.3 ± 0.0 76.9 ± 0.0 71.1 ± 0.0 57.7 ± 0.0 56.9 ± 0.0 81.5 ± 0.3 47.6 ± 0.0 57.6 ± 0.1 56.9 ± 0.0 67.9 ± 0.3 53.3 ± 0.1
LogReg 63.5 ± 0.0 44.2 ± 0.0 80.2 ± 0.0 76.2 ± 0.0 61.4 ± 0.0 58.9 ± 0.0 61.6 ± 0.0 62.2 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 71.0 ± 0.0 55.4 ± 0.0
RandomForest 58.2 ± 7.6 32.2 ± 1.5 81.7 ± 0.1 68.4 ± 0.7 64.4 ± 0.5 42.1 ± 1.2 85.2 ± 0.4 52.0 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 76.5 ± 0.1 46.9 ± 0.1
XGBoost 57.6 ± 7.2 39.9 ± 4.9 80.5 ± 0.2 75.8 ± 0.4 63.1 ± 0.1 61.3 ± 0.4 79.9 ± 0.1 64.3 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 71.5 ± 0.1 56.2 ± 0.1
CatBoost 65.4 ± 0.0 51.7 ± 0.0 80.4 ± 0.0 76.8 ± 0.0 63.4 ± 0.0 61.8 ± 0.5 81.4 ± 0.0 59.8 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 65.0 ± 0.0 59.3 ± 0.0
+ AdapTable 65.5 ± 0.0 65.4 ± 0.0 79.6 ± 0.0 78.6 ± 0.0 65.4 ± 0.0 62.5 ± 0.3 82.6 ± 0.0 64.8 ± 0.3 62.8 ± 0.4 61.7 ± 0.3 74.2 ± 0.0 62.5 ± 0.3

Source 53.2 ± 1.5 38.2 ± 3.5 76.5 ± 0.5 77.3 ± 0.4 61.1 ± 0.1 60.2 ± 0.3 56.3 ± 0.0 58.1 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 55.2 ± 0.0 55.5 ± 0.0
PL 51.8 ± 1.0 34.9 ± 2.3 75.6 ± 0.5 76.6 ± 0.5 60.5 ± 0.1 58.9 ± 0.3 56.3 ± 0.0 58.0 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 55.1 ± 0.1 55.3 ± 0.0
TTT++ 53.2 ± 1.5 38.2 ± 3.6 76.8 ± 0.5 77.6 ± 0.2 61.1 ± 0.1 60.2 ± 0.3 56.6 ± 0.5 58.5 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 55.4 ± 0.0 55.7 ± 0.0
TENT 51.2 ± 1.2 33.2 ± 2.6 74.0 ± 0.6 74.9 ± 0.6 60.2 ± 0.1 58.3 ± 0.3 55.1 ± 0.1 56.3 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 55.0 ± 0.0 55.0 ± 0.0
EATA 53.2 ± 1.5 38.2 ± 3.6 76.5 ± 0.5 77.3 ± 0.4 61.1 ± 0.1 60.2 ± 0.4 56.3 ± 0.0 58.1 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 55.2 ± 0.0 55.5 ± 0.0
SAR 50.0 ± 0.0 30.1 ± 0.0 62.0 ± 1.2 59.4 ± 1.6 57.1 ± 1.1 51.3 ± 2.2 51.1 ± 0.1 49.1 ± 0.2 50.0 ± 0.0 47.9 ± 0.0 53.4 ± 0.0 52.2 ± 0.0
LAME 50.0 ± 0.0 30.1 ± 0.0 54.6 ± 0.5 46.8 ± 1.0 54.9 ± 0.5 46.9 ± 1.0 50.0 ± 0.0 46.7 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 54.8 ± 0.1 54.8 ± 0.2
AdapTable 65.8 ± 0.6 64.5 ± 0.3 78.4 ± 0.3 78.6 ± 0.0 61.7 ± 0.0 61.7 ± 0.0 65.9 ± 0.1 65.4 ± 0.1 69.2 ± 0.1 60.9 ± 0.3 70.9 ± 0.1 68.3 ± 0.1

3.4 Theoretical Insights

Theorem 3.1. Let Ŷ |X and Ŷo|X be defined as follows:

Ŷ |X = {argmax
j∈Y

fθ(x)j |x ∈ X}, (7)

Ŷo|X = {argmax
j∈Y

fθ(x)j + log poet (y)j |x ∈ X}. (8)

Given the error ϵ(Ŷ |X) = P(Ŷ ̸= Y |X), with true labels Y of inputs X , the error gap |ϵ(Ŷ |Xs)−
ϵ(Ŷo|Xt)| is upper bounded by

K1

∥∥∥1− poet (y)

pt(y)

∥∥∥
1
BSE(Ŷ) +K2∆CE(Ŷ), (9)

where K1 and K2 are constants related to pt(y), and ps(y), respectively.

Theorem 3.1 extends Theorem 2.3 in ODS [56] to cases where the source label distribution is
not uniform. It decomposes the error gap between the original model on the source domain and
the adapted model for the target model with poet (y) on the target domain into several components.
These components include ∥1 − poet (y)/pt(y)∥1, which is an error of the estimated target label
distribution, BSE(Ŷ), which reflects the model’s performance on the source domain, and ∆CE(Ŷ),
which measures the generalization of feature representations adapted by the TTA algorithm. Overall,
Theorem 3.1 underscores the importance of tracking label distributions and efficiently adapting
models to handle label distribution shifts. The detailed explanation and proof of Theorem 3.1 can be
found in Section C.

4 Experiments

This section validates AdapTable’s effectiveness. We begin with an overview of our experimental setup
in Section 4.1 and then address key research questions: Is AdapTable effective across various tabular
distribution shifts, including natural shifts and common corruptions across different tabular models?
(Section 4.2), Do AdapTable’s components contribute to overall performance improvements, and do
they function as intended? (Section 4.3) Does AdapTable demonstrate strengths in computational
efficiency and hyperparameter sensitivity, which are crucial for test time adaptation? (Section H.2)

4.1 Experimental Setup

Datasets. We evaluate AdapTable on six diverse datasets—HELOC, Voting, Hospital Readmission,
ICU Mortality, Childhood Lead, and Diabetes—within the tabular distribution shift benchmark [17],
covering healthcare, finance, and politics with both numerical and categorical features. Additionally,
we verify its robustness against six common corruptions—Gaussian, Uniform, Random Drop, Column
Drop, Numerical, and Categorical—to ensure its efficacy beyond label distribution shifts. More details
of these shifts are in Section D.

6

Figure 4: The average macro F1 score for AdapTable and TTA baselines is reported under six
common corruptions using MLP across three datasets within the TableShift [17] benchmark.

Model architectures and baselines. To verify the proposed method under various tabular model
architectures, we mainly use MLP, a widely used tabular learning architecture. Additionally, we
validate AdapTable on CatBoost [12] and three other representative deep tabular learning mod-
els—AutoInt [47], ResNet [19], and FT-Transformer [19]. We compare AdapTable with six TTA
baselines—PL [29], TTT++ [33], TENT [53], EATA [37], SAR [38], and LAME [6]. TabLog [42]
is excluded due to its architectural constraint on logical neural networks [43]. We also provide
performance references from classical machine learning models: k-nearest neighbors (k-NN), logistic
regression (LogReg), random forest (RandomForest), XGBoost [8], and CatBoost [12].

Evaluation metrics and implementation details. As shown in Figure 2 and Section G, tabular
data often exhibit extreme class imbalance. Since accuracy may not be effective in these cases, we
use macro F1 score (F1) and balanced accuracy (bAcc.) as the primary evaluation metrics. For all
experiments, we use a fixed batch size of 64, a common setting in TTA baselines [44, 53]. The
smoothing factor α, low uncertainty quantile qlow, and high uncertainty quantile qhigh are set to 0.1,
0.25, and 0.75, respectively. In all tables, we mark the best and second-best results.

4.2 Main Results

Result on natural distribution shifts. Table 2 presents results on natural distribution shifts.
Existing TTA methods, successful in computer vision, struggle in the tabular domain, often failing to
outperform the source model or offering limited performance gains. In contrast, AdapTable achieves
state-of-the-art results across all datasets, with dramatic performance improvements of up to 26%
on the HELOC dataset. Since AdapTable does not rely on model parameter tuning, it can be easily
applied to classical machine learning models; when integrated with CatBoost, AdapTable consistently
improves performance across all datasets, showcasing its versatility, whereas other baselines cannot
be similarly integrated as they require model parameter updates.

Result on common corruptions. We further evaluate the efficacy of AdapTable across six types of
common corruptions in real-world applications by applying them to the test sets of three datasets—
HELOC, Voting, and Childhood Lead. As shown in Figure 4, prior TTA methods fail considerably,
showing only marginal gains over the unadapted source model across all corruption types. It is worth
noting that previous TTA methods have demonstrated significant improvements when dealing with
common corruptions in vision data, highlighting the difference between corruptions in the tabular do-
main its counterpart in vision domain. Meanwhile, Adaptable shows substantial improvements across
all types of corruptions, showing more than 10% gains of accuracy on all scenarios, demonstrating its
robustness across different types of corruptions.

Table 3: Ablation study comparing the shift-aware uncertainty calibrator with classical methods—
Platt scaling (PS) and isotonic regression (IR). The results are averaged over three random repetitions.

Method HELOC Voting Hospital Readmission

Source 38.2 ± 3.5 77.3 ± 0.4 60.2 ± 0.3
PS 61.6 ± 1.3 73.3 ± 0.2 59.4 ± 0.3
IR 61.3 ± 1.7 74.3 ± 0.2 58.0 ± 0.4
AdapTable 64.5 ± 0.6 78.6 ± 0.0 61.7 ± 0.0

7

Figure 5: Ablation study on the shift-aware uncertainty calibrator using MLP for the HELOC dataset.
(a) and (b) show reliability diagrams before and after calibration, while (c) depicts the average
temperature relative to the maximum mean discrepancy (MMD) between the training set and the
sampled test sets.

4.3 Ablation Study

Shift-aware uncertainty calibrator. We first validate the shift-aware uncertainty calibrator from
Section 3.2. Figures 5(a) and (b) show reliability diagrams before and after calibration, demonstrating
that our calibrator significantly reduces both overconfidence and underconfidence. Next, Figure 5(c)
assesses shift-awareness by plotting the average temperature against the maximum mean discrepancy
(MMD) with training data. As expected, greater shifts lead to higher temperatures, indicating increased
uncertainty. The strong correlation between MMD and average temperature confirms the calibrator’s
effectiveness under distribution shifts. Finally, Table 3 compares our calibrator with classical methods
like Platt scaling and isotonic regression. While classical methods show inconsistent performance
across datasets, our shift-aware calibrator consistently outperforms them, effectively handling domain
shifts during calibration.

Figure 6: Jensen-Shannon (JS) Divergence of the estimated target label distribution before and after
applying the label distribution handler using MLP on three datasets. The x-axis indicates the online
batch index, and the y-axis shows the per-batch JS divergence from the ground truth labels.
Label distribution handler. We next validate the label distribution handler’s efficacy by first
comparing the Jensen–Shannon (JS) divergence between true and estimated label distributions across
online batches in Figure 6. The results show that our handler significantly improves label distribution
estimation accuracy, with low JS divergence across all datasets. We then assess its robustness under
severe class imbalance (ratio of 10) and class-wise temporal correlation. As shown in Table 4,
AdapTable achieves up to 27% and 19% performance improvements in the HELOC and Childhood
Lead datasets, respectively. More experimental details are in Section D.

Table 4: The average macro F1 score (%) with standard errors for TTA baselines is reported using
MLP across three datasets with 1) class imbalance and 2) temporal correlation from the TableShift
benchmark. The results are averaged over three random repetitions.

Class Imbalance Temporal Correlation

Method HELOC Voting Childhood Lead HELOC Voting Childhood Lead

Source 32.5 ± 3.5 52.3 ± 4.9 36.7 ± 6.5 31.6 ± 0.3 62.2 ± 0.1 35.1 ± 0.2
PL 32.0 ± 3.6 52.1 ± 4.9 36.7 ± 6.5 30.9 ± 0.2 54.9 ± 0.1 35.1 ± 0.2
TENT 32.5 ± 3.5 52.3 ± 4.9 36.7 ± 6.5 31.6 ± 0.3 55.7 ± 0.1 35.1 ± 0.2
EATA 32.5 ± 3.5 52.3 ± 4.9 36.7 ± 6.5 31.6 ± 0.3 55.7 ± 0.1 35.1 ± 0.2
SAR 31.8 ± 3.5 57.1 ± 5.3 36.7 ± 6.5 32.0 ± 0.2 54.4 ± 0.5 35.1 ± 0.2
LAME 29.9 ± 3.5 58.7 ± 4.0 36.7 ± 6.5 29.0 ± 0.1 38.0 ± 0.4 35.1 ± 0.2
AdapTable 59.7 ± 0.8 62.0 ± 4.6 63.9 ± 1.0 56.1 ± 0.3 64.5 ± 0.0 64.8 ± 0.3

5 Conclusion

In this paper, we have introduced AdapTable, a test-time adaptation framework tailored for tabular
data. AdapTable overcomes the limitations of previous methods, which fail to address label distri-
bution shifts, and lack versatility across architectures. Our approach, combined with a shift-aware
uncertainty calibrator that enhances calibration via modeling column shifts, and a label distribution
handler that adjusts the output distribution based on real-time estimates of the current batch’s label
distribution. Extensive experiments show that AdapTable achieves state-of-the-art performance across
various datasets and architectures, effectively managing both natural distribution shifts and common
corruptions.

8

Acknowledgments

This work was supported by the Institute for Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIP) (No. 2019-0-00075, Artificial
Intelligence Graduate School Program (KAIST)).

References
[1] Sercan Ö Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning. In AAAI

Conference on Artificial Intelligence (AAAI), 2021.

[2] American Diabetes Association. Economic costs of diabetes in the us in 2017. Diabetes care,
2018.

[3] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,
and Colin Raffel. Remixmatch: Semi-supervised learning with distribution alignment and
augmentation anchoring. In International Conference on Learning Representations (ICLR),
2020.

[4] Ege Beyazit, Jonathan Kozaczuk, Bo Li, Vanessa Wallace, and Bilal Fadlallah. An inductive
bias for tabular deep learning. Conference in Neural Information Processing Systems (NeurIPS),
2024.

[5] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G.
Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. Openml benchmarking suites. In
Conference on Neural Information Processing Systems (NeurIPS), 2021.

[6] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online
test-time adaptation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[7] Kyle Brown, Derek Doran, Ryan Kramer, and Brad Reynolds. HELOC applicant risk per-
formance evaluation by topological hierarchical decomposition. In NeurIPS Workshop on
Challenges and Opportunities for AI in Financial Services, 2018.

[8] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), 2016.

[9] John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. Diabetes 130-US hospitals for
years 1999-2008. UCI Machine Learning Repository, 2014.

[10] Ersilia M DeFilippis and Harriette GC Van Spall. Is it time for sex-specific guidelines for
cardiovascular disease? Journal of the American College of Cardiology (JACC), 2021.

[11] Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for
non-language machine learning tasks. In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

[12] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: gradient boosting with
categorical features support. In NeurIPS Workshop on ML Systems, 2017.

[13] Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Jane Qi, Scott Nickleach,
Diego Socolinsky, Srinivasan Sengamedu, Christos Faloutsos, et al. Large language models
(llms) on tabular data: Prediction, generation, and understanding-a survey. Transactions on
Machine Learning Research (TMLR), 2024.

[14] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[15] Centers for Disease Control, Prevention, et al. National health and nutrition examination survey
(nhanes) data. NCfHS, editor. NCHS, 2003.

9

[16] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked
autoencoders. In Conference on Neural Information Processing Systems (NeurIPS), 2022.

[17] Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular
data with tableshift. In Conference on Neural Information Processing Systems (NeurIPS), 2023.

[18] Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note:
Robust continual test-time adaptation against temporal correlation. In Conference on Neural
Information Processing Systems (NeurIPS), 2022.

[19] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

[20] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still
outperform deep learning on tabular data? arxiv 2022. In Conference on Neural Information
Processing Systems (NeurIPS), 2022.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[22] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David Sontag. Tabllm: Few-shot classification of tabular data with large language models. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.

[23] Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel, Thomas A.
Runkler, and Volkmar Sterzing. A benchmark environment motivated by industrial control
problems. In IEEE Symposium Series on Computational Intelligence (SSCI), 2017.

[24] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A
transformer that solves small tabular classification problems in a second. In International
Conference on Learning Representations (ICLR), 2023.

[25] Sehyun Hwang, Sohyun Lee, Sungyeon Kim, Jungseul Ok, and Suha Kwak. Combating label
distribution shift for active domain adaptation. In European Conference on Computer Vision
(ECCV), 2022.

[26] Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steven Horng, Leo Anthony Celi, and Roger
Mark. Mimic-iv, 2021.

[27] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 2016.

[28] Changhun Kim, Joonhyung Park, Hajin Shim, and Eunho Yang. SGEM: Test-time adaptation
for automatic speech recognition via sequential-level generalized entropy minimization. In
Conference of the International Speech Communication Association (INTERSPEECH), 2023.

[29] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In ICML Workshop on Challenges in Representation Learning, 2013.

[30] Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under
distribution shifts. International Journal of Computer Vision (IJCV), 2024.

[31] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In IEEE/CVF International Conference on Computer Vision (ICCV), 2017.

[32] Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. On the need for a language
describing distribution shifts: Illustrations on tabular datasets. In Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2023.

[33] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and
Alexandre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In
Conference on Neural Information Processing Systems (NeurIPS), 2021.

10

[34] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on
Learning Representations (ICLR), 2021.

[35] Lori Mosca, Elizabeth Barrett-Connor, and Nanette Kass Wenger. Sex/gender differences in
cardiovascular disease prevention: what a difference a decade makes. Circulation, 2011.

[36] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing,
1991.

[37] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting. In International Confer-
ence on Machine Learning (ICML), 2022.

[38] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In International
Conference on Learning Representations (ICLR), 2023.

[39] Joonhyung Park, Hyunjin Seo, and Eunho Yang. Pc-adapter: Topology-aware adapter for effi-
cient domain adaption on point clouds with rectified pseudo-label. In IEEE/CVF International
Conference on Computer Vision (ICCV), 2023.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Conference on neural information processing
systems (NeurIPS), 2019.

[41] John Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In Advances in Large Margin Classifiers, 2000.

[42] Weijieying Ren, Xiaoting Li, Huiyuan Chen, Vineeth Rakesh, Zhuoyi Wang, Mahashweta Das,
and Vasant G Honavar. Tablog: Test-time adaptation for tabular data using logic rules. In
International Conference on Machine Learning (ICML), 2024.

[43] Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical
neural networks. arXiv preprint arXiv:2006.13155, 2020.

[44] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. In
Conference on Neural Information Processing Systems (NeurIPS), 2020.

[45] Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Hang Wu, Carl Yang, and May D Wang.
Medadapter: Efficient test-time adaptation of large language models towards medical reasoning.
arXiv preprint arXiv:2405.03000, 2024.

[46] Hajin Shim, Changhun Kim, and Eunho Yang. Cloudfixer: Test-time adaptation for 3d point
clouds via diffusion-guided geometric transformation. In European Conference on Computer
Vision (ECCV), 2024.

[47] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian
Tang. Autoint: Automatic feature interaction learning via self-attentive neural networks. In
ACM International Conference on Information and Knowledge Management (CIKM), 2019.

[48] American National Election Studies. Fico. the explainable machine learn-
ing challenge., 2019. URL https://community.fico.com/s/
explainable-machine-learning-challenge.

[49] American National Election Studies. Anes time series cumulative data file [dataset and docu-
mentation]. september 16, 2022 version, 2022. URL www.electionstudies.org.

[50] Mario Stylianou and Nancy Flournoy. Dose finding using the biased coin up-and-down design
and isotonic regression. In Biometrics, 2002.

11

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
www.electionstudies.org

[51] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In International
Conference on Machine Learning (ICML), 2020.

[52] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon. Domain
adaptation with conditional distribution matching and generalized label shift. In Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[53] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations (ICLR), 2021.

[54] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trustworthy graph
neural networks via confidence calibration. In Conference on Neural Information Processing
Systems (NeurIPS), 2021.

[55] Ruihan Wu, Chuan Guo, Yi Su, and Kilian Q Weinberger. Online adaptation to label distribution
shift. In Conference on Neural Information Processing Systems (NeurIPS), 2021.

[56] Zhi Zhou, Lan-Zhe Guo, Lin-Han Jia, Dingchu Zhang, and Yu-Feng Li. ODS: Test-time
adaptation in the presence of open-world data shift. In International Conference on Machine
Learning (ICML), 2023.

12

Appendix

A Related Work

Machine learning for tabular data. The distinct nature of tabular data reduces the effectiveness
of deep neural networks, making gradient-boosted decision trees [8, 12] more suitable. However,
research continues to develop deep learning models tailored for tabular data [36, 47, 1, 19], including
recent efforts involving large language models [13, 22, 24, 11] that leverage textual prior knowledge.
Notably, our method is architecture-agnostic and can be applied to any model.

Distribution shifts in the tabular domain. Recently, distribution shift benchmarks for tabular
data have been introduced [32, 17]. WhyShift [32] reveals that concept shifts (Y |X-shifts) are more
prevalent and detrimental than covariate shifts (X-shifts). TableShift [17] offers a benchmark with 15
classification tasks, highlighting a strong correlation between shift gaps and label distribution shifts
(Y -shifts), which supports the validity of our method.

Test-time adaptation. Over the past years, test-time adaptation (TTA) methods have been proposed
across various domains, such as computer vision [53, 18, 38, 46], natural language processing [45, 30],
and speech processing [28]. These methods adapt pre-trained models to unlabeled target domains with-
out requiring access to source data, making them well-suited for sensitive tabular data. TabLog [42]
is a recent TTA method specifically for tabular data, but it has architectural constraints and lacks a
comprehensive analysis of distribution shifts. This underscores the need for model-agnostic TTA
methods with a deeper understanding of tabular data, which we address in this paper.

B Detailed Algorithm of AdapTable

Post-training shift-aware uncertainty calibrator. Given a pre-trained tabular classifier fθ : RD →
RC on the source domain Ds = {(xs

i , y
s
i)}i, we introduce a post-training phase for a shift-aware

uncertainty calibrator gϕ : RC × RD×N → R+. This calibrator is trained after the initial training of
fθ using the same training dataset Ds. For a given training batch {(xs

i , y
s
i)}Ni=1, we compute the shift

trend ss = (ssu)
D
u=1 for a specific column index u as follows:

ssu =
(
xs
iu −

1

|Ds|

|Ds|∑
i′=1

xs
i′u

)N
i=1

,

where we add a linear layer to ssu for categorical column u to transform it into a one-dimensional
representation, ensuring alignment with the numerical columns. Using ss, we construct a shift trend
graph, where each node u represents a column, and edges capture the relationships between columns.
The node features are given by stu, and the graph is connected using an all-ones adjacency matrix. A
graph neural network (GNN) is applied to this graph, facilitating the exchange of shift trends between
columns through message passing, which generates a contextualized column-wise representation hs

u.
These representations are averaged to form a global feature representation hs = 1

D

∑D
u=1 h

s
u, which

is then concatenated with the initial model prediction fθ(x
s
i) to produce the final output temperature

Ti. With the calibrated probability pi = softmax
(
fθ(x

s
i)/Ti

)
, with the per-sample temperature Ti

calculated above, we define the most plausible and second plausible class indices j∗ and j∗∗ as
follows:

j∗ = argmax
j∈Y

pij and j∗∗ = argmax
j∈Y,j ̸=j∗

pij .

The focal loss LFL [31] and the calibration loss LCAL [54] are used to train the shift-aware uncertainty
calibrator gϕ, defined as:

LFL(x
s
i , y

s
i) =

C∑
j=1

1{ys
i }(j)(1− pij)

γ log pij , (10)

LCAL(x
s
i , y

s
i) = 1{ys

i }(j
∗)(1− pij∗ + pij∗∗) + 1Y\{ys

i }(j
∗)(pij∗ − pij∗∗), (11)

13

Algorithm 1 AdapTable

1: Input: Pre-trained classifier fθ(·), post-trained shift-aware uncertainty calibrator gϕ(·, ·), indica-
tor function 1(·)(·), quantile function Q(·, ·), softmax function softmax(·), normalization function
norm(·), source data Ds = {(xs

i , y
s
i)}i, current test batch {xt

i}
N
i=1, source class imbalance ratio

ρ = maxj ps(y)j/minj ps(y)j
2: Parameters: Smoothing factor α, low uncertainty quantile qlow, high uncertainty quantile qhigh

3: ps(y), T ←
(

1
|Ds|

∑|Ds|
i=1 1{j}(y

s
i)
)C
j=1

, 1.5ρ/(ρ− 1 + 10−6)

4: for u = 1 to D do
5: stu ←

(
xt
iu − 1

|Ds|
∑|Ds|

i′=1 x
s
i′u

)N
i=1

▷ Compute shift trend st

6: end for
7: for i = 1 to N do
8: pt(y|xt

i)← softmax
(
fθ(x

t
i)
)

9: Ti ← gϕ
(
fθ(x

t
i), s

t
)

▷ Determine per-sample temperature xt
i

10: j∗, j∗∗ ← argmax1≤j≤C pt(y|xt
i)j , argmax1≤j≤C,j ̸=j∗ pt(y|xt

i)j

11: δi ←
(
softmax

(
fθ(x

t
i)/Ti

)
j∗
− softmax

(
fθ(x

t
i)/Ti

)
j∗∗

)−1
▷ Define uncertainty of xt

i as a
margin of fθ(xt

i)/Ti

12: pde
t (y|xt

i)← norm
(
pt(y|xt

i)/ps(y)
)

▷ Compute debiased target label estimator
13: end for
14: pt(y)← (1− α) · 1

N

∑N
i=1 p

de
t (y|xt

i) + α · poe
t (y) ▷ Estimate target label distribution

15: for i = 1 to N do
16: if δi ≥ Q

(
{δi′}Ni′=1, qhigh

)
then

17: T̃i ← T
18: else if δi ≤ Q

(
{δi′}Ni′=1, qlow

)
then

19: T̃i ← 1/T ▷ Calculate temperature T̃i using uncertainty δi
20: else
21: T̃i ← 1
22: end if
23: p̃t(y|xt

i)← softmax
(
fθ(x

t
i)/T̃i

)
▷ Perform temperature scaling with T̃i

24: p̄t(y|xt
i)←

(
p̃t(y|xt

i) + norm(p̃t(y|xt
i)pt(y)/ps(y))

)
/2 ▷ Perform self-ensembling

25: end for
26: poe

t (y)← (1− α) · 1
N

∑N
i=1 p̄t(y|xt

i) + α · poe
t (y) ▷ Update online target label estimator

27: Output: Final predictions {p̄i(y)}Ni=1

where 1A(x) is an indicator function:

1A(x) =

{
1 if x ∈ A

0 otherwise.

LFL addresses class imbalance by reducing the impact of easily classified examples, while LCAL
penalizes the gap between pij∗ and pij∗∗ for correct predictions, encouraging them to converge for
incorrect predictions. For all experiments, we set γ = 2 and λCAL = 0.1.

Label distribution handler. During the test phase after post-training gϕ, we introduce a label
distribution handler using an estimator p̄i(y|xt

i), defined as:

p̄i(y|xt
i) =

p̃t(y|xt
i) + norm

(
p̃t(y|xt

i)pt(y)/ps(y)
)

2
,

where p̃t(y|xt
i) represents the calibrated prediction. This approach enhances uncertainty quantification

and combines the calibrated estimation with the distributionally aligned prediction for more robust
estimation. To compute p̃t(y|xt

i), we perform a two-stage uncertainty calibration. Specifically, for a
given test batch {xt

i}Ni=1, we calculate the shift trend st = (stu)
D
u=1 ∈ RD×N as:

stu =
(
xt
iu −

1

|Ds|

|Ds|∑
i′=1

xs
i′u

)N
i=1
∈ RN .

14

Then, a per-sample temperature Ti = gϕ(fθ(x
t
i), s

t), which was defined in Equation 1 is computed.
The uncertainty δi of fθ(xt

i) is defined as the reciprocal of the margin of the calibrated probability
distribution softmax(fθ(xt

i)/Ti):

δi =
1

softmax
(
fθ(xt

i)/Ti

)
j∗
− softmax

(
fθ(xt

i)/Ti

)
j∗∗

,

where j∗ and j∗∗ are the most plausible and second plausible class indices:

j∗ = argmax
j∈Y

fθ(x
t
i)j and j∗∗ = argmax

j∈Y,j ̸=j∗
fθ(x

t
i)j .

Based on δi, the recalibrated temperature T̃iis applied:

T̃i =

T if δi ≥ Q

(
{δi′}Ni′=1, qhigh

)
1/T if δi ≤ Q

(
{δi′}Ni′=1, qlow

)
1 otherwise,

where T = 1.5ρ/(ρ− 1 + 10−6) with ρ = maxj ps(y)j/minj ps(y)j , and qlow and qhigh are the low
and high uncertainty quantiles, respectively. The target label distribution pt(y) is then estimated using
the following formula:

pt(y) = (1− α) · 1
N

N∑
i=1

pde
t (y|xt

i) + α · poe
t (y),

where pde
t (y|xt

i) = norm
(
pt(y|xt

i)/ps(y)
)

serves as a debiased target label estimator, deviating from
the source label distribution ps(y). The online target label estimator poe

t (y) is initialized with a
uniform distribution and updated with each new batch as follows:

poe
t (y) = (1− α) · 1

N

N∑
i=1

p̄t(y|xt
i) + α · poe

t (y),

where α is a smoothing factor. This update process leverages information from the current batch
to refine the target label distribution estimation over time. The overall procedure of the proposed
AdapTable method is summarized in Algorithm 1.

C Proof of Theorem 3.1

Let’s first define the balanced source error BSE(Ŷ) on the source dataset and the conditional error
gap ∆CE(Ŷ) between P(Ŷ ̸= Y |Xs) and P(Ŷ ̸= Y |Xt) as follows:

BSE(Ŷ) = max
i∈Y

P(Ŷ ̸= i|Y = i,Xs), (12)

∆CE(Ŷ) = max
i ̸=i′∈Y

∣∣∣P(Ŷ = i|Y = i′, Xs)− P(Ŷ = i|Y = i′, Xt)
∣∣∣. (13)

Definition C.1. (Generalized Label Shift in Tachet des Combes et al. [52]). Both input covariate
distribution P(Xs) ̸= P(Xt) and output label distribution P(Y |Xs) ̸= P(Y |Xt) change. Yet, there
exists a hidden representation H = g∗(X) such that the conditional distribution of H given Y
remains the same across both domains, i.e., ∀i ∈ Y ,

P(H|Y = i,Xs) = P(H|Y = i,Xt). (14)

15

Proof. We start by applying the law of total probability and triangle inequality to derive the following
inequality:∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)

∣∣∣
=
∣∣∣P(Ŷ ̸= Y |Xs)− P(Ŷo ̸= Y |Xt)

∣∣∣
=
∣∣∣∑
i ̸=i′

P(Ŷ = i, Y = i′|Xs)−
∑
i̸=i′

P(Ŷo = i, Y = i′|Xt)
∣∣∣

=
∣∣∣∑
i ̸=i′

P(Y = i′|Xs)P(Ŷ = i|Y = i′, Xs)−
∑
i ̸=i′

P(Y = i′|Xt)P(Ŷo = i|Y = i′, Xt)
∣∣∣

≤
∑
i ̸=i′

∣∣∣P(Y = i′|Xs)P(Ŷ = i|Y = i′, Xs)− P(Y = i′|Xt)P(Ŷo = i|Y = i′, Xt)
∣∣∣.

(15)

According to Equation 8 in [34], Ŷo satisfies the following condition under generalized label shift
condition in Definition C.1:

P(Ŷo = i|H,Xt) =
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|H,Xt). (16)

By multiplying both sides of Equation 16 by P(H|Y,Xt), we obtain:

P(Ŷo = i|H,Xt)P(H|Y,Xt) =
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|H,Xt)P(H|Y,Xt)

P(Ŷo = i|Y,Xt) =
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|Y,Xt).

(17)

Next, by substituting Equation 17 into Equation 15, and letting Y = i′, we have:∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)
∣∣∣

≤
∑
i ̸=i′

∣∣∣P(Y = i′|Xs)P(Ŷ = i|Y = i′, Xs)− P(Y = i′|Xt)
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|Y = i′, Xt)

∣∣∣.
(18)

Using Lemma A.2 from [52], we can further estimate the upper bound of Equation 18 as follows:∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)
∣∣∣

≤
∑
i̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣ (αi′P(Ŷ = i|Y = i′, Xs) + βi′P(Ŷ = i|Y = i′, Xt)
)

+ P(Y = i′|Xs)∆CE(Ŷ) + P(Y = i′|Xt)
poet (y)i

P(Y = i|Xs)
∆CE(Ŷ)

(i)

≤
∑
i̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣ (αi′P(Ŷ = i|Y = i′, Xs) + βi′P(Ŷ = i|Y = i′, Xt)
)

+ (C − 1)∆CE(Ŷ) +

∑
i̸=i′

P(Y = i′|Xt)

P(Y = i|Xs)

∑
i ̸=i′

poet (y)i

∆CE(Ŷ)

≤
∑
i ̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣ (αi′P(Ŷ = i|Y = i′, Xs) + βi′P(Ŷ = i|Y = i′, Xt)
)

+ (C − 1)∆CE(Ŷ) +
(C − 1)2

mini∈Y P(Y = i|Xs)
∆CE(Ŷ),

(19)

16

where αi′ , βi′ ≥ 0 and αi′ +βi′ = 1, (i) holds by Hölder’s inequality. By letting αi′ = 1 and βi′ = 0
for all i′ ∈ Y , and defining K1 and K2 as:

K1 = C(C − 1)2 max
i∈Y

P(Y = i|Xt),

K2 = (C − 1) +
(C − 1)2

mini∈Y P(Y = i|Xs)
,

we finally get:∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)
∣∣∣

≤
∑
i ̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣P(Ŷ = i|Y = i′, Xs) +K2∆CE(Ŷ)

≤ max
i′∈Y

P(Y = i′|Xt)
∑
i̸=i′

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣P(Ŷ = i|Y = i′, Xs) +K2∆CE(Ŷ)

(i)

≤ max
i′∈Y

P(Y = i′|Xt)

∑
i ̸=i′

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣
∑

i ̸=i′

P(Ŷ = i|Y = i′, Xs)

+K2∆CE(Ŷ)

(ii)

≤ max
i′∈Y

P(Y = i′|Xt)(C − 1)

C∑
i=1

∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣C(C − 1)BSE(Ŷ) +K2∆CE(Ŷ)

= max
i′∈Y

P(Y = i′|Xt)C(C − 1)2
∥∥∥1− poet (y)

pt(y)

∥∥∥
1
BSE(Ŷ) +K2∆CE(Ŷ)

(iii)
= K1

∥∥∥1− poet (y)

pt(y)

∥∥∥
1
BSE(Ŷ) +K2∆CE(Ŷ),

(20)

where (i) holds by Hölder’s inequality, (ii) holds by the definition of BSE(Ŷ), and (iii) holds by
the definition of K1.

We observe that in practice, using Ŷo|X = {argmaxj∈Y fθ(x)j + log poet (y)j |x ∈ X} can result
in performance degradation due to an error accumulation in poet (y). However, our approach, which
integrates a two-stage uncertainty calibration with gϕ and a debiased target label estimator pdet (y),
demonstrates empirical efficacy across various experiments.

D Dataset Descriptions

D.1 Natural Distibution Shifts

In our experiments, we verify our method across six different datasets—HELOC, Voting, Hospital
Readmission, ICU Mortality, Childhood Lead, and Diabetes—within the Tableshift Benchmark [17],
all of which include natural distribution shifts between training and test data. For all datasets, the
numerical features are normalized—subtraction of mean and division by standard deviation, while
categorical features are one-hot encoded. We find that different encoding types do not play a significant
role in terms of accuracy, as noted in Grinsztajn et al. [20]. Detailed statistics specifications of each
dataset are listed in Table 5.

• HELOC: This task predicts Home Equity Line of Credit (HELOC) [7] repayment using
FICO data [48], focusing on shifts in third-party risk estimates. The dataset includes 10,459
observations, and a distribution shift occurs by using the ’External Risk Estimate’ as a
domain split. Estimates above 63 are used for training, while those 63 or below are held out
for testing, illustrating potential biases in credit assessments.

• Voting: Using ANES [49] data, this task predicts U.S. presidential election voting behavior
with 8,280 observations. Distribution shift is introduced by splitting the data based on geo-
graphic region, with the southern U.S. serving as the out-of-domain region. This simulates

17

how voter behavior predictions might vary when polling data is collected in one region and
used to predict outcomes in another.

• Hospital Readmission: Hospital Readmission [9] predicts 30-day readmission of diabetic
patients using data from 130 U.S. hospitals over 10 years. The distribution shift occurs by
splitting the data based on admission source, with emergency room admissions held out
as the target domain. This tests how well models trained on other sources perform when
applied to patients admitted through the emergency room.

• ICU Mortality: The task predicts ICU patient mortality using MIMIC-iii data [27], fo-
cusing on shifts related to insurance type. The dataset includes 23,944 observations, and a
distribution shift is created by excluding Medicare and Medicaid patients from the training
set, designating them as the target domain. This highlights how insurance type can affect
mortality predictions.

• Childhood Lead: This task predicts elevated blood lead levels in children using NHANES
data [15], with 27,499 observations. A distribution shift is introduced by splitting the data
based on poverty using the poverty-income ratio (PIR) as a threshold. Those with a PIR of
1.3 or lower are held out for testing, simulating risk assessment in lower-income households.

• Diabetes: This task predicts diabetes using BRFSS data [2], focusing on racial shifts across
1.4 million observations. Distribution shift occurs by focusing on the differences in diabetes
risk between racial and ethnic groups, particularly highlighting the higher risk faced by
non-white groups compared to White non-Hispanic individuals.

Table 5: Summary of the datasets used in our experiments, including the total number of instances
(Total Samples), the number of instances allocated to training, validation, and test sets (Training
Samples, Validation Samples, Test Samples), the total number of features (Total Features), and a
breakdown into numerical and categorical features (Numerical Features, Categorical Features). All
tasks involve binary classification.

Statistic HELOC Voting Hospital Readmission ICU Mortality Childhood Lead Diabetes

Total Samples 9,412 60,376 89,542 21,549 24,749 1,299,758
Training Samples 2,220 34,796 34,288 7,116 11,807 969,229
Validation Samples 278 4,349 4,286 889 1,476 121,154
Test Samples 6,914 21,231 50,968 13,544 11,466 209,375

Total Features 22 54 46 7491 7 25
Numerical Features 20 8 12 7490 4 6
Categorical Features 2 46 34 1 3 19

D.2 Common Corruptions

Let xt
i = (xt

ij)
D
j=1 ∈ RD be the i-th row of a table with D columns in the test data. We define x̄s

j as
a random variable that follows the empirical marginal distribution of the j-th column in the training
set Ds, given by:

P(x̄s
j = k) =

1

|Ds|

|Ds|∑
i=1

1{k}(x
s
ij),

where k ∈ R. Additionally, let µs
j = E[x̄s

j] and σs
j =

√
Var(x̄s

j) be the mean and standard deviation
of the random variable x̄s

j , respectively. To effectively simulate natural distribution shifts that com-
monly occur beyond label distribution shifts, we introduce six types of corruptions—Gaussian noise
(Gaussian), uniform noise (Uniform), random missing values (Random Drop), common column
missing across all test data (Column Drop), important numerical column shift (Numerical), and
important categorical column shift (Categorical)—as follows:

• Gaussian: For xt
ij , Gaussian noise z ∼ N (0, 0.12) is independently injected as:

xt
ij ← xt

ij + z · σs
j .

• Uniform: For the xt
ij , uniform noise u ∼ U(−0.1, 0.1) is independently injected as:

xt
ij ← xt

ij + u · σs
j .

18

• Random Drop: For each column xt
ij , a random mask mij ∼ Bernoulli(0.2) is applied,

and the feature is replaced by a random sample x̄s
j drawn from the empirical marginal

distribution of the j-th column of the training set:

xt
ij ← (1−mij) · xt

ij +mij · x̄s
j .

• Column Drop: For each column xt
ij , a random mask mj ∼ Bernoulli(0.2) is applied, and

the feature is replaced by a random sample x̄s
j as follows:

xt
ij ← (1−mj) · xt

ij +mj · x̄s
j .

Unlike random drop corruption, where the mask mij is resampled for each j-th column of
the i-th test instance xt

ij , a single random mask mj is sampled for each j-th column and
applied uniformly across all test data.

• Numerical: Important numerical column shift simulates natural domain shifts where the
test distribution of the most important numerical column deviates significantly from the
training distribution. We first identify the most important numerical column, j∗, using a
pre-trained XGBoost [8]. A Gaussian distribution

N (z|µs
j∗ , σ

s
j∗) =

1√
2πσs

j∗
exp

(
−
(z − µs

j∗)
2

2(σs
j∗)

2

)
is then fitted to the j∗-th column of the training data, using µs

j∗ and σs
j∗ . The likelihood

of each test sample xt
i is then computed as N (xt

ij∗ |µs
j∗ , σ

s
j∗). Finally, test samples are

drawn inversely proportional to their likelihood, with the sampling probability P(xt
i) of xt

i
is defined as:

P(xt
i) =

N (xt
ij∗ |µs

j∗ , σ
s
j∗)

−1∑|Dt|
i′=1N (xt

i′j∗ |µs
j∗ , σ

s
j∗)

−1
.

• Categorical: Important categorical column shift simulates natural domain shifts where the
test distribution of the most important categorical column deviates significantly from the
training distribution. Again, we first identify the most important categorical column, j∗,
using a pre-trained XGBoost [8]. A categorical distribution, which generalizes the Bernoulli
distribution,

C(z|p1, · · · , pK) = p
1{1}(z)
1 · · · p1{K}(z)

K ,

is then fitted to the j∗-th column of the training data, where K is the number of distinct
categorical features in the j∗-th column, and pk = P(x̄s

j = k) for k = 1, · · · ,K. The
likelihood of each test sample xt

i is then computed as C(xt
ij∗ |p1, · · · , pK). Finally, test

samples are drawn inversely proportional to their likelihood, with the sampling probability
P(xt

i) of xt
i is defined as:

P(xt
i) =

C(xt
ij∗ |p1, · · · , pK)−1∑|Dt|

i′=1 C(xt
i′j∗ |p1, · · · , pK)−1

.

D.3 Label Distribution Shifts

• Class Imbalance: This label distribution shift simulates a highly class-imbalanced test
stream, where labels that are rare in the training set are more likely to appear frequently in
the test set. Given a class imbalance ratio ρ = 10, we first rank the output labels yti ∈ Y for
each test sample xt

i in ascending order of their frequency in the training set, assigning ranks
from 1 to C, where C is the number of classes. Specifically, rank(yti) = 1 indicates that yti
is the least frequent label in the training set, while rank(yti) = C indicates that yti is the most
frequent. We then define the unnormalized sampling probability for each test sample xt

i as:

P̃(xt
i) =

rank(yti)
C

(ρ− 1) + 1.

The normalized sampling probability P(xt
i) for each test sample xt

i is then defined as:

P(xt
i) =

P̃(xt
i)∑|Dt|

i′=1 P̃(xt
i′)

.

19

• Temporal Correlation: To simulate temporal correlations in test data, we employ a cus-
tom sampling strategy using the Dirichlet distribution. This approach effectively captures
temporal dependencies by dynamically adjusting the label distribution over time. We begin
with a uniform probability distribution P0 = (1/C)

C
j=1, where C is the number of classes.

For sampling the i-th test instance, a probability distribution πi is drawn from the Dirichlet
distribution:

πi ∼ Dirichlet(Pi−1),

and then smoothed using η = 10−6 to avoid zero probabilities for any class j:

πi =
max(η,πi)∑C

j=1 max(η,πij)
.

A label yti is subsequently sampled according to πi, and the corresponding test instance xt
i

is randomly selected from the test data with label yti . After the i-th sampling, the distribution
Pi is updated using the recent history of sampled labels within a sliding window of size
w = 5:

Pi ←
(
1

w

i∑
i′=i−w+1

1{j}(y
t
i′)

)C

j=1

.

E Baseline Details

E.1 Deep Tabular Learning Architectures

• MLP: Multi-Layer Perceptron (MLP) [36] is a foundational deep learning architecture
characterized by multiple layers of interconnected nodes, where each node applies a non-
linear activation function to a weighted sum of its inputs. In the tabular domain, MLP is
often employed as a default deep learning model, with each input feature corresponding to a
node in the input layer.

• AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks (Au-
toInt) [47] is a model that automatically learns complex feature interactions in tasks like click-
through rate (CTR) prediction, where features are typically sparse and high-dimensional. It
uses a multi-head self-attentive neural network to map features into a low-dimensional space
and capture high-order combinations, eliminating the need for manual feature engineering.
AutoInt efficiently handles large datasets, outperforms existing methods, and provides good
explainability.

• ResNet: ResNet for tabular data [19], is a modified version of the original ResNet architec-
ture [21], tailored to capture intricate patterns within structured datasets. Although earlier
efforts yielded modest results, recent studies have re-explored ResNet’s capabilities, inspired
by its success in computer vision and NLP. This ResNet-like model for tabular data is
characterized by a streamlined design that facilitates optimization through nearly direct
paths from input to output, enabling the effective learning of deeper feature representations.

• FT-Transformer: Feature Tokenizer along with Transformer (FT-Transformer) [19], repre-
sents a straightforward modification of the Transformer architecture tailored for tabular data.
In this model, the feature tokenizer component plays a crucial role by converting all features,
whether categorical or numerical, into tokens. Subsequently, a series of Transformer layers
are applied to these tokens within the Transformer component, along with the added [CLS]
token. The ultimate representation of the [CLS] token in the final Transformer layer is then
utilized for the prediction.

E.2 Supervised Baselines

• k-NN: k-Nearest Neighbors (k-NN) is a fundamental model in tabular learning that iden-
tifies the k closest data points based on a chosen metric. It makes predictions through
majority voting for classification or weighted averaging for regression. The hyperparameter
k influences the model’s sensitivity.

20

• LogReg: Logistic Regression (LogReg) is a linear classification model that estimates the
probability of class membership using a logistic function, which maps the linear combination
of features to a range of [0, 1]. With proper regularization, LogReg can achieve performance
comparable to state-of-the-art tabular models.

• RandomForest: Random Forest is an ensemble learning algorithm that builds multiple
decision trees to improve accuracy and reduce overfitting. It is particularly effective at
capturing non-linear patterns and is robust against outliers.

• XGBoost: Extreme Gradient Boosting (XGBoost) [8] is a boosting algorithm that sequen-
tially builds weak learners, typically decision trees, to correct errors made by previous
models. XGBoost is known for its high predictive performance and ability to handle com-
plex relationships through regularization.

• CatBoost: CatBoost [12], like XGBoost, is a boosting algorithm that excels in handling
categorical features without extensive preprocessing. It is highly effective in real-world
datasets, offering strong performance, albeit at the cost of increased computational resources
and the need for parameter tuning.

E.3 Test-Time Adaptation Baselines

• PL: Pseudo-Labeling (PL) [29] leverages a pseudo-labeling strategy to update model
parameters during test time.

• TTT++: Improved Test-Time Training (TTT++) [33] enhances test-time adaptation by using
feature alignment strategies and regularization, eliminating the need to access source data
during adaptation.

• TENT: Test ENTropy minimization (TENT) [53] updates the scale and bias parameters in
the batch normalization layer during test time by minimizing entropy within a given test
batch.

• EATA: Efficient Anti-forgetting Test-time Adaptation (EATA) [37] mitigates the risk of
unreliable gradients by filtering out high-entropy samples and applying a Fisher regularizer
to constrain key model parameters during adaptation.

• SAR: Sharpness-Aware and Reliable optimization (SAR) [38] builds on TENT by filtering
samples with large entropy, which can cause model collapse during test time, using a
predefined threshold.

• LAME: Laplacian Adjusted Maximum-likelihood Estimation (LAME) [6] employs an
output adaptation strategy during test-time, focusing on adjusting the model’s output proba-
bilities rather than tuning its parameters.

F Further Experimental Details

F.1 Further Implementation Details

All experiments are conducted on two servers. The first server is equipped with a 40-core Intel Xeon
E5-2630 v4 CPU, 252GB RAM, 4 NVIDIA TITAN Xp GPUs, and runs Ubuntu 18.04.4. The second
server has a 40-core Intel Xeon E5-2640 v4 CPU, 128GB RAM, 8 NVIDIA TITAN Xp GPUs, and
runs Ubuntu 22.04.4. All architectures were implemented using Python 3.8.16 with PyTorch [40] and
PyTorch Geometric [14].

F.2 Hyperparameters for Supervised Baselines

For k-NN, LogReg, RandomForest, XGBoost, and CatBoost, optimal parameters are determined for
each dataset using a random search with 10 iterations on the validation set. The search space for each
method is specified in Table 6.

F.3 Hyperparameters for TTA Baselines

In scenarios where the test set is unknown, tuning the hyperparameters of TTA methods on the test
set would be considered cheating. Therefore, we tune all hyperparameters for each TTA method and

21

Table 6: Hyperparameter search space of supervised baselines. # neighbors denotes the number
of neighbors, # estim denotes the number of estimators, depth denotes the maximum depth, and lr
denotes the learning rate, respectively.

Method Search Space

k-NN # neighbors: {2, · · · , 12}
RandomForest # estim: {50, 100, 150, 200}, depth: {2, 3, · · · , 12}
XGBoost # estim: {50, 100, 150, 200}, depth: {2, 3, · · · , 12}, lr: {0.01, 0.01 + (1− 0.01)/19, · · · , 1}, gamma: {0, 0.05, · · · , 0.5}
CatBoost # iterations: {50, 100, · · · , 2000}, lr: {0.01, 0.01 + (1− 0.01)/19, · · · , 1}, depth: {5, · · · , 40}

backbone classifier architecture using the Numerical common corruption on the CMC tabular dataset,
which we did not use as test data in OpenML-CC18 [5] benchmark. PL, TENT [53], and SAR [38]
require three main hyperparameters—learning rate, number of adaptation steps per batch, and the
option for episodic adaptation, where the model is reset after each batch. PL [29] and TENT use a
learning rate of 0.0001 with 1 adaptation step and episodic updates. Additionally, SAR requires a
threshold to filter high-entropy samples and is configured with a learning rate of 0.001, 1 adaptation
step, and episodic updates. For TTT++ [33], EATA [37], and LAME [6], we follow the authors’
hyperparameter settings, except for the learning rate and adaptation steps. TTT++ and EATA were
configured with a learning rate of 0.00001, 10 adaptation steps, and episodic updates. LAME, which
only adjusts output logits, does not require hyperparameters related to gradient updates. For all
baselines, hyperparameter choices remained consistent across different architectures, including MLP,
AutoInt, ResNet, and FT-Transformer. The hyperparameter search space for each method are detailed
in Table 7.

Table 7: Hyperparameter search space of test-time adaptation baselines. Here, we only denote the
common hyperparameters, where method-specific hyperparameters are specified in Section F.3.

Hyperparameter Search Space

lr {10−3, 10−4, 10−5, 10−6}
steps {1, 5, 10, 15, 20}
episodic {True, False}

F.4 Hyperparameters for AdapTable

AdapTable requires three test-time hyperparameters—the smoothing factor α, and the low and high
uncertainty quantiles qlow and qhigh. For fairness, we tune all AdapTable hyperparameters across
different backbone architectures using the Numerical common corruption on the CMC dataset from
the OpenML-CC18 benchmark [5], which is not used as test data. We observe that AdapTable’s
hyperparameter choices remain consistent across various architectures, including MLP, AutoInt,
ResNet, and FT-Transformer. Notably, AdapTable demonstrates high insensitivity to variations in α,
qlow, and qhigh, which are uniformly set to 0.1, 0.25, and 0.75, respectively, across all datasets and
architectures.

G Additional Analysis

G.1 Latent Space Visualizations

In Figure 9, we further visualize latent spaces of test instances using t-SNE across six different datasets
and four representative deep tabular learning architectures to illustrate the observation discussed in
Section 2.1. This visualization highlights the complex decision boundaries within the latent space
of tabular data, which are significantly more intricate than those observed in other domains. By
comparing the upper four rows—HELOC, Voting, Hospital Readmission, and Childhood Lead—
with the lower two rows—linearized image data (MFEAT-PIXEL) and homogeneous DNA string
sequences (DNA)—it becomes evident that the latent space decision boundaries in the tabular domain
are particularly complex. According to WhyShift [32], this complexity is primarily due to latent
confounders inherent in tabular data and concept shifts, where such confounders cause output labels
to vary greatly for nearly identical inputs. As discussed in Section 2.1, this further underscores the
limitations of existing TTA methods [51, 16, 33, 6, 56], which often depend on the cluster assumption.

22

Figure 7: The average macro F1 score of AdapTable and TTA baselines across three datasets
(HELOC, Voting, Childhood Lead) using various backbone architectures.

G.2 Reliability Diagrams

Figure 10 presents additional reliability diagrams across five different datasets and four representative
deep tabular learning architectures, illustrating that tabular data often displays a mix of overconfident
and underconfident prediction patterns. This contrasts with the consistent overconfidence observed
in the image domain [50] and underconfidence in the graph domain [54]. As shown in Figure 10,
the Voting and Hospital Readmission datasets consistently exhibit overconfident behavior across all
architectures, while the HELOC, Childhood Lead, and Diabetes datasets demonstrate underconfident
tendencies. These observations underscore the need for a tabular-specific uncertainty calibration
method.

G.3 Label Distribution Shifts and Prediction Bias Towards Source Label Distributions

We demonstrate that the data distribution shift we primarily target in the tabular domain—label
distribution shift—occurs frequently in practice. Figure 11 presents the source label distribution (a),
target label distribution (b), pseudo label distribution for test data using the source model (c), and
the estimated target label distribution after applying our label distribution handler (d) across the five
datasets. Comparing (a) and (b) in each row, it is evident that label distribution shift occurs across
all datasets. In (c), we observe that the marginal label distribution predicted by the source model is
commonly biased towards the source label distribution. Lastly, (d) illustrates that our label distribution
handler effectively estimates the target label distribution, guiding the pseudo label distribution towards
the target label distribution.

G.4 Entropy Distributions

We highlight a unique characteristic of tabular data: model prediction entropy consistently shows a
strong bias toward underconfidence. To illustrate this, we present entropy distribution histograms
for test instances across six datasets and four representative deep tabular learning architectures
in Figure 12. A clear pattern emerges when comparing the upper four rows (HELOC, Voting,
Hospital Readmission, Childhood Lead) with the lower two (Optdigits, DNA). The upper rows exhibit
consistently high entropy, indicating a skew toward underconfidence, while the lower rows do not,
except for Childhood Lead, where extreme class imbalance causes the model to collapse to the major
class. This analysis highlights the distinct bias of tabular data toward underconfident predictions,
a pattern less common in other domains. This aligns with findings that applying unsupervised
objectives like entropy minimization to high-entropy samples can result in gradient explosions and
model collapse [38].

H Additional Experiments

H.1 Result Across Diverse Model Architectures

In Figure 7, we report AdapTable’s effectiveness across three mainstream tabular learning
architectures—AutoInt [47], ResNet [19], and FT-Transformer [19]. We report the average macro F1
score across three datasets—HELOC, Voting, and Childhood Lead. None of the baselines outperform
the original source model, with LAME [6] even showing significant performance drops. In contrast,

23

AdapTable
(1.54, .66)

TENT
(.06, .52)

EATA
(4.97, .53)

SAR
(1.28, .50)

LAME
(.31, .50)

TTT++
(1.28, .53)

PL
(.58, .52)

Source
.53

Figure 8: Computational efficiency (leftmost figure) and hyperparameter sensitivity analysis of
AdapTable (three figures on the right) using MLP on the HELOC and Childhood Lead datasets,
respectively.

AdapTable consistently achieves significant improvements across all architectures, highlighting its
robustness and versatility.

H.2 Further Analysis

Computational efficiency. The leftmost part of Figure 8 compares the computational efficiency
of AdapTable with TTA baselines. On the HELOC dataset, AdapTable’s total elapsed time is ap-
proximately 1.54 seconds, translating to about 0.0002 seconds per sample, which is highly desirable.
Moreover, AdapTable achieves an optimal efficiency-efficacy trade-off.

Hyperparameter sensitivity. Figure 8 further analyzes the hyperparameter sensitivity of AdapTable
on the Childhood Lead dataset. As shown in the figure, AdapTable remains highly insensitive to
changes in the smoothing factor α, low uncertainty quantile qlow, and high uncertainty quantile qhigh.

H.3 Detailed Results Across Common Corruptions and Datasets

Figure 4 presents the average F1 score across six types of common corruption and three datasets.
Here, we provide more detailed results, including the standard errors. As shown in Table 8, AdapTable
outperforms baseline TTA methods by a large margin across all datasets and corruption types. This
further highlights the empirical efficacy of AdapTable, not only in handling label distribution shifts
but also in addressing various common corruptions.

H.4 All Results Across Datasets and Model Architectures

In Figure 7, we demonstrate the effectiveness of AdapTable across various tabular model architectures
by reporting the average performance across three datasets. Here, we provide the mean and standard
error for each dataset and architecture. As shown in Table 9, AdapTable consistently achieves state-
of-the-art performance with significant improvements across all model architectures and datasets.
This further underscores the versatility and robustness of AdapTable.

H.5 Additional Computational Efficiency Analysis

One may wonder whether the post-training time required for AdapTable’s shift-aware uncertainty
calibrator is prohibitively long. To address this concern, we measure and report the elapsed real time
for post-training our shift-aware uncertainty calibrator on the medium-scale Hospital Readmission
dataset using the FT-Transformer architecture. The post-training process takes approximately 9.2
seconds. For small- and medium-scale datasets, the post-training process typically requires only a
few seconds, and even in our largest experimental setting, the time remains minimal, taking at most a
few minutes.

I Limitations and Broader Impacts

I.1 Limitations

Similar to other test-time training (TTT) methods [51, 33, 16], AdapTable requires an additional
post-training stage to integrate a shift-aware uncertainty calibrator during the source model’s training
phase. While full test-time adaptation methods [53, 37, 38] avoid this, our analysis in Section 2.1 and

24

experiments in Section 4 show that they fail in the tabular domain due to their focus on input covariate
shifts, which are often entangled with concept shifts. According to WhyShift [32], concept shifts,
driven by changes in latent confounders, require natural language descriptions of the shift conditions,
necessitating a data-centric approach. Additionally, while AdapTable performs well across various
corruptions beyond label distribution shifts (Figure 4), it is primarily focused on addressing label
distribution shifts. Further exploration is needed to assess its effectiveness in handling input covariate
shifts or concept shifts.

I.2 Broader Impacts

Tabular data is prevalent across industries such as healthcare [27, 26], finance [48, 49], manufac-
turing [23], and public administration [17]. Our research addresses the critical yet underexplored
challenge of distribution shifts in tabular data, a problem that has not received sufficient attention. We
believe that our approach can significantly enhance the performance of machine learning models in
various industries by improving model adaptation to tabular data, thereby creating meaningful value
in practical applications. Through our data-centric analysis in Section 2, we identify why existing
TTA methods fail in the tabular domain and introduce a tabular-specific approach for handling label
distribution shifts in Section 3. We hope this work will provide valuable insights for future research on
test-time adaptation in tabular data. Additionally, by making our source code publicly available, we
aim to support real-world applications across various fields, benefiting both academia and industry.

Table 8: The average macro F1 score (%) with their standard errors for TTA baselines is reported
across six common corruptions—Gaussian, Uniform, Random Drop, Column Drop, Numerical, and
Categorical—over three datasets—HELOC, Voting, and Childhood Lead. The results are averaged
over three random repetitions.

Dataset Method Gaussian Uniform Random Drop Column Drop Numerical Categorical

HELOC

Source 33.1 ± 0.0 33.0 ± 0.0 31.4 ± 0.1 32.3 ± 1.4 33.8 ± 0.2 32.3 ± 0.3
PL 31.2 ± 0.0 31.2 ± 0.0 30.6 ± 0.0 31.1 ± 0.7 32.1 ± 0.2 30.4 ± 0.2
TENT 33.1 ± 0.0 33.0 ± 0.0 31.4 ± 0.1 32.3 ± 1.4 33.8 ± 0.2 32.3 ± 0.3
EATA 33.1 ± 0.0 33.0 ± 0.0 31.4 ± 0.1 32.3 ± 1.4 33.8 ± 0.2 32.3 ± 0.3
SAR 31.9 ± 0.1 32.0 ± 0.1 30.7 ± 0.2 31.3 ± 0.8 32.4 ± 0.4 31.4 ± 0.3
LAME 30.1 ± 0.0 30.1 ± 0.0 30.1 ± 0.0 30.1 ± 0.0 30.9 ± 0.1 29.4 ± 0.2
AdapTable 57.6 ± 0.1 57.8 ± 0.0 53.0 ± 0.1 52.1 ± 3.2 58.1 ± 0.1 58.9 ± 0.4

Voting

Source 76.6 ± 0.0 76.5 ± 0.0 72.5 ± 0.2 72.8 ± 0.4 76.3 ± 0.1 85.2 ± 0.1
PL 75.6 ± 0.3 75.2 ± 0.3 71.1 ± 0.5 70.6 ± 0.5 75.9 ± 0.1 85.1 ± 0.1
TENT 76.6 ± 0.0 76.5 ± 0.0 72.5 ± 0.2 72.8 ± 0.4 76.3 ± 0.1 85.2 ± 0.1
EATA 76.6 ± 0.0 76.5 ± 0.0 72.5 ± 0.2 72.8 ± 0.4 76.3 ± 0.1 85.2 ± 0.1
SAR 67.2 ± 1.0 64.0 ± 0.2 61.8 ± 1.0 60.8 ± 0.8 69.9 ± 0.1 84.2 ± 0.1
LAME 39.4 ± 0.2 39.4 ± 0.1 37.3 ± 0.0 37.8 ± 0.2 39.4 ± 0.2 81.4 ± 0.2
AdapTable 78.9 ± 0.0 78.6 ± 0.1 74.9 ± 0.1 75.5 ± 0.5 78.0 ± 0.1 85.0 ± 0.4

Childhood Lead

Source 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
PL 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
TENT 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
EATA 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
SAR 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
LAME 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
AdapTable 61.4 ± 0.1 61.5 ± 0.0 58.0 ± 0.1 55.9 ± 1.6 62.8 ± 0.2 53.1 ± 0.2

25

Table 9: The average macro F1 score (%) with their standard errors for TTA baselines is reported
across three datasets—HELOC, Voting, and Childhood Lead—using three model architectures—
AutoInt, ResNet, and FT-Transformer. The results are averaged over three random repetitions.

Model Method HELOC Voting Childhood Lead

AutoInt

Source 34.9 ± 0.0 77.5 ± 0.0 47.9 ± 0.0
PL 31.6 ± 0.0 76.5 ± 0.1 47.9 ± 0.0
TENT 34.9 ± 0.0 77.5 ± 0.0 47.9 ± 0.0
EATA 34.9 ± 0.0 77.5 ± 0.0 47.9 ± 0.0
SAR 62.0 ± 0.4 31.2 ± 0.7 47.9 ± 0.0
LAME 30.1 ± 0.0 37.3 ± 0.0 47.9 ± 0.0
AdapTable 56.3 ± 0.1 79.2 ± 0.0 61.8 ± 0.1

ResNet

Source 52.0 ± 0.0 76.6 ± 0.0 47.9 ± 0.0
PL 34.3 ± 0.1 73.3 ± 0.1 47.9 ± 0.0
TENT 52.0 ± 0.0 76.6 ± 0.0 47.9 ± 0.0
EATA 52.0 ± 0.0 76.7 ± 0.0 47.9 ± 0.0
SAR 55.1 ± 0.5 52.2 ± 0.5 47.9 ± 0.0
LAME 30.1 ± 0.0 75.1 ± 0.1 47.9 ± 0.0
AdapTable 61.9 ± 0.0 78.7 ± 0.0 61.3 ± 0.1

FT-Transformer

Source 33.0 ± 0.0 77.3 ± 0.0 47.9 ± 0.0
PL 30.6 ± 0.0 76.0 ± 0.1 47.9 ± 0.0
TENT 33.0 ± 0.0 77.3 ± 0.0 47.9 ± 0.0
EATA 33.0 ± 0.0 77.3 ± 0.0 47.9 ± 0.0
SAR 35.3 ± 0.1 73.6 ± 0.3 47.9 ± 0.0
LAME 30.7 ± 0.1 71.5 ± 0.1 47.9 ± 0.0
AdapTable 55.0 ± 0.0 79.2 ± 0.1 61.7 ± 0.1

26

Figure 9: Latent space visualizations of test samples using t-SNE across six diverse datasets, including
tabular datasets (HELOC, Voting, Hospital Readmission, and Childhood Lead) and non-tabular
datasets (Optdigits, DNA), applied to various deep tabular learning architectures.

27

Figure 10: Reliability diagrams for test instances across five different tabular datasets (HELOC,
Voting, Hospital Readmission, Childhood Lead, and Diabetes) and four representative deep tabular
learning architectures (MLP, AutoInt, ResNet, FT-Transformer).

28

Figure 11: Label distribution histograms for test instances showing (a) source label distribution,
(b) target label distribution, (c) pseudo label distribution, and (d) estimated target label distribution
after applying our label distribution handler, across five tabular datasets (HELOC, Voting, Hospital
Readmission, Childhood Lead, and Diabetes) using MLP.

29

Figure 12: Entropy distribution histograms of test samples across six diverse datasets, including
tabular datasets (HELOC, Voting, Hospital Readmission, and Childhood Lead) and non-tabular
datasets (Optdigits, DNA), applied to four deep tabular learning architectures. Prediction entropies are
normalized by dividing by the maximum entropy, logC, where C represents the number of classes
for each dataset.

30

	Introduction
	Analysis of Tabular Distribution Shifts
	Indistinguishable Representations
	Importance of Label Distribution Shifts

	AdapTable
	Test-Time Adaptation Setup for Tabular Data
	Shift-Aware Uncertainty Calibrator
	Label Distribution Handler
	Theoretical Insights

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Conclusion
	Related Work
	Detailed Algorithm of AdapTable
	Proof of Theorem 3.1
	Dataset Descriptions
	Natural Distibution Shifts
	Common Corruptions
	Label Distribution Shifts

	Baseline Details
	Deep Tabular Learning Architectures
	Supervised Baselines
	Test-Time Adaptation Baselines

	Further Experimental Details
	Further Implementation Details
	Hyperparameters for Supervised Baselines
	Hyperparameters for TTA Baselines
	Hyperparameters for AdapTable

	Additional Analysis
	Latent Space Visualizations
	Reliability Diagrams
	Label Distribution Shifts and Prediction Bias Towards Source Label Distributions
	Entropy Distributions

	Additional Experiments
	Result Across Diverse Model Architectures
	Further Analysis
	Detailed Results Across Common Corruptions and Datasets
	All Results Across Datasets and Model Architectures
	Additional Computational Efficiency Analysis

	Limitations and Broader Impacts
	Limitations
	Broader Impacts

