
AdapTable: Test-Time Adaptation for Tabular Data
via Shift-Aware Uncertainty Calibrator

and Label Distribution Handler

Anonymous Author(s)
Affiliation
Address
email

Abstract

In real-world scenarios, tabular data often suffer from distribution shifts that1

threaten the performance of machine learning models. Despite its prevalence and2

importance, handling distribution shifts in the tabular domain remains underex-3

plored due to the inherent challenges within the tabular data itself. In this sense,4

test-time adaptation (TTA) offers a promising solution by adapting models to target5

data without accessing source data, crucial for privacy-sensitive tabular domains.6

However, existing TTA methods either 1) overlook the nature of tabular distri-7

bution shifts, often involving label distribution shifts, or 2) impose architectural8

constraints on the model, leading to a lack of applicability. To this end, we propose9

AdapTable, a novel TTA framework for tabular data. AdapTable operates in two10

stages: 1) calibrating model predictions using a shift-aware uncertainty calibrator,11

and 2) adjusting these predictions to match the target label distribution with a label12

distribution handler. We validate the effectiveness of AdapTable through theoretical13

analysis and extensive experiments on various distribution shift scenarios. Our14

results demonstrate AdapTable’s ability to handle various real-world distribution15

shifts, achieving up to a 16% improvement on the HELOC dataset.16

1 Introduction17

Tabular data is one of the most abundant forms across various industries, including healthcare [27],18

finance [48], manufacturing [23], and public administration [17]. However, tabular learning models19

often face challenges in real-world applications due to distribution shifts, which severely degrade20

their integrity and reliability. In this regard, test-time adaptation (TTA) [29, 33, 53, 37, 38, 6] offers a21

promising solution to address this issue by adapting models under unknown distribution shifts using22

only unlabeled test data without access to training data.23

Despite its potential, direct application of TTA without the consideration of characteristics of tabular24

data, results in limited performance gain or model collapse. We identify two primary reasons for this.25

First, representation learning in the tabular domain is often hindered by the entanglement of covariate26

shifts and concept shifts [32]. Consequently, TTA methods leveraging unsupervised objectives, which27

rely on cluster assumption often fail or lead to model collapse. Second, these approaches often do not28

take label distribution shifts into account, a key factor in the performance decline within the tabular29

domain. This issue is further aggravated by the tendency for predictions in the target domain to be30

biased towards the source label.31

To address these issues, we propose AdapTable, a novel TTA approach tailored for tabular data.32

AdapTable consists of two main components: 1) a shift-aware uncertainty calibrator and 2) a label33

distribution handler. Our shift-aware uncertainty calibrator utilizes graph neural networks to assign34

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Figure 1: Latent space visualization with t-SNE comparing (a) tabular data [17] and (b) image
data [5]. Reliability diagrams of (c) underconfident and (d) overconfident scenarios are shown. All
experiments are conducted using an MLP architecture.
per-sample temperature for each model prediction. By treating each column as a node, it captures not35

only individual feature shifts but also complex patterns across features. Our label distribution handler36

then adjusts the calibrated model probabilities by estimating the label distribution of the current target37

batch. This process aligns predictions with the target label distribution, addressing biases towards38

the source distribution. AdapTable requires no parameter updates, making it model-agnostic and39

thus compatible with both deep learning models and gradient-boosted decision trees, offering high40

versatility for tabular data.41

We evaluate AdapTable under various distribution shifts and demonstrate AdapTable consistently42

outperforms baselines, achieving up to 16% gains on the HELOC dataset. Furthermore, we provide43

theoretical insights into AdapTable’s performance, supported by extensive ablation studies. We hereby44

summarize our contributions:45

• We analyze the challenges of tabular distribution shifts to reveal why existing TTA methods46

fail, highlighting the entanglement of covariate, concept shifts, and label distribution shifts47

as key factors in performance degradation.48

• Building on these analyses, we introduce AdapTable, a first model-agnostic TTA method49

specifically designed for tabular data. AdapTable addresses label distribution shifts by50

estimating and adjusting the label distribution of the current test batch, while also calibrating51

model predictions with a shift-aware uncertainty calibrator.52

• Our extensive experiments demonstrate that AdapTable exhibits robust adaptation perfor-53

mance across various model architectures and under diverse natural distribution shifts and54

common corruptions, further supported by extensive ablation studies.55

2 Analysis of Tabular Distribution Shifts56

In this section, we examine why prior TTA methods struggle with distribution shifts in the tabular57

domain. First, we note that deep learning models’ latent representations do not follow label-based58

cluster assumptions due to the entanglement of covariate and concept shifts, causing TTA methods59

relying on these assumptions [53, 29, 37] to falter in tabular data. Second, we identify label distribution60

shift as a key driver of performance degradation under distribution shifts, as discussed further in61

Section 2.1 and Section 2.2.62

2.1 Indistinguishable Representations63

We first reveal that deep tabular models fail to learn distinguishable embeddings. In Figures 1 (a)64

and (b), we visualize the embedding spaces of models trained on two datasets: HELOC [17], a pure65

tabular dataset, and Optdigits [5], a linearized image dataset. Notably, the deep learning models’66

representations adhere to the cluster assumption by labels only in the image data, not in the tabular67

data.68

We attribute this unique behavior of deep tabular models to the high-frequency nature of tabular69

data. In the tabular domain, weak causality from inputs X to outputs Y due to latent confounders Z70

often leads to vastly different labels for similar inputs [20, 32]. For instance, cardiovascular disease71

risk predictions based on cholesterol, blood pressure, age, and smoking history are influenced by72

gender as a latent confounder, resulting in different risk levels for men and women despite identical73

inputs [35, 10]. This leads to high-frequency functions that are difficult for deep neural networks,74

which are biased toward low-frequency functions, to accurately model [4].75

2

Figure 2: Label distribution of (a) source domain, (b) target domain, (c) estimated label distribution
using pseudo labels, and (d) corrected label distribution of AdapTable are shown using MLP on
HELOC dataset.
Consequently, prior TTA methods, which rely on cluster assumptions and primarily target input76

covariate shifts, show limited performance gains. Figure 7 demonstrates that these methods fail to77

improve beyond the vanilla performance of the source model due to the lack of a cluster assumption.78

2.2 Importance of Label Distribution Shifts79

Second, we find that label distribution shift is a primary cause of performance degradation, and80

accurate estimation of target label distribution can lead to significant performance gains. A recent81

benchmark study, TableShift [17] have emphasized that label distribution shift is a primary cause of82

performance degradation in tabular data. Specifically, They investigated the relationship between three83

key shift factors—input covariate shift (X-shift), concept shift (Y |X-shift), and label distribution84

shift (Y -shift)—and model performance, and discovered that label distribution shifts are strongly85

correlated with performance degradation. Our analysis in Section G further reveals that these shifts86

are highly prevalent in tabular data. This underscores the need for a test-time adaptation method that87

addresses label distribution shifts by estimating the target label distribution and adjusting predictions88

accordingly.89

Moreover, we visualize model predictions in Figure 2 and observe that, similar to other domains [55,90

25, 39], the marginal distribution of output labels is biased toward the source label distribution. Given91

that tabular models are often poorly calibrated (Figure 1), we conduct an experiment using a perfectly92

calibrated model, which yields high confidence for correct samples and low confidence for incorrect93

ones. As shown in Table 1, our label distribution adaptation method significantly improves under94

these conditions. This underscores the need for an uncertainty calibrator specific to tabular data.95

Table 1: Key findings demonstrate that uncertainty calibration enhances the performance of the label
distribution handler.

Method HELOC Voting

Source 47.6 79.3
AdapTable 63.7 79.6
AdapTable (Oracle) 90.1 84.7

3 AdapTable96

This section introduces AdapTable, the first model-agnostic test-time adaptation strategy for tab-97

ular data. AdapTable uses per-sample temperature scaling to correct overconfident yet incorrect98

predictions; by treating each column as a graph node, it employs a shift-aware uncertainty calibrator99

with graph neural networks to capture both individual and complex feature shifts (Section 3.2). It100

also estimates the average label distribution of the current test batch and adjusts the model’s output101

predictions accordingly (Section 3.3). We also provide a theoretical justification for how our label102

distribution estimation reduces the error bound in Section 3.4. The overall framework of AdapTable103

is depicted in Figure 3.104

3.1 Test-Time Adaptation Setup for Tabular Data105

We begin by defining the problem setup for test-time adaptation (TTA) for tabular data. Let fθ :106

RD → RC be a pre-trained classifier on the labeled source tabular domain Ds = {(xs
i , y

s
i)}i ⊂107

Xs × Ys, where each pair consists of a tabular input xs
i ∈ X = RD and its corresponding output108

class label ysi ∈ Y = {1, · · · , C}. The classifier takes a row xi ∈ RD from a table and returns109

output logit fθ(xi) ∈ RC . Here, D and C are the number of input features and output classes,110

respectively. The objective of TTA for tabular data is to adapt fθ to the unlabeled target tabular111

domain Dt = {xt
i}i = Xt during inference, without access to Ds. Unlike most TTA methods that112

3

Numerical
Column

Categorical
Column

+

𝒔𝒕 =	𝒙𝒊 − 𝝁𝒔𝒐𝒖𝒓𝒄𝒆

Original Prediction

𝑻
𝟐. 𝟓
𝟏. 𝟕
𝟎. 𝟖

⋮

Per-sample
Temperature Scaling

Source Model

Label Distribution HandlerShift-Aware Uncertainty Calibrator

Label
Distribution
Handler

Calibrated Prediction
+

Current Batch
Label Distribution

Prev Batch Next Batch

Final Prediction

Figure 3: The overall pipeline of the AdapTable framework. AdapTable employs a per-sample
temperature scaling to correct overconfident predictions by treating each column as a graph node,
enabling a shift-aware uncertainty calibrator with graph neural networks to capture both individual
and complex feature shifts (Section 3.2). It also estimates the label distribution of the current test
batch and adjusts the model’s predictions accordingly (Section 3.3).

fine-tune model parameters θ with unsupervised objectives, our approach directly adjusts the output113

prediction fθ(x
t
i).114

3.2 Shift-Aware Uncertainty Calibrator115

This section describes a shift-aware uncertainty calibrator gϕ : RC × RD×N → R+ designed to116

adjust the poorly calibrated original predictions pt(y|xt
i) = softmax(fθ(xt

i)), where softmax(z)i =117

exp(zi)/
∑

i′ exp(zi′) normalizes the logits. Our shift-aware uncertainty calibrator lowers the con-118

fidence of overconfident yet incorrect predictions, thereby 1) facilitating better alignment of these119

predictions with the estimated target label distribution, and 2) mitigating their impact on the inaccurate120

estimation of the target label distribution.121

Conventional post-hoc calibration methods [41, 50] typically take solely the original model prediction122

fθ(x
t
i) as input and return the corresponding temperature Ti without taking input variations into123

account. We argue that this can be suboptimal as it fails to account for the uncertainty arising from124

variations in the input itself. Instead, our gϕ not only considers fθ(xt
i) but also incorporates xt

i with125

the shift trend st of the current batch as additional inputs. Capturing the common shift patterns within126

the current batch enables a more accurate reflection of the uncertainty caused by the overall shift127

patterns within the current batch.128

In detail, the shift trend st = (stu)
D
u=1 ∈ RD×N is defined for a specific column index u as follows:129

stu =
(
xt
iu −

1

|Ds|

|Ds|∑
i′=1

xs
i′u

)N
i=1
∈ RN . (1)

Here, stu represents the difference between the values of the u-th column within the current test batch130

and the average values of the corresponding column in the source data. Using stu for each column u,131

we define a shift trend graph where each node u represents a column, and each edge captures the132

relationship between different columns; the node feature for each node u is defined as stu, and the133

adjacency matrix is represented by an D ×D all-ones matrix.134

A graph neural network (GNN) is then applied to the graph formed above, enabling the exchange of135

shift trends between different columns through message passing. This process generates a column-136

wise contextualized representation, which is then averaged to produce an overall feature representation137

that encompasses all columns. Finally, the averaged node representation is concatenated with the initial138

prediction fθ(x
t
i) to yield the final output temperature Ti. This GNN-based uncertainty calibration139

not only captures shifts in individual columns but also sensitively detects correlation shifts occurring140

simultaneously across different columns, which are common in the tabular domain. A more detailed141

explanation of the architecture and training of the shift-aware uncertainty calibrator can be found in142

Section B.143

4

3.3 Label Distribution Handler144

This section introduces a label distribution handler designed to accurately estimate the target label145

distribution for the current test batch and adjust the model’s output predictions accordingly. This146

approach is empirically justified by our observation that the marginal distribution of model predictions147

pt(y) in the target domain tends to be biased towards the source label distribution ps(y), as discussed148

in Section 2.2 and illustrated in Figure 2.149

A straightforward solution to correct this bias is to simply multiply pt(y)/ps(y) to align the marginal150

label distribution [3]. Specifically, given pt(y|xt
i) = softmax(fθ(xt

i)), the adjusted prediction would151

be:152

norm(pt(y|xt
i)pt(y)/ps(y)) (2)

where norm(z)i = zi/
∑

i′ zi′ normalizes the unnormalized probability. However, we find two153

major issues: 1) pt(y|xt
i) is often poorly calibrated and 2) overconfident yet incorrect predictions154

significantly hinder the accurate estimation of the target label distribution pt(y) (Section 2.2).155

To tackle these challenges, we propose a simple yet effective estimator p̄i(y|xt
i) defined like below:156

p̄i(y|xt
i) =

p̃t(y|xt
i) + norm

(
p̃t(y|xt

i)pt(y)/ps(y)
)

2
. (3)

The key differences between the original Equation 2 and our Equation 3 are: 1) we use the calibrated157

prediction p̃t(y|xt
i) instead of the original prediction pt(y|xt

i) to enhance uncertainty quantification,158

and 2) we combine the calibrated estimate p̃t(y|xt
i) with the distributionally aligned prediction159

norm(p̃t(y|xt
i)pt(y)/ps(y)) for more robust estimation.160

Given the already-known source label distribution ps(y), we now explain the step-by-step process for161

estimating p̃t(y|xt
i) and pt(y). pt(y|xt

i) is calibrated into p̃t(y|xt
i) through a two-stage uncertainty162

calibration process. Specifically, for a current test batch {xt
i}Ni=1, we calculate shift trend st using163

Equation 1 and get per-sample temperature Ti = gϕ(fθ(x
t
i), s

t) using shift-aware uncertainty164

calibrator gϕ to capture overall distribution shifts, as well as correlation and individual column165

shifts within the current batch. Here, we define the uncertainty δi of fθ(xt
i) as a reciprocal of the166

margin of the calibrated probability distribution softmax(fθ(xt
i)/Ti). We then measure the quantiles167

for each instance xi using δi within the current batch and recalibrate the original probability with168

T̃i, resulting in p̃t(y|xt
i) = softmax(fθ(xt

i)/T̃i). This process calibrates predictions by leveraging169

relative uncertainty within the batch. Our temperature T̃i is defined as:170

T̃i =


T if δi ≥ Q

(
{δi′}Ni′=1, qhigh

)
1/T if δi ≤ Q

(
{δi′}Ni′=1, qlow

)
1 otherwise,

(4)

where Q(X, q) is a quantile function which gives the value corresponding to the lower q quan-171

tile in X , T = 1.5ρ/(ρ − 1 + 10−6) is a temperature with source class imbalance ratio ρ =172

maxj ps(y)j/minj ps(y)j , and qlow and qhigh represent the low and high uncertainty quantiles, re-173

spectively. This two-stage uncertainty calibration comprehensively evaluates the current batch and174

estimates relative uncertainty using st, gϕ, and T̃i.175

Meanwhile, the target label distribution pt(y) is estimated as follows:176

pt(y) = (1− α) · 1
N

N∑
i=1

pde
t (y|xt

i) + α · poe
t (y), (5)

where pde
t (y|xt

i) = norm
(
pt(y|xt

i)/ps(y)
)

is a debiased target label estimator that departs from177

ps(y), and poet (y) is an online target label estimator, initialized as uniform distribution and updated178

as:179

poe
t (y) = (1− α) · 1

N

N∑
i=1

p̄t(y|xt
i) + α · poe

t (y) (6)

from the current batch to the next, with a smoothing factor α. This online target label estimator180

leverages label locality between nearby test batches, making it effective for accurately estimating181

the next batch’s target label distribution. A more detailed explanation of AdapTable is provided in182

Section B.183

5

Table 2: The average balanced accuracy (%) and macro F1 score (%) with their standard errors
for both supervised models and TTA baselines are reported across six datasets including natural
distribution shifts within the TableShift [17] benchmark. The results are averaged over three random
repetitions.

HELOC Voting Hospital Readmission ICU Mortality Childhood Lead Diabetes

Method bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

k-NN 62.0 ± 0.0 40.3 ± 0.0 76.9 ± 0.0 71.1 ± 0.0 57.7 ± 0.0 56.9 ± 0.0 81.5 ± 0.3 47.6 ± 0.0 57.6 ± 0.1 56.9 ± 0.0 67.9 ± 0.3 53.3 ± 0.1
LogReg 63.5 ± 0.0 44.2 ± 0.0 80.2 ± 0.0 76.2 ± 0.0 61.4 ± 0.0 58.9 ± 0.0 61.6 ± 0.0 62.2 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 71.0 ± 0.0 55.4 ± 0.0
RandomForest 58.2 ± 7.6 32.2 ± 1.5 81.7 ± 0.1 68.4 ± 0.7 64.4 ± 0.5 42.1 ± 1.2 85.2 ± 0.4 52.0 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 76.5 ± 0.1 46.9 ± 0.1
XGBoost 57.6 ± 7.2 39.9 ± 4.9 80.5 ± 0.2 75.8 ± 0.4 63.1 ± 0.1 61.3 ± 0.4 79.9 ± 0.1 64.3 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 71.5 ± 0.1 56.2 ± 0.1
CatBoost 65.4 ± 0.0 51.7 ± 0.0 80.4 ± 0.0 76.8 ± 0.0 63.4 ± 0.0 61.8 ± 0.5 81.4 ± 0.0 59.8 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 65.0 ± 0.0 59.3 ± 0.0
+ AdapTable 65.5 ± 0.0 65.4 ± 0.0 79.6 ± 0.0 78.6 ± 0.0 65.4 ± 0.0 62.5 ± 0.3 82.6 ± 0.0 64.8 ± 0.3 62.8 ± 0.4 61.7 ± 0.3 74.2 ± 0.0 62.5 ± 0.3

Source 53.2 ± 1.5 38.2 ± 3.5 76.5 ± 0.5 77.3 ± 0.4 61.1 ± 0.1 60.2 ± 0.3 56.3 ± 0.0 58.1 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 55.2 ± 0.0 55.5 ± 0.0
PL 51.8 ± 1.0 34.9 ± 2.3 75.6 ± 0.5 76.6 ± 0.5 60.5 ± 0.1 58.9 ± 0.3 56.3 ± 0.0 58.0 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 55.1 ± 0.1 55.3 ± 0.0
TTT++ 53.2 ± 1.5 38.2 ± 3.6 76.8 ± 0.5 77.6 ± 0.2 61.1 ± 0.1 60.2 ± 0.3 56.6 ± 0.5 58.5 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 55.4 ± 0.0 55.7 ± 0.0
TENT 51.2 ± 1.2 33.2 ± 2.6 74.0 ± 0.6 74.9 ± 0.6 60.2 ± 0.1 58.3 ± 0.3 55.1 ± 0.1 56.3 ± 0.1 50.0 ± 0.0 47.9 ± 0.0 55.0 ± 0.0 55.0 ± 0.0
EATA 53.2 ± 1.5 38.2 ± 3.6 76.5 ± 0.5 77.3 ± 0.4 61.1 ± 0.1 60.2 ± 0.4 56.3 ± 0.0 58.1 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 55.2 ± 0.0 55.5 ± 0.0
SAR 50.0 ± 0.0 30.1 ± 0.0 62.0 ± 1.2 59.4 ± 1.6 57.1 ± 1.1 51.3 ± 2.2 51.1 ± 0.1 49.1 ± 0.2 50.0 ± 0.0 47.9 ± 0.0 53.4 ± 0.0 52.2 ± 0.0
LAME 50.0 ± 0.0 30.1 ± 0.0 54.6 ± 0.5 46.8 ± 1.0 54.9 ± 0.5 46.9 ± 1.0 50.0 ± 0.0 46.7 ± 0.0 50.0 ± 0.0 47.9 ± 0.0 54.8 ± 0.1 54.8 ± 0.2
AdapTable 65.8 ± 0.6 64.5 ± 0.3 78.4 ± 0.3 78.6 ± 0.0 61.7 ± 0.0 61.7 ± 0.0 65.9 ± 0.1 65.4 ± 0.1 69.2 ± 0.1 60.9 ± 0.3 70.9 ± 0.1 68.3 ± 0.1

3.4 Theoretical Insights184

Theorem 3.1. Let Ŷ |X and Ŷo|X be defined as follows:185

Ŷ |X = {argmax
j∈Y

fθ(x)j |x ∈ X}, (7)

Ŷo|X = {argmax
j∈Y

fθ(x)j + log poet (y)j |x ∈ X}. (8)

Given the error ϵ(Ŷ |X) = P(Ŷ ̸= Y |X), with true labels Y of inputs X , the error gap |ϵ(Ŷ |Xs)−186

ϵ(Ŷo|Xt)| is upper bounded by187

K1

∥∥∥1− poet (y)

pt(y)

∥∥∥
1
BSE(Ŷ) +K2∆CE(Ŷ), (9)

where K1 and K2 are constants related to pt(y), and ps(y), respectively.188

Theorem 3.1 extends Theorem 2.3 in ODS [56] to cases where the source label distribution is189

not uniform. It decomposes the error gap between the original model on the source domain and190

the adapted model for the target model with poet (y) on the target domain into several components.191

These components include ∥1 − poet (y)/pt(y)∥1, which is an error of the estimated target label192

distribution, BSE(Ŷ), which reflects the model’s performance on the source domain, and ∆CE(Ŷ),193

which measures the generalization of feature representations adapted by the TTA algorithm. Overall,194

Theorem 3.1 underscores the importance of tracking label distributions and efficiently adapting195

models to handle label distribution shifts. The detailed explanation and proof of Theorem 3.1 can be196

found in Section C.197

4 Experiments198

This section validates AdapTable’s effectiveness. We begin with an overview of our experimental setup199

in Section 4.1 and then address key research questions: Is AdapTable effective across various tabular200

distribution shifts, including natural shifts and common corruptions across different tabular models?201

(Section 4.2), Do AdapTable’s components contribute to overall performance improvements, and do202

they function as intended? (Section 4.3) Does AdapTable demonstrate strengths in computational203

efficiency and hyperparameter sensitivity, which are crucial for test time adaptation? (Section H.2)204

4.1 Experimental Setup205

Datasets. We evaluate AdapTable on six diverse datasets—HELOC, Voting, Hospital Readmission,206

ICU Mortality, Childhood Lead, and Diabetes—within the tabular distribution shift benchmark [17],207

covering healthcare, finance, and politics with both numerical and categorical features. Additionally,208

we verify its robustness against six common corruptions—Gaussian, Uniform, Random Drop, Column209

Drop, Numerical, and Categorical—to ensure its efficacy beyond label distribution shifts. More details210

of these shifts are in Section D.211

6

Figure 4: The average macro F1 score for AdapTable and TTA baselines is reported under six
common corruptions using MLP across three datasets within the TableShift [17] benchmark.

Model architectures and baselines. To verify the proposed method under various tabular model212

architectures, we mainly use MLP, a widely used tabular learning architecture. Additionally, we213

validate AdapTable on CatBoost [12] and three other representative deep tabular learning mod-214

els—AutoInt [47], ResNet [19], and FT-Transformer [19]. We compare AdapTable with six TTA215

baselines—PL [29], TTT++ [33], TENT [53], EATA [37], SAR [38], and LAME [6]. TabLog [42]216

is excluded due to its architectural constraint on logical neural networks [43]. We also provide217

performance references from classical machine learning models: k-nearest neighbors (k-NN), logistic218

regression (LogReg), random forest (RandomForest), XGBoost [8], and CatBoost [12].219

Evaluation metrics and implementation details. As shown in Figure 2 and Section G, tabular220

data often exhibit extreme class imbalance. Since accuracy may not be effective in these cases, we221

use macro F1 score (F1) and balanced accuracy (bAcc.) as the primary evaluation metrics. For all222

experiments, we use a fixed batch size of 64, a common setting in TTA baselines [44, 53]. The223

smoothing factor α, low uncertainty quantile qlow, and high uncertainty quantile qhigh are set to 0.1,224

0.25, and 0.75, respectively. In all tables, we mark the best and second-best results.225

4.2 Main Results226

Result on natural distribution shifts. Table 2 presents results on natural distribution shifts.227

Existing TTA methods, successful in computer vision, struggle in the tabular domain, often failing to228

outperform the source model or offering limited performance gains. In contrast, AdapTable achieves229

state-of-the-art results across all datasets, with dramatic performance improvements of up to 26%230

on the HELOC dataset. Since AdapTable does not rely on model parameter tuning, it can be easily231

applied to classical machine learning models; when integrated with CatBoost, AdapTable consistently232

improves performance across all datasets, showcasing its versatility, whereas other baselines cannot233

be similarly integrated as they require model parameter updates.234

Result on common corruptions. We further evaluate the efficacy of AdapTable across six types of235

common corruptions in real-world applications by applying them to the test sets of three datasets—236

HELOC, Voting, and Childhood Lead. As shown in Figure 4, prior TTA methods fail considerably,237

showing only marginal gains over the unadapted source model across all corruption types. It is worth238

noting that previous TTA methods have demonstrated significant improvements when dealing with239

common corruptions in vision data, highlighting the difference between corruptions in the tabular do-240

main its counterpart in vision domain. Meanwhile, Adaptable shows substantial improvements across241

all types of corruptions, showing more than 10% gains of accuracy on all scenarios, demonstrating its242

robustness across different types of corruptions.243

Table 3: Ablation study comparing the shift-aware uncertainty calibrator with classical methods—
Platt scaling (PS) and isotonic regression (IR). The results are averaged over three random repetitions.

Method HELOC Voting Hospital Readmission

Source 38.2 ± 3.5 77.3 ± 0.4 60.2 ± 0.3
PS 61.6 ± 1.3 73.3 ± 0.2 59.4 ± 0.3
IR 61.3 ± 1.7 74.3 ± 0.2 58.0 ± 0.4
AdapTable 64.5 ± 0.6 78.6 ± 0.0 61.7 ± 0.0

7

Figure 5: Ablation study on the shift-aware uncertainty calibrator using MLP for the HELOC dataset.
(a) and (b) show reliability diagrams before and after calibration, while (c) depicts the average
temperature relative to the maximum mean discrepancy (MMD) between the training set and the
sampled test sets.

4.3 Ablation Study244

Shift-aware uncertainty calibrator. We first validate the shift-aware uncertainty calibrator from245

Section 3.2. Figures 5(a) and (b) show reliability diagrams before and after calibration, demonstrating246

that our calibrator significantly reduces both overconfidence and underconfidence. Next, Figure 5(c)247

assesses shift-awareness by plotting the average temperature against the maximum mean discrepancy248

(MMD) with training data. As expected, greater shifts lead to higher temperatures, indicating increased249

uncertainty. The strong correlation between MMD and average temperature confirms the calibrator’s250

effectiveness under distribution shifts. Finally, Table 3 compares our calibrator with classical methods251

like Platt scaling and isotonic regression. While classical methods show inconsistent performance252

across datasets, our shift-aware calibrator consistently outperforms them, effectively handling domain253

shifts during calibration.254

Figure 6: Jensen-Shannon (JS) Divergence of the estimated target label distribution before and after
applying the label distribution handler using MLP on three datasets. The x-axis indicates the online
batch index, and the y-axis shows the per-batch JS divergence from the ground truth labels.
Label distribution handler. We next validate the label distribution handler’s efficacy by first255

comparing the Jensen–Shannon (JS) divergence between true and estimated label distributions across256

online batches in Figure 6. The results show that our handler significantly improves label distribution257

estimation accuracy, with low JS divergence across all datasets. We then assess its robustness under258

severe class imbalance (ratio of 10) and class-wise temporal correlation. As shown in Table 4,259

AdapTable achieves up to 27% and 19% performance improvements in the HELOC and Childhood260

Lead datasets, respectively. More experimental details are in Section D.261

Table 4: The average macro F1 score (%) with standard errors for TTA baselines is reported using
MLP across three datasets with 1) class imbalance and 2) temporal correlation from the TableShift
benchmark. The results are averaged over three random repetitions.

Class Imbalance Temporal Correlation

Method HELOC Voting Childhood Lead HELOC Voting Childhood Lead

Source 32.5 ± 3.5 52.3 ± 4.9 36.7 ± 6.5 31.6 ± 0.3 62.2 ± 0.1 35.1 ± 0.2
PL 32.0 ± 3.6 52.1 ± 4.9 36.7 ± 6.5 30.9 ± 0.2 54.9 ± 0.1 35.1 ± 0.2
TENT 32.5 ± 3.5 52.3 ± 4.9 36.7 ± 6.5 31.6 ± 0.3 55.7 ± 0.1 35.1 ± 0.2
EATA 32.5 ± 3.5 52.3 ± 4.9 36.7 ± 6.5 31.6 ± 0.3 55.7 ± 0.1 35.1 ± 0.2
SAR 31.8 ± 3.5 57.1 ± 5.3 36.7 ± 6.5 32.0 ± 0.2 54.4 ± 0.5 35.1 ± 0.2
LAME 29.9 ± 3.5 58.7 ± 4.0 36.7 ± 6.5 29.0 ± 0.1 38.0 ± 0.4 35.1 ± 0.2
AdapTable 59.7 ± 0.8 62.0 ± 4.6 63.9 ± 1.0 56.1 ± 0.3 64.5 ± 0.0 64.8 ± 0.3

5 Conclusion262

In this paper, we have introduced AdapTable, a test-time adaptation framework tailored for tabular263

data. AdapTable overcomes the limitations of previous methods, which fail to address label distri-264

bution shifts, and lack versatility across architectures. Our approach, combined with a shift-aware265

uncertainty calibrator that enhances calibration via modeling column shifts, and a label distribution266

handler that adjusts the output distribution based on real-time estimates of the current batch’s label267

distribution. Extensive experiments show that AdapTable achieves state-of-the-art performance across268

various datasets and architectures, effectively managing both natural distribution shifts and common269

corruptions.270

8

References271

[1] Sercan Ö Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning. In AAAI272

Conference on Artificial Intelligence (AAAI), 2021.273

[2] American Diabetes Association. Economic costs of diabetes in the us in 2017. Diabetes care,274

2018.275

[3] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,276

and Colin Raffel. Remixmatch: Semi-supervised learning with distribution alignment and277

augmentation anchoring. In International Conference on Learning Representations (ICLR),278

2020.279

[4] Ege Beyazit, Jonathan Kozaczuk, Bo Li, Vanessa Wallace, and Bilal Fadlallah. An inductive280

bias for tabular deep learning. Conference in Neural Information Processing Systems (NeurIPS),281

2024.282

[5] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G.283

Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. Openml benchmarking suites. In284

Conference on Neural Information Processing Systems (NeurIPS), 2021.285

[6] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online286

test-time adaptation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition287

(CVPR), 2022.288

[7] Kyle Brown, Derek Doran, Ryan Kramer, and Brad Reynolds. HELOC applicant risk per-289

formance evaluation by topological hierarchical decomposition. In NeurIPS Workshop on290

Challenges and Opportunities for AI in Financial Services, 2018.291

[8] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In ACM SIGKDD292

Conference on Knowledge Discovery and Data Mining (KDD), 2016.293

[9] John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. Diabetes 130-US hospitals for294

years 1999-2008. UCI Machine Learning Repository, 2014.295

[10] Ersilia M DeFilippis and Harriette GC Van Spall. Is it time for sex-specific guidelines for296

cardiovascular disease? Journal of the American College of Cardiology (JACC), 2021.297

[11] Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong298

Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for299

non-language machine learning tasks. In Conference on Neural Information Processing Systems300

(NeurIPS), 2022.301

[12] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: gradient boosting with302

categorical features support. In NeurIPS Workshop on ML Systems, 2017.303

[13] Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Jane Qi, Scott Nickleach,304

Diego Socolinsky, Srinivasan Sengamedu, Christos Faloutsos, et al. Large language models305

(llms) on tabular data: Prediction, generation, and understanding-a survey. Transactions on306

Machine Learning Research (TMLR), 2024.307

[14] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.308

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.309

[15] Centers for Disease Control, Prevention, et al. National health and nutrition examination survey310

(nhanes) data. NCfHS, editor. NCHS, 2003.311

[16] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked312

autoencoders. In Conference on Neural Information Processing Systems (NeurIPS), 2022.313

[17] Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular314

data with tableshift. In Conference on Neural Information Processing Systems (NeurIPS), 2023.315

9

[18] Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note:316

Robust continual test-time adaptation against temporal correlation. In Conference on Neural317

Information Processing Systems (NeurIPS), 2022.318

[19] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep319

learning models for tabular data. In Conference on Neural Information Processing Systems320

(NeurIPS), 2021.321

[20] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still322

outperform deep learning on tabular data? arxiv 2022. In Conference on Neural Information323

Processing Systems (NeurIPS), 2022.324

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image325

recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),326

2016.327

[22] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and328

David Sontag. Tabllm: Few-shot classification of tabular data with large language models. In329

International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.330

[23] Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel, Thomas A.331

Runkler, and Volkmar Sterzing. A benchmark environment motivated by industrial control332

problems. In IEEE Symposium Series on Computational Intelligence (SSCI), 2017.333

[24] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A334

transformer that solves small tabular classification problems in a second. In International335

Conference on Learning Representations (ICLR), 2023.336

[25] Sehyun Hwang, Sohyun Lee, Sungyeon Kim, Jungseul Ok, and Suha Kwak. Combating label337

distribution shift for active domain adaptation. In European Conference on Computer Vision338

(ECCV), 2022.339

[26] Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steven Horng, Leo Anthony Celi, and Roger340

Mark. Mimic-iv, 2021.341

[27] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad342

Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,343

a freely accessible critical care database. Scientific data, 2016.344

[28] Changhun Kim, Joonhyung Park, Hajin Shim, and Eunho Yang. SGEM: Test-time adaptation345

for automatic speech recognition via sequential-level generalized entropy minimization. In346

Conference of the International Speech Communication Association (INTERSPEECH), 2023.347

[29] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for348

deep neural networks. In ICML Workshop on Challenges in Representation Learning, 2013.349

[30] Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under350

distribution shifts. International Journal of Computer Vision (IJCV), 2024.351

[31] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense352

object detection. In IEEE/CVF International Conference on Computer Vision (ICCV), 2017.353

[32] Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. On the need for a language354

describing distribution shifts: Illustrations on tabular datasets. In Conference on Neural Infor-355

mation Processing Systems (NeurIPS), 2023.356

[33] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and357

Alexandre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In358

Conference on Neural Information Processing Systems (NeurIPS), 2021.359

[34] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,360

and Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on361

Learning Representations (ICLR), 2021.362

10

[35] Lori Mosca, Elizabeth Barrett-Connor, and Nanette Kass Wenger. Sex/gender differences in363

cardiovascular disease prevention: what a difference a decade makes. Circulation, 2011.364

[36] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing,365

1991.366

[37] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and367

Mingkui Tan. Efficient test-time model adaptation without forgetting. In International Confer-368

ence on Machine Learning (ICML), 2022.369

[38] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and370

Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In International371

Conference on Learning Representations (ICLR), 2023.372

[39] Joonhyung Park, Hyunjin Seo, and Eunho Yang. Pc-adapter: Topology-aware adapter for effi-373

cient domain adaption on point clouds with rectified pseudo-label. In IEEE/CVF International374

Conference on Computer Vision (ICCV), 2023.375

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,376

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative377

style, high-performance deep learning library. In Conference on neural information processing378

systems (NeurIPS), 2019.379

[41] John Platt. Probabilistic outputs for support vector machines and comparisons to regularized380

likelihood methods. In Advances in Large Margin Classifiers, 2000.381

[42] Weijieying Ren, Xiaoting Li, Huiyuan Chen, Vineeth Rakesh, Zhuoyi Wang, Mahashweta Das,382

and Vasant G Honavar. Tablog: Test-time adaptation for tabular data using logic rules. In383

International Conference on Machine Learning (ICML), 2024.384

[43] Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus385

Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical386

neural networks. arXiv preprint arXiv:2006.13155, 2020.387

[44] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias388

Bethge. Improving robustness against common corruptions by covariate shift adaptation. In389

Conference on Neural Information Processing Systems (NeurIPS), 2020.390

[45] Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Hang Wu, Carl Yang, and May D Wang.391

Medadapter: Efficient test-time adaptation of large language models towards medical reasoning.392

arXiv preprint arXiv:2405.03000, 2024.393

[46] Hajin Shim, Changhun Kim, and Eunho Yang. Cloudfixer: Test-time adaptation for 3d point394

clouds via diffusion-guided geometric transformation. In European Conference on Computer395

Vision (ECCV), 2024.396

[47] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian397

Tang. Autoint: Automatic feature interaction learning via self-attentive neural networks. In398

ACM International Conference on Information and Knowledge Management (CIKM), 2019.399

[48] American National Election Studies. Fico. the explainable machine learn-400

ing challenge., 2019. URL https://community.fico.com/s/401

explainable-machine-learning-challenge.402

[49] American National Election Studies. Anes time series cumulative data file [dataset and docu-403

mentation]. september 16, 2022 version, 2022. URL www.electionstudies.org.404

[50] Mario Stylianou and Nancy Flournoy. Dose finding using the biased coin up-and-down design405

and isotonic regression. In Biometrics, 2002.406

[51] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time407

training with self-supervision for generalization under distribution shifts. In International408

Conference on Machine Learning (ICML), 2020.409

11

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
www.electionstudies.org

[52] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon. Domain410

adaptation with conditional distribution matching and generalized label shift. In Conference on411

Neural Information Processing Systems (NeurIPS), 2020.412

[53] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:413

Fully test-time adaptation by entropy minimization. In International Conference on Learning414

Representations (ICLR), 2021.415

[54] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trustworthy graph416

neural networks via confidence calibration. In Conference on Neural Information Processing417

Systems (NeurIPS), 2021.418

[55] Ruihan Wu, Chuan Guo, Yi Su, and Kilian Q Weinberger. Online adaptation to label distribution419

shift. In Conference on Neural Information Processing Systems (NeurIPS), 2021.420

[56] Zhi Zhou, Lan-Zhe Guo, Lin-Han Jia, Dingchu Zhang, and Yu-Feng Li. ODS: Test-time421

adaptation in the presence of open-world data shift. In International Conference on Machine422

Learning (ICML), 2023.423

12

Appendix

A Related Work424

Machine learning for tabular data. The distinct nature of tabular data reduces the effectiveness425

of deep neural networks, making gradient-boosted decision trees [8, 12] more suitable. However,426

research continues to develop deep learning models tailored for tabular data [36, 47, 1, 19], including427

recent efforts involving large language models [13, 22, 24, 11] that leverage textual prior knowledge.428

Notably, our method is architecture-agnostic and can be applied to any model.429

Distribution shifts in the tabular domain. Recently, distribution shift benchmarks for tabular430

data have been introduced [32, 17]. WhyShift [32] reveals that concept shifts (Y |X-shifts) are more431

prevalent and detrimental than covariate shifts (X-shifts). TableShift [17] offers a benchmark with 15432

classification tasks, highlighting a strong correlation between shift gaps and label distribution shifts433

(Y -shifts), which supports the validity of our method.434

Test-time adaptation. Over the past years, test-time adaptation (TTA) methods have been proposed435

across various domains, such as computer vision [53, 18, 38, 46], natural language processing [45, 30],436

and speech processing [28]. These methods adapt pre-trained models to unlabeled target domains with-437

out requiring access to source data, making them well-suited for sensitive tabular data. TabLog [42]438

is a recent TTA method specifically for tabular data, but it has architectural constraints and lacks a439

comprehensive analysis of distribution shifts. This underscores the need for model-agnostic TTA440

methods with a deeper understanding of tabular data, which we address in this paper.441

B Detailed Algorithm of AdapTable442

Post-training shift-aware uncertainty calibrator. Given a pre-trained tabular classifier fθ : RD →443

RC on the source domain Ds = {(xs
i , y

s
i)}i, we introduce a post-training phase for a shift-aware444

uncertainty calibrator gϕ : RC × RD×N → R+. This calibrator is trained after the initial training of445

fθ using the same training dataset Ds. For a given training batch {(xs
i , y

s
i)}Ni=1, we compute the shift446

trend ss = (ssu)
D
u=1 for a specific column index u as follows:447

ssu =
(
xs
iu −

1

|Ds|

|Ds|∑
i′=1

xs
i′u

)N
i=1

,

where we add a linear layer to ssu for categorical column u to transform it into a one-dimensional448

representation, ensuring alignment with the numerical columns. Using ss, we construct a shift trend449

graph, where each node u represents a column, and edges capture the relationships between columns.450

The node features are given by stu, and the graph is connected using an all-ones adjacency matrix. A451

graph neural network (GNN) is applied to this graph, facilitating the exchange of shift trends between452

columns through message passing, which generates a contextualized column-wise representation hs
u.453

These representations are averaged to form a global feature representation hs = 1
D

∑D
u=1 h

s
u, which454

is then concatenated with the initial model prediction fθ(x
s
i) to produce the final output temperature455

Ti. With the calibrated probability pi = softmax
(
fθ(x

s
i)/Ti

)
, with the per-sample temperature Ti456

calculated above, we define the most plausible and second plausible class indices j∗ and j∗∗ as457

follows:458

j∗ = argmax
j∈Y

pij and j∗∗ = argmax
j∈Y,j ̸=j∗

pij .

The focal loss LFL [31] and the calibration loss LCAL [54] are used to train the shift-aware uncertainty459

calibrator gϕ, defined as:460

LFL(x
s
i , y

s
i) =

C∑
j=1

1{ys
i }(j)(1− pij)

γ log pij , (10)

LCAL(x
s
i , y

s
i) = 1{ys

i }(j
∗)(1− pij∗ + pij∗∗) + 1Y\{ys

i }(j
∗)(pij∗ − pij∗∗), (11)

13

Algorithm 1 AdapTable

1: Input: Pre-trained classifier fθ(·), post-trained shift-aware uncertainty calibrator gϕ(·, ·), indica-
tor function 1(·)(·), quantile function Q(·, ·), softmax function softmax(·), normalization function
norm(·), source data Ds = {(xs

i , y
s
i)}i, current test batch {xt

i}
N
i=1, source class imbalance ratio

ρ = maxj ps(y)j/minj ps(y)j
2: Parameters: Smoothing factor α, low uncertainty quantile qlow, high uncertainty quantile qhigh

3: ps(y), T ←
(

1
|Ds|

∑|Ds|
i=1 1{j}(y

s
i)
)C
j=1

, 1.5ρ/(ρ− 1 + 10−6)

4: for u = 1 to D do
5: stu ←

(
xt
iu − 1

|Ds|
∑|Ds|

i′=1 x
s
i′u

)N
i=1

▷ Compute shift trend st

6: end for
7: for i = 1 to N do
8: pt(y|xt

i)← softmax
(
fθ(x

t
i)
)

9: Ti ← gϕ
(
fθ(x

t
i), s

t
)

▷ Determine per-sample temperature xt
i

10: j∗, j∗∗ ← argmax1≤j≤C pt(y|xt
i)j , argmax1≤j≤C,j ̸=j∗ pt(y|xt

i)j

11: δi ←
(
softmax

(
fθ(x

t
i)/Ti

)
j∗
− softmax

(
fθ(x

t
i)/Ti

)
j∗∗

)−1
▷ Define uncertainty of xt

i as a
margin of fθ(xt

i)/Ti

12: pde
t (y|xt

i)← norm
(
pt(y|xt

i)/ps(y)
)

▷ Compute debiased target label estimator
13: end for
14: pt(y)← (1− α) · 1

N

∑N
i=1 p

de
t (y|xt

i) + α · poe
t (y) ▷ Estimate target label distribution

15: for i = 1 to N do
16: if δi ≥ Q

(
{δi′}Ni′=1, qhigh

)
then

17: T̃i ← T
18: else if δi ≤ Q

(
{δi′}Ni′=1, qlow

)
then

19: T̃i ← 1/T ▷ Calculate temperature T̃i using uncertainty δi
20: else
21: T̃i ← 1
22: end if
23: p̃t(y|xt

i)← softmax
(
fθ(x

t
i)/T̃i

)
▷ Perform temperature scaling with T̃i

24: p̄t(y|xt
i)←

(
p̃t(y|xt

i) + norm(p̃t(y|xt
i)pt(y)/ps(y))

)
/2 ▷ Perform self-ensembling

25: end for
26: poe

t (y)← (1− α) · 1
N

∑N
i=1 p̄t(y|xt

i) + α · poe
t (y) ▷ Update online target label estimator

27: Output: Final predictions {p̄i(y)}Ni=1

where 1A(x) is an indicator function:461

1A(x) =

{
1 if x ∈ A

0 otherwise.

LFL addresses class imbalance by reducing the impact of easily classified examples, while LCAL462

penalizes the gap between pij∗ and pij∗∗ for correct predictions, encouraging them to converge for463

incorrect predictions. For all experiments, we set γ = 2 and λCAL = 0.1.464

Label distribution handler. During the test phase after post-training gϕ, we introduce a label465

distribution handler using an estimator p̄i(y|xt
i), defined as:466

p̄i(y|xt
i) =

p̃t(y|xt
i) + norm

(
p̃t(y|xt

i)pt(y)/ps(y)
)

2
,

where p̃t(y|xt
i) represents the calibrated prediction. This approach enhances uncertainty quantification467

and combines the calibrated estimation with the distributionally aligned prediction for more robust468

estimation. To compute p̃t(y|xt
i), we perform a two-stage uncertainty calibration. Specifically, for a469

given test batch {xt
i}Ni=1, we calculate the shift trend st = (stu)

D
u=1 ∈ RD×N as:470

stu =
(
xt
iu −

1

|Ds|

|Ds|∑
i′=1

xs
i′u

)N
i=1
∈ RN .

14

Then, a per-sample temperature Ti = gϕ(fθ(x
t
i), s

t), which was defined in Equation 1 is computed.471

The uncertainty δi of fθ(xt
i) is defined as the reciprocal of the margin of the calibrated probability472

distribution softmax(fθ(xt
i)/Ti):473

δi =
1

softmax
(
fθ(xt

i)/Ti

)
j∗
− softmax

(
fθ(xt

i)/Ti

)
j∗∗

,

where j∗ and j∗∗ are the most plausible and second plausible class indices:474

j∗ = argmax
j∈Y

fθ(x
t
i)j and j∗∗ = argmax

j∈Y,j ̸=j∗
fθ(x

t
i)j .

Based on δi, the recalibrated temperature T̃iis applied:475

T̃i =


T if δi ≥ Q

(
{δi′}Ni′=1, qhigh

)
1/T if δi ≤ Q

(
{δi′}Ni′=1, qlow

)
1 otherwise,

where T = 1.5ρ/(ρ− 1 + 10−6) with ρ = maxj ps(y)j/minj ps(y)j , and qlow and qhigh are the low476

and high uncertainty quantiles, respectively. The target label distribution pt(y) is then estimated using477

the following formula:478

pt(y) = (1− α) · 1
N

N∑
i=1

pde
t (y|xt

i) + α · poe
t (y),

where pde
t (y|xt

i) = norm
(
pt(y|xt

i)/ps(y)
)

serves as a debiased target label estimator, deviating from479

the source label distribution ps(y). The online target label estimator poe
t (y) is initialized with a480

uniform distribution and updated with each new batch as follows:481

poe
t (y) = (1− α) · 1

N

N∑
i=1

p̄t(y|xt
i) + α · poe

t (y),

where α is a smoothing factor. This update process leverages information from the current batch482

to refine the target label distribution estimation over time. The overall procedure of the proposed483

AdapTable method is summarized in Algorithm 1.484

C Proof of Theorem 3.1485

Let’s first define the balanced source error BSE(Ŷ) on the source dataset and the conditional error486

gap ∆CE(Ŷ) between P(Ŷ ̸= Y |Xs) and P(Ŷ ̸= Y |Xt) as follows:487

BSE(Ŷ) = max
i∈Y

P(Ŷ ̸= i|Y = i,Xs), (12)

∆CE(Ŷ) = max
i ̸=i′∈Y

∣∣∣P(Ŷ = i|Y = i′, Xs)− P(Ŷ = i|Y = i′, Xt)
∣∣∣. (13)

Definition C.1. (Generalized Label Shift in Tachet des Combes et al. [52]). Both input covariate488

distribution P(Xs) ̸= P(Xt) and output label distribution P(Y |Xs) ̸= P(Y |Xt) change. Yet, there489

exists a hidden representation H = g∗(X) such that the conditional distribution of H given Y490

remains the same across both domains, i.e., ∀i ∈ Y ,491

P(H|Y = i,Xs) = P(H|Y = i,Xt). (14)

15

Proof. We start by applying the law of total probability and triangle inequality to derive the following492

inequality:493 ∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)
∣∣∣

=
∣∣∣P(Ŷ ̸= Y |Xs)− P(Ŷo ̸= Y |Xt)

∣∣∣
=
∣∣∣∑
i ̸=i′

P(Ŷ = i, Y = i′|Xs)−
∑
i̸=i′

P(Ŷo = i, Y = i′|Xt)
∣∣∣

=
∣∣∣∑
i ̸=i′

P(Y = i′|Xs)P(Ŷ = i|Y = i′, Xs)−
∑
i ̸=i′

P(Y = i′|Xt)P(Ŷo = i|Y = i′, Xt)
∣∣∣

≤
∑
i ̸=i′

∣∣∣P(Y = i′|Xs)P(Ŷ = i|Y = i′, Xs)− P(Y = i′|Xt)P(Ŷo = i|Y = i′, Xt)
∣∣∣.

(15)

According to Equation 8 in [34], Ŷo satisfies the following condition under generalized label shift494

condition in Definition C.1:495

P(Ŷo = i|H,Xt) =
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|H,Xt). (16)

By multiplying both sides of Equation 16 by P(H|Y,Xt), we obtain:496

P(Ŷo = i|H,Xt)P(H|Y,Xt) =
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|H,Xt)P(H|Y,Xt)

P(Ŷo = i|Y,Xt) =
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|Y,Xt).

(17)

Next, by substituting Equation 17 into Equation 15, and letting Y = i′, we have:497 ∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)
∣∣∣

≤
∑
i ̸=i′

∣∣∣P(Y = i′|Xs)P(Ŷ = i|Y = i′, Xs)− P(Y = i′|Xt)
poet (y)i

P(Y = i|Xs)
P(Ŷ = i|Y = i′, Xt)

∣∣∣.
(18)

Using Lemma A.2 from [52], we can further estimate the upper bound of Equation 18 as follows:498 ∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)
∣∣∣

≤
∑
i̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣ (αi′P(Ŷ = i|Y = i′, Xs) + βi′P(Ŷ = i|Y = i′, Xt)
)

+ P(Y = i′|Xs)∆CE(Ŷ) + P(Y = i′|Xt)
poet (y)i

P(Y = i|Xs)
∆CE(Ŷ)

(i)

≤
∑
i̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣ (αi′P(Ŷ = i|Y = i′, Xs) + βi′P(Ŷ = i|Y = i′, Xt)
)

+ (C − 1)∆CE(Ŷ) +

∑
i̸=i′

P(Y = i′|Xt)

P(Y = i|Xs)

∑
i ̸=i′

poet (y)i

∆CE(Ŷ)

≤
∑
i ̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣ (αi′P(Ŷ = i|Y = i′, Xs) + βi′P(Ŷ = i|Y = i′, Xt)
)

+ (C − 1)∆CE(Ŷ) +
(C − 1)2

mini∈Y P(Y = i|Xs)
∆CE(Ŷ),

(19)

16

where αi′ , βi′ ≥ 0 and αi′ +βi′ = 1, (i) holds by Hölder’s inequality. By letting αi′ = 1 and βi′ = 0499

for all i′ ∈ Y , and defining K1 and K2 as:500

K1 = C(C − 1)2 max
i∈Y

P(Y = i|Xt),

K2 = (C − 1) +
(C − 1)2

mini∈Y P(Y = i|Xs)
,

we finally get:501 ∣∣∣ϵ(Ŷ |Xs)− ϵ(Ŷo|Xt)
∣∣∣

≤
∑
i ̸=i′

P(Y = i′|Xt)

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣P(Ŷ = i|Y = i′, Xs) +K2∆CE(Ŷ)

≤ max
i′∈Y

P(Y = i′|Xt)
∑
i̸=i′

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣P(Ŷ = i|Y = i′, Xs) +K2∆CE(Ŷ)

(i)

≤ max
i′∈Y

P(Y = i′|Xt)

∑
i ̸=i′

∣∣∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣∣∣
∑

i ̸=i′

P(Ŷ = i|Y = i′, Xs)

+K2∆CE(Ŷ)

(ii)

≤ max
i′∈Y

P(Y = i′|Xt)(C − 1)

C∑
i=1

∣∣∣1− poet (y)i
P(Y = i|Xs)

∣∣∣C(C − 1)BSE(Ŷ) +K2∆CE(Ŷ)

= max
i′∈Y

P(Y = i′|Xt)C(C − 1)2
∥∥∥1− poet (y)

pt(y)

∥∥∥
1
BSE(Ŷ) +K2∆CE(Ŷ)

(iii)
= K1

∥∥∥1− poet (y)

pt(y)

∥∥∥
1
BSE(Ŷ) +K2∆CE(Ŷ),

(20)

where (i) holds by Hölder’s inequality, (ii) holds by the definition of BSE(Ŷ), and (iii) holds by502

the definition of K1.503

We observe that in practice, using Ŷo|X = {argmaxj∈Y fθ(x)j + log poet (y)j |x ∈ X} can result504

in performance degradation due to an error accumulation in poet (y). However, our approach, which505

integrates a two-stage uncertainty calibration with gϕ and a debiased target label estimator pdet (y),506

demonstrates empirical efficacy across various experiments.507

D Dataset Descriptions508

D.1 Natural Distibution Shifts509

In our experiments, we verify our method across six different datasets—HELOC, Voting, Hospital510

Readmission, ICU Mortality, Childhood Lead, and Diabetes—within the Tableshift Benchmark [17],511

all of which include natural distribution shifts between training and test data. For all datasets, the512

numerical features are normalized—subtraction of mean and division by standard deviation, while513

categorical features are one-hot encoded. We find that different encoding types do not play a significant514

role in terms of accuracy, as noted in Grinsztajn et al. [20]. Detailed statistics specifications of each515

dataset are listed in Table 5.516

• HELOC: This task predicts Home Equity Line of Credit (HELOC) [7] repayment using517

FICO data [48], focusing on shifts in third-party risk estimates. The dataset includes 10,459518

observations, and a distribution shift occurs by using the ’External Risk Estimate’ as a519

domain split. Estimates above 63 are used for training, while those 63 or below are held out520

for testing, illustrating potential biases in credit assessments.521

• Voting: Using ANES [49] data, this task predicts U.S. presidential election voting behavior522

with 8,280 observations. Distribution shift is introduced by splitting the data based on geo-523

graphic region, with the southern U.S. serving as the out-of-domain region. This simulates524

17

how voter behavior predictions might vary when polling data is collected in one region and525

used to predict outcomes in another.526

• Hospital Readmission: Hospital Readmission [9] predicts 30-day readmission of diabetic527

patients using data from 130 U.S. hospitals over 10 years. The distribution shift occurs by528

splitting the data based on admission source, with emergency room admissions held out529

as the target domain. This tests how well models trained on other sources perform when530

applied to patients admitted through the emergency room.531

• ICU Mortality: The task predicts ICU patient mortality using MIMIC-iii data [27], fo-532

cusing on shifts related to insurance type. The dataset includes 23,944 observations, and a533

distribution shift is created by excluding Medicare and Medicaid patients from the training534

set, designating them as the target domain. This highlights how insurance type can affect535

mortality predictions.536

• Childhood Lead: This task predicts elevated blood lead levels in children using NHANES537

data [15], with 27,499 observations. A distribution shift is introduced by splitting the data538

based on poverty using the poverty-income ratio (PIR) as a threshold. Those with a PIR of539

1.3 or lower are held out for testing, simulating risk assessment in lower-income households.540

• Diabetes: This task predicts diabetes using BRFSS data [2], focusing on racial shifts across541

1.4 million observations. Distribution shift occurs by focusing on the differences in diabetes542

risk between racial and ethnic groups, particularly highlighting the higher risk faced by543

non-white groups compared to White non-Hispanic individuals.544

Table 5: Summary of the datasets used in our experiments, including the total number of instances
(Total Samples), the number of instances allocated to training, validation, and test sets (Training
Samples, Validation Samples, Test Samples), the total number of features (Total Features), and a
breakdown into numerical and categorical features (Numerical Features, Categorical Features). All
tasks involve binary classification.

Statistic HELOC Voting Hospital Readmission ICU Mortality Childhood Lead Diabetes

Total Samples 9,412 60,376 89,542 21,549 24,749 1,299,758
Training Samples 2,220 34,796 34,288 7,116 11,807 969,229
Validation Samples 278 4,349 4,286 889 1,476 121,154
Test Samples 6,914 21,231 50,968 13,544 11,466 209,375

Total Features 22 54 46 7491 7 25
Numerical Features 20 8 12 7490 4 6
Categorical Features 2 46 34 1 3 19

D.2 Common Corruptions545

Let xt
i = (xt

ij)
D
j=1 ∈ RD be the i-th row of a table with D columns in the test data. We define x̄s

j as546

a random variable that follows the empirical marginal distribution of the j-th column in the training547

set Ds, given by:548

P(x̄s
j = k) =

1

|Ds|

|Ds|∑
i=1

1{k}(x
s
ij),

where k ∈ R. Additionally, let µs
j = E[x̄s

j] and σs
j =

√
Var(x̄s

j) be the mean and standard deviation549

of the random variable x̄s
j , respectively. To effectively simulate natural distribution shifts that com-550

monly occur beyond label distribution shifts, we introduce six types of corruptions—Gaussian noise551

(Gaussian), uniform noise (Uniform), random missing values (Random Drop), common column552

missing across all test data (Column Drop), important numerical column shift (Numerical), and553

important categorical column shift (Categorical)—as follows:554

• Gaussian: For xt
ij , Gaussian noise z ∼ N (0, 0.12) is independently injected as:555

xt
ij ← xt

ij + z · σs
j .

• Uniform: For the xt
ij , uniform noise u ∼ U(−0.1, 0.1) is independently injected as:556

xt
ij ← xt

ij + u · σs
j .

18

• Random Drop: For each column xt
ij , a random mask mij ∼ Bernoulli(0.2) is applied,557

and the feature is replaced by a random sample x̄s
j drawn from the empirical marginal558

distribution of the j-th column of the training set:559

xt
ij ← (1−mij) · xt

ij +mij · x̄s
j .

• Column Drop: For each column xt
ij , a random mask mj ∼ Bernoulli(0.2) is applied, and560

the feature is replaced by a random sample x̄s
j as follows:561

xt
ij ← (1−mj) · xt

ij +mj · x̄s
j .

Unlike random drop corruption, where the mask mij is resampled for each j-th column of562

the i-th test instance xt
ij , a single random mask mj is sampled for each j-th column and563

applied uniformly across all test data.564

• Numerical: Important numerical column shift simulates natural domain shifts where the565

test distribution of the most important numerical column deviates significantly from the566

training distribution. We first identify the most important numerical column, j∗, using a567

pre-trained XGBoost [8]. A Gaussian distribution568

N (z|µs
j∗ , σ

s
j∗) =

1√
2πσs

j∗
exp

(
−
(z − µs

j∗)
2

2(σs
j∗)

2

)
is then fitted to the j∗-th column of the training data, using µs

j∗ and σs
j∗ . The likelihood569

of each test sample xt
i is then computed as N (xt

ij∗ |µs
j∗ , σ

s
j∗). Finally, test samples are570

drawn inversely proportional to their likelihood, with the sampling probability P(xt
i) of xt

i571

is defined as:572

P(xt
i) =

N (xt
ij∗ |µs

j∗ , σ
s
j∗)

−1∑|Dt|
i′=1N (xt

i′j∗ |µs
j∗ , σ

s
j∗)

−1
.

• Categorical: Important categorical column shift simulates natural domain shifts where the573

test distribution of the most important categorical column deviates significantly from the574

training distribution. Again, we first identify the most important categorical column, j∗,575

using a pre-trained XGBoost [8]. A categorical distribution, which generalizes the Bernoulli576

distribution,577

C(z|p1, · · · , pK) = p
1{1}(z)
1 · · · p1{K}(z)

K ,

is then fitted to the j∗-th column of the training data, where K is the number of distinct578

categorical features in the j∗-th column, and pk = P(x̄s
j = k) for k = 1, · · · ,K. The579

likelihood of each test sample xt
i is then computed as C(xt

ij∗ |p1, · · · , pK). Finally, test580

samples are drawn inversely proportional to their likelihood, with the sampling probability581

P(xt
i) of xt

i is defined as:582

P(xt
i) =

C(xt
ij∗ |p1, · · · , pK)−1∑|Dt|

i′=1 C(xt
i′j∗ |p1, · · · , pK)−1

.

D.3 Label Distribution Shifts583

• Class Imbalance: This label distribution shift simulates a highly class-imbalanced test584

stream, where labels that are rare in the training set are more likely to appear frequently in585

the test set. Given a class imbalance ratio ρ = 10, we first rank the output labels yti ∈ Y for586

each test sample xt
i in ascending order of their frequency in the training set, assigning ranks587

from 1 to C, where C is the number of classes. Specifically, rank(yti) = 1 indicates that yti588

is the least frequent label in the training set, while rank(yti) = C indicates that yti is the most589

frequent. We then define the unnormalized sampling probability for each test sample xt
i as:590

P̃(xt
i) =

rank(yti)
C

(ρ− 1) + 1.

The normalized sampling probability P(xt
i) for each test sample xt

i is then defined as:591

P(xt
i) =

P̃(xt
i)∑|Dt|

i′=1 P̃(xt
i′)

.

19

• Temporal Correlation: To simulate temporal correlations in test data, we employ a cus-592

tom sampling strategy using the Dirichlet distribution. This approach effectively captures593

temporal dependencies by dynamically adjusting the label distribution over time. We begin594

with a uniform probability distribution P0 = (1/C)
C
j=1, where C is the number of classes.595

For sampling the i-th test instance, a probability distribution πi is drawn from the Dirichlet596

distribution:597

πi ∼ Dirichlet(Pi−1),

and then smoothed using η = 10−6 to avoid zero probabilities for any class j:598

πi =
max(η,πi)∑C

j=1 max(η,πij)
.

A label yti is subsequently sampled according to πi, and the corresponding test instance xt
i599

is randomly selected from the test data with label yti . After the i-th sampling, the distribution600

Pi is updated using the recent history of sampled labels within a sliding window of size601

w = 5:602

Pi ←
(
1

w

i∑
i′=i−w+1

1{j}(y
t
i′)

)C

j=1

.

E Baseline Details603

E.1 Deep Tabular Learning Architectures604

• MLP: Multi-Layer Perceptron (MLP) [36] is a foundational deep learning architecture605

characterized by multiple layers of interconnected nodes, where each node applies a non-606

linear activation function to a weighted sum of its inputs. In the tabular domain, MLP is607

often employed as a default deep learning model, with each input feature corresponding to a608

node in the input layer.609

• AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks (Au-610

toInt) [47] is a model that automatically learns complex feature interactions in tasks like click-611

through rate (CTR) prediction, where features are typically sparse and high-dimensional. It612

uses a multi-head self-attentive neural network to map features into a low-dimensional space613

and capture high-order combinations, eliminating the need for manual feature engineering.614

AutoInt efficiently handles large datasets, outperforms existing methods, and provides good615

explainability.616

• ResNet: ResNet for tabular data [19], is a modified version of the original ResNet architec-617

ture [21], tailored to capture intricate patterns within structured datasets. Although earlier618

efforts yielded modest results, recent studies have re-explored ResNet’s capabilities, inspired619

by its success in computer vision and NLP. This ResNet-like model for tabular data is620

characterized by a streamlined design that facilitates optimization through nearly direct621

paths from input to output, enabling the effective learning of deeper feature representations.622

• FT-Transformer: Feature Tokenizer along with Transformer (FT-Transformer) [19], repre-623

sents a straightforward modification of the Transformer architecture tailored for tabular data.624

In this model, the feature tokenizer component plays a crucial role by converting all features,625

whether categorical or numerical, into tokens. Subsequently, a series of Transformer layers626

are applied to these tokens within the Transformer component, along with the added [CLS]627

token. The ultimate representation of the [CLS] token in the final Transformer layer is then628

utilized for the prediction.629

E.2 Supervised Baselines630

• k-NN: k-Nearest Neighbors (k-NN) is a fundamental model in tabular learning that iden-631

tifies the k closest data points based on a chosen metric. It makes predictions through632

majority voting for classification or weighted averaging for regression. The hyperparameter633

k influences the model’s sensitivity.634

20

• LogReg: Logistic Regression (LogReg) is a linear classification model that estimates the635

probability of class membership using a logistic function, which maps the linear combination636

of features to a range of [0, 1]. With proper regularization, LogReg can achieve performance637

comparable to state-of-the-art tabular models.638

• RandomForest: Random Forest is an ensemble learning algorithm that builds multiple639

decision trees to improve accuracy and reduce overfitting. It is particularly effective at640

capturing non-linear patterns and is robust against outliers.641

• XGBoost: Extreme Gradient Boosting (XGBoost) [8] is a boosting algorithm that sequen-642

tially builds weak learners, typically decision trees, to correct errors made by previous643

models. XGBoost is known for its high predictive performance and ability to handle com-644

plex relationships through regularization.645

• CatBoost: CatBoost [12], like XGBoost, is a boosting algorithm that excels in handling646

categorical features without extensive preprocessing. It is highly effective in real-world647

datasets, offering strong performance, albeit at the cost of increased computational resources648

and the need for parameter tuning.649

E.3 Test-Time Adaptation Baselines650

• PL: Pseudo-Labeling (PL) [29] leverages a pseudo-labeling strategy to update model651

parameters during test time.652

• TTT++: Improved Test-Time Training (TTT++) [33] enhances test-time adaptation by using653

feature alignment strategies and regularization, eliminating the need to access source data654

during adaptation.655

• TENT: Test ENTropy minimization (TENT) [53] updates the scale and bias parameters in656

the batch normalization layer during test time by minimizing entropy within a given test657

batch.658

• EATA: Efficient Anti-forgetting Test-time Adaptation (EATA) [37] mitigates the risk of659

unreliable gradients by filtering out high-entropy samples and applying a Fisher regularizer660

to constrain key model parameters during adaptation.661

• SAR: Sharpness-Aware and Reliable optimization (SAR) [38] builds on TENT by filtering662

samples with large entropy, which can cause model collapse during test time, using a663

predefined threshold.664

• LAME: Laplacian Adjusted Maximum-likelihood Estimation (LAME) [6] employs an665

output adaptation strategy during test-time, focusing on adjusting the model’s output proba-666

bilities rather than tuning its parameters.667

F Further Experimental Details668

F.1 Further Implementation Details669

All experiments are conducted on two servers. The first server is equipped with a 40-core Intel Xeon670

E5-2630 v4 CPU, 252GB RAM, 4 NVIDIA TITAN Xp GPUs, and runs Ubuntu 18.04.4. The second671

server has a 40-core Intel Xeon E5-2640 v4 CPU, 128GB RAM, 8 NVIDIA TITAN Xp GPUs, and672

runs Ubuntu 22.04.4. All architectures were implemented using Python 3.8.16 with PyTorch [40]673

and PyTorch Geometric [14]. The specific versions of all software libraries and frameworks used are674

provided in the AdapTable/requirements.txt file of the supplementary materials. We also675

include our source code in AdapTable folder of the supplementary materials. Please refer to this676

for all experimental details and to clarify any uncertainties.677

F.2 Hyperparameters for Supervised Baselines678

For k-NN, LogReg, RandomForest, XGBoost, and CatBoost, optimal parameters are determined for679

each dataset using a random search with 10 iterations on the validation set. The search space for each680

method is specified in Table 6.681

21

Table 6: Hyperparameter search space of supervised baselines. # neighbors denotes the number
of neighbors, # estim denotes the number of estimators, depth denotes the maximum depth, and lr
denotes the learning rate, respectively.

Method Search Space

k-NN # neighbors: {2, · · · , 12}
RandomForest # estim: {50, 100, 150, 200}, depth: {2, 3, · · · , 12}
XGBoost # estim: {50, 100, 150, 200}, depth: {2, 3, · · · , 12}, lr: {0.01, 0.01 + (1− 0.01)/19, · · · , 1}, gamma: {0, 0.05, · · · , 0.5}
CatBoost # iterations: {50, 100, · · · , 2000}, lr: {0.01, 0.01 + (1− 0.01)/19, · · · , 1}, depth: {5, · · · , 40}

F.3 Hyperparameters for TTA Baselines682

In scenarios where the test set is unknown, tuning the hyperparameters of TTA methods on the test683

set would be considered cheating. Therefore, we tune all hyperparameters for each TTA method and684

backbone classifier architecture using the Numerical common corruption on the CMC tabular dataset,685

which we did not use as test data in OpenML-CC18 [5] benchmark. PL, TENT [53], and SAR [38]686

require three main hyperparameters—learning rate, number of adaptation steps per batch, and the687

option for episodic adaptation, where the model is reset after each batch. PL [29] and TENT use a688

learning rate of 0.0001 with 1 adaptation step and episodic updates. Additionally, SAR requires a689

threshold to filter high-entropy samples and is configured with a learning rate of 0.001, 1 adaptation690

step, and episodic updates. For TTT++ [33], EATA [37], and LAME [6], we follow the authors’691

hyperparameter settings, except for the learning rate and adaptation steps. TTT++ and EATA were692

configured with a learning rate of 0.00001, 10 adaptation steps, and episodic updates. LAME, which693

only adjusts output logits, does not require hyperparameters related to gradient updates. For all694

baselines, hyperparameter choices remained consistent across different architectures, including MLP,695

AutoInt, ResNet, and FT-Transformer. The hyperparameter search space for each method are detailed696

in Table 7.697

Table 7: Hyperparameter search space of test-time adaptation baselines. Here, we only denote the
common hyperparameters, where method specific hyperparameters are specified in Section F.3.

Hyperparameter Search Space

lr {10−3, 10−4, 10−5, 10−6}
steps {1, 5, 10, 15, 20}
episodic {True, False}

F.4 Hyperparameters for AdapTable698

AdapTable requires three test-time hyperparameters—the smoothing factor α, and the low and high699

uncertainty quantiles qlow and qhigh. For fairness, we tune all AdapTable hyperparameters across700

different backbone architectures using the Numerical common corruption on the CMC dataset from701

the OpenML-CC18 benchmark [5], which is not used as test data. We observe that AdapTable’s702

hyperparameter choices remain consistent across various architectures, including MLP, AutoInt,703

ResNet, and FT-Transformer. Notably, AdapTable demonstrates high insensitivity to variations in α,704

qlow, and qhigh, which are uniformly set to 0.1, 0.25, and 0.75, respectively, across all datasets and705

architectures.706

G Additional Analysis707

G.1 Latent Space Visualizations708

In Figure 9, we further visualize latent spaces of test instances using t-SNE across six different datasets709

and four representative deep tabular learning architectures to illustrate the observation discussed in710

Section 2.1. This visualization highlights the complex decision boundaries within the latent space711

of tabular data, which are significantly more intricate than those observed in other domains. By712

comparing the upper four rows—HELOC, Voting, Hospital Readmission, and Childhood Lead—713

with the lower two rows—linearized image data (MFEAT-PIXEL) and homogeneous DNA string714

sequences (DNA)—it becomes evident that the latent space decision boundaries in the tabular domain715

22

Figure 7: The average macro F1 score of AdapTable and TTA baselines across three datasets
(HELOC, Voting, Childhood Lead) using various backbone architectures.

are particularly complex. According to WhyShift [32], this complexity is primarily due to latent716

confounders inherent in tabular data and concept shifts, where such confounders cause output labels717

to vary greatly for nearly identical inputs. As discussed in Section 2.1, this further underscores the718

limitations of existing TTA methods [51, 16, 33, 6, 56], which often depend on the cluster assumption.719

G.2 Reliability Diagrams720

Figure 10 presents additional reliability diagrams across five different datasets and four representative721

deep tabular learning architectures, illustrating that tabular data often displays a mix of overconfident722

and underconfident prediction patterns. This contrasts with the consistent overconfidence observed723

in the image domain [50] and underconfidence in the graph domain [54]. As shown in Figure 10,724

the Voting and Hospital Readmission datasets consistently exhibit overconfident behavior across all725

architectures, while the HELOC, Childhood Lead, and Diabetes datasets demonstrate underconfident726

tendencies. These observations underscore the need for a tabular-specific uncertainty calibration727

method.728

G.3 Label Distribution Shifts and Prediction Bias Towards Source Label Distributions729

We demonstrate that the data distribution shift we primarily target in the tabular domain—label730

distribution shift—occurs frequently in practice. Figure 11 presents the source label distribution (a),731

target label distribution (b), pseudo label distribution for test data using the source model (c), and732

the estimated target label distribution after applying our label distribution handler (d) across the five733

datasets. Comparing (a) and (b) in each row, it is evident that label distribution shift occurs across734

all datasets. In (c), we observe that the marginal label distribution predicted by the source model is735

commonly biased towards the source label distribution. Lastly, (d) illustrates that our label distribution736

handler effectively estimates the target label distribution, guiding the pseudo label distribution towards737

the target label distribution.738

G.4 Entropy Distributions739

We highlight a unique characteristic of tabular data: model prediction entropy consistently shows a740

strong bias toward underconfidence. To illustrate this, we present entropy distribution histograms741

for test instances across six datasets and four representative deep tabular learning architectures742

in Figure 12. A clear pattern emerges when comparing the upper four rows (HELOC, Voting,743

Hospital Readmission, Childhood Lead) with the lower two (Optdigits, DNA). The upper rows exhibit744

consistently high entropy, indicating a skew toward underconfidence, while the lower rows do not,745

except for Childhood Lead, where extreme class imbalance causes the model to collapse to the major746

class. This analysis highlights the distinct bias of tabular data toward underconfident predictions,747

a pattern less common in other domains. This aligns with findings that applying unsupervised748

objectives like entropy minimization to high-entropy samples can result in gradient explosions and749

model collapse [38].750

H Additional Experiments751

H.1 Result Across Diverse Model Architectures752

In Figure 7, we report AdapTable’s effectiveness across three mainstream tabular learning753

architectures—AutoInt [47], ResNet [19], and FT-Transformer [19]. We report the average macro F1754

score across three datasets—HELOC, Voting, and Childhood Lead. None of the baselines outperform755

23

AdapTable
(1.54, .66)

TENT
(.06, .52)

EATA
(4.97, .53)

SAR
(1.28, .50)

LAME
(.31, .50)

TTT++
(1.28, .53)

PL
(.58, .52)

Source
.53

Figure 8: Computational efficiency (leftmost figure) and hyperparameter sensitivity analysis of
AdapTable (three figures on the right) using MLP on the HELOC and Childhood Lead datasets,
respectively.

the original source model, with LAME [6] even showing significant performance drops. In contrast,756

AdapTable consistently achieves significant improvements across all architectures, highlighting its757

robustness and versatility.758

H.2 Further Analysis759

Computational efficiency. The leftmost part of Figure 8 compares the computational efficiency760

of AdapTable with TTA baselines. On the HELOC dataset, AdapTable’s total elapsed time is ap-761

proximately 1.54 seconds, translating to about 0.0002 seconds per sample, which is highly desirable.762

Moreover, AdapTable achieves an optimal efficiency-efficacy trade-off.763

Hyperparameter sensitivity. Figure 8 further analyzes the hyperparameter sensitivity of AdapTable764

on the Childhood Lead dataset. As shown in the figure, AdapTable remains highly insensitive to765

changes in the smoothing factor α, low uncertainty quantile qlow, and high uncertainty quantile qhigh.766

H.3 Detailed Results Across Common Corruptions and Datasets767

Figure 4 presents the average F1 score across six types of common corruption and three datasets.768

Here, we provide more detailed results, including the standard errors. As shown in Table 8, AdapTable769

outperforms baseline TTA methods by a large margin across all datasets and corruption types. This770

further highlights the empirical efficacy of AdapTable, not only in handling label distribution shifts771

but also in addressing various common corruptions.772

H.4 All Results Across Datasets and Model Architectures773

In Figure 7, we demonstrate the effectiveness of AdapTable across various tabular model architectures774

by reporting the average performance across three datasets. Here, we provide the mean and standard775

error for each dataset and architecture. As shown in Table 9, AdapTable consistently achieves state-776

of-the-art performance with significant improvements across all model architectures and datasets.777

This further underscores the versatility and robustness of AdapTable.778

H.5 Additional Computational Efficiency Analysis779

One may wonder whether the post-training time required for AdapTable’s shift-aware uncertainty780

calibrator is prohibitively long. To address this concern, we measure and report the elapsed real time781

for post-training our shift-aware uncertainty calibrator on the medium-scale Hospital Readmission782

dataset using the FT-Transformer architecture. The post-training process takes approximately 9.2783

seconds. For small- and medium-scale datasets, the post-training process typically requires only a784

few seconds, and even in our largest experimental setting, the time remains minimal, taking at most a785

few minutes.786

I Limitations and Broader Impacts787

I.1 Limitations788

Similar to other test-time training (TTT) methods [51, 33, 16], AdapTable requires an additional789

post-training stage to integrate a shift-aware uncertainty calibrator during the source model’s training790

phase. While full test-time adaptation methods [53, 37, 38] avoid this, our analysis in Section 2.1 and791

experiments in Section 4 show that they fail in the tabular domain due to their focus on input covariate792

24

shifts, which are often entangled with concept shifts. According to WhyShift [32], concept shifts,793

driven by changes in latent confounders, require natural language descriptions of the shift conditions,794

necessitating a data-centric approach. Additionally, while AdapTable performs well across various795

corruptions beyond label distribution shifts (Figure 4), it is primarily focused on addressing label796

distribution shifts. Further exploration is needed to assess its effectiveness in handling input covariate797

shifts or concept shifts.798

I.2 Broader Impacts799

Tabular data is prevalent across industries such as healthcare [27, 26], finance [48, 49], manufac-800

turing [23], and public administration [17]. Our research addresses the critical yet underexplored801

challenge of distribution shifts in tabular data, a problem that has not received sufficient attention. We802

believe that our approach can significantly enhance the performance of machine learning models in803

various industries by improving model adaptation to tabular data, thereby creating meaningful value804

in practical applications. Through our data-centric analysis in Section 2, we identify why existing805

TTA methods fail in the tabular domain and introduce a tabular-specific approach for handling label806

distribution shifts in Section 3. We hope this work will provide valuable insights for future research on807

test-time adaptation in tabular data. Additionally, by making our source code publicly available, we808

aim to support real-world applications across various fields, benefiting both academia and industry.809

Table 8: The average macro F1 score (%) with their standard errors for TTA baselines is reported
across six common corruptions—Gaussian, Uniform, Random Drop, Column Drop, Numerical, and
Categorical—over three datasets—HELOC, Voting, and Childhood Lead. The results are averaged
over three random repetitions.

Dataset Method Gaussian Uniform Random Drop Column Drop Numerical Categorical

HELOC

Source 33.1 ± 0.0 33.0 ± 0.0 31.4 ± 0.1 32.3 ± 1.4 33.8 ± 0.2 32.3 ± 0.3
PL 31.2 ± 0.0 31.2 ± 0.0 30.6 ± 0.0 31.1 ± 0.7 32.1 ± 0.2 30.4 ± 0.2
TENT 33.1 ± 0.0 33.0 ± 0.0 31.4 ± 0.1 32.3 ± 1.4 33.8 ± 0.2 32.3 ± 0.3
EATA 33.1 ± 0.0 33.0 ± 0.0 31.4 ± 0.1 32.3 ± 1.4 33.8 ± 0.2 32.3 ± 0.3
SAR 31.9 ± 0.1 32.0 ± 0.1 30.7 ± 0.2 31.3 ± 0.8 32.4 ± 0.4 31.4 ± 0.3
LAME 30.1 ± 0.0 30.1 ± 0.0 30.1 ± 0.0 30.1 ± 0.0 30.9 ± 0.1 29.4 ± 0.2
AdapTable 57.6 ± 0.1 57.8 ± 0.0 53.0 ± 0.1 52.1 ± 3.2 58.1 ± 0.1 58.9 ± 0.4

Voting

Source 76.6 ± 0.0 76.5 ± 0.0 72.5 ± 0.2 72.8 ± 0.4 76.3 ± 0.1 85.2 ± 0.1
PL 75.6 ± 0.3 75.2 ± 0.3 71.1 ± 0.5 70.6 ± 0.5 75.9 ± 0.1 85.1 ± 0.1
TENT 76.6 ± 0.0 76.5 ± 0.0 72.5 ± 0.2 72.8 ± 0.4 76.3 ± 0.1 85.2 ± 0.1
EATA 76.6 ± 0.0 76.5 ± 0.0 72.5 ± 0.2 72.8 ± 0.4 76.3 ± 0.1 85.2 ± 0.1
SAR 67.2 ± 1.0 64.0 ± 0.2 61.8 ± 1.0 60.8 ± 0.8 69.9 ± 0.1 84.2 ± 0.1
LAME 39.4 ± 0.2 39.4 ± 0.1 37.3 ± 0.0 37.8 ± 0.2 39.4 ± 0.2 81.4 ± 0.2
AdapTable 78.9 ± 0.0 78.6 ± 0.1 74.9 ± 0.1 75.5 ± 0.5 78.0 ± 0.1 85.0 ± 0.4

Childhood Lead

Source 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
PL 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
TENT 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
EATA 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
SAR 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
LAME 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 47.9 ± 0.0 48.1 ± 0.0 48.8 ± 0.0
AdapTable 61.4 ± 0.1 61.5 ± 0.0 58.0 ± 0.1 55.9 ± 1.6 62.8 ± 0.2 53.1 ± 0.2

25

Table 9: The average macro F1 score (%) with their standard errors for TTA baselines is reported
across three datasets—HELOC, Voting, and Childhood Lead—using three model architectures—
AutoInt, ResNet, and FT-Transformer. The results are averaged over three random repetitions.

Model Method HELOC Voting Childhood Lead

AutoInt

Source 34.9 ± 0.0 77.5 ± 0.0 47.9 ± 0.0
PL 31.6 ± 0.0 76.5 ± 0.1 47.9 ± 0.0
TENT 34.9 ± 0.0 77.5 ± 0.0 47.9 ± 0.0
EATA 34.9 ± 0.0 77.5 ± 0.0 47.9 ± 0.0
SAR 62.0 ± 0.4 31.2 ± 0.7 47.9 ± 0.0
LAME 30.1 ± 0.0 37.3 ± 0.0 47.9 ± 0.0
AdapTable 56.3 ± 0.1 79.2 ± 0.0 61.8 ± 0.1

ResNet

Source 52.0 ± 0.0 76.6 ± 0.0 47.9 ± 0.0
PL 34.3 ± 0.1 73.3 ± 0.1 47.9 ± 0.0
TENT 52.0 ± 0.0 76.6 ± 0.0 47.9 ± 0.0
EATA 52.0 ± 0.0 76.7 ± 0.0 47.9 ± 0.0
SAR 55.1 ± 0.5 52.2 ± 0.5 47.9 ± 0.0
LAME 30.1 ± 0.0 75.1 ± 0.1 47.9 ± 0.0
AdapTable 61.9 ± 0.0 78.7 ± 0.0 61.3 ± 0.1

FT-Transformer

Source 33.0 ± 0.0 77.3 ± 0.0 47.9 ± 0.0
PL 30.6 ± 0.0 76.0 ± 0.1 47.9 ± 0.0
TENT 33.0 ± 0.0 77.3 ± 0.0 47.9 ± 0.0
EATA 33.0 ± 0.0 77.3 ± 0.0 47.9 ± 0.0
SAR 35.3 ± 0.1 73.6 ± 0.3 47.9 ± 0.0
LAME 30.7 ± 0.1 71.5 ± 0.1 47.9 ± 0.0
AdapTable 55.0 ± 0.0 79.2 ± 0.1 61.7 ± 0.1

26

Figure 9: Latent space visualizations of test samples using t-SNE across six diverse datasets, including
tabular datasets (HELOC, Voting, Hospital Readmission, and Childhood Lead) and non-tabular
datasets (Optdigits, DNA), applied to various deep tabular learning architectures.

27

Figure 10: Reliability diagrams for test instances across five different tabular datasets (HELOC,
Voting, Hospital Readmission, Childhood Lead, and Diabetes) and four representative deep tabular
learning architectures (MLP, AutoInt, ResNet, FT-Transformer).

28

Figure 11: Label distribution histograms for test instances showing (a) source label distribution,
(b) target label distribution, (c) pseudo label distribution, and (d) estimated target label distribution
after applying our label distribution handler, across five tabular datasets (HELOC, Voting, Hospital
Readmission, Childhood Lead, and Diabetes) using MLP.

29

Figure 12: Entropy distribution histograms of test samples across six diverse datasets, including
tabular datasets (HELOC, Voting, Hospital Readmission, and Childhood Lead) and non-tabular
datasets (Optdigits, DNA), applied to four deep tabular learning architectures. Prediction entropies are
normalized by dividing by the maximum entropy, logC, where C represents the number of classes
for each dataset.

30

	Introduction
	Analysis of Tabular Distribution Shifts
	Indistinguishable Representations
	Importance of Label Distribution Shifts

	AdapTable
	Test-Time Adaptation Setup for Tabular Data
	Shift-Aware Uncertainty Calibrator
	Label Distribution Handler
	Theoretical Insights

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Conclusion
	Related Work
	Detailed Algorithm of AdapTable
	Proof of Theorem 3.1
	Dataset Descriptions
	Natural Distibution Shifts
	Common Corruptions
	Label Distribution Shifts

	Baseline Details
	Deep Tabular Learning Architectures
	Supervised Baselines
	Test-Time Adaptation Baselines

	Further Experimental Details
	Further Implementation Details
	Hyperparameters for Supervised Baselines
	Hyperparameters for TTA Baselines
	Hyperparameters for AdapTable

	Additional Analysis
	Latent Space Visualizations
	Reliability Diagrams
	Label Distribution Shifts and Prediction Bias Towards Source Label Distributions
	Entropy Distributions

	Additional Experiments
	Result Across Diverse Model Architectures
	Further Analysis
	Detailed Results Across Common Corruptions and Datasets
	All Results Across Datasets and Model Architectures
	Additional Computational Efficiency Analysis

	Limitations and Broader Impacts
	Limitations
	Broader Impacts

