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ABSTRACT

Large-scale datasets have propelled progress in generation foundation models for
remote sensing, but training on such data incurs substantial storage and compute
costs. In addition, globally collected raw data often exhibit redundancy, noise,
and class imbalance, which undermines training efficiency and generation qual-
ity. Existing Remote Sensing generative foundation models typically aggregate
multiple classification datasets or apply simplistic deduplication, thereby over-
looking the distributional requirements of generation modeling as well as the in-
herent heterogeneity and diversity of remote sensing imagery. To address these
limitations, we propose an efficient, two-stage data pruning approach for remote
sensing generative foundation models. This approach simultaneously incorporates
local information content with global scene-level diversity and representativeness.
Specifically, an entropy-based criterion is applied initially to efficiently eliminate
low-information samples. Leveraging remote sensing scene classification datasets
as reference benchmarks, we then perform scene-aware clustering with stratified
sampling, which enhances the effectiveness of clustering while reducing the com-
putational cost of clustering on large-scale unlabeled data. Finally, by balanc-
ing cluster-level uniformity with sample representativeness, the method enables
fine-grained selection under high pruning ratios while preserving overall diver-
sity and representativeness. Experiments on both curated remote sensing datasets
and large-scale global data demonstrate that our pruning strategy significantly
improves convergence and generation quality. Moreover, generation foundation
models trained with our method consistently achieve state-of-the-art performance
across multiple downstream tasks, including super-resolution and semantic image
synthesis. This data pruning paradigm provides practical guidance and empirical
reference for the development of remote sensing generative foundation models.

1 INTRODUCTION

In recent years, generation models, especially diffusion models (Peebles & Xie, 2022; Ho et al.,
2020), have achieved remarkable progress in fields such as computer vision (Richard et al., 2021),
medical imaging (Song et al., 2021), and remote sensing (RS) (Dong et al., 2024). Within the RS
domain, generation models have been widely applied to data augmentation, image reconstruction,
super-resolution, and high-resolution image synthesis, supporting practical applications in urban
planning, land-use monitoring, and disaster response (Borana & Yadav, 2023). A powerful RS
generative foundation model can provide a robust data and modeling backbone to further enhance
these applications.

However, the effective training of RS generative foundation models critically depends on the quality
and distribution of training data. The emergence of large-scale open-source datasets (e.g., Git-
10M (Liu et al., 2025), RS5M (Zhang et al., 2024c)) provides valuable resources, yet it also intro-
duces several critical challenges, including image redundancy, low-quality samples (e.g., noise and
cloud cover), class imbalance (Cheng et al., 2017), and scene homogeneity (Xia et al., 2017). These
issues not only hinder the training efficiency of RS foundation models but also limit the effectiveness
of the resulting pretrained models on downstream tasks.

Recently, several studies in RS generation tasks have made preliminary explorations into data pro-
cessing. For instance, RSDiff employs size cropping and noise augmentation (Sebaq & ElHelw,
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Figure 1: Overview of our multi-stage data pruning method for Remote Sensing generative founda-
tion models.

2024). WHU-RS19 ABZSL (Balestra et al., 2025) removes cloud and open-ocean regions to reduce
low information content. Super-resolution works (Huang et al., 2015) often prioritize urban areas.
Nevertheless, these methods mainly rely on rule-based or simplistic strategies to eliminate redundant
data, without considering the specific dependence of generation models on data distribution (Good-
fellow et al., 2014) or the inherent characteristics of RS imagery, such as diversity, heterogeneity,
and class balance. Moreover, many data pruning methods developed in the computer vision domain
rely on scoring mechanisms (Yang et al., 2024) from supervised pretrained models (Pleiss et al.,
2020). In contrast, a standardized labeled dataset for RS, comparable to ImageNet (Deng et al.,
2009) in computer vision and spanning multiple resolutions and modalities, is currently lacking.
It makes such scoring methods ineffective and prevents their direct application. Overall, system-
atic research on data selection for RS generative foundation models remains scarce, with existing
approaches largely limited to basic preprocessing and lacking specialized pipelines tailored to RS
generation modeling.

The effectiveness of generation foundation models depends more on the quality and distribution of
the training data than on dataset size alone. In the RS domain, raw data often contains substantial
redundancy and noise, meaning that merely increasing the dataset size does not guarantee propor-
tional performance gains. Recent studies (Briq et al., 2024) have shown that diffusion models retain
strong generation performance even when a large fraction (e.g., 90% of ImageNet samples) of the
training data is removed, highlighting that a significant portion of the data contributes minimally.
Consequently, generation models are typically trained on large volumes of data that contain con-
siderable redundancy. Without appropriate selection, such low quality and redundant data not only
slow convergence and increase computational and time costs, but may also introduce distribution
shifts that degrade model performance.

To address these issues, we propose an efficient data pruning approach for RS generative foundation
models. Targeting redundancy, low quality samples, and class imbalance, we systematically ex-
plore data pruning strategies across both global-scale scenarios (GiT-10M, RS5M) and urban-scale
settings (our constructed USA-1m multispectral dataset). The method proceeds along two com-
plementary dimensions: 1) Information dimension. We employ entropy-based pruning to rapidly
discard low texture or homogeneous large-area regions, thereby reducing redundancy and com-
pressing subsequent computation costs. 2) Diversity and representativeness dimension. We intro-
duce scene–aware clustering with stratified sampling. Using existing RS scene-classified datasets
as reference, we perform over-clustering on the standard datasets to obtain hundreds of cluster cen-
troids, effectively avoiding the high computational cost of full-scale clustering. Large-scale un-
labeled datasets are then assigned to these predefined clusters in the clustering space. Samples
are subsequently selected using a combination of class-balanced allocation and centroid-prioritized
sampling, which preferentially chooses samples near cluster centers to preserve scene-representative
characteristics while maintaining diversity.

Extensive experiments reveal three key observations: First, both datasets specifically constructed
for RS generation models and globally collected datasets contain substantial redundancy, and ap-
propriate data pruning accelerates convergence while yielding models that outperform those trained
on the full datasets. Second, entropy-based pruning consistently removes low quality and highly
homogeneous samples, providing stable improvements across varying pruning rates. Third, optimal
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pruned subsets are obtained by combining entropy-based filtering with strategies that preserve diver-
sity and representativeness at the scene level, ensuring that informative and representative samples
are retained for effective model training.

Our main contributions in this paper can be summarized as follows:

• We systematically explore data pruning for RS generativ e foundation models and propose a two-
stage selection strategy that considers data heterogeneity, diversity, and representativeness, en-
abling faster convergence and improved generation performance.

• We introduce a reference dataset–guided clustering method, performing pre-clustering on curated
scene-classified datasets to preserve the diversity of scene cluster centers while avoiding the com-
putational cost of clustering massive unlabeled datasets.

• Extensive experiments show that our approach consistently outperforms prior state-of-the-art
methods in both pretraining generation quality and downstream tasks, achieving substantial gains
even with a significantly reduced training set.

2 RELATED WORK

2.1 GENERATION FOUNDATION MODELS

Generation foundation models (Saharia et al., 2022c) play a pivotal role in image generation, data
synthesis, and image reconstruction. For instance, Stable Diffusion (SD) 1.5 (Rombach et al., 2022)
leverages latent-space representations together with a UNet backbone, serving as a lightweight gen-
eration foundation model that provides strong pretrained initialization for ControlNet (Zhang et al.,
2023) and related low-level vision tasks (Saharia et al., 2022a). More recently, Transformer-based
architectures such as DiT (Peebles & Xie, 2022) have emerged, while models like SD3 (Esser et al.,
2024) and Flux (Black Forest Labs, 2024) offer substantially stronger generation capabilities and
higher fidelity, further advancing the scalability and versatility of diffusion frameworks.

In the RS domain, generation foundation models have also started to gain attention. To address the
unique properties of RS imagery, such as multi-spectral and multi-resolution observations, geospa-
tial information, and global coverage, many works have explored pre-training or fine-tuning founda-
tion models on RS datasets (Tang et al., 2024; Toker et al., 2024; Xiao et al., 2023). For example, Dif-
fusionSat (Khanna et al., 2023) introduced geolocation as conditioning information and fine-tuned
Stable Diffusion 1.5 on multi-source RS data, supporting multiple RS generation tasks. Meanwhile,
models such as SR3 (Saharia et al., 2022b) and CDM Ho et al. (2021), demonstrated strong super-
resolution performance on natural images, providing a foundation for their adaptation to RS. Despite
these advances, existing RS generation models typically aggregate multiple classification datasets
or apply simplistic deduplication (Liu et al., 2024), thereby overlooking the distributional require-
ments of generation foundation modeling as well as the inherent heterogeneity and diversity of RS
imagery. Consequently, the field lacks systematic exploration of data pruning strategies specifically
designed to address the characteristics of remote sensing data and the requirements of RS generative
foundation models.

2.2 DATA PRUNING METHODS

Training data are critical to constructing RS generative foundation models. However, existing stud-
ies (Liu et al., 2023; Sebaq & ElHelw, 2024) in this field have adopted simplistic deduplication and
preprocessing strategies, such as removing cloud and ocean regions (Balestra et al., 2025) and prior-
itizing urban areas (Zhang et al., 2024a). These approaches are insufficient to address the sensitivity
of generation models to data distribution, heterogeneity, and class imbalance.

Current data pruning methods can be broadly categorized into three types. First, data-valuation
methods assign an importance score to each sample and select samples accordingly. For example,
MoSo (Tan et al., 2023) estimates the change in empirical risk when a sample is removed. Although
such methods are generally efficient, their performance can be affected by group effects and may
lack generalization in complex real-world settings. Second, distribution-based methods rely on the
geometric structure of the dataset. For instance, Moderate-DS (Xia et al., 2023b) selected sam-
ples near the median. CCS (Zheng et al., 2022) balanced data distribution and sample importance
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during selection. Finally, optimization-based methods leverage optimization techniques to guide
sample pruning, such as temporal dual-depth scoring (Zhang et al., 2024b), gradient matching (Kil-
lamsetty et al., 2021), scalable self-supervised pruning metrics (Sorscher et al., 2022), influence
functions (Koh & Liang, 2017), and bilevel optimization (Borsos et al., 2020).

Most of these approaches are designed for supervised datasets and rely on scores generated by
pre-trained supervised models. However, labeled RS data are often scarce, limiting their applicabil-
ity. To bridge this gap, this study systematically explores and compares unsupervised data pruning
strategies tailored to the characteristics and requirements of RS generative foundation models.

3 METHOD

3.1 WORKFLOW

Remote Sensing generative foundation models depend on large-scale, globally collected datasets
that should provide high quality, diversity, and representativeness. Existing RS datasets, however,
often lack these characteristics, leading to slower model convergence, suboptimal generation perfor-
mance, and insufficient capability to support various low-level downstream tasks. To address this,
we propose a two-stage data pruning method (Figure 1) guided by two key principles:

1) Informational value Cloud-covered or excessively homogeneous RS images are inevitable in
global data collection. Such images are typically low-quality, contain limited informative content,
and exhibit substantial redundancy. Images with higher information content, capturing meaning-
ful structures and fine details, are prioritized for selection. This process effectively removes low-
information and trivially homogeneous scenes, such as vast desert expanses, thereby preserving
heterogeneity in the selected subset.

2) Scene diversity and centroid representativeness While maintaining the overall semantic distri-
bution, rare scenes are preferentially preserved. For scenes with abundant samples, candidates are
ranked by their similarity to the cluster centroid, and the nearest-centroid samples are selected. This
strategy not only ensures high quality and de-redundancy but also aligns with expert priors reflected
in reference datasets, producing a subset that is both distributionally representative and diverse.

3.2 STAGE I: ENTROPY-BASED PRUNING

We measure the information value of each image by computing its global Shannon entropy (Shan-
non, 1948). Specifically, for an image I , we compute its grayscale entropy H(I) to capture the
diversity of pixel intensities:

H(I) = −
L−1∑
k=0

pk log pk, (1)

where pk denotes the empirical probability of intensity level k among L possible levels. Images
with H(I) < τ are discarded, as they typically correspond to invalid regions (e.g., sensor noise) or
low-variation scenes (e.g., clouds, open ocean, deserts, or saturated exposures). This pruning step
substantially reduces dataset size while preserving high-information candidate samples.

3.3 STAGE II: SCENE-AWARE CLUSTERING AND SAMPLING

The remote sensing domain lacks a universally adopted, comprehensive benchmark comparable to
ImageNet in the natural image domain. To address this, we leverage multiple expert-curated RS
classification datasets as a composable bank of clustering priors, covering various scene types such
as urban areas, cropland, water bodies, forests, and transportation infrastructure. Unlike approaches
that apply label-free clustering and sampling directly on a massive generic corpus, we first establish
stable scene centroids on this prior bank. Importantly, instead of computing centroids separately for
each labeled category, we conduct over-clustering across the entire prior dataset to obtain diverse
and representative centroids. Subsequently, for the large-scale unlabeled RS dataset, samples are
aligned to these centroids and selected according to centroid-prioritized sampling, ensuring both
representativeness and diversity. This pipeline uses expert-curated classification datasets to derive
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more representative cluster centroids, thereby enhancing diversity and representativeness in the se-
lected subset, while simultaneously reducing the computational cost of clustering the full unlabeled
large-scale dataset.

Prior Centroid Construction. We employ a unified feature extractor f(·), namely Git-
RSCLIP Liu et al. (2025), with ℓ2 normalization to embed all images from standard datasets.Git-
RSCLIP is specifically pretrained on large-scale remote sensing corpora. Compared with generic
backbones such as DINOv2, it delivers more reliable and discriminative embeddings for RS im-
agery.

zx =
f(x)

∥f(x)∥2
for each x ∈ Dref, (2)

where Dref is the collection of reference (prior) datasets. x is an image sample of the datasets. f(·)
is a pretrained image encoder. zx is the ℓ2-normalized embedding of x. We then perform K-means
clustering on the unit hypersphere to identify representative scene centroids. Let M denote the set
of learned centroids:

M = {µk}Kk=1, ∥µk∥2 = 1, (3)
where K is the number of clusters and µk is the k-th centroid in the feature space.

Cluster Assignment and Candidate Pooling. For each unlabeled sample x ∈ Du, we compute
its cosine similarity to all prior centroids:

sk(x) = ⟨f(x), µk⟩, k = 1, . . . ,K, (4)
where sk(x) is the similarity score. f(x) denotes the feature embedding of x. Each sample is

assigned to the cluster with the highest similarity:

ẑ(x) = argmax
k

sk(x), (5)

where ẑ(x) is the hard cluster label. The sample is then added into the candidate pool corresponding
to its assigned cluster, denoted Pk. This assignment procedure scales linearly with both the number
of unlabeled samples and the number of centroids, making it efficient for large-scale datasets.

Cluster-Aware Stratified Sampling. Given a total sampling budget B, we combine class-
balanced allocation with centroid-prioritized sampling.

• Class-balanced allocation. Let {Pk}Kk=1 denote the candidate pools for K clusters, and let
q = ⌊B/K⌋. We assign each cluster a quota of q samples to ensure coverage across clusters.
Rare clusters with fewer than q samples retain all candidates, preserving diversity.

• Centroid-prioritized sampling. Within each cluster k, we rank samples x ∈ Pk by their simi-
larity sk(x) to the cluster centroid µk and select the top-q samples:

Sk = Top-q
x∈Pk

sk(x). (6)

If |Pk| < q, we set Sk = Pk and reallocate the remaining budget by selecting additional samples
from the global remainder: Prem =

⋃K
j=1

(
Pj \ Sj

)
in descending order of similarity until the

total number of selected samples equals B, i.e., B =
∑K

k=1 |Sk|.

3.4 COMPLEXITY ANALYSIS

In stage I, the overall complexity is approximately O(N), as each image is evaluated individually
for information value.

In the stage II, we have: 1) Building clustering priors on a small, standardized reference set is done
once, so its cost is negligible relative to the full pipeline. 2) Assigning each image to the most similar
centroid requires computing similarities to K centroids in a fd-dimensional feature space, giving
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O(NKfd). 3) Within each cluster, ranking images by similarity and sampling q samples requires
sorting, which has a complexity of O

(
N
K log N

K

)
per cluster, resulting in O

(
N log N

K

)
. Since K and

fd are small constants in practice, the end-to-end complexity can be considered O(N logN). The
method does not involve training deep models. The core operations are vector arithmetic, similarity
computation, and sorting. Consequently, the pipeline is highly scalable and practically deployable
for data pruning over large-scale RS datasets.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

To evaluate the effectiveness of our data pruning approach for RS generation tasks, we conduct
experiments on both global-scale and urban-scale datasets. Specifically, we use two representative
global-scale optical datasets (i.e., GIT-10M and RS5M) that were carefully curated for RS gener-
ative foundation models, as well as a large-scale urban-scale multispectral dataset (i.e., USA-1m)
collected in this work based on U.S. urban boundary products (Li et al., 2020). The global datasets
provide broad coverage and diversity, while the urban dataset offers finer spatial resolution and
richer texture information. This design allows us to assess the effectiveness and generalizability of
our data pruning strategy across datasets with varying resolutions, modalities, volumes, and sensors.

• Git-10M (Liu et al., 2025) a global-scale dataset comprising 10.5M satellite images (RGB) with
a spatial resolution of 0.5–128 m, which spans multiple continents and geographic regions, cov-
ering diverse land-cover types such as urban areas, croplands, forests, mountains, and deserts.

• RS5M (Zhang et al., 2024c) a global-scale dataset initially collected from 11 publicly available
image–text pair datasets, containing RS images (RGB) from different regions, resolutions, and
scene types. Due to large variations in image size and relatively low data quality, we apply simple
preprocessing and filtering, resulting in a curated subset of about 1.04M images.

• USA-1m (multispectral) our self-constructed, urban-scale remote sensing dataset consisting of
8.77M four-channel, high-resolution (1m) images, derived from the USDA National Agriculture
Imagery Program (NAIP) (Robinson et al., 2019). The dataset covers major urban areas across 45
U.S. states, with a total footprint of 1.34339×106 km2. A visualization of the spatial distribution
of the dataset is provided in Figure 4 (see Appendix F).

For each of the aforementioned datasets, we selected 5,000 high-quality images for subsequent
metric computation for the generation task.

In Stage II, we adopt five scene-classification datasets with distinct characteristics: NWPU-
RESISC45 (Cheng et al., 2017), UC Merced Land-Use (Yang & Newsam, 2010), AID (Xia et al.,
2017), WHU-RS19 (Balestra et al., 2025), and RSD46-WHU (Long et al., 2017). Detailed infor-
mation regarding their resolution, dataset size, number of classes, and data sources can be found in
Appendix F.

To comprehensively assess the impact of training data on RS generation models, we evaluate their
generation capability directly on the test set and further examine their effectiveness as pretrained
models on two downstream tasks, i.e., super-resolution (SR) and semantic image synthesis (SIS).
The evaluation metrics include FID (Heusel et al., 2017) and LPIPS (Zhang et al., 2018). Lower
LPIPS and FID values indicate superior generation performance.

• SECOND-SR we construct a super-resolution dataset based on the high-resolution SECOND
semantic change detection benchmark (Yang et al., 2020). Low-resolution (LR) images are gen-
erated by first downsampling and then upsampling the original high-resolution (HR) images.
The dataset contains 4,662 paired LR–HR images, each with a spatial size of 512×512 pixels,
covering six major land-cover classes.

• OpenEarthMap (Xia et al., 2023a) a global benchmark designed for semantic segmentation.
It consists of 5,000 RS images across six continents at 0.25 to 0.5 m resolutions. Labels are
annotated with eight land-cover categories.
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Figure 2: Comparison of generation performance (FID) across different pruning rate on Git-10M.

4.2 IMPLEMENTATION DETAILS

All models are implemented using the official DiT framework (Peebles & Xie, 2022),which is a
transformer-based architecture using its github repository1. We adopt the DiT-XL/2 backbone for
both generation pretraining and downstream tasks. All experiments are conducted with 256×256
input size, a global batch size of 256, and AdamW optimizer with a fixed learning rate of 1× 10−4.
Training is distributed across 4 NVIDIA H100 GPUs. Base VAE For Git-10M and RS5M, we
use the publicly released Stable Diffusion VAE (sd-vae-ft-ema)2. For USA-1M, we train a
custom four-channel VAE from scratch and select the checkpoint with the lowest validation loss.
Generation pretraining DiT is trained in an unconditional setting. For each dataset, we run 40K
to 100K diffusion steps and models are trained from scratch. Downstream fine-tuning For super-
resolution and semantic image synthesis, we initialize from the pretrained DiT checkpoints and
fine-tune for 5,000 steps per task.

4.3 COMPARISON RESULTS

We compare the proposed method with three groups of pruning strategies: basic pruning methods
(e.g., Random, Moderate-DS (Xia et al., 2023b)), data pruning methods for foundation models (e.g.,
Dinov2 (Oquab et al., 2023), A2-MAE (Zhang et al., 2024a)), and a recent approach specifically
developed for generation models (Clusternearest (Briq et al., 2024)). To examine their effectiveness
across varying scene complexities, experiments are conducted on a global-scale dataset (Git-10M)
and an urban-scale dataset (USA-1m). To ensure comparability, all models are trained for an equiv-
alent number of iterations, 100K for Git-10M and 40K for USA-1m, and the best results during
training are reported. Beyond generation evaluation on the test set, pretrained models are further
assessed on two downstream tasks, i.e., SR and SIS, with the top fine-tuning results recorded.

As illustrated in Figure 2, using Git-10M as an example, our method converges faster than the
comparison methods across different pruning ratios. Table 1 presents results at a fixed pruning ratio
of 70% on both datasets. The proposed method achieves the best performance across generation
and downstream tasks, demonstrating strong robustness and generalization. In addition, A2-MAE,
designed for global-scale datasets, exhibits a notable performance drop on the urban-scale USA-
1m. On Git-10M, our method achieves the lowest generation FID (28.45), representing a 27.7%
improvement over the next best score (39.34). It further improves performance on super-resolution
and semantic image synthesis, demonstrating strong alignment between downstream metrics and
generation FID. On USA-1m, our approach also achieves consistent improvements across metrics,
further confirming its effectiveness and generalizability to multispectral remote sensing imagery.Due
to limited space, more in-depth analyses regarding training steps are provided in Appendix A.

4.4 ABLATION STUDY

4.4.1 EFFECTIVENESS OF ENTROPY-BASED PRUNING

To validate the effectiveness of entropy-based pruning, we conduct experiments on the Git-10M
dataset. Images are ranked in descending order of Shannon entropy, and the top p% subset is re-
tained, denoted as DH↑

p% , while the unfiltered dataset is denoted as Dall. Under a fixed training

1https://github.com/facebookresearch/DiT
2https://huggingface.co/stabilityai/sd-vae-ft-ema
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Table 1: Experimental results with different data pruning methods on Git-10M and USA-1m. We
report results at a pruning ratio of 70%.

Method
Git-10M USA-1m

Generation SR SIS Generation SR SIS
FID↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ FID↓ LPIPS↓ FID↓ LPIPS↓

Full Dataset 45.30 89.25 0.3912 125.79 0.6027 242.52 125.90 0.4909 327.33 0.8212
Random 43.87 89.25 0.3912 127.00 0.6200 255.11 126.63 0.4827 236.68 0.6698

Moderate-DS (Xia et al., 2023b) 44.07 92.40 0.3952 132.85 0.6222 199.24 124.86 0.5098 233.13 0.6730
Clusternearest (Briq et al., 2024) 45.24 89.58 0.3898 133.18 0.6237 201.36 150.11 0.5870 256.40 0.6804

Dinov2 (Oquab et al., 2023) 39.34 91.76 0.3930 137.55 0.6121 180.98 127.73 0.5472 238.80 0.6761
A2-MAE (Zhang et al., 2024a) 45.96 90.39 0.3938 130.64 0.6013 360.74 148.36 0.6028 256.39 0.6993

Ours 28.46 87.98 0.3893 122.08 0.5967 175.93 122.00 0.4779 199.82 0.6682

Table 2: Results of entropy-based pruning at different pruning ratios on GiT-10M, reporting FID for
the generation task.

Dataset Dall DH↑
70% DH↑

50% DH↑
30% DH↑

25% DH↑
20% DH↑

15% DH↑
5%

FID ↓ 61.6887 40.8934 33.1489 32.8622 33.6968 34.9136 36.8073 41.8878

budget of 60K iterations, generation models trained on each subset are evaluated using FID (Ta-
ble 2). On this global-scale dataset, retaining only the top 30% of images achieves the best FID
(32.86), substantially outperforming the full dataset (61.69), highlighting the importance of remov-
ing low-information data. We further observe that as the pruning threshold becomes more stringent,
FID initially decreases and then increases, indicating that the optimal pruning ratio should be cho-
sen based on the redundancy level of the dataset. Analyses of different datasets and optimal pruning
ratios are provided in Appendix D, Table 6.

4.4.2 EFFECTIVENESS OF SCENE–AWARE CLUSTERING AND SAMPLING

In this section, we conduct experiments on two datasets with different scales, including GiT-10M
(tens of millions) and RS5M (millions), to evaluate the effectiveness of Stage II. As shown in Table 3,
Stage II consistently provides stable gains under high pruning ratios, exhibiting a consistent trend
across both datasets. On GiT-10M, pruning at 85% and 90% leads Stage II to outperform Stage
I alone by approximately 10%. Similarly, on RS5M, Stage II delivers notable benefits under high
pruning, with corresponding improvements in downstream SIS performance.

At low pruning ratios, Stage II yields minimal gains or may perform slightly worse, indicating that
clustering-based selection depends on prior removal of low-quality data, otherwise balanced and
scene-representative sampling can be compromised. When pruning is light and the subset remains
large, entropy-based pruning alone is sufficient. Under high pruning ratios, sample representative-
ness becomes insufficient, and clustering is required to preserve diversity and distributional cov-
erage. Overall, Stage II demonstrates robust and transferable effectiveness across both large- and
medium-scale datasets, with especially pronounced advantages in highly compressed scenarios.And
additional ablations on sampling strategies in Step II can be found in Appendix C.

4.4.3 EFFECTIVENESS OF REFERENCE DATASET–GUIDED CLUSTERING METHOD

We further perform ablation studies on the proposed reference dataset–guided clustering strategy in
comparison with the standard practice of clustering directly on the unlabeled dataset. As reported
in Table 4, our approach consistently surpasses clustering the full unlabeled collection in both run-
time efficiency and generative quality. Even the widely adopted MiniBatch KMeans variant, which
reduces the feature dimensionality from 1024 to 128 with subsequent normalization, remains less
effective. The improvement arises from exploiting expert-curated reference datasets to derive more
representative scene prototypes, thereby facilitating faster sample assignment and enhancing FID.

We also examine the influence of reference dataset selection, varying in scene diversity and dataset
scale, together with the associated degree of over-clustering. Experiments conducted with datasets
of different complexity levels and their combinations (Appendix B, Figure 3) yield several obser-
vations. An important finding is that the diversity of scene categories in the reference dataset plays
a critical role, as datasets with broader coverage produce more representative clustering outcomes.
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Table 3: Results of scene-aware clustering and sampling at different pruning ratios. The subset
refers to the Stage I output used as input for Stage II.

Pruning
ratio

Subset Stage
I

Stage
II

Git-10M RS5M

generation SIS generation SIS
FID↓ FID↓ LPIPS↓ FID↓ FID↓ LPIPS↓

– Dall 127.8932 143.2622 0.6236 113.3864 137.9567 0.6076

30% DH↑
70% ✓ 100.3227 134.2329 0.6064 81.9246 122.9466 0.5950

50%
DH↑

50% ✓ 77.9903 127.7947 0.6069 71.6860 121.5837 0.5970
DH↑

70% ✓ ✓ 84.3062 134.8372 0.6172 80.7609 121.7632 0.6002

70%
DH↑

30% ✓ 68.3773 126.7446 0.6074 63.3343 125.0599 0.5971
DH↑

50% ✓ ✓ 70.0361 131.7129 0.6045 63.3343 125.0599 0.5950

85%

DH↑
15% ✓ 68.7814 125.7938 0.6044 59.4955 126.7798 0.5966

DH↑
30% ✓ ✓ 61.3269 120.5167 0.5982 58.9813 115.6430 0.5902

DH↑
50% ✓ ✓ 64.4233 139.9440 0.6139 73.7312 132.6490 0.6014

DH↑
70% ✓ ✓ 72.3580 130.6310 0.6139 75.4898 121.8777 0.5941

90%

DH↑
10% ✓ 70.9027 121.9285 0.6043 65.4067 124.6616 0.6034

DH↑
30% ✓ ✓ 63.6400 123.0029 0.6106 64.2536 124.8206 0.6004

DH↑
50% ✓ ✓ 64.2870 144.4404 0.6173 71.3744 130.5425 0.6094

DH↑
70% ✓ ✓ 77.2366 131.4739 0.6094 79.8913 128.3239 0.5970

Table 4: Generative quality and runtime of clustering on full unlabeled data, entropy-pruned unla-
beled data and our reference dataset-guided approaches.

Method Cluster
sample size

Cluster
Numbers

Feature
Dimension Times(s) FID↓

Full unlabeled clustering 10.5 million 200 1024 4630.3 108.84
Entropy-pruned unlabeled clustering 3.1 million 200 128 308.4 71.16
Reference-guided (single, 21 classes) 2,100 200 1024 82.3 61.69
Reference-guided (single, 45 classes) 31,500 200 1024 76.6 60.14

Reference-guided (3 datasets) 43,600 200 1024 101.8 62.28
Reference-guided (5 datasets) 55,605 200 1024 115.1 60.65

Another key observation is that the number of clusters K admits a moderate optimal range, with
K=200 emerging as a robust configuration that adequately covers common RS scenes while avoid-
ing the breakdown of scene-balanced sampling caused by excessive fragmentation. Finally, we note
that a simple aggregation of multiple scene classification datasets is not automatically beneficial,
since distributional discrepancies across datasets may impede the alignment of semantically related
categories and thus undermine representativeness. Therefore, effective dataset integration requires
careful consideration of both scene complementarity and domain compatibility.

Due to the limited space, limitation and future work can be seen in Appendix E.

5 CONCLUSION

In this work, we comprehensively explore data pruning for RS generative foundation models across
datasets of varying scale and coverage. We propose a two-stage pruning strategy that jointly consid-
ers data heterogeneity, diversity, and representativeness. This approach consists of informativeness-
based pruning followed by scene-aware clustering with sampling, enabling the construction of
a high-quality subset that is both representative and diverse. By leveraging RS scene-classified
datasets as references for over-clustering, the method preserves the diversity of scene cluster centers
while avoiding the computational cost of clustering massive unlabeled datasets. Extensive experi-
ments demonstrate the effectiveness of our approach and provide practical guidance and empirical
insights for the development of future Remote Sensing generative foundation models.

9
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A EXTENDED COMPARISON UNDER DIFFERENT TRAINING ITERATIONS

We adopt an early-stopping protocol of 40K iterations for the ablations, effectiveness studies, and
most comparative experiments to cover more methods and settings under a feasible compute budget.
This configuration reliably captures relative rankings and trends across methods while substantially
reducing the per-run cost. To verify the robustness of the 40K-iteration conclusions, we additionally
train all compared methods to 100K iterations under identical data and hyperparameters, and results
are shown in Figure 2.

1) Reliability of the early proxy. From 40K to 100K iterations, FID decreases roughly monoton-
ically, and the relative rankings and trends at 40K closely match those at 100K, across all pruning
ratios, Ours consistently attains the lowest FID. Hence, 40K serves as a reliable early proxy for
model selection, preserving the final (100K) ordering while substantially reducing compute.

2) Convergence speed and compute savings. Ours converges markedly faster. At 60K iterations,
Ours (90% pruning) reaches an FID of 29.14, outperforming the best 100K result of competing
methods (38.87) by about 25%. By 80K, the margin widens to roughly 31%. Even at 50K, our
FID approaches the best scores of competitors at 100K. Thus, our method can maintain strong
performance using only 10% of the data while saving over 50% of the compute.

B EXPLORATION OF THE OPTIMAL NUMBER OF REFERENCE DATASETS
AND CLUSTERS

We examine how reference dataset selection (scene diversity and scale) and the degree of over-
clustering affect outcomes (see Figure 3). Experiments across datasets of varying complexity and
their combinations yield the following takeaways:

1) A simple aggregation of multiple scene classification datasets is not automatically beneficial.
Moving from one to three sources markedly reduces FID by enriching scene coverage and improving
representativeness. However, simply aggregating five sources increases volatility and does not sur-
pass the best results with fewer references, likely due to cross-dataset heterogeneity that destabilizes
centroids and misaligns semantically related categories.

2) A moderate cluster count is optimal. Increasing K from small to moderate consistently helps,
but overly large K fragments scenes, dilutes centroids, and breaks scene-balanced sampling, leading
to regressions. In our setting, K=200 emerges as a robust configuration that adequately covers
common RS scenes without over-fragmentation.

3) The diversity of scene categories in the reference dataset plays a critical role. With a single
reference, a scene-rich set with broader coverage produce more representative clustering outcomes
than narrower sets under the same K. If such a set is unavailable, combining a small number (e.g.,
2 to 3) of complementary datasets is effective, provided K is tuned in the moderate range.

C ADDITIONAL ABLATIONS ON SAMPLING STRATEGIES IN STEP II

We fix the backbone to DiT, use the entropy-filtered subset DH↑
30%, and set the number of clusters to

K=70 , pruning ratio is 85%. Each run trains for 40K steps and samples 5K images. We ablate
the inter-class allocation (how the sampling budget is distributed across clusters) and the intra-class
sampling (how samples are scored within a cluster). The details of strategy are as follows:

1) Uniform quota & centroid-prioritized sampling. Assign an equal quota q to each cluster.
Within each cluster, select samples with the highest cosine similarity to the centroid. If a cluster has
fewer than q candidates, fill the shortfall by resampling with replacement until the quota is met.

2) Class-balanced allocation & farthest-from-centroid sampling. Assign an equal quota q to
each cluster. Within each cluster, select the farthest-from-centroid samples to promote diversity. If
a cluster has fewer than q candidates, take all available; any remaining global shortfall is filled by
selecting the lowest-similarity samples from the overall pool.
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Figure 3: Effect of Reference Datasets and Cluster Count on FID.

Table 5: Ablations of step II strategies on DH↑
30%.

Inter-class allocation Intra-class sampling FID↓

Uniform quota Nearest to centroid 66.53
class-balanced alllocation Farthest from centroid 69.69
Size-proportional quota Density-based sampling 64.37

Dispersion-proportional quota Nearest to centroid 66.97
Few-shot priority Moderate-DS sampling 69.84

Entropy-proportional quota Nearest to centroid 62.22
Dispersion-proportional quota Nearest to centroid 66.42
Complexity-proportional quota Nearest to centroid 73.61
Uniform + uniform remainder Nearest to centroid 67.40

Uniform + proportional remainder Nearest to centroid 64.12
Uniform + LOF remainder Nearest to centroid 70.00

Ours 61.32

3) Size-proportional quota & density-based sampling. Allocate the quota in proportion to each
cluster’s size (number of candidates). Within each cluster, apply a density criterion (e.g., kNN
density) to draw more from dense regions and fewer from sparse ones.

4) Dispersion-proportional quota & centroid-prioritized sampling. Allocate the quota according
to cluster dispersion (mean distance from samples to the centroid). Within each cluster, prefer near-
centroid samples. If a cluster cannot meet its quota, backfill proportionally from other clusters
without exceeding their available counts.

5) Entropy-proportional quota & centroid-prioritized sampling. Allocate the quota in propor-
tion to intra-cluster entropy (spectral entropy of the feature covariance). Within each cluster, prefer
near-centroid samples. If underfilled, backfill as in Item 4.
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6) Few-shot priority & Moderate-DS sampling. First take all samples from low-cardinality (few-
shot) clusters, then distribute the remaining budget in proportion to cluster size. Within each cluster,
apply the Moderate-DS sampling rule (Xia et al., 2023b).

7) LOF-proportional quota & centroid-prioritized sampling. Allocate the budget across clusters
in proportion to their LOF-based scores. Within each cluster, select samples nearest to the centroid.
If a cluster cannot meet its quota, backfill from the remaining clusters.

8) Complexity-proportional quota (mean image entropy) & centroid-prioritized sampling. Al-
locate the budget in proportion to cluster complexity measured by mean image entropy. Within each
cluster, select samples nearest to the centroid. If underfilled, backfill from the remaining clusters.

9) Uniform quota with iterative uniform remainder & centroid-prioritized sampling. Start with
an equal quota q per cluster. If some clusters fall short, redistribute the remaining budget uniformly
over the remaining clusters in rounds. Within each cluster, select samples nearest to the centroid.

10) Uniform quota with iterative size-proportional remainder & centroid-prioritized sampling.
Start with an equal quota per cluster. Reassign any leftover budget in proportion to residual cluster
size (unused candidates). Within each cluster, select samples nearest to the centroid.

11) Uniform quota with iterative LOF-proportional remainder & centroid-prioritized sam-
pling. Start with an equal quota per cluster. Allocate any leftover budget across clusters in propor-
tion to their LOF-based scores. Within each cluster, select samples nearest to the centroid.

We systematically compared a variety of inter-class allocation and intra-class sampling combinations
to identify a suitable strategy. Balancing quality, stability, and diversity, we adopt Class-balanced
allocation and Centroid-prioritized sampling in Step II,which assign an equal quota per cluster to
mitigate long-tail imbalance, then select within each cluster by descending similarity to the centroid
to preserve representativeness and match the target distribution,finally supplemental sampling by
descending similarity. This strategy attains the best FID in our ablations (61.3269) while remaining
simple and low-overhead (dominated by vector similarity and sorting), showing strong robustness
and scalability for large-scale remote-sensing data selection.

D PRUNING RATIO RECOMMENDATIONS

We use spherical K-Means (K ≈ N/200) to analyze the cluster statistics of datasets. For RS5M
dataset ,we find that the cluster utilization rate U is extremely low, while the maximum-cluster ratio
h is extremely high (Table 6). In other words, the majority of samples are “absorbed” by a few
giant city clusters. Under such a distribution, many fine-grained scenes (e.g., ports, industrial zones,
coastal suburban areas) are merged into the same urban mega-cluster. Stage II, with its “center-
prior” sampling, tends to favor prototype urban textures near the cluster center, while pushing away
boundary or rare sub-patterns. This further suppresses the already scarce long-tail categories, lead-
ing to a loss of diversity. As a result, entropy-only pruning (i.e., Stage I) performs better in this
setting.

Based on our existing experimental results, we provide empirical recommendations for the pruning
ratio:

For large-scale datasets with relatively balanced distributions (>1M samples), a higher pruning ratio
can be adopted. In contrast, for datasets with spiky long-tail distributions and fewer categories, a
moderate pruning ratio is more suitable.

Under high pruning ratios, we recommend the Stage I + Stage II combination, which balances repre-
sentativeness and diversity. Under low pruning ratios, entropy-only pruning (Stage I) is preferable.

E LIMITATION AND FUTURE WORK

Our study focuses on single-modality generation models for RS and does not investigate cross-modal
relationships. On one hand, textual information in RS typically comes from land-cover products or
GPT-generated captions, which are less diverse and rarely suffer from image-text misalignment
compared to general-domain datasets. On the other hand, current RS field still lacks large-scale
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Table 6: Dataset statistics and the empirically best pruning ratio. U is cluster utilization. h is max-
cluster share. R is redundancy.

Dataset Count (×104) U (%) h (%) R Best ratio

Git-10m 1050 92 0.011 0.9956 85%
USA-1m 877 5.4 2.09 0.9998 70%
RS5M 143 89 0.085 0.9969 85%

Figure 4: Visualization of the spatial distribution of USA-1m.

multi-modal generation foundation models and datasets that unify SAR, multispectral, hyperspec-
tral, and RGB imagery. Consequently, our experiments mainly consider pruning visible and near-
infrared data. Future work could explore the construction of multimodal generative datasets and the
incorporation of inter-modal correlations.

In addition, we plan to investigate training remote sensing generative foundation models based on
data-pruned datasets. Proper data pruning can substantially accelerate model convergence. As com-
putational resources and multi-source datasets increase, such high-quality pruned datasets can fur-
ther enhance model capacity. Through multi-stage training and the incremental incorporation of
new data, data-pruned subsets can serve both to speed up convergence and reduce training difficulty,
enabling the progressive improvement of the foundation model performance.

F DATASET

• NWPU-RESISC45 (Cheng et al., 2017) including 31,500 RS images, each of size 256×256
pixels, covering 45 scene categories. The imagery is collected from Google Earth at 0.2 to 5 m
resolutions.

• UC Merced Land-Use (Yang & Newsam, 2010) including 2,100 RS images , each of size
256×256 pixels, covering 21 land-use classes. The imagery is sourced from the USGS National
Mapat at 0.3 m resolutions.

• AID (Xia et al., 2017) including 10,000 RS images, each of size 600×600 pixels, covering 30
scene categories. The imagery is collected from Google Earth at 0.5 to 8 m resolutions.

• WHU-RS19 (Balestra et al., 2025) including 1005 RS images, each of size 600×600 pixels,
covering 19 scene categories. The imagery is collected from Google Earth at 0.5 m resolutions.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Summary of datasets used in this study.

Category Dataset Year Volume Bands Image size Resolution Classes Coverage / Scene

Pruning
datasets

Git-10M (Liu et al., 2025) 2025 10.5M RGB varying 0.5–128 m – global
RS5M (Zhang et al., 2024c) 2024 1.04M RGB varying varying – global

USA-1m (Robinson et al., 2019; Li et al., 2020) 2020 8.77M 4 512 1 m – U.S. urban areas

Standard
Datasets

NWPU-RESISC45 (Cheng et al., 2017) 2017 31,500 RGB 256 0.2–5 m 45 diverse scenes
UC Merced Land-Use (Yang & Newsam, 2010) 2010 2,100 RGB 256 0.3 m 21 land-use scenes

AID (Xia et al., 2017) 2017 10,000 RGB 600 0.5–8 m 30 diverse scenes
WHU-RS19 (Balestra et al., 2025) 2025 1,005 RGB 600 0.5 m 19 high-resolution scenes
RSD46-WHU (Long et al., 2017) 2017 117,000 RGB 256 0.5–2 m 46 diverse scenes

SR
SIS

SECOND (?) 2021 4,662 RGB 512 0.5 m 6 change detection regions
OpenEarthMap (Xia et al., 2023a) 2023 5,000 RGB 512 0.25–0.5 m 8 global

• RSD46-WHU (Long et al., 2017) including 117,000 RS images, each of size 256×256 pixels,
covering 46 scene categories. The imagery is collected from Google Earth at 0.5 to 2 m resolu-
tions.

Additionally, information on all datasets mentioned in this paper is summarized in Table 7.

G THE USE OF LARGE LANGUAGE MODELS

LLM was used to aid language polishing.
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