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Abstract

Contextual bandit algorithms have many applicants in a variety of scenarios. In order
to develop trustworthy contextual bandit systems, understanding the impacts of various
adversarial attacks on contextual bandit algorithms is essential. In this paper, we propose
a new class of attacks: action poisoning attacks, where an adversary can change the action
signal selected by the agent. We design action poisoning attack schemes against disjoint
linear contextual bandit algorithms in both white-box and black-box settings. We further
analyze the cost of the proposed attack strategies for a very popular and widely used bandit
algorithm: LinUCB. We show that, in both white-box and black-box settings, the proposed
attack schemes can force the LinUCB agent to pull a target arm very frequently by spending
only logarithm cost. We also extend the proposed attack strategies to generalized linear
models and show the effectiveness of the proposed strategies.

1 Introduction

Multiple armed bandits(MABs), a popular framework of sequential decision making model, has been widely
investigated and has many applicants in a variety of scenarios (Chapelle et al., 2014; Lai et al., 2011; Kveton
et al., 2015). The contextual bandits model is an extension of the multi-armed bandits model with contextual
information. At each round, the reward is associated with both the arm (a.k.a, action) and the context.
Contextual bandits algorithms have a broad range of applications, such as recommender systems (Li et al.,
2010), wireless networks (Saxena et al., 2019), etc.

In the modern industry-scale applications of bandit algorithms, action decisions, reward signal collection,
and policy iterations are normally implemented in a distributed network. Action decisions and reward
signals may need to be transmitted over communication links. For example, in recommendation systems, the
transitions of the decisions and the reward signal rely on a feedback loop between the recommendation system
and the user. When data packets containing the reward signals and action decisions etc are transmitted
through the network, the adversary can implement adversarial attacks by intercepting and modifying these
data packets. As the result, poisoning attacks on contextual bandits could possibly happen. In many
applications of contextual bandits, an adversary may have an incentive to force the contextual bandits system
to learn a specific policy. For example, a restaurant may attack the bandit systems to force the systems into
increasing the restaurant’s exposure. Thus, understanding the risks of different kinds of adversarial attacks
on contextual bandits is essential for the safe applications of the contextual bandit model and designing
robust contextual bandit systems.

Depending on the target of the poisoning attacks, the poisoning attacks against contextual linear bandits
can be categorized into four types: reward poisoning attack, action poisoning attack, context poisoning
attack and the mix of them. In this paper, we aim to investigate the impact of action poisoning attacks
on contextual bandit models. To our best knowledge, this paper is the first work to analyze the impact
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of action poisoning attacks on contextual bandit models. Detailed comparisons of various types of attacks
against contextual bandits will be provided in Section 3. We note that the goal of this paper is not to
promote any particular type of poisoning attack. Rather, our goal is to understand the potential risks of
action poisoning attacks. We note that for the safe applications and design of robust contextual bandit
algorithms, it is essential to address all possible weaknesses of the models and understanding the risks of
different kinds of adversarial attacks. Our hope is that the understanding of the potential risks of action
poisoning attacks could motivate follow up research to design algorithms that are robust to such attacks.

In this paper, we study the action poisoning attack against disjoint linear contextual bandit (Li et al., 2010;
Kong et al., 2020; Garcelon et al., 2020; Huang et al., 2021) in both white-box and black-box settings. In the
white-box setting, we assume that the attacker knows the coefficient vectors associated with arms. Thus,
at each round, the attacker knows the mean rewards of all arms. While it is often unrealistic to exactly
know the coefficient vectors, the understanding of the white-box attacks could provide valuable insights on
how to design the more practical black-box attacks. In the black-box setting, we assume that the attacker
has no prior information about the arms and does not know the agent’s algorithm. The limited information
that the attacker has are the context information, the action signal chosen by the agent, and the reward
signal generated from the environment. In both white-box and black-box settings, the attacker aims to
manipulate the agent into frequently pulling a target arm chosen by the attacker with a minimum cost. The
cost is measublack by the number of rounds that the attacker changes the actions selected by the agent. The
contributions of this paper are:

(1) We propose a new online action poisoning attack against contextual bandit in which the attacker aims to
force the agent to frequently pull a target arm chosen by the attacker via strategically changing the agent’s
actions.

(2) We introduce a white-box attack strategy that can manipulate any sublinear-regret disjoint linear con-
textual bandit agent into pulling a target arm T − o(T ) rounds over a horizon of T rounds, while incurring
a cost that is sublinear dependent on T .

(3) We design a black-box attack strategy whose performance nearly matches that of the white-box attack
strategy. We apply the black-box attack strategy against a very popular and widely used bandit algorithm:
LinUCB (Li et al., 2010). We show that our proposed attack scheme can force the LinUCB agent into pulling
a target arm T −O(log3 T ) times with attack cost scaling as O(log3 T ).

(4) We extend the proposed attack strategies to generalized linear contextual bandits. We further analyze
the cost of the proposed attack strategies for a generalized linear contextual bandit algorithm: UCB-GLM (Li
et al., 2017).

(5) We evaluate our attack strategies using both synthetic and real datasets. We observe empirically that
the total cost of our black-box attack is sublinear for a variety of contextual bandit algorithms.

2 Related Work

In this section, we discuss related works on two parts: attacks that cause standard bandit algorithms to fail
and robust bandit algorithms that can defend attacks.

Attacks Models. While there are many existing works addressing adversarial attacks on supervised learning
models (Szegedy et al., 2014; Moosavi-Dezfooli et al., 2017; Cohen et al., 2019; Dohmatob, 2019; Wang et al.,
2019; Dasgupta et al., 2019; Cicalese et al., 2020), the understanding of adversarial attacks on contextual
bandit models is less complete. Of particular relevance to our work is a line of interesting recent work
on adversarial attacks on MABs (Jun et al., 2018; Liu & Shroff, 2019; Liu & Lai, 2020b) and on linear
contextual bandits (Ma et al., 2018; Garcelon et al., 2020). In recent works in MABs setting, the types of
attacks include both reward poisoning attacks and action poisoning attacks. In the reward poisoning attacks,
there is an adversary who can manipulate the reward signal received by the agent (Jun et al., 2018; Liu &
Shroff, 2019). In the action poisoning attacks, the adversary can manipulate the action signal chosen by the
agent before the environment receives it (Liu & Lai, 2020b). Existing works on adversarial attacks against
linear contextual bandits focus on the reward (Ma et al., 2018; Garcelon et al., 2020) or context poisoning
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attacks (Garcelon et al., 2020). In the context poisoning attacks, the adversary can modify the context
observed by the agent without changing the reward associated with the context. (Wang et al., 2022) defines
the concept of attackability of linear stochastic bandits and introduces the sufficient and necessary conditions
on attackability. There are also some recent interesting work on adversarial attacks against reinforcement
learning (RL) algorithms under various setting (Behzadan & Munir, 2017; Huang & Zhu, 2019; Ma et al.,
2019; Zhang et al., 2020; Sun et al., 2021; Rakhsha et al., 2020; 2021; Liu & Lai, 2021; Rangi et al., 2022).
Although there are some recent works on the action poisoning attacks against MABs and RL, the action
poisoning attack on contextual linear bandit is not a simple extension of the case of MAB or RL. Firstly,
in the MAB settings the rewards only depend on the arm (action), while in the contextual bandit setting,
the rewards depend on both the arm and the context (state). Secondly, (Liu & Lai, 2021) discusses the
action poisoning attack in the tabular RL case where the number of states is finite. In the linear contextual
bandit problem, the number of contexts is infinite. These factors make the design of attack strategies and
performance analysis for the contextual linear bandit problems much more challenging.

Robust algorithms. Lots of efforts have been made to design robust bandit algorithms to defend adversarial
attacks. In the MABs setting, (Lykouris et al., 2018) introduces a bandit algorithm, called Multilayer Active
Arm Elimination Race algorithm, that is robust to reward poisoning attacks. (Gupta et al., 2019) presents
an algorithm named BARBAR that is robust to reward poisoning attacks and the regret of the proposed
algorithm is nearly optimal. (Guan et al., 2020) proposes algorithms that are robust to a reward poisoning
attack model where an adversary attacks with a certain probability at each round. (Feng et al., 2020)
proves that Thompson Sampling, UCB, and ϵ-greedy can be modified to be robust to self-interested reward
poisoning attacks. (Liu & Lai, 2020a) introduce a bandit algorithm, called MOUCB, that is robust to action
poisoning attacks. The algorithms for the context-free stochastic multi-armed bandit (MAB) settings are
not suited for our settings. In the linear contextual bandit setting, (Bogunovic et al., 2021) proposes two
variants of stochastic linear bandit algorithm that is robust to reward poisoning attacks, which separately
work on known attack budget case and agnostic attack budget case. (Bogunovic et al., 2021) also proves
that a simple greedy algorithm based on linear regression can be robust to linear contextual bandits with
shablack coefficient under a stringent diversity assumption on the contexts. (Ding et al., 2022) provides a
robust linear contextual bandit algorithm that works under both the reward poisoning attacks and context
poisoning attacks. (He et al., 2022) provides nearly optimal algorithms for linear contextual bandits with
adversarial corruptions.

3 Problem Setup

3.1 Review of Linear Contextual Bandit

Consider the standard disjoint linear contextual bandit model in which the environment consists of K arms.
In each round t = 1, 2, 3, . . . , T , the agent observes a context xt ∈ D where D ⊂ Rd, pulls an arm It and
receives a reward rt,It

. Each arm i is associated with an unknown but fixed coefficient vector θi ∈ Θ where
Θ ⊂ Rd. In each round t, the reward satisfies

rt,It
= ⟨xt, θIt

⟩+ ηt, (1)

where ηt is a conditionally independent zero-mean R-subgaussian noise and ⟨·, ·⟩ denotes the inner product.
Hence, the expected reward of arm i under context xt follows the linear setting

E[rt,i] = ⟨xt, θi⟩ (2)

for all t and all arm i. If we consider the σ-algebra Ft = σ(η1, . . . , ηt), ηt becomes Ft measurable which
is a conditionally independent zero-mean random variable. The agent aims to minimize the cumulative
pseudo-regret

R̄T =
T∑

t=1

(
⟨xt, θI∗

t
⟩ − ⟨xt, θIt

⟩
)

,

where I∗
t = arg maxi⟨xt, θi⟩.
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In this paper, we assume that there exist L > 0 and S > 0, such that for all round t and arm i, ∥xt∥2 ≤ L
and ∥θi∥2 ≤ S, where ∥ · ∥2 denotes the ℓ2-norm. We assume that there exist D ⊂ Rd such that for all x ∈ D
and all arm i, ⟨x, θi⟩ > 0. In addition, for all t, xt ∈ D.

3.2 Action Poisoning Attack Model

In this paper, we introduce a novel adversary setting, in which the attacker can manipulate the action chosen
by the agent. In particular, at each round t, after the agent chooses an arm It, the attacker can manipulate
the agent’s action by changing It to another I0

t ∈ {1, . . . , K}. If the attacker decides not to attack, I0
t = It.

The environment generates a random reward rt,I0
t

based on the post-attack arm I0
t and the context xt.

Then the agent and the attacker receive reward rt,I0
t

from the environment. Since the agent does not know
the attacker’s manipulations and the presence of the attacker, the agent will still view rt,I0

t
as the reward

corresponding to the arm It. The action poisoning attack model is summarized in Algorithm 1 .

Algorithm 1 Action poisoning attacks on contextual linear bandit agent
1: for t = 1, 2, . . . , T do
2: Agent chooses arm It after observing the context xt.
3: Attacker observes the agent’s action It. If the attacker decides to attack, it manipulates the action to

I0
t . If the attacker does not attack, I0

t = It.
4: The environment generates reward rt,I0

t
according to arm I0

t and context xt.
5: The agent and attacker receive reward rt,I0

t
.

6: end for

The goal of the attacker is to design attack strategy to manipulate the agent into pulling a target arm very
frequently but by making attacks as rarely as possible. Without loss of generality, we assume arm K is
the “attack target" arm or target arm. Define the set of rounds when the attacker decides to attack as
C := {t : t ≤ T, I0

t ̸= It}. The cumulative attack cost is the total number of rounds where the attacker
decides to attack, i.e., |C|. The attacker can monitor the contexts, the actions of the agent and the reward
signals from the environment.
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Figure 1: An example of one dimension linear contextual bandit model.

As the action poisoning attack only changes the actions, it can impact but does not have direct control of
the agent’s observations. Furthermore, when the action space is discrete and finite, the ability of the action
poisoning attacker is severely limited. It is reasonable to limit the choice of the target policy. Here we
introduce an important assumption that the target arm is not the worst arm:
Assumption 1. For all x ∈ D, the mean reward of the target arm satisfies ⟨x, θK⟩ > mini∈[K]⟨x, θi⟩.

If the target arm is the worst arm in most contexts, the attacker should change the target arm to a better
arm or the optimal arm so that the agent learns that the target set is optimal for almost every context. In
this case, the cost of attack may be up to O(T ). Assumption 1 does not imply that the target arm is optimal
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at some contexts. The target arm could be sub-optimal for all contexts. Fig. 1 shows an example of one
dimension linear contextual bandit model, where the x-axis represents the contexts and the y-axis represents
the mean rewards of arms under different contexts. As shown in Fig. 1, arms 3 and 4 satisfy Assumption 1.
In addition, arm 3 is not optimal at any context.

Under Assumption 1, there exists α ∈ (0, 1
2 ) such that

max
x∈D

mini⟨x, θi⟩
⟨x, θK⟩

≤ (1− 2α).

Equivalently, Assumption 1 implies that there exists α ∈ (0, 1
2 ), such that for all t, we have

(1− 2α)⟨xt, θK⟩ ≥ min
i∈[K]
⟨xt, θi⟩. (3)

Equation 3 describes the relation of the target arm and the worst arm at context xt. The action poisoning
attack can only indirectly impacts the agent’s rewards. The mean rewards at xt after the action attacks
must be larger or equal to mini∈[K]⟨xt, θi⟩. Under Equation 3, (1 − 2α)⟨xt, θK⟩ ≥ mini∈[K]⟨xt, θi⟩ at any
context xt. Then, with ⟨xt, θK⟩ > 0, (1−α)⟨xt, θK⟩ > mini∈[K]⟨xt, θi⟩ at any context xt. Thus, the attacker
can indirectly change the agent’s mean reward of the non-target arm to (1 − α)⟨xt, θK⟩. Then, the agent’s
estimate of each non-target arm’s coefficient vector is close to (1−α)θK , which is worse than the target arm
at any context. Equation 3 brings the possibility of successful action attacks.

Assumption 1 is necessary in our analysis to prove a formal bound of the attack cost. In Appendix A, we
show that this assumption is necessary in the sense that, if this assumption does not hold, there exist a
sequence of contexts {xt}t∈[T ] such that no efficient action poisoning attack scheme can successfully attack
LinUCB. Certainly, these sequences of contexts are worst case scenarios for attacks. In practice, if these
worst case scenarios do not occur, the proposed algorithms in Sections 4.2 and 4.3 may still work even if the
target arm is the worst in a small portion of the contexts (as illustrated in the numerical example section).

3.3 Comparisons with Different Poisoning Attacks

We now compare the three types of poisoning attacks against contextual linear bandit: reward poisoning
attack, action poisoning attack and context poisoning attack. In the reward poisoning attack (Ma et al.,
2018; Garcelon et al., 2020), after the agent observes context xt and chooses arm It, the environment will
generate reward rt,It

based on context xt and arm It. Then, the attacker can change the reward rt,It
to r̃t

and feed r̃t to the agent.

Compablack with the reward poisoning attacks, the action poisoning attack consideblack in this paper is
more difficult to carry out. In particular, as the action poisoning attack only changes the action, it can
impact but does not have direct control of the reward signal. By changing the action It to I0

t , the reward
received by the agent is changed from rt,It to rt,I0

t
which is a random variable drawn from a distribution

based on the action I0
t and context xt. This is in contrast to reward poisoning attacks where an attacker

has direct control and can change the reward signal to any value r̃t of his choice.

In the context poisoning attack (Garcelon et al., 2020), the attacker changes the context shown to the agent.
The reward is generated based on the true context xt and the agent’s action It. Nevertheless, the agent’s
action may be indirectly impacted by the manipulation of the context, and so as the reward. Since the
attacker attacks before the agent pulls an arm, the context poisoning attack is the most difficult to carry
out.

For numerical comparison, as our paper is the first paper that discusses the action poisoning attack against
contextual linear bandits, there is no existing action poisoning attack method to compare. One could run
simulations to compare with reward or context poisoning attacks, but the attack costs are defined differently,
due to the different nature of attacks. For example, for reward poisoning attacks, (Garcelon et al., 2020)
proposed a reward poisoning attack method whose attack cost scales as O(log(T )2). However, the definition
of the attack cost in (Garcelon et al., 2020) is different from that of our paper. The cost of the reward attack
is defined as the cumulative differences between the post-attack rewards and the pre-attack rewards. The
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cost of the action attack is defined as the number of rounds that the attacker changes the actions selected by
the agent. Although the definition of the attack cost of these two different kinds of attacks are different, the
attack cost of our proposed white-box attack strategy scales on O(log(T )2), which is same with the results
in (Garcelon et al., 2020).

As mentioned in the introduction, the goal of this paper is not to promote any particular types of poisoning
attacks. Instead, our goal is to understand the potential risks of action poisoning attacks, as the safe
applications and design of robust contextual bandit algorithm relies on the addressing all possible weakness
of the models.

4 Attack Schemes and Cost Analysis

In this section, we introduce the proposed action poisoning attack schemes in the white-box setting and
black-box setting respectively. In order to demonstrate the significant security threat of action poisoning
attacks to linear contextual bandits, we investigate our attack strategies against a widely used algorithm:
LinUCB algorithm. Furthermore, we analyze the attack cost of our action poisoning attack schemes.

4.1 Overview of LinUCB

For reader’s convenience, we first provide a brief overview of the LinUCB algorithm (Li et al., 2010). The
LinUCB algorithm is summarized in Algorithm 2. The main steps of LinUCB are to obtain estimates of the
unknown parameters θi using past observations and then make decisions based on these estimates. Define
τi(t) := {s : s ≤ t, Is = i} as the set of rounds up to t where the agent pulls arm i. Let Ni(t) = |τi(t)|. Then,
at round t, the ℓ2-regularized least-squares estimate of θi with regularization parameter λ > 0 is obtained
by (Li et al., 2010)

θ̂t,i = V −1
t,i

∑
k∈τi(t−1)

rt,ixk, (4)

where
Vt,i =

∑
k∈τi(t−1)

xkx⊤
k + λI

with I being identity matrix.

After θ̂i’s are obtained, at each round, an upper confidence bound of the mean reward has to be calculated
for each arm (step 4 of Algorithm 2). Then, the LinUCB algorithm picks the arm with the largest upper
confidence bound (step 5 of Algorithm 2). By following the setup in "optimism in the face of uncertainty
linear algorithm" (OFUL) (Abbasi-Yadkori et al., 2011), we set

ω(N) =
√

λS + R
√

2 log K/δ + d log (1 + L2N/(λd)),

and
βt,i = ω(Ni(t)) =

√
λS + R

√
2 log K/δ + d log (1 + L2Ni(t)/(λd)).

It is easy to verify that ω(N) is a monotonically increasing function over N ∈ (0, +∞).

4.2 White-box Attack

We first consider the white-box attack scenario, in which the attacker has knowledge of the environment.
In particular, in the white-box attack scenario, the attacker knows the coefficient vectors θi’s for all i. The
understanding of this scenario could provide useful insights for the more practical black-box attack scenario
to be discussed in Section 4.3.

Our proposed attack strategy works as follows. When the agent chooses arm K, the attacker does not attack.
When the agent chooses arm It ̸= K, the attacker changes it to arm

I0
t =

{
K with probability ϵt

I†
t with probability 1− ϵt

(5)
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Algorithm 2 Contextual LinUCB (Li et al., 2010)
Require: λ, K, T , L, S.

1: Initialize for every arm i, Vi ← λI, bi ← 0, θ̂i ← V −1
i bi.

2: for t = 1, 2, . . . , T do
3: Observe the context xt.
4: Compute the upper confidence bound: pt,i ← x⊤

t θ̂i + βt,i

√
x⊤

t V −1
i xt for all arm i ∈ [K].

5: Pull arm It = arg maxi pt,i.
6: The environment generates reward rt according to arm It. The agent receive rt.
7: VIt

← VIt
+ xtx

⊤
t , bIt

← bIt
+ rtxt, θ̂It

← V −1
It

bIt
.

8: end for

where I†
t = arg mini⟨xt, θi⟩ and

ϵt = (1− α)⟨xt, θK⟩ −mini⟨xt, θi⟩
⟨xt, θK⟩ −mini⟨xt, θi⟩

. (6)

We now explain the main idea behind the attack strategy specified in Equation 5 and Equation 6. Intuitively
speaking, using Equation 5 and Equation 6, the attacker can manipulate the agent into learning some
particular coefficient vectors. In particular, for arm K (the target arm), the agent obtains the true coefficient
vector θK . For any arm i ̸= K, because of the attacks, the agent will obtain an estimate of arm i’s coefficient
vector that is close to (1 − α)θK . This can be seen as follows. Under Assumption 1 and the fact that the
mean rewards are positive, we have that 1/2 < ϵt < 1−α. Under the white-box attack, when the agent pulls
a non-target arm It ̸= K, the post-attack action I0

t is a random variable and the mean reward received by
the agent should satisfy

E[rt,I0
t
|Ft−1, It] = E[⟨xt, θI0

t
⟩|Ft−1, It] = ϵt⟨xt, θK⟩+ (1− ϵt) min

i
⟨xt, θi⟩ = (1− α)⟨xt, θK⟩. (7)

Because of the positive mean reward assumption and the fact that 0 < 1−α < 1, the target arm K appears
to be the optimal arm for any context. Hence the proposed white-box attack strategy can easily mislead an
agent who employs a contextual bandit algorithm with sublinear pseudo-regret, as shown in the following
proposition.
Proposition 1. For δ > 0. Suppose the agent employs a linear contextual bandit algorithm whose cumulative
pseudo-regret is upper bounded by o(T ) with probability at least 1 − δ. When using the proposed white-box
attack scheme, with probability at least 1 − δ, the attacker can force the agent to pull the target arm for
T − o(T ) times, while the total attack cost |C| is upper bounded by o(T ).

Proposition 1 applies to any contextual bandit algorithm whose cumulative pseudo-regret is upper bounded
by o(T ). To further illustrate the proposed attack scheme, we now provide a finer analysis the impact of
this attack on LinUCB described in Algorithm 2. We first build a high probability bound for the estimate of
parameter at the agent, when the agent computes the estimate of θi by equation 4 and the attacker employs
the white-box attack. Recall that ω(N) =

√
λS + R

√
2 log K/δ + d log (1 + L2N/(λd)).

Lemma 1. Under the proposed white-box attack, the estimate of θi for each arm i obtained by LinUCB
agent as described in Algorithm 2 satisfies

|x⊤
t θ̂t,i − x⊤

t (1− α)θK | ≤
(

ω(Ni(t)) + LS
√

0.5 log (2KT/δ)
)
∥xt∥V −1

t,i
, (8)

with probability 1 − 2(K − 1)δ/K, for all arm i ̸= K and all t ≥ 0. Here, ∥x∥V =
√

x⊤V x is the weighted
norm of vector x for a positive definite matrix V .

Lemma 1 shows that, under our white-box attack, the agent’s estimate of the parameter of non-target arm,
i.e. θ̂i, will converge to (1 − α)θK . Thus, the agent is misled to believe that arm K is the optimal arm for
every context in most rounds. The following theorem provides an upper bound of the cumulative cost of the
attack.
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Theorem 1. Define γ = minx∈D⟨x, θK⟩. Under the same assumptions as in Lemma 1, for any δ > 0 with
probability at least 1 − 2δ, for all T ≥ 0, the attacker can manipulate the LinUCB agent into pulling the
target arm in at least T − |C| rounds, using an attack cost

|C| ≤2d(K − 1)
(αγ)2 log

(
1 + TL2/(dλ)

) (
2ω(T ) + LS

√
0.5 log (2KT/δ)

)2
. (9)

Theorem 1 shows that our white-box attack strategy can force LinUCB agent into pulling the target arm
T −O(log2 T ) times with attack cost scaled only as O(log2 T ).

Proof. Detailed proof of Theorem 1 can be found in Appendix B.3. Here we provide sketch of the main proof
idea.

For round t and context xt, if LinUCB pulls arm i ̸= K, we have

x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt ≤ x⊤

t θ̂t,i + βt,i

√
x⊤

t V −1
t,i xt.

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
x⊤

t θK ≤ x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt holds with probability 1− δ

K .

Then, by Lemma 1,

x⊤
t θK ≤ x⊤

t (1− α)θK + βt,i∥xt∥V −1
t,i

+
(

LS

√
1
2 log

(
2KT

δ

)
+ ω (Ni(t))

)
∥xt∥V −1

t,i
. (10)

By multiplying both sides 1{It=i} and summing over rounds, we have

T∑
k=1

1{Ik=i}αx⊤
k θK

≤
T∑

k=1
1{Ik=i}

(
βk,i +

√
λS + LS

√
1
2 log

(
2KT

δ

)
+ R

√
2 log K

δ
+ d log

(
1 + L2Ni(k)

λd

))
∥xk∥V −1

k,i
.

(11)

Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and obtain

T∑
k=1

1{Ik=i}∥xk∥V −1
k,i
≤

√
Ni(t)2d log

(
1 + tL2

dλ

)
. (12)

Set γ = minx∈D⟨x, θK⟩. Since Ni(t) =
∑T

k=1 1{Ik=i}, we have

Ni(t) ≤
2d

(αγ)2 log
(

1 + tL2

dλ

)(
2
√

λS + LS

√
1
2 log

(
2KT

δ

)
+ 2R

√
2 log K

δ
+ d log

(
1 + tL2

λd

))2

. (13)

4.3 Black-box Attack

We now focus on the more practical black-box setting, in which the attacker does not know any of arm’s
coefficient vector. The attacker knows the value of α (or a lower bound) in which the Equation 3 holds for
all t. Although the attacker does not know the coefficient vectors, the attacker can compute an estimate
of the unknown parameters by using past observations. On the other hand, there are multiple challenges
brought by the estimation errors that need to properly addressed.
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The proposed black-box attack strategy works as follows. When the agent chooses arm K, the attacker does
not attack. When the agent chooses arm It ̸= K, the attacker changes it to arm

I0
t =

{
K with probability ϵt

I†
t with probability 1− ϵt

(14)

where
I†

t = arg min
i̸=K

(
⟨xt, θ̂0

t,i⟩ − β0
t,i∥xt∥(V 0

t,i
)−1

)
, (15)

and
β0

t,i = ϕi

(
ω(N†

i (t)) + LS
√

0.5 log (2KT/δ)
)

,

ϕi = 1/α when i ̸= K and ϕK = 2, and

ϵt = clip

1
2 ,

(1− α)⟨xt, θ̂0
t,K⟩ − ⟨xt, θ̂0

t,I†
t

⟩

⟨xt, θ̂0
t,K⟩ − ⟨xt, θ̂0

t,I†
t

⟩
, 1− α

 , (16)

with clip(a, x, b) = min(b, max(x, a)) where a ≤ b.

For notational convenience, we set I†
t = K and ϵt = 1 when It = K. We define that, if i ̸= K,

τ †
i (t) := {s : s ≤ t, I†

s = i}

and N†
i (t) = |τ †

i (t)|. We also define τ †
K(t) := {s : s ≤ t} and N†

K(t) = |τ †
K(t)|.

θ̂0
t,i =

(
V 0

t,i

)−1 ∑
k∈τ†

i
(t−1)

wk,irk,I0
k
xk, (17)

where
V 0

t,i =
∑

k∈τ†
i

(t−1)

xkx⊤
k + λI

and

wt,i =


1/ϵt if i = I0

t = K

1/(1− ϵt) if i = I0
t = I†

t

0 if i ̸= I0
t

. (18)

Here, θ̂0
t,i is the estimation of θi by the attacker, while θ̂t,i in Equation 4 is the estimation of θi at the agent

side. We will show in Lemma 2 and Lemma 4 that θ̂0
t,i will be close to the true value of θi while θ̂t,i will

be close to a sub-optimal value chosen by the attacker. This disparity gives the attacker the advantage for
carrying out the attack.

We now highlight the main idea of why our black-box attack strategy works. As discussed in Section 4.2,
if the attacker knows the coefficient vectors of all arms, the proposed white-box attack scheme can mislead
the agent to believe that the coefficient vector of every non-target arm is (1 − α)θK , hence the agent will
think the target arm is optimal. In the black-box setting, the attacker does not know the coefficient vector
for any arm. The attacker should estimate an coefficient vector of each arm. Then, the attacker will use
the estimated coefficient vector to replace the true coefficient vector in the white-box attack scheme. As
the attacker does not know the true values of θi’s, we need to design the estimator θ̂0

t,i, the attack choice
I†

t and the probability ϵt carefully. In the following, we explain the main ideas behind our design choices.
1): Firstly, we explain why we design estimator θ̂0

t,i using the form Equation 17, in which the attacker
employs the importance sampling to obtain an estimate of θi. There are two reasons for this. The first
reason is that, for a successful attack, the number of observations in arm i ̸= K will be limited. Hence if the
importance sampling is not used, the estimation variance of the mean reward ⟨x, θi⟩ at the attacker side for
some contexts x may be large. The second reason is that the attacker’s action is stochastic when the agent
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pulls a non-target arm. Thus, the attacker uses the observations at round t when the attacker pulls arm i
with certain probability, i.e. when t ∈ τ †

i , to estimate θi. Since the agent’s action is deterministic, the agent
uses the observations at round t when the agent pulls arm i, i.e. when t ∈ τi, to estimate θi. 2): Secondly,
we explain ideas behind the choice of I†

t in Equation 15. Under our black-box attack, when the agent pulls
a non-target arm It ̸= K, the mean reward received by the agent satisfies

E[rt,I0
t
|Ft−1, It] = E[⟨xt, θI0

t
⟩|Ft−1, It] = ϵt⟨xt, θK⟩+ (1− ϵt)⟨xt, θI†

t
⟩. (19)

In white-box attack scheme, I†
t is the worst arm at context xt. In the black-box setting, the attacker does not

know a priori which arm is the worst. In the proposed black-box attack scheme, as indicated in Equation 15,
we use the lower confidence bound (LCB) method to explore the worst arm and arm I†

t has the smallest lower
confidence bound. 3): Finally, we provide reasons why we choose ϵt using Equation 16. In our white-box
attack scheme, we have that 1/2 < ϵt < 1 − α. Thus, in our black-box attack scheme, we limit the choice
of ϵt to [1/2, 1 − α]. Furthermore, in Equation 6 used for the white-box attack, ϵt is computed by the true
mean reward. Now, in the black-box attack, as the attacker does not know the true coefficient vector, the
attacker uses an estimation of θ to compute the second term in the clip function in Equation 16.

In summary, our design of θ̂0
t,i, I†

t and ϵt can ensure that the attacker’s estimation θ̂0
t,i is close to θi, while

the agent’s estimation θ̂t,i will be close to (1−α)θK . In the following, we make these statements precise, and
formally analyze the performance of the proposed black-box attack scheme. First, we analyze the estimation
θ̂0

t,i at the attacker side. We establish a confidence ellipsoid of ⟨xt, θ̂0
t,i⟩ at the attacker.

Lemma 2. Assume the attacker performs the proposed black-box action poisoning attack. With probability
1− 2δ, we have

|x⊤
t θ̂0

t,i − x⊤
t θi| ≤ β0

t,i∥xt∥(V 0
t,i)−1

holds for all arm i and all t ≥ 0.

Lemma 2 shows that θ̂0
i lies in an ellipsoid with center at θi with high probability, which implies that the

attacker has good estimate. We then analyze the estimation θ̂t,i at the agent side. The following lemma
provides an upper bound on the difference between E[rt,I0

t
|Ft−1, It] and (1− α)⟨xt, θK⟩.

Lemma 3. Under the black-box attack, the estimate obtained by an LinUCB agent satisfies∣∣∣E[rt,I0
t
|Ft−1, It]− (1− α)⟨xt, θK⟩

∣∣∣ ≤ (1− α)β0
t,K∥xt∥(V 0

t,K)−1 + (1 + α)β0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1 .
(20)

simultaneously for all t ≥ 0 when It ̸= K, with probability 1− 2δ.

The bound in Lemma 3 consists of the confidence ellipsoid of the estimate of arm I†
t and that of arm K. As

mentioned above, for a successful attack, the number of pulls on arm I†
t will be limited. Thus, in our proposed

algorithm, the attacker use the importance sampling to obtain the estimate of θi, which will increases the
number of observations that can be used to estimate the coefficient vector of arm I†

t . Using Lemma 3, we
have the following lemma regarding the estimation θ̂t,i at the agent side.

Lemma 4. Consider the same assumption as in Lemma 2. With a probability at least 1 − (3K−1)δ
K , the

estimate θ̂t,i obtained by the LinUCB agent will satisfy

|x⊤
t θ̂t,i − x⊤

t (1− α)θK | ≤
(

1 + 4d/α
√

K log (1 + tL2/(dλ))
)(

ω(t) + LS
√

0.5 log (2KT/δ)
)
∥xt∥V −1

t,i
,

(21)
simultaneously for all arm i ̸= K and all t ≥ 0.

Lemma 4 shows that, under the proposed black-box attack scheme, the agent’s estimate of the parameter
of the non-target arm, i.e. θ̂i, will converge to (1− α)θK . Hence the agent will believe that the target arm
K is the optimal arm for any context in most rounds. Using these supporting lemmas, we can then analyze
the performance of the proposed black-box attack strategy.

10
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Theorem 2. Define γ = minx∈D⟨x, θK⟩. Under the same assumptions as in Lemma 4, with probability at
least 1 − 3δ, for all T ≥ 0, the attacker can manipulate a LinUCB agent into pulling the target arm in at
least T − |C| rounds, using an attack cost

|C| ≤ 2d(K − 1)
(αγ)2

(
2 + 4d

α

√
K log

(
1 + TL2

dλ

))2

log
(
1 + TL2/(dλ)

) (
ω(T ) + LS

√
0.5 log (2KT/δ)

)2
.

(22)

Proof. Detailed proof of Theorem 2 can be found in Appendix C.4. Here we provide a sketch of the main
proof idea.

For round t and context xt, if LinUCB pulls arm i ̸= K, we have

x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt ≤ x⊤

t θ̂t,i + βt,i

√
x⊤

t V −1
t,i xt.

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
x⊤

t θK ≤ x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt holds with probability 1− δ

K .

Thus, by Lemma 4,

x⊤
t θK ≤x⊤

t (1− α)θK + ω(Ni(t))∥xt∥V −1
t,i

+
(

1 + 4d

α

√
K log

(
1 + tL2

dλ

))(
ω(t) + LS

√
1
2 log

(
2KT

δ

))
∥xt∥V −1

t,i
.

(23)

By multiplying both sides by 1{It=i} and summing over rounds, we have

T∑
k=1

1{Ik=i}αx⊤
k θK

≤
T∑

k=1
1{Ik=i}

(
2 + 4d

α

√
K log

(
1 + kL2

dλ

))(
ω(t) + LS

√
1
2 log

(
2KT

δ

))
∥xk∥V −1

k,i
.

(24)

Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and get

T∑
k=1

1{Ik=i}∥xk∥2
V −1

k,i

≤

√
Ni(t)2d log

(
1 + tL2

dλ

)
. (25)

Thus, we have

Ni(t) =
T∑

k=1
1{Ik=i}

≤ 2d

(αγ)2 log
(

1 + tL2

dλ

)(
2 + 4d

α

√
K log

(
1 + tL2

dλ

))2(
ω(t) + LS

√
1
2 log

(
2KT

δ

))2

,

(26)

where γ = minx∈D⟨x, θK⟩.

Theorem 2 shows that our black-box attack strategy can manipulate a LinUCB agent into pulling a target
arm T −O(log3 T ) times with attack cost scaling as O(log3 T ). Compablack with the result for the white-box
attack, the black-box attack only brings an additional log T factor.
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4.4 Generalized Linear Models

We note that the proposed attack strategies can also be extended to generalized linear models. Detailed
analysis of the cost of the proposed attack strategies for the generalized linear contextual bandit model can
be found in Appendix D.

5 Numerical Experiments

In this section, we provide numerical examples to illustrate the impact of proposed action poisoning attack
schemes.

5.1 Attack Linear Contextual Bandit Algorithms

We first empirically evaluate the performance of the proposed action poisoning attack schemes on three
contextual bandit algorithms: LinUCB (Abbasi-Yadkori et al., 2011), LinTS (Agrawal & Goyal, 2013), and
ϵ-Greedy. We run the experiments on three datasets:

Synthetic data: The dimension of contexts and the coefficient vectors is d = 6. We set the first entry
of every context and coefficient vector to 1. The other entries of every context and coefficient vector are
uniformly drawn from (− 1√

d−1 , 1√
d−1 ). Thus, ∥x∥2 ≤

√
2, ∥θ∥2 ≤

√
2 and mean rewards ⟨x, θ⟩ > 0. The

reward noise ηt is drawn from a Gaussian distribution N (0, 0.01).

Jester dataset (Goldberg et al., 2001): Jester contains 4.1 million ratings of jokes in which the rating
values scale from −10.00 to +10.00. We normalize the rating to [0, 1]. The dataset includes 100 jokes and
the ratings were collected from 73,421 users between April 1999 - May 2003. We consider a subset of 10 jokes
and 38432 users. Every jokes are rated by each user. We perform a low-rank matrix factorization (d = 6) on
the ratings data and obtain the features for both users and jokes. At each round, the environment randomly
select a user as the context and the reward noise is drawn from a Gaussian distribution N (0, 0.01).

MovieLens 25M dataset: (Harper & Konstan, 2015) MovieLens 25M dataset contains 25 million
5-star ratings of 62,000 movies by 162,000 users. The preprocessing of this data is almost the same as the
Jester dataset, except that we consider a subset of 10 movies and 7344 users. At each round, the environment
randomly select a user as the context and the reward noise is drawn from N (0, 0.01).

We set δ = 0.1 and λ = 2. For all the experiments, we set the total number of rounds T = 106 and the
number of arms K = 10. We independently run ten repeated experiments. Results reported are averaged
over the ten experiments. We set α to 0.2 for the two proposed attack strategies, hence the target arm may
be the worst arm in some rounds. Each of the individual experimental runs costs up to 10 minutes on one
physical CPU core. The type of CPU is Intel Core i7-8700.
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Figure 2: The cumulative cost of the attacks for the synthetic (Left), Jester (Center) and MovieLens (Right)
datasets.

The results are shown in Table 1 and Figure 2. These experiments show that the action poisoning attacks
can force the three agents to pull the target arm very frequently, while the agents rarely pull the target arm
under no attack. Under the attacks, the true regret of the agent becomes linear as the target arm is not
optimal for most context. Table 1 show the number of rounds the agent pulls the target arm among 106

total rounds. In the synthetic dataset, under the proposed white-box attacks, the target arm is pulled more
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Synthetic Jester MovieLens
ϵ-Greeedy without attacks 2124.6 5908.7 3273.5
White-box attack on ϵ-Greeedy 982122.5 971650.9 980065.6
Black-box attack on ϵ-Greeedy 973378.5 939090.2 935293.8
LinUCB without attacks 8680.9 16927.2 13303.4
White-box attack on LinUCB 981018.7 911676.9 969118.6
Black-box attack on LinUCB 916140.8 875284.7 887373.1
LinTS without attacks 5046.9 18038.0 9759.0
White-box attack on LinTS 981112.8 908488.3 956821.1
Black-box attack on LinTS 918403.8 862556.8 825034.8

Table 1: Average number of rounds when the agent pulls the target arm over T = 106 rounds.

than 98.1% of the times by the three agent (see Table 1). The target arm is pulled more than 91.6% of the
times in the worst case (the black-box attacks on LinUCB). Fig 2 shows the cumulative cost of the attacks
on three agents for the three datasets. The results show that the attack cost |C| of every attack scheme
on every agent for every dataset scales sublinearly, which exposes a significant security threat of the action
poisoning attacks on linear contextual bandits.

5.2 Attack Robust Algorithms

We now discuss existing robust linear bandit algorithms (Ding et al., 2022; Bogunovic et al., 2021) and
evaluate the performance of the proposed attack strategy on these algorithms.

In particular, (Bogunovic et al., 2021) focuses on a special case in which the context and coefficient vectors are
assumed to be fixed over rounds, and developed Robust Phased Elimination (RPE) algorithm. In contrast,
our paper focuses on the general setting where the contexts are different for each round and coefficients are
different for each arm. Hence the RPE algorithm will not work for the contextual bandit setting consideblack
in our paper. (Bogunovic et al., 2021) also proves that a simple greedy algorithm based on linear regression
can be robust to linear contextual bandits with shablack coefficient under a stringent diversity assumption
on the contexts. We empirically evaluate the action attacks on the greedy algorithm in (Bogunovic et al.,
2021). The greedy algorithm is designed in the shablack coefficient setting and may not work in the disjoint
setting.

(Ding et al., 2022) provides a linear contextual bandit algorithm that is robust to rewards attacks and context
attacks. The scheme in (Ding et al., 2022) could be used to defend against the action attacks. However, our
numerical results show that the proposed attack strategy can successfully defeat the scheme in (Ding et al.,
2022). In the following, we empirically evaluate the performance of the proposed action poisoning attack
schemes on RobustBandit algorithm in (Ding et al., 2022).

(He et al., 2022) provides nearly optimal algorithms for linear contextual bandits with adversarial corruptions.
(He et al., 2022) consider two cases: 1) the agent knows the corruption budget; and 2) the agent does not
know the corruption budget. We also empirically evaluate the action attacks on CW-OFUL algorithm in
(He et al., 2022).

We use the same synthetic data setting in Section 5.1. We set δ = 0.1 and λ = 2. For all the experiments,
we set the total number of rounds T = 106 and the number of arms K = 10. We independently run ten
repeated experiments. Results reported are averaged over the ten experiments. We set α to 0.2 for the two
proposed attack strategies. For the action attacks on CW-OFUL algorithm, we run the simulation on the
two cases that the agent know the corruption budget and the agent does not know the corruption budget.
For the case that the agent know the corruption budget, we set the attack budget to 3000 and the attacker
will stop the attack if the budget is exhaust. For the case that the agent does not know the corruption
budget, we does not limit the attack budget.

The simulation results in Figure 3 show that our proposed white-box action poisoning attack can force
the greedy contextual agent in (Bogunovic et al., 2021) to pull the target arm. Although the black-box
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Figure 3: The cumulative cost of the attacks against greedy contextual algorithm in (Bogunovic et al., 2021).

action poisoning attack strategy fails, it causes linear regret on the agent. The greedy contextual algorithm
in (Bogunovic et al., 2021) highly relies a stringent diversity assumption on the contexts. In the disjoint
setting, the agent will pull each arm in some correlated contexts. The stringent diversity assumption may
not be satisfied in disjoint setting. The greedy contextual algorithm in (Bogunovic et al., 2021) will induced
to linear regret as shown in Figure 3.
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Figure 4: The cumulative cost of the attacks against RobustBandit algorithm for the synthetic datasets.

The simulation results in Figure 4 show that our proposed action poisoning attack can force the RobustBandit
agent to pull the target arm with T − o(T ) times. The attack cost also scales sublinearly on T . The reason
why the RobustBandit agent cannot defend against the action attacks is that its regret scales on O(C

√
T ).

If the attack cost C = O(
√

T ), the regret will be linear and the agent will be fooled.
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Figure 5: The cumulative cost of the attacks against CW-OFUL algorithm for the synthetic datasets.

The simulation results in Figure 5 show that our proposed action poisoning attack can force the CW-OFUL
agent to pull the target arm in the case that the agent does not know the corruption budget and the attack
budget is unlimited. The attack cost also scales sublinearly on T . The reason why the CW-OFUL agent
cannot defend against the action attacks is that its regret scales on O(T ) once the corruption level is larger
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than
√

T . CW-OFUL agent can defend the action poisoning attack and achieve sublinear regret when the
agent knows the corruption budget and the attack budget is limited.

5.3 The Attack Performance When the Assumption 1 Violates
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Figure 6: The total costs of the attacks for the synthetic datasets when the Assumption 1 violates.

We now evaluate the sensitivity of the proposed algorithms on Assumption 1. We empirically evaluate
the performance of the proposed action poisoning attack schemes on three contextual bandit algorithms:
LinUCB, LinTS, and ϵ-greedy, when the target arm is the worst for some contexts.

We use the same synthetic data setting in Section 5.1. We set δ = 0.1 and λ = 2. For all the experiments,
we set the total number of rounds T = 106 and the number of arms K = 10. We independently run ten
repeated experiments. Results reported are averaged over the ten experiments. We set α to 0.2 for the two
proposed attack strategies. We manipulate the simulation environments so that the proportions of contexts,
at which the target arm is the worst, are separately controlled around: 0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5.

The results in Figure 6 show the total costs under different proportions of contexts when the target arm is
the worst. The x-axis represents the proportions of context when the target arm is the worst. The y-axis
represents the total cost over 106 rounds. The results shows that the total attack costs scale linearly on the
proportions of contexts when the target arm is the worst. When the proportions of contexts when the target
arm is the worst is small, our proposed attack strategies can still efficiently attacks.

5.4 The Attack Performance When the Rewards Are Normalized in [-1,1]

Here, we would like to note that we make the positive reward assumption for the formal analysis, our results
actually can be generalized to the case with negative rewards. If the positive reward assumption does not
hold, for the case with negative rewards, the attacker can preprocess the reward by adding a positive constant
to all rewards such that all rewards become positive. As long as Assumption 1 holds, the proposed attack
strategy can mislead the agent to believe that the target arm is optimal regardless of the positive reward
assumption.

To illustrate this, we evaluate the performance of the proposed algorithms when negative rewards exist. We
use the same synthetic data setting in Section 5.1. We set δ = 0.1 and λ = 2. For all the experiments, we set
the total number of rounds T = 106 and the number of arms K = 10. We independently run ten repeated
experiments. Results reported are averaged over the ten experiments. We set α to 0.2 for the two proposed
attack strategies. We normalize the rewards in [-1,1]. The attacker preprocesses the rewards by adding a
constant c = 3 to the rewards in his algorithms. In the white-box attack setting, the attacker adds c = 3
to every ⟨x, θ⟩ and use the preprocessed ⟨x, θ⟩ to compute ϵt. In the black-box attack setting, the attacker
adds c = 3 to every reward rt and use the preprocessed rt to compute θ̂ and ϵt.

15



Published in Transactions on Machine Learning Research (02/2023)

0 2 4 6 8 10

Time(t) 10
5

0

5

10

15

C
o
s
t

10
4

White-box attack on LinTS

Black-box attack on LinTS

White-box attack on LinUCB

Black-box attack on LinUCB

White-box attack on -Greeedy

Black-box attack on -Greeedy

Figure 7: The cumulative cost of the attacks when the rewards are normalized in [-1,1].

The results in Figure 7 show that our proposed attack strategies still work for the case with negative rewards.

6 Future Works

In this section, we discuss several future directions.

Linear Bandits with Shablack Coefficients. In this paper, we discuss the disjoint linear contextual
model, similar to those consideblack in (Li et al., 2010; Kong et al., 2020; Garcelon et al., 2020; Huang
et al., 2021), where each arm is associated with its own coefficient vector. At each time, the agent observes
a contextual vector xt that is shablack with all arms.

Our model is different from the linear contextual bandit model with shablack coefficient. In that model,
the coefficient vector θ∗ is shablack with all arms. At each time, each arm i is given a specific contextual
vector xi,t. These contextual vectors form the decision set. The decision set changes over time and can even
be infinite. In this model, adversarial attacks may not always be successful. For example, (Wang et al.,
2022) shows that some attack goals can never be achieved in linear stochastic bandits due to the shablack
coefficient. This may also occur in the linear contextual bandit model with shablack coefficient. It is of
interest to conduct rigorous analysis of action attacks in the shablack coefficient model in the future work.

Attack Strategy without Assumption 1. In Section 5.3, we empirically evaluate the sensitive of the
proposed algorithms on Assumption 1. The results shows that the total attack costs seem to scale linearly
on the proportions of contexts when the target arm is the worst. It is of interest to further theoretically
analyze the phenomenon shown in the simulation results in Section 5.3. However, using current tools analysis
developed in the paper, it is challenging to formally analyze the relationship between the effectiveness of the
action attack strategies and the portion of contexts when the target arm is the worst. On the other hand,
we can try to find a new algorithm that can force the agent to choose the target arm when the target arm
is not the worst. In the following, we provide our initial ideas for this direction.

In the action attack strategies consideblack in the paper, the attacker misleads the agent to obtain an
estimate of the non-target arms’ coefficient vectors that are close to (1 − α)θK . However, this can not be
always achieved without Assumption 1, since the target arm is the worst at some contexts but (1− α)θK is
worse than the target arm. Action attacks can not force the agent to learn (1 − α)θK . We need some new
attack strategies. Here, we provide our initial thoughts on theoretical insights to solve this challenge in the
white-box attack scenario.

If the Assumption 1 does not hold, we set

DK := {x ∈ D : ⟨x, θK⟩ = min
i∈[K]
⟨x, θi⟩}
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as the set of context where the target arm is the worst. We consider such sequence of contexts {xt}t∈[T ] that
xt ∈ DK for all t < TK and TK linearly depends on T .

We consider a r-neighborhood of DK :
D̃K := ∪x∈DK

Br(x),
where Br(x) = {x′ ∈ D : ∥x − x′∥2 < r}. In the white-box attack case, we can find a coefficient vector θ†

such that x⊤θK > x⊤θ† for all context x ∈ DK and x⊤θK > x⊤θ† for all context x ∈ D/D̃K . Then the
attacker force the agent to obtain an estimate of the non-target arms’ coefficient vectors that are close to θ†.
Then the target arm is the optimal in D/D̃K , and the distribution of D̃K is limited.

The proposed attack strategies in this paper may make the target arm to be the optimal in D/D̃K with
some r. Thus, even when the target arm is the worst arm, the attack algorithm designed in this paper can
still work.

It is of interest to conduct rigorous analysis of this strategy in the future work. Furthermore, it is of interest
to carry out the design and analysis for algorithms for the black box attack strategy under this scenario,
which will be more challenging.

7 Conclusion

In this paper, we have proposed a class of action poisoning attacks on linear contextual bandits. We have
shown that our white-box attack strategy is able to force any linear contextual bandit agent, whose regret
scales sublinearly with the total number of rounds, into pulling a target arm chosen by the attacker. We
have also shown that our white-box attack strategy can force LinUCB agent into pulling a target arm
T −O(log2 T ) times with attack cost scaled as O(log2 T ). We have further shown that the proposed black-
box attack strategy can force LinUCB agent into pulling a target arm T −O(log3 T ) times with attack cost
scaled as O(log3 T ). Our results expose a significant security threat to contextual bandit algorithms. In the
future, we will investigate the defense strategy to mitigate the effects of this attack.
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A Necessity of Assumption 1

In the main paper, we show that, if Assumption 1 holds, our proposed attack schemes can successfully attack
LinUCB regardless the context.

Here, we highlight the necessity of Assumption 1 in the sense that, if Assumption 1 does not hold, for some
sequence of context {xt}t∈[T ], there is no efficient action poisoning attack scheme that can successfully attack
LinUCB. If the Assumption 1 does not hold, we set

DK := {x ∈ D|⟨x, θK⟩ = min
i∈[K]
⟨x, θi⟩}

as the set of context where the target arm is the worst. We consider such sequence of contexts {xt}t∈[T ] that
xt ∈ DK for all t < TK and TK linearly depends on T .

If the attacker does not attack the target arm, the target arm is the worst in DK . No matter how we change
the non-target arms to another arm, the cost and loss will linearly depend on TK and therefore linearly
depend on T .

If the attacker attacks the target arm when xt ∈ DK and changes the target arm to a better arm or the
optimal arm so that the agent learns that the target set is optimal even in the context set DK , the cost of
attack may be up to O(TK) and hence scales as O(T ). We define

τK,[K−1](t) = {s : s ≤ t, Is = K but I0
s ̸= K}

as the set of rounds up to t where the attacker attacks arm K and CK(t) = |τK,[K−1](t)| as the attack cost
of attacking arm K. We can show that if we attack the target arm, for any attack scheme,

∥θ̂t,K − θK∥Vt,K
≤ ∥V −1

t,K

∑
s∈τK,[K−1](t)

LSxs∥Vt,K

≤
∑

s∈τK,[K−1](t)

LS
√

x⊤
s V −1

t,Kxs

≤ LS

√
CK(t)

∑
s∈τK,[K−1](t)

∥xs∥2
V −1

t,K

≤ LS

√
2dCK(t) log

(
1 + NK(t)L2

dλ

)
,

(27)

where the last inequality is obtained by the Lemma 11 from (Abbasi-Yadkori et al., 2011). Then, the average
estimation error of the mean reward of arm K is bounded by

1/TK

TK∑
t=1
|x⊤

t (θ̂t,K − θK)|

≤1/TK

TK∑
t=1
∥θ̂t,K − θK∥Vt,K

∥xt∥V −1
t,K

≤2dLS log
(

1 + NK(TK)L2

dλ

)√
CK(TK)/TK .

(28)

Note that we consider a sequence of contexts {xt}t∈[T ] that xt ∈ DK for all t < TK and τ linearly depends on
T . In the action poisoning attacks, if the attacker tries to blackuce the rewards of non-target arms, he can
change the non-target arm to a worse arm or the worst arm. However, the target arm K is the worst arm
for all t < TK . The mean rewards of the non-target arm at the contexts {xt}t∈[TK ] must be larger or equal
to x⊤

t θK . If the attacker tries to force the agent to pull the target arm in linear time at the first TK rounds,
the attacker needs to let the post-attack arm K be ∆-optimal than the original arm K. If the attacker tries
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to let the post-attack arm K be ∆-optimal than the original arm K, we have CK(TK) = Õ(TK), where Õ
ignores the logarithm dependency.

In summary, without the prior information of the context distribution or the context sequence, there is no
action poisoning attack scheme that can always efficiently attack without Assumption 1. However, in some
situations, some action poisoning attack scheme may still work even if the target arm is the worst in a small
portion of the contexts, as shown in the numerical result session.

B Attack Cost Analysis of White-box Setting

B.1 Proof of Proposition 1

When the agent pulls a non-target arm It ̸= K, the mean reward received by the agent should satisfy

E[rt,I0
t
|Ft−1, It] = (1− α)⟨xt, θK⟩.

In the observation of the agent, the target arm becomes optimal and the non-target arms are associated with
the coefficient vector (1− α)θK . In addition, the cumulative pseudo-regret should satisfy

R̄T =
T∑

t=1
1{It ̸=K}α⟨xt, θK⟩ ≥

T∑
t=1

1{It ̸=K}αγ.

We define γ = minx∈D⟨x, θK⟩. If R̄T is upper bounded by o(T ),
∑T

t=1 1{It ̸=K} is also upper bounded by
o(T ).

B.2 Proof of Lemma 1

If the agent computes an estimate of θi by equation 4 and Vt,i =
(∑

k∈τi(t−1) xkx⊤
k + λI

)
, we have

x⊤
t θ̂t,i − x⊤

t (1− α)θK

=x⊤
t V −1

t,i

 ∑
k∈τi(t−1)

rt,I0
k
xk

− x⊤
t V −1

t,i Vt,i(1− α)θK

=x⊤
t V −1

t,i

 ∑
k∈τi(t−1)

xk

(
rt,I0

k
− (1− α)x⊤

k θK

)− λx⊤
t V −1

t,i (1− α)θK

=
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k

+ ηk − (1− α)x⊤
k θK

)
− λx⊤

t V −1
t,i (1− α)θK ,

(29)

and by triangle inequality,

|x⊤
t θ̂t,i − x⊤

t (1− α)θK |

≤

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− (1− α)x⊤

k θK

)∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xkηk

∣∣∣∣∣∣+
∣∣λx⊤

t V −1
t,i (1− α)θK

∣∣ . (30)

Now we separately bound the three items in the RHS of Equation 30.

(1) In our model, the mean reward is bounded by 0 < ⟨xt, θi⟩ ≤ ∥xt∥2
2∥θi∥2

2 = LS. Since the mean
rewards are bounded and the rewards are generated independently, we have 0 ≤

∣∣∣x⊤
k θI0

k
− (1− α)x⊤

k θK

∣∣∣ ≤
LS and E[x⊤

k θI0
k
|Fk−1] = (1 − α)x⊤

k θK , where the post-attack action I0
k is the random variable. Thus,{

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− (1− α)x⊤

k θK

)}
k∈τi(t−1)

is a bounded martingale difference sequence w.r.t the filtration

{Fk}k∈τi(t−1).
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Then, by Azuma’s inequality,

P(|
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− (1− α)x⊤

k θK

)
| ≥ B)

≤2 exp
(

−2B2∑
k∈τi(t−1)(x⊤

t V −1
t,i xkLS)2

)
=Pt,i,

(31)

where B represents confidence bound. In order to ensure the confidence bounds hold for all arms and all
round t simultaneously, we set Pt,i = δ

KT so

B = LS

√√√√1
2 log

(
2KT

δ

) ∑
k∈τi(t−1)

(x⊤
t V −1

t,i xk)2 ≤ LS

√
1
2 log

(
2KT

δ

)
∥xt∥V −1

t,i
, (32)

where the last inequality is obtained from the fact that

∥xt∥2
V −1

t,i

= x⊤
t V −1

t,i

 ∑
k∈τi(t−1)

xkx⊤
k + λI

V −1
t,i xt

≥ x⊤
t V −1

t,i

 ∑
k∈τi(t−1)

xkx⊤
k

V −1
t,i xt

=
∑

k∈τi(t−1)

(x⊤
t V −1

t,i xk)2.

(33)

In other words, with probability 1− δ, we have∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− (1− α)x⊤

k θK

)∣∣∣∣∣∣ ≤ LS

√
1
2 log

(
2KT

δ

)
∥xt∥V −1

t,i
, (34)

for all arms and all t.

(2) Note that Vt,i =
∑

k∈τi(t−1) xkx⊤
k + λI is positive definite. We define ⟨x, y⟩V = x⊤V y as the weighted

inner-product. According to Cauchy-Schwarz inequality, we have∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xkηk

∣∣∣∣∣∣ ≤ ∥xt∥V −1
t,i

∥∥∥∥∥∥
∑

k∈τi(t−1)

xkηk

∥∥∥∥∥∥
V −1

t,i

. (35)

Assume that λ ≥ L. From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al., 2011), we know that for any
δ > 0, with probability at least 1− δ∥∥∥∥∥∥

∑
k∈τi(t−1)

xkηk

∥∥∥∥∥∥
2

V −1
t,i

≤ 2R2 log
(

K det(Vt,i)1/2 det(λI)−1/2

δ

)

≤ R2
(

2 log K

δ
+ d log

(
1 + L2Ni(t)

λd

))
,

(36)

for all arms and all t > 0.

(3) For the third part of the right hand side of Equation 30,

|λx⊤
t V −1

t,i (1− α)θK | ≤ ∥(1− α)λθK∥V −1
t,i
∥xt∥V −1

t,i
. (37)
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Since Vt,i ⪰ λI, the maximum eigenvalue of V −1
t,i is smaller or equal to 1/λ. Thus,

∥(1− α)λθK∥2
V −1

t,i
≤ 1

λ
∥(1− α)λθK∥2

2 ≤ (1− α)2λS2.

In summary,

|x⊤
t θ̂t,i − x⊤

t (1− α)θK |

≤

(
(1− α)

√
λS + LS

√
1
2 log

(
2KT

δ

)
+ R

√
2 log K

δ
+ d log

(
1 + L2Ni(t)

λd

))
∥xt∥V −1

t,i
.

(38)

B.3 Proof of Theorem 1

For round t and context xt, if LinUCB pulls arm i ̸= K, we have

x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt ≤ x⊤

t θ̂t,i + βt,i

√
x⊤

t V −1
t,i xt.

Recall βt,i =
√

λS + R

√
2 log K

δ + d log
(

1 + L2Ni(t)
λd

)
.

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
x⊤

t θK ≤ x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt holds with probability 1− δ

K .

Then, by Lemma 1,

x⊤
t θK ≤x⊤

t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt

≤x⊤
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√
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+
(

LS

√
1
2 log
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δ

)
+ ω (Ni(t))
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∥xt∥V −1

t,i
.

(39)

By multiplying both sides 1{It=i} and summing over rounds, we have

T∑
k=1

1{Ik=i}αx⊤
k θK

≤
T∑

k=1
1{Ik=i}

(
βk,i +

√
λS + LS

√
1
2 log

(
2KT

δ

)
+ R

√
2 log K

δ
+ d log
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λd
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∥xk∥V −1

k,i
.

(40)

Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and obtain

T∑
k=1

1{Ik=i}∥xk∥2
V −1

k,i

≤ 2d log(1 + Ni(t)L2

dλ
)

≤ 2d log
(

1 + tL2

dλ

)
.

(41)

According to
∑T

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√

Ni(t)
∑T

k=1 1{Ik=i}∥xk∥2
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, we have
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≤
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)
. (42)
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Thus, we have

T∑
k=1

1{Ik=i}αx⊤
k θK

≤

√
Ni(t)2d log

(
1 + tL2

dλ

)(
LS

√
1
2 log

(
2KT

δ

)
+ 2
√

λS + 2R

√
2 log K

δ
+ d log

(
1 + tL2

λd

))
.

(43)

and
T∑

k=1
1{Ik=i}

≤ 1
αγ

√
Ni(t)2d log

(
1 + tL2

dλ

)(
LS

√
1
2 log

(
2KT

δ

)
+ 2
√

λS + 2R

√
2 log K

δ
+ d log

(
1 + tL2

λd

))
,

(44)

where γ = minx∈D⟨x, θK⟩. Since Ni(t) =
∑T

k=1 1{Ik=i}, we have

Ni(t) ≤
2d

(αγ)2 log
(

1 + tL2

dλ

)(
2
√

λS + LS

√
1
2 log

(
2KT

δ

)
+ 2R

√
2 log K

δ
+ d log

(
1 + tL2

λd

))2

. (45)

C Attack Cost Analysis of Black-box Setting

C.1 Proof of Lemma 2

Since the estimate of θi obtained by the agent satisfies

θ̂0
t,i =

(
V 0

t,i

)−1

 ∑
k∈τ†

i
(t−1)

wk,irk,I0
k
xk

 , (46)

we have
x⊤

t θ̂0
t,i − x⊤

t θi

=x⊤
t

(
V 0

t,i

)−1

 ∑
k∈τ†

i
(t−1)

wk,irk,I0
k
xk

− x⊤
t

(
V 0

t,i

)−1
V 0

t,iθi

=x⊤
t

(
V 0

t,i

)−1

 ∑
k∈τ†

i
(t−1)

(wk,irk,I0
k
− x⊤

k θi)xk

− λx⊤
t

(
V 0

t,i

)−1
θi

=x⊤
t

(
V 0

t,i

)−1

 ∑
k∈τ†

i
(t−1)

(wk,ix
⊤
k θI0

k
− x⊤

k θi)xk


+ x⊤

t

(
V 0

t,i

)−1

 ∑
k∈τ†

i
(t−1)

wk,iηk

− λx⊤
t

(
V 0

t,i

)−1
θi.

Now we separately bound the three items in the RHS of Equation 47.

(1) We have 0 ≤
∣∣∣wk,ix

⊤
k θI0

k
− x⊤

k θi

∣∣∣ ≤ wk,iLS and E[wk,ix
⊤
k θI0

k
|Fk−1] = x⊤

k θi, where the post-attack action
I0

k is the random variable. In addition, by the definition of wk,i, we have that wk,i ≤ 1/α if i ̸= K,
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and wk,i ≤ 2 if i = K. Thus,
{

x⊤
t (V 0

t,i)−1∑
k∈τ†

i
(t−1)(wk,ix

⊤
k θI0

k
− x⊤

k θi)xk

}
k∈τi(t−1)

is also a bounded

martingale difference sequence w.r.t the filtration {Fk}k∈τi(t−1). By following the steps in Section B.2, we
have, with probability 1− K−1

K δ, for any arm i ̸= K and any round t,∣∣∣∣∣∣∣x⊤
t

(
V 0

t,i

)−1

 ∑
k∈τ†

i
(t−1)

(wk,ix
⊤
k θI0

k
− x⊤

k θi)xk


∣∣∣∣∣∣∣ ≤

LS

α

√
1
2 log

(
2KT

δ

)
∥xt∥(V 0

t,i)−1 ,

and with probability 1− 1
K δ, for arm K and any round t,∣∣∣∣∣∣∣x⊤

t

(
V 0

t,K

)−1

 ∑
k∈τ†

K
(t−1)

(wk,Kx⊤
k θI0

k
− x⊤

k θK)xk


∣∣∣∣∣∣∣ ≤ 2LS

√
1
2 log

(
2KT

δ

)
∥xt∥(V 0

t,K)−1 .

(2) The confidence bound of the second item of the right side hand of Equation 47 can be obtained from
Equation 36. With probability, 1− K−1

K δ, for any arm i ̸= K and any round t,∣∣∣∣∣∣∣x⊤
t

(
V 0

t,i

)−1

 ∑
k∈τ†

i
(t−1)

wk,iηk


∣∣∣∣∣∣∣ ≤

R

α

√√√√2 log K

δ
+ d log

(
1 + L2N†

i (t)
λd

)
∥xt∥(V 0

t,i)−1 . (47)

With probability, 1− 1
K δ, for arm K and any round t,∣∣∣∣∣∣∣x⊤

t

(
V 0

t,K

)−1

 ∑
k∈τ†

K
(t−1)

wk,Kηk


∣∣∣∣∣∣∣ ≤ 2R

√√√√2 log K

δ
+ d log

(
1 + L2N†

K(t)
λd

)
∥xt∥(V 0

t,K)−1 . (48)

(3) For the third part of the right hand side of Equation 47,

|λx⊤
t

(
V 0

t,i

)−1
θi| ≤ ∥λθi∥(V 0

t,i)−1 ∥xt∥(V 0
t,i)−1 ≤

√
λS ∥xt∥(V 0

t,i)−1 . (49)

In summary,

|x⊤
t θ̂0

t,i − x⊤
t θi|

≤ϕi

√λS + LS

√
1
2 log

(
2KT

δ

)
+ R

√√√√2 log K

δ
+ d log

(
1 + L2N†

i (t)
λd

) ∥xt∥(V 0
t,K)−1 ,

(50)

where ϕi = 1/α when i ̸= K and ϕK = 2.

C.2 Proof of Lemma 3

Recall the definition of ϵt:

ϵt = clip

1
2 ,

(1− α)⟨xt, θ̂0
t,K⟩ − ⟨xt, θ̂0

t,I†
t

⟩

⟨xt, θ̂0
t,K⟩ − ⟨xt, θ̂0

t,I†
t

⟩
, 1− α

 , (51)

and the definition of I†
t :

I†
t = arg min

i̸=K

(
⟨xt, θ̂0

t,i⟩ − β0
t,i∥xt∥(V 0

t,i
)−1

)
. (52)
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By Lemma 2, ⟨xt, θ̂0
t,I†

t

⟩ − β0
t,I†

t

∥xt∥(V 0
t,I

†
t

)−1 ≤ mini⟨xt, θi⟩ with probability 1− 2δ.

Because ϵt is bounded by [1/2, 1− α], we can analyze E[rt,I0
t
|Ft−1, It] in four cases.

Case 1: when ⟨xt, θ̂0
t,K⟩ < ⟨xt, θ̂0

t,I†
t

⟩ and ϵt = 1− α, we have

E[rt,I0
t
|Ft−1, It] = (1− α)⟨xt, θK⟩+ α⟨xt, θI†

t
⟩. (53)

Then, by Lemma 2,

(1− α)x⊤
t θK + αx⊤

t θI†
t
− (1− α)x⊤

t θK

≤(1− α)
(

x⊤
t θ̂0

t,K + β0
t,K∥xt∥(V 0

t,K)−1

)
+ α

x⊤
t θ̂0

t,I†
t

+ β0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1

− (1− α)x⊤
t θK

≤x⊤
t θ̂0

t,I†
t

+ (1− α)β0
t,K∥xt∥(V 0

t,K)−1 + αβ0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1 − (1− α)x⊤
t θK

≤(1− α)β0
t,K∥xt∥(V 0

t,K)−1 + (1 + α)β0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1 ,

(54)

where the second inequality is obtained by the condition of Case 1 and the last inequality is obtained by
x⊤

t θ̂0
t,I†

t

− β0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1 ≤ mini⟨xt, θi⟩ and Assumption 1.

On the other side, we have

(1− α)x⊤
t θK + αx⊤

t θI†
t
− (1− α)x⊤

t θK = αx⊤
t θI†

t
≥ 0. (55)

Case 2: when ⟨xt, θ̂0
t,K⟩ ≥ ⟨xt, θ̂0

t,I†
t

⟩ > (1− 2α)⟨xt, θ̂0
t,K⟩ and ϵt = 1/2, we have

E[rt,I0
t
|Ft−1, It] = 1

2 ⟨xt, θK⟩+ 1
2 ⟨xt, θI†

t
⟩. (56)

Then, by Lemma 2,
1
2(x⊤

t θK + x⊤
t θI†

t
)− (1− α)x⊤

t θK

=1
2

(
x⊤

t θI†
t
− (1− 2α)x⊤

t θK

)

≤1
2

x⊤
t θ̂0

t,I†
t

+ β0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1 − (1− 2α)x⊤
t θK


≤β0

t,I†
t

∥xt∥(
V 0

t,I
†
t

)−1

where the last inequality is obtained by x⊤
t θ̂0

t,I†
t

− β0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1 ≤ mini⟨xt, θi⟩ and Assumption 1.
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On the other side, by Lemma 2,

1
2(x⊤

t θK + x⊤
t θI†

t
)− (1− α)x⊤

t θK

≥1
2

x⊤
t θ̂0

t,I†
t

− β0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1

− 1
2(1− 2α)

(
x⊤

t θ̂0
t,K + β0

t,K∥xt∥(V 0
t,K)−1

)

≥− 1
2β0

t,I†
t

∥xt∥(
V 0

t,I
†
t

)−1 − 1
2(1− 2α)β0

t,K∥xt∥(V 0
t,K)−1 .

(57)

where the last inequality is obtained by the conditions of Case 2.

Case 3: when 0 ≤ ⟨xt, θ̂0
t,I†

t

⟩ ≤ (1− 2α)⟨xt, θ̂0
t,K⟩ and 1/2 ≤ ϵt ≤ 1− α, we have

E[rt,I0
t
|Ft−1, It] = ϵt⟨xt, θK⟩+ (1− ϵt)⟨xt, θI†

t
⟩. (58)

We can find that

ϵt⟨xt, θK⟩+ (1− ϵt)⟨xt, θI†
t
⟩ − (1− α)⟨xt, θK⟩

=ϵt(⟨xt, θK⟩ − ⟨xt, θI†
t
⟩) + ⟨xt, θI†

t
⟩ − (1− α)⟨xt, θK⟩

=ϵt(⟨xt, θ̂0
t,K⟩ − ⟨xt, θ̂0

t,I†
t

⟩) + ⟨xt, θI†
t
⟩ − (1− α)⟨xt, θK⟩

+ ϵt(⟨xt, θ̂0
t,I†

t

⟩ − ⟨xt, θI†
t
⟩) + ϵt(⟨xt, θK⟩ − ⟨xt, θ̂0

t,K⟩)

=(1− α)⟨xt, θ̂0
t,K⟩ − ⟨xt, θ̂0

t,I†
t

⟩+ ⟨xt, θI†
t
⟩ − (1− α)⟨xt, θK⟩

+ ϵt(⟨xt, θ̂0
t,I†

t

⟩ − ⟨xt, θI†
t
⟩) + ϵt(⟨xt, θK⟩ − ⟨xt, θ̂0

t,K⟩)

=(1− α− ϵt)
(
⟨xt, θ̂0

t,K⟩ − ⟨xt, θK⟩
)

+ (1− ϵt)
(
⟨xt, θ̂0

t,I†
t

⟩ − ⟨xt, θI†
t
⟩
)

,

(59)

which is equivalent to ∣∣∣E[rt,I0
t
|Ft−1, It]− (1− α)⟨xt, θK⟩

∣∣∣
≤(1− α− ϵt)β0

t,K∥xt∥(V 0
t,K)−1 + (1− ϵt)β0

t,I†
t

∥xt∥(
V 0

t,I
†
t

)−1 . (60)

Case 4: when ⟨xt, θ̂0
t,I†

t

⟩ < 0 and ϵt = 1− α, we have

E[rt,I0
t
|Ft−1, It] = (1− α)⟨xt, θK⟩+ α⟨xt, θI†

t
⟩. (61)

Then, by Lemma 2,
(1− α)x⊤

t θK + αx⊤
t θI†

t
− (1− α)x⊤

t θK

=αx⊤
t θI†

t

≤αx⊤
t θ̂0

t,I†
t

+ αβ0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1

≤αβ0
t,I†

t

∥xt∥(
V 0

t,I
†
t

)−1 ,

(62)

where the last inequality is obtained by the condition of Case 4. We also have

(1− α)x⊤
t θK + αx⊤

t θI†
t
− (1− α)x⊤

t θK = αx⊤
t θI†

t
≥ 0. (63)

27



Published in Transactions on Machine Learning Research (02/2023)

Combining these four cases, we have

∣∣∣E[rt,I0
t
|Ft−1, It]− (1− α)⟨xt, θK⟩

∣∣∣
≤(1− α)β0

t,K∥xt∥(V 0
t,K)−1 + (1 + α)β0

t,I†
t

∥xt∥(
V 0

t,I
†
t

)−1 . (64)

C.3 Proof of Lemma 4

From Section B.2, we have, for any arm i ̸= K,

|x⊤
t θ̂t,i − x⊤

t (1− α)θK |

≤

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− (1− α)x⊤

k θK

)∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xkηk

∣∣∣∣∣∣+
∣∣λx⊤

t V −1
t,i (1− α)θK

∣∣
≤

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− ϵk⟨xk, θK⟩ − (1− ϵk)⟨xk, θI†

k
⟩
)∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
ϵk⟨xk, θK⟩+ (1− ϵk)⟨xk, θI†

k
⟩ − (1− α)x⊤

k θK

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xkηk

∣∣∣∣∣∣+
∣∣λx⊤

t V −1
t,i (1− α)θK

∣∣ .

(65)

Now we separately bound the first item and second item in the RHS of Equation 65. The bounds of the
third item and fourth item in the RHS of Equation 65 are provided in Section B.2.

(1) Since the mean rewards are bounded and the rewards are generated independently, we have 0 ≤∣∣∣x⊤
k θI0

k
− ϵk⟨xk, θK⟩ − (1− ϵk)⟨xk, θI†

k
⟩
∣∣∣ ≤ LS and E[x⊤

k θI0
k
|Fk−1] = ϵk⟨xk, θK⟩+ (1− ϵk)⟨xk, θI†

k
⟩.

Then
{

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− E[x⊤

k θI0
k
|Fk−1]

)}
k∈τi(t−1)

is also a bounded martingale difference sequence w.r.t

the filtration {Fk}k∈τi(t−1). By following the steps in Section B.2, we have, with probability 1 − δ, for any
arm i and any round t,

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
x⊤

k θI0
k
− E[x⊤

k θI0
k
|Fk−1]

)∣∣∣∣∣∣ ≤ LS

√
1
2 log

(
2KT

δ

)
∥xt∥V −1

t,i
. (66)

(2) From Equation 33 in Section B.2, we have

∥xt∥2
V −1

t,i

≥
∑

k∈τi(t−1)

(x⊤
t V −1

t,i xk)2. (67)
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Then, the second item of the right hand side of Equation 65 can be upper bounded by

∣∣∣∣∣∣
∑

k∈τi(t−1)

x⊤
t V −1

t,i xk

(
ϵk⟨xk, θK⟩+ (1− ϵk)⟨xt, θI†

k
⟩ − (1− α)x⊤

k θK

)∣∣∣∣∣∣
≤

√√√√ ∑
k∈τi(t−1)

(
E[rk,I0

k
|Fk−1, Ik]− (1− α)x⊤

k θK

)2√ ∑
k∈τi(t−1)

(x⊤
t V −1

t,i xk)2

≤

 ∑
k∈τi(t−1)

(1− α)β0
k,K∥xk∥(V 0

k,K)−1 + (1 + α)β0
k,I†

k

∥xk∥(
V 0

k,I
†
k

)−1


2

1
2

∥xt∥V −1
t,i

,

(68)

where the first inequality is obtained from Cauchy-Schwarz inequality, the second inequality is obtained from
Lemma 3 and Equation 33.

In addition, by the fact that (a + b)2 ≤ 2a2 + 2b2 for any real number, we have

∑
k∈τi(t−1)

(1− α)β0
k,K∥xk∥(V 0

k,K)−1 + (1 + α)β0
k,I†

k

∥xk∥(
V 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2
(

(1− α)β0
k,K∥xk∥(V 0

k,K)−1

)2
+

∑
k∈τi(t−1)

2

(1 + α)β0
k,I†

k

∥xk∥(
V 0

k,I
†
k

)−1


2

.

(69)

Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and get, for any arm i,

∑
k∈τ†

i
(t−1)

∥xk∥2
(V 0

k,i
)−1 ≤ 2d log

(
1 + Ni(t)L2

dλ

)
≤ 2d log

(
1 + tL2

dλ

)
. (70)

By the fact that
∑

i τi(t − 1) = τ †
K(t − 1), and

∑
i ̸=K τi(t − 1) =

∑
i ̸=K τ †

i (t − 1), we have, for any arm i,
τi(t− 1) ⊆ τ †

K(t− 1), and τi(t− 1) ⊆
∑

j ̸=K τ †
j (t− 1). Thus,

∑
k∈τi(t−1)

∥xk∥2
(V 0

k,K)−1 ≤
∑

k∈τ†
K

(t−1)

∥xk∥2
(V 0

k,K
)−1 ≤ 2d log

(
1 + tL2

dλ

)
, (71)

and

∑
k∈τi(t−1)

∥xk∥2(
V 0

k,I
†
k

)−1 ≤
∑
i ̸=K

∑
k∈τ†

i
(t−1)

∥xk∥2
(V 0

k,i
)−1 ≤ 2(K − 1)d log

(
1 + tL2

dλ

)
. (72)
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By combining the definition of β0
t,i, Equation 69, Equation 71 and Equation 72, we have

∑
k∈τi(t−1)

(1− α)β0
k,K∥xk∥(V 0

k,K)−1 + (1 + α)β0
k,I†

k

∥xk∥(
V 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2
(

β0
k,K∥xk∥(V 0

k,K)−1

)2
+

∑
k∈τi(t−1)

2

2β0
k,I†

k

∥xk∥(
V 0

k,I
†
k

)−1


2

≤16d2

(
ω(t) + LS

√
1
2 log

(
2KT

δ

))2

log
(

1 + tL2

dλ

)

+ 16d2(K − 1)
α2

(
ω(t) + LS

√
1
2 log

(
2KT

δ

))2

log
(

1 + tL2

dλ

)

≤16d2K

α2

(
ω(t) + LS

√
1
2 log

(
2KT

δ

))2

log
(

1 + tL2

dλ

)
.

(73)

In summary, we have

|x⊤
t θ̂t,i − x⊤

t (1− α)θK |

≤

(
1 + 4d

α

√
K log

(
1 + tL2

dλ

))(
ω(t) + LS

√
1
2 log

(
2KT

δ

))
∥xt∥V −1

t,i
.

(74)

C.4 Proof of Theorem 2

For round t and context xt, if LinUCB pulls arm i ̸= K, we have

x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt ≤ x⊤

t θ̂t,i + βt,i

√
x⊤

t V −1
t,i xt.

In this case, βt,i = ω(Ni(t)) =
√

λS + R

√
2 log K

δ + d log
(

1 + L2Ni(t)
λd

)
.

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
x⊤

t θK ≤ x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt holds with probability 1− δ

K .

Thus, by Lemma 4,

x⊤
t θK ≤x⊤

t θ̂t,i + βt,i

√
x⊤

t V −1
t,i xt

≤x⊤
t (1− α)θK + ω(Ni(t))∥xt∥V −1

t,i

+
(

1 + 4d

α

√
K log

(
1 + tL2

dλ

))(
ω(t) + LS

√
1
2 log

(
2KT

δ

))
∥xt∥V −1

t,i
.

(75)

By multiplying both sides by 1{It=i} and summing over rounds, we have

T∑
k=1

1{Ik=i}αx⊤
k θK

≤
T∑

k=1
1{Ik=i}

(
2 + 4d

α

√
K log

(
1 + kL2

dλ

))(
ω(t) + LS

√
1
2 log

(
2KT

δ

))
∥xk∥V −1

k,i
.

(76)
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Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and get
T∑

k=1
1{Ik=i}∥xk∥2

V −1
k,i

≤ 2d log
(

1 + Ni(t)L2

dλ

)
≤ 2d log

(
1 + tL2

dλ

)
. (77)

According to
∑T

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√

Ni(t)
∑T

k=1 1{Ik=i}∥xk∥2
V −1

k,i

, we have

T∑
k=1

1{Ik=i}∥xk∥2
V −1

k,i

≤

√
Ni(t)2d log

(
1 + tL2

dλ

)
. (78)

Thus, we have
T∑

k=1
1{Ik=i}αx⊤

k θK

≤

√
Ni(t)2d log

(
1 + tL2

dλ

)(
2 + 4d

α

√
K log

(
1 + tL2

dλ

))(
ω(t) + LS

√
1
2 log

(
2KT

δ

))
,

(79)

and

Ni(t) =
T∑

k=1
1{Ik=i}

≤ 2d

(αγ)2 log
(

1 + tL2

dλ

)(
2 + 4d

α

√
K log

(
1 + tL2

dλ

))2(
ω(t) + LS

√
1
2 log

(
2KT

δ

))2

,

(80)

where γ = minx∈D⟨x, θK⟩.

D Attacks on Generalized Linear Contextual Bandits

In the generalized linear model (GLM), there is a fixed, strictly increasing link function µ : R→ R such that
the reward satisfies

rt,It
= µ(⟨xt, θIt

⟩) + ηt,

where ηt is a conditionally independent zero-mean R-subgaussian noise and ⟨·, ·⟩ denotes the inner product.
If we consider the σ-algebra Ft = σ(η1, . . . , ηt), ηt becomes Ft measurable.

Hence, the expected reward of arm i under context xt follows the GLM setting: E[rt,i] = µ(⟨xt, θi⟩) for all t
and all arm i. One can verify that µ(x) = x leads to the linear model and µ(x) = exp(x)/(1 + exp(x)) leads
to the logistic model.

We assume that the link function µ is continuously twice differentiable, Lipschitz with constant kµ and such
that cµ = infθ∈Θ,x∈D µ̇(x⊤θ) > 0, where µ̇ denote the first derivatives of µ. It can be verified that the link
function of the linear model is Lipschitz with constant kµ = 1 and which of the logistic model is Lipschitz
with constant kµ = 1/4.

The agent is interested in minimizing the cumulative pseudo-regret, and the cumulative pseudo-regret for
the GLM can be formally written as

RT =
T∑

t=1

(
µ(⟨xt, θI∗

t
⟩)− µ(⟨xt, θIt

⟩)
)

, (81)

where I∗
t = arg maxi µ(⟨xt, θi⟩).

For the GLM consideblack here, µ is a strictly increasing function and I∗
t = arg maxi µ(⟨xt, θi⟩) =

arg maxi⟨xt, θi⟩. As the link function µ is strictly increasing, the target arm is not the worst arm under
Assumption 1.
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D.1 Overview of UCB-GLM

For reader’s convenience, we first provide a brief overview of the UCB-GLM algorithm (Li et al., 2017). The
UCB-GLM algorithm is summarized in Algorithm 3.

The algorithm is simply initialized by play every arm j times to ensure a unique solution of θ̂i for each arm
i. We assume that after playing arm i J times, Vi is invertible and the minimal eigenvalue of Vi is greater
or equal to λ0 for all arm i. We assume that xt is drawn iid from some distribution v with support in the
unit ball and set Σ := E[xtx

⊤
t ]. Proposition 1 in (Li et al., 2017) shows that there exist positive, universal

constants D1 and D2 such that λmin(Vi) ≥ λ0 with probability at least 1− δ, as long as

J ≥

(
D1
√

d + D2
√

log(1/δ)
λmin(Σ)

)2

+ 2λ0

λmin(Σ) . (82)

Algorithm 3 UCB-GLM (Li et al., 2017)
Require:

number of arms K, number of rounds T , number of initial rounds j.
1: Initialize for every arm i.
2: Play every arm J times. At each time, update V̄It ← VIt + xtx

⊤
t .

3: for t = KJ + 1, KJ + 2, . . . , T do
4: observe the context xt.
5: for i = 1, 2, . . . , K do
6: Calculate the maximum-likelihood estimator θ̂i by solving the equation∑

n∈τi(t−1)

(rn − µ(x⊤
n θ̂i))xn = 0.

7: Compute the upper confidence bound: pt,i ← x⊤
t θ̂i + βt,i

√
x⊤

t V̄ −1
i xt.

8: end for
9: Pull arm It = arg maxi pt,i.

10: The environment generates reward rt according to arm It.
11: The agent receive rt.
12: V̄It

← V̄It
+ xtx

⊤
t .

13: end for

By following the setup in (Li et al., 2017), we set βt,i = 2R
cµ

√
log K

δ + d log
(

1 + L2Ni(t)
λ0d

)
for GLM.

D.2 White-box Attack Strategy

Similar to the white-box attack strategy for linear contextual bandits, the white-box attack strategy for
GLM works as follows. When the agent chooses arm K, the attacker does not attack. When the agent
chooses arm It ̸= K, the attacker changes it to arm

I0
t =

{
K with probability ϵt

I†
t with probability 1− ϵt

(83)

where I†
t = arg mini⟨xt, θi⟩ and

ϵt = µ((1− α)⟨xt, θK⟩)− µ(mini⟨xt, θi⟩)
µ(⟨xt, θK⟩)− µ(mini⟨xt, θi⟩)

. (84)

The attacker can manipulate the agent into learning some particular coefficient vectors. In particular, for
arm K (the target arm), the agent obtains the true coefficient vector θK . For any arm i ̸= K, because of
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the attacks, the agent will obtain an estimate of arm i’s coefficient vector to be close to (1 − α)θK . Under
the white-box attack, when the agent pulls a non-target arm It ̸= K, the mean reward received by the agent
should satisfy

E[rt,I0
t
|Ft−1, It] = µ((1− α)⟨xt, θK⟩).

Proposition 2. For δ > 0. Suppose the agent employs a generalized linear contextual bandit algorithm
whose cumulative pseudo-regret is upper bounded by o(T ) over T with probability at least 1− δ. When using
the proposed white-box attack scheme, with probability at least 1− δ, the attacker can force the agent to pull
the target arm for T − o(T ) times, while the total attack cost |C| is upper bounded by o(T ).

The proof of Proposition 2 is provided in Appendix E.1. To further illustrate the proposed attack scheme,
we now provide a finer analysis the impact of this attack on UCB-GLM described in Algorithm 3.
Lemma 5. Under the proposed white-box attack, the estimate of θi for each arm i ̸= K obtained by UCB-
GLM agent as described in Algorithm 3 satisfies

|x⊤
t θ̂t,i − x⊤

t (1− α)θK | ≤
2kµLS + 2R

cµ

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
∥xt∥V̄ −1

t,i
. (85)

The proof of Lemma 5 is provided in Appendix E.2.
Theorem 3. Define γ = minx∈D⟨x, θK⟩. Under the same assumptions as in Lemma 5, for any δ > 0 with
probability at least 1 − 2δ, for all T ≥ 0, the attacker can manipulate the UCB-GLM agent into pulling the
target arm in at least T − |C| rounds, using an attack cost

|C| ≤4d(K − 1)
(αγ)2 log

(
1 + tL2

dλ0

)(
2kµLS + 4R

cµ

)2(
log K

δ
+ d log

(
1 + L2T

λ0d

))
. (86)

The proof of Theorem 3 is provided in Appendix E.3.

D.3 Black-box Attack Strategy

The modified black-box attack strategy for GLM works as follows. When the agent chooses arm K, the
attacker does not attack. When the agent chooses arm It ̸= K, the attacker changes it to arm

I0
t =

{
K with probability ϵt

I†
t with probability 1− ϵt

(87)

where
I†

t = arg min
i̸=K

(
⟨xt, θ̂0

t,i⟩ − β0
t,i∥xt∥(V̄ 0

t,i
)−1

)
, (88)

and

β0
t,i = 2ϕi

kµLS + R

cµ

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
, (89)

ϕi = kµ

cµα when i ̸= K and ϕK = 1 + kµ

cµ
, and

ϵt = clip

 cµ

cµ + kµ
,

µ((1− α)x⊤
t θ̂0

t,K)− µ(x⊤
t θ̂0

t,I†
t

)

µ(x⊤
t θ̂0

t,K)− µ(x⊤
t θ̂0

t,I†
t

)
, 1− α

cµ

kµ

 , (90)

with clip(a, x, b) = min(b, max(x, a)) where a ≤ b.

For notational convenience, we set I†
t = K and ϵt = 1 when It = K. We define that, if i ̸= K, τ †

i (t) := {s :
s ≤ t, I†

s = i} and N†
i (t) = |τ †

i (t)| ; τ †
K(t) := {s : s ≤ t} and N†

K(t) = |τ †
K(t)|.
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Calculate the maximum-likelihood estimator θ̂0
t,i by solving the equation∑

n∈τi(t−1)†

(wt,irn − µ(x⊤
n θ̂t,i))xn = 0.

where V̄ 0
t,i =

∑
k∈τ†

i
(t−1) xkx⊤

k

wt,i =


1/ϵt if i = I0

t = K

1/(1− ϵt) if i = I0
t = I†

t

0 if i ̸= I0
t

. (91)

First, we analyze the estimation θ̂0
t,i at the attacker side. We establish a confidence ellipsoid of ⟨xt, θ̂0

t,i⟩ at
the attacker.
Lemma 6. Assume the attacker performs the proposed black-box action poisoning attack. With probability
1− 2δ, we have

|x⊤
t θ̂0

t,i − x⊤
t θi| ≤ β0

t,i∥xt∥(V̄ 0
t,i)−1 . (92)

holds for all arm i and all t ≥ 0 simultaneously.

The proof of Lemma 6 is provided in Appendix E.4.
Lemma 7. Under the black-box attack, with probability 1−2δ, the estimate obtained by an UCB-GLM agent
satisfies ∣∣∣E[rt,I0

t
|Ft−1, It]− µ((1− α)x⊤

t θK)
∣∣∣ ≤ 2kµβ0

t,K∥xt∥(V̄ 0
t,K)−1 + 2kµβ0

t,I†
t

∥xt∥(
V̄ 0

t,I
†
t

)−1

simultaneously for all t ≥ 0 when It ̸= K.
Lemma 8. Assume the attacker performs the proposed black-box action poisoning attack. With a probability
at least 1− 3Kδ

K , the estimate θ̂t,i obtained by the UCB-GLM agent will satisfy

|x⊤
t θ̂t,i − x⊤

t (1− α)θK |

≤2kµLS + 2R

cµ

(
1 +

16k2
µd

cµα

√
K log

(
1 + tL2

dλ0

))√
log K

δ
+ d log

(
1 + L2t

λ0d

)
∥x∥V̄ −1

t,i

(93)

simultaneously for all arm i ̸= K and all t ≥ 0.
Theorem 4. Define γ = minx∈D⟨x, θK⟩. Assume the attacker performs the proposed black-box action
poisoning attack. For any δ > 0 with probability at least 1 − 2δ, for all T ≥ 0, the attacker can manipulate
the UCB-GLM agent into pulling the target arm in at least T − |C| rounds, using an attack cost

|C| ≤4d(K − 1)
(αγ)2

(
2kµLS + 2R

cµ

)2
log
(

1 + TL2

dλ0

)

×
(

log K

δ
+ d log

(
1 + L2T

λ0d

))(
1 +

16k2
µd

cµα

√
K log

(
1 + TL2

dλ0

))2

.

(94)

The proof of Theorem 4 is provided in Appendix E.7. Theorem 4 shows that our black-box attack strategy
can manipulate a UCB-GLM agent into pulling a target arm T − O(log3 T ) times with attack cost scaling
as O(log3 T ). Compablack with the result for the white-box attack, the black-box attack only brings an
additional log T factor.
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E Attack Cost Analysis of GLM

E.1 Proof of Proposition 2

Let us consider a contextual bandit problem P1, in which the arm K (the target arm) is associated with
a fixed coefficient vector θK and all other arms are associated with the coefficient vector (1 − α)θK . For a
generalized linear contextual bandit algorithm A , we suppose that the cumulative pseudo-regret regret of
algorithm A for the problem P1 is upper bounded with probability at least 1− δ by a function fA (T ) such
that fA (T ) = o(T ).

Under the proposed white-box attack, when the agent pulls a non-target arm It ̸= K, the mean reward
received by the agent should satisfy E[rt,I0

t
|Ft−1, It] = µ((1 − α)⟨xt, θK⟩). In the observation of the agent,

the target arm becomes optimal and the non-target arms are associated with the coefficient vector (1−α)θK .
For the agent, the combination of the attacker and the environment form problem P1. The cumulative
pseudo-regret should satisfy

RT =
T∑

t=1
1{It ̸=K} (µ (⟨xt, θK⟩)− µ (⟨xt, (1− α)θK⟩))

≥
T∑

t=1
1{It ̸=K}cµ⟨xt, αθK⟩

≥
T∑

t=1
1{It ̸=K}cµγ,

which is equivalent to
∑T

t=1 1{It ̸=K} ≤ RT /(cµγ). Since RT is upper bounded by fA (T ) = o(T ), |C| =∑T
t=1 1{It ̸=K} is also upper bounded by o(T ).

E.2 Proof of Lemma 5

The maximum-likelihood estimation can be written as the solution to the following equation∑
n∈τi(t−1)

(rn − µ(x⊤
n θ̂t,i))xn = 0. (95)

Define gt,i(θ) =
∑

n∈τi(t−1) µ(x⊤
n θ))xn. gt,i(θ̂t,i) =

∑
n∈τi(t−1) rnxn. Since µ is continuously twice differen-

tiable, ∇gt,i is continuous, and for any θ ∈ Θ, ∇gt,i(θ) =
∑

n∈τi(t−1) xnx⊤
n µ̇(x⊤

n θ)). ∇gt,i(θ) denotes the
Jacobian matrix of gt,i at θ. By the Fundamental Theorem of Calculus,

gt,i(θ̂t,i)− gt,i((1− α)θK) = Gt,i(θ̂t,i − (1− α)θK), (96)

where

Gt,i =
∫ 1

0
∇gt,i

(
sθ̂t,i + (1− s)(1− α)θK

)
ds. (97)

Note that ∇gt,i(θ) =
∑

n∈τi(t−1) xnx⊤
n µ̇(x⊤

n θ)). According to the assumption that cµ = infθ∈Θ,x∈D µ̇(x⊤θ) >
0, we have Gt,i ⪰ cµVt,i ⪰ cµVKJ,i ⪰ λ0I ≻ 0, where in the last two step we used the assumption that the
minimal eigenvalue of Vi is greater or equal to λ0 after playing arm i J times. Thus, Gt,i is positive definite
and non-singular. Therefore,

θ̂i − (1− α)θK = G−1
t,i

(
gt,i(θ̂i)− gt,i((1− α)θK)

)
. (98)

For arm K, gt,i(θ̂i)− gt,i(θK) =
∑

n∈τi(t−1) ηnxn.
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For all arm i ̸= K, the right hand side of Equation 98 is equivalent to

gt,i(θ̂i)− gt,i((1− α)θK)

=
∑

n∈τi(t−1)

(rn − µ((1− α)x⊤
n θK))xn

=
∑

n∈τi(t−1)

(µ(x⊤
n θI0

n
)− µ((1− α)x⊤

n θK))xn +
∑

n∈τi(t−1)

ηnxn.

(99)

We set Z1 =
∑

n∈τi(t−1)(µ(x⊤
n θI0

n
)− µ((1− α)x⊤

n θK))xn and Z2 =
∑

n∈τi(t−1) ηnxn.

We have gt,i(θ̂i)− gt,i((1− α)θK) = Z1 + Z2 and

x⊤
t (θ̂i − (1− α)θK) = x⊤

t G−1
t,i (Z1 + Z2). (100)

For any context x ∈ D and arm i ̸= K, we have

|x⊤(θ̂t,i − (1− α)θK)|
=|x⊤G−1

t,i (Z1 + Z2)|
≤|x⊤G−1

t,i Z1|+ |x⊤G−1
t,i Z2|.

(101)

We first bound |x⊤G−1
t,i Z2|. Since Gt,i is positive definite and G−1

t,i is also positive definite, |x⊤G−1
t,i Z2| ≤

∥x∥G−1
t,i
∥Z2∥G−1

t,i
.

Since Gt,i ⪰ cµVt,i implies that G−1
t,i ⪯ c−1

µ V̄ −1
t,i , we have ∥x∥G−1

t,i
≤ 1√

cµ
∥x∥V̄ −1

t,i
holds for any x ∈ Rd. Thus,

|x⊤G−1
t,i Z2| ≤

1
cµ
∥x∥V̄ −1

t,i
∥Z2∥V̄ −1

t,i
. (102)

Note that Vt,i = V̄t,i + λI. Hence, for all vector x ∈ Rd

∥x∥2
V̄ −1

t,i

= ∥x∥2
V −1

t,i

+ x⊤(V̄ −1
t,i − V −1

t,i )x. (103)

Since (A + B)−1 = A−1 −A−1B(A + B)−1,

V −1
t,i = V̄ −1

t,i − λV̄ −1
t,i V −1

t,i . (104)

The above implies that

0 ≤x⊤(V̄ −1
t,i − V −1

t,i )x
=x⊤ (λV̄ −1

t,i V −1
t,i

)
x

≤ λ

λ0
∥x∥2

V −1
t,i

.

(105)

and ∥x∥2
V̄ −1

t,i

≤ (1 + λ
λ0

)∥x∥2
V −1

t,i

.

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al., 2011), we know that for any δ > 0, with probability
at least 1− δ ∥∥∥∥∥∥

∑
k∈τi(t−1)

xkηk

∥∥∥∥∥∥
2

V −1
t,i

≤2R2 log
(

K det(Vt,i)1/2 det(λI)−1/2

δ

)

≤2R2
(

log K

δ
+ d log

(
1 + L2Ni(t)

λd

))
,

(106)
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for all arms and all t > 0.

Set λ = λ0, we have

∥Z2∥V̄ −1
t,i
≤ 2R

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
. (107)

Now we bound |x⊤G−1
t,i Z1|. Similarly,

|x⊤G−1
t,i Z1| ≤

1
cµ
∥x∥V̄ −1

t,i
∥Z1∥V̄ −1

t,i
. (108)

In our model, we have 0 < ⟨xt, θi⟩ ≤ ∥xt∥2
2∥θi∥2

2 = LS. Further,

0 ≤
∣∣∣µ(x⊤

k θI0
k
)− µ((1− α)x⊤

k θK)
∣∣∣

≤ kµ

∣∣∣x⊤
k θI0

k
− (1− α)x⊤

k θK

∣∣∣
≤ kµLS.

(109)

Since we have E[µ(x⊤
k θI0

k
)|Fk−1] = µ((1 − α)x⊤

k θK),
{

µ(x⊤
k θI0

k
)− µ

(
(1− α)x⊤

k θK

)}
k∈τi(t−1)

is a bounded

martingale difference sequence w.r.t the filtration {Fk}k∈τi(t−1) and is also kµLS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al., 2011), we know that for any δ > 0, with probability
at least 1− K−1

K δ

∥Z1∥V̄ −1
t,i
≤ 2kµLS

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
, (110)

for any arm i ̸= K and all t > 0.

In summary, for all arm i ̸= K,

|x⊤(θ̂i − (1− α)θK)| ≤ 2kµLS + 2R

cµ

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
∥x∥V̄ −1

t,i
. (111)

E.3 Proof of Theorem 3

For round t and context xt, if UCB-GLM pulls arm i ̸= K, we have

x⊤
t θ̂t,K + βt,K

√
x⊤

t V̄ −1
t,Kxt ≤ x⊤

t θ̂t,i + βt,i

√
x⊤

t V̄ −1
t,i xt,

Recall βt,i = 2R
cµ

√
log K

δ + d log
(

1 + L2Ni(t)
λ0d

)
in GLM.

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
x⊤

t θK ≤ x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt holds with probability 1− δ

K .

Thus, by Lemma 5,

x⊤
t θK ≤x⊤

t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt

≤x⊤
t θ̂t,i + βt,i

√
x⊤

t V −1
t,i xt

≤x⊤
t θ̂t,i + 2kµLS + 2R

cµ

cu

2R
βt,i

√
x⊤

t V −1
t,i xt + βt,i

√
x⊤

t V −1
t,i xt

≤x⊤
t (1− α)θK + kµLS + 2R

R
βt,i∥xt∥V̄ −1

t,i
.

(112)
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By multiplying both sides 1{It=i} and summing over rounds, we have

T∑
k=1

1{Ik=i}αx⊤
k θK ≤

T∑
k=1

1{Ik=i}
kµLS + 2R

R
βt,i∥xt∥V̄ −1

t,i
. (113)

Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and obtain

T∑
k=1

1{Ik=i}∥xk∥2
V −1

k,i

≤ 2d log(1 + Ni(t)L2

dλ
) ≤ 2d log

(
1 + tL2

dλ

)
. (114)

According to
∑T

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√

Ni(t)
∑T

k=1 1{Ik=i}∥xk∥2
V −1

k,i

, we have

T∑
k=1

1{Ik=i}∥xk∥V −1
k,i
≤

√
Ni(t)2d log

(
1 + tL2

dλ

)
. (115)

Set λ = λ0, we have ∥x∥2
V̄ −1

t,i

≤ (1 + λ
λ0

)∥x∥2
V −1

t,i

= 2∥x∥2
V −1

t,i

. Thus, we have

T∑
k=1

1{Ik=i}αx⊤
k θK ≤

kµLS + 2R

R
βt,i

√
4Ni(t)d log

(
1 + tL2

dλ0

)
, (116)

and

Ni(t) =
T∑

k=1
1{Ik=i} ≤

4d

(αγ)2 log
(

1 + tL2

dλ0

)(
kµLS + 2R

R
βt,i

)2
, (117)

where γ = minx∈D⟨x, θK⟩.

E.4 Proof of Lemma 6

The attacker calculate the maximum-likelihood estimator θ̂0
t,i by solving the equation∑

n∈τi(t−1)†

(wn,irn − µ(x⊤
n θ̂i))xn = 0. (118)

Note that g0
t,i(θ) =

∑
n∈τ†

i
(t−1) µ(x⊤

n θ))xn. g0
t,i(θ̂0

t,i) =
∑

n∈τ†
i

(t−1) wn,irnxn.

For all arm i,

g0
t,i(θ̂0

t,i)− g0
t,i(θi)

=
∑

n∈τ†
i

(t−1)

(wn,irn − µ(x⊤
n θi))xn

=
∑

n∈τ†
i

(t−1)

(wn,iµ(x⊤
n θI0

n
)− µ(x⊤

n θi))xn +
∑

n∈τ†
i

(t−1)

wn,iηnxn.

(119)

Similarly, we set Z3 =
∑

n∈τ†
i

(t−1) wn,iηnxn and Z4 =
∑

n∈τ†
i

(t−1)(wn,iµ(x⊤
n θI0

n
)− µ((1− α)x⊤

n θK))xn .

We have g0
t,i(θ̂0

t,i)− g0
t,i(θi) = Z3 + Z4 and

x⊤
t (θ̂0

t,i − θi) = x⊤
t (G0

t,i)−1(Z3 + Z4), (120)
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where

G0
t,i =

∫ 1

0
∇g0

t,i

(
sθ̂0

t,i + (1− s)θi

)
ds. (121)

For any context x ∈ D, we have

|x⊤(θ̂0
t,i − θi)|

=|x⊤(G0
t,i)−1(Z3 + Z4)|

≤|x⊤(G0
t,i)−1Z3|+ |x⊤(G0

t,i)−1Z4|.

(122)

We first bound |x⊤(G0
t,i)−1Z3|. We have

|x⊤(G0
t,i)−1Z3| ≤

1
cµ
∥x∥(V̄ 0

t,i
)−1∥Z3∥(V̄ 0

t,i
)−1 , (123)

where V̄ 0
t,i =

∑
n∈τi(t−1)† xnx⊤

n .

Note that V =
t,iV̄

0
t,i + λI. Hence,

∥Z3∥2
(V̄ 0

t,i
)−1 =∥Z3∥2

(V 0
t,i

)−1 + Z⊤
3 ((V̄ 0

t,i)−1 − (V 0
t,i)−1)Z3

≤(1 + λ

λ0
)∥Z3∥2

(V 0
t,i

)−1 .
(124)

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al., 2011), we know that for any δ > 0, with probability
at least 1− δ ∥∥∥∥∥∥

∑
k∈τi(t−1)

xkηk

∥∥∥∥∥∥
2

V −1
t,i

≤2R2 log
(

K det(Vt,i)1/2 det(λI)−1/2

δ

)

≤2R2
(

log K

δ
+ d log

(
1 + L2Ni(t)

λd

))
,

(125)

for all arms and all t > 0.

Set λ = λ0, we have

∥Z3∥2
(V̄ 0

t,i
)−1 ≤ 2ϕiR

√
log K

δ
+ d log

(
1 + L2N0

i (t)
λ0d

)
. (126)

Now we bound |x⊤(G0
t,i)−1Z4|. Similarly,

|x⊤(G0
t,i)−1Z4| ≤

1
cµ
∥x∥(V̄ 0

t,i
)−1∥Z4∥(V̄ 0

t,i
)−1 . (127)

In our model, we have 0 < ⟨xt, θi⟩ ≤ ∥xt∥2
2∥θi∥2

2 = LS. Further,

0 ≤
∣∣∣wk,iµ(x⊤

k θI0
k
)− µ((1− α)x⊤

k θK)
∣∣∣ ≤ ϕikµLS. (128)

Since we have E[wk,iµ(x⊤
k θI0

k
)|Fk−1] = µ(x⊤

k θi),
{

wk,iµ(x⊤
k θI0

k
)− µ

(
x⊤

k θi

)}
k∈τi(t−1)

is a bounded martingale

difference sequence w.r.t the filtration {Fk}k∈τi(t−1) and is also ϕikµLS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al., 2011), we know that for any δ > 0, with probability
at least 1− δ

∥Z4∥2
(V̄ 0

t,i
)−1 ≤ 2ϕikµLS

√
log K

δ
+ d log

(
1 + L2N0

i (t)
λ0d

)
. (129)

39



Published in Transactions on Machine Learning Research (02/2023)

for any arm i ̸= K and all t > 0.

In summary, for all arm i ̸= K,

|x⊤(θ̂i − (1− α)θK)| ≤ 2ϕi
kµLS + R

cµ

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
∥x∥(V̄ 0

t,i
)−1 . (130)

E.5 Proof of Lemma 7

Recall the definition of ϵt:

ϵt = clip

 cµ

cµ + kµ
,

µ((1− α)x⊤
t θ̂0

t,K)− µ(x⊤
t θ̂0

t,I†
t

)

µ(x⊤
t θ̂0

t,K)− µ(x⊤
t θ̂0

t,I†
t

)
, 1− α

cµ

kµ

 , (131)

and the definition of I†
t :

I†
t = arg min

i̸=K

(
⟨xt, θ̂0

t,i⟩ − β0
t,i∥xt∥(V̄ 0

t,i
)−1

)
. (132)

By Lemma 6, ⟨xt, θ̂0
t,I†

t

⟩ − β0
t,I†

t

∥xt∥(V̄ 0
t,I

†
t

)−1 ≤ mini⟨xt, θi⟩ with probability 1 − 2δ. Thus, with probability

1− 2δ, µ(x⊤
t θ̂0

t,I†
t

)−mini µ(x⊤
t θi) ≤ kµβ0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1 .

Because ϵt is bounded by [ cµ

cµ+kµ
, 1− α

cµ

kµ
], we can analyze E[rt,I0

t
|Ft−1, It] in four cases.

Case 1: when ⟨xt, θ̂0
t,K⟩ < ⟨xt, θ̂0

t,I†
t

⟩, we have ϵt = 1− α
cµ

kµ
and µ(⟨xt, θ̂0

t,K⟩) < µ(⟨xt, θ̂0
t,I†

t

⟩). Thus,

E[rt,I0
t
|Ft−1, It] = (1− α

cµ

kµ
)µ(x⊤

t θK) + α
cµ

kµ
µ(x⊤

t θI†
t
). (133)

Then, by Lemma 6,

(1− α
cµ

kµ
)µ(x⊤

t θK) + α
cµ

kµ
µ(x⊤

t θI†
t
)− µ((1− α)x⊤

t θK)

≤(1− α
cµ

kµ
)
(

µ(x⊤
t θ̂0

t,K) + kµβ0
t,K∥xt∥(V̄ 0

t,K)−1

)
+ α

cµ

kµ

µ(x⊤
t θ̂0

t,I†
t

) + kµβ0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1


− µ((1− α)x⊤

t θK)

≤µ(x⊤
t θ̂0

t,I†
t

) + αcµβ0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1 + (1− α
cµ

kµ
)kµβ0

t,K∥xt∥(V̄ 0
t,K)−1 − µ((1− α)x⊤

t θK)

≤(kµ − αcµ)β0
t,K∥xt∥(V̄ 0

t,K)−1 + (kµ + αcµ)β0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1 ,

(134)

where the second inequality is obtains by µ(⟨xt, θ̂0
t,K⟩) < µ(⟨xt, θ̂0

t,I†
t

⟩) and the last inequality is obtained by

µ(x⊤
t θ̂0

t,I†
t

)−mini µ(x⊤
t θi) ≤ kµβ0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1 and Assumption 1.
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On the other side, we have

(1− α
cµ

kµ
)µ(x⊤

t θK) + α
cµ

kµ
µ(x⊤

t θI†
t
)− µ((1− α)x⊤

t θK)

≥(1− α
cµ

kµ
)
(

µ(x⊤
t θ̂0

t,K)− kµβ0
t,K∥xt∥(V̄ 0

t,K)−1

)
+ α

cµ

kµ

µ(x⊤
t θ̂0

t,I†
t

)− kµβ0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1


− µ((1− α)x⊤

t θK)

≥µ(x⊤
t θ̂0

t,K)− µ((1− α)x⊤
t θK)− αcµβ0

t,I†
t

∥xt∥(
V̄ 0

t,I
†
t

)−1 − (1− α
cµ

kµ
)kµβ0

t,K∥xt∥(V̄ 0
t,K)−1

≥µ(x⊤
t θK)− µ((1− α)x⊤

t θK)− αcµβ0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1 − (2− α
cµ

kµ
)kµβ0

t,K∥xt∥(V̄ 0
t,K)−1

≥− (2kµ − αcµ)β0
t,K∥xt∥(V̄ 0

t,K)−1 − αcµβ0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1 .

(135)

Case 2: when µ(x⊤
t θ̂0

t,K) ≥ µ(x⊤
t θ̂0

t,I†
t

) > (1 + cµ

kµ
)µ((1− α)x⊤

t θ̂0
t,K)− cµ

kµ
µ(x⊤

t θ̂0
t,K) and ϵt = cµ

cµ+kµ
, we have

E[rt,I0
t
|Ft−1, It] = cµ

cµ + kµ
µ(x⊤

t θK) + kµ

cµ + kµ
µ(x⊤

t θI†
t
). (136)

By Lemma 6, with probability 1− 2δ,

µ(x⊤
t θ̂0

t,I†
t

)−min
i

µ(x⊤
t θi) ≤ kµβ0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1 .

Since mini x⊤
t θi ≤ (1− 2α)x⊤

t θK , we have

µ(x⊤
t θ̂0

t,I†
t

) ≤ µ((1− 2α)x⊤
t θK) + kµβ0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1

and then

µ(x⊤
t θI†

t
) ≤ µ((1− 2α)x⊤

t θK) + 2kµβ0
t,I†

t

∥xt∥(V̄ 0
t,I

†
t

)−1 .

Thus,

cµµ(x⊤
t θK)

cµ + kµ
+

kµµ(x⊤
t θI†

t
)

cµ + kµ
− µ((1− α)x⊤

t θK)

= cµ

cµ + kµ
µ(x⊤

t θK)− cµ

cµ + kµ
µ((1− α)x⊤

t θK)

+ kµ

cµ + kµ
µ(x⊤

t θI†
t
)− kµ

cµ + kµ
µ((1− α)x⊤

t θK)

≤ cµ

cµ + kµ

(
µ(x⊤

t θK)− µ((1− α)x⊤
t θK)

)
+ kµ

cµ + kµ

(
µ((1− 2α)x⊤

t θK)− µ((1− α)x⊤
t θK)

)
+

2k2
µ

cµ + kµ
β0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1 .

(137)

41



Published in Transactions on Machine Learning Research (02/2023)

According to the definition of kµ and cµ and Lemma 6,

cµµ(x⊤
t θK)

cµ + kµ
+

kµµ(x⊤
t θI†

t
)

cµ + kµ
− µ((1− α)x⊤

t θK)

≤ cµ

cµ + kµ
kµ

(
x⊤

t θK − (1− α)x⊤
t θK

)
+ kµ

cµ + kµ
cµ

(
(1− 2α)x⊤

t θK − (1− α)x⊤
t θK

)
+

2k2
µ

cµ + kµ
β0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1

=
2k2

µ

cµ + kµ
β0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1 .

(138)

In addition, by Lemma 6,

cµµ(x⊤
t θK)

cµ + kµ
+

kµµ(x⊤
t θI†

t
)

cµ + kµ
− µ((1− α)x⊤

t θK)

=cµµ(x⊤
t θK)

cµ + kµ
+

kµµ(x⊤
t θI†

t
)

cµ + kµ
− µ((1− α)x⊤

t θ̂0
t,K)

+ µ((1− α)x⊤
t θ̂0

t,K)− µ((1− α)x⊤
t θK)

≥ cµ

cµ + kµ
µ(x⊤

t θK) + kµ

cµ + kµ
µ(x⊤

t θI†
t
)− cµ

cµ + kµ
µ(x⊤

t θ̂0
t,K)− kµ

cµ + kµ
µ(x⊤

t θ̂0
t,I†

t

)

+ µ((1− α)x⊤
t θ̂0

t,K)− µ((1− α)x⊤
t θK)

≥− (1− α + cµ

cµ + kµ
)kµβ0

t,K∥xt∥(V̄ 0
t,K)−1 − kµ

cµ + kµ
kµβ0

t,I†
t

∥xt∥(
V̄ 0

t,I
†
t

)−1 ,

(139)

where the first inequality is obtained by the condition of case 2:

µ(x⊤
t θ̂0

t,I†
t

) > (1 + cµ

kµ
)µ((1− α)x⊤

t θ̂0
t,K)− cµ

kµ
µ(x⊤

t θ̂0
t,K)

which is equivalent to

cµµ(x⊤
t θ̂0

t,K)
cµ + kµ

+
kµµ(x⊤

t θ̂0
t,I†

t

)

cµ + kµ
> µ((1− α)x⊤

t θ̂0
t,K).

Case 3: when the attacker’s estimates satisfy

kµ

αcµ
µ((1− α)x⊤

t θ̂0
t,K)− ( kµ

αcµ
− 1)µ(x⊤

t θ̂0
t,K)

≤µ(x⊤
t θ̂0

t,I†
t

)

≤(1 + cµ

kµ
)µ((1− α)x⊤

t θ̂0
t,K)− cµ

kµ
µ(x⊤

t θ̂0
t,K)

(140)

and hence cµ

cµ+kµ
≤ ϵt ≤ 1− α

cµ

kµ
, we have

E[rt,I0
t
|Ft−1, It] = ϵtµ(x⊤

t θK) + (1− ϵt)µ(x⊤
t θI†

t
). (141)
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We can find that

ϵtµ(x⊤
t θK) + (1− ϵt)µ(x⊤

t θI†
t
)− µ((1− α)x⊤

t θK)

=ϵt(µ(x⊤
t θK)− µ(x⊤

t θI†
t
)) + µ(x⊤

t θI†
t
)− µ((1− α)x⊤

t θK)

=ϵt(µ(x⊤
t θ̂0

t,K)− µ(x⊤
t θ̂0

t,I†
t

)) + ϵt(µ(x⊤
t θ̂0

t,I†
t

)− µ(x⊤
t θI†

t
)) + ϵt(µ(x⊤

t θK)− µ(x⊤
t θ̂0

t,K))

+ µ(x⊤
t θI†

t
)− µ((1− α)x⊤

t θK)

=µ((1− α)x⊤
t θ̂0

t,K)− µ(x⊤
t θ̂0

t,I†
t

) + ϵt(µ(x⊤
t θ̂0

t,I†
t

)− µ(x⊤
t θI†

t
)) + ϵt(µ(x⊤

t θK)− µ(x⊤
t θ̂0

t,K))

+ µ(x⊤
t θI†

t
)− µ((1− α)x⊤

t θK)

=µ((1− α)x⊤
t θ̂0

t,K)− µ((1− α)x⊤
t θK) + ϵt(µ(x⊤

t θK)− µ(x⊤
t θ̂0

t,K)) + (1− ϵt)
(

µ(x⊤
t θI†

t
)− µ(x⊤

t θ̂0
t,I†

t

)
)

.

(142)
From Lemma 6, ∣∣∣E[rt,I0

t
|Ft−1, It]− µ((1− α)x⊤

t θK

∣∣∣
≤(1− α + ϵt)kµβ0

t,K∥xt∥(V̄ 0
t,K)−1

+ (1− ϵt)kµβ0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1 .
(143)

Case 4: when µ(x⊤
t θ̂0

t,I†
t

) <
kµ

αcµ
µ((1− α)x⊤

t θ̂0
t,K)− ( kµ

αcµ
− 1)µ(x⊤

t θ̂0
t,K) and ϵt = 1− α

cµ

kµ
, we have

E[rt,I0
t
|Ft−1, It] = (1− α

cµ

kµ
)µ(x⊤

t θK) + α
cµ

kµ
µ(x⊤

t θI†
t
). (144)

Then, by Lemma 6,

(1− α
cµ

kµ
)µ(x⊤

t θK) + α
cµ

kµ
µ(x⊤

t θI†
t
)− µ((1− α)x⊤

t θK)

≤(1− α
cµ

kµ
)µ(x⊤

t θK)− µ((1− α)x⊤
t θK) + α

cµ

kµ
µ(x⊤

t θ̂0
t,I†

t

) + αcµβ0
t,I†

t

∥xt∥(V̄ 0
t,I

†
t

)−1

<(1− α
cµ

kµ
)µ(x⊤

t θK)− µ((1− α)x⊤
t θK) + µ((1− α)x⊤

t θ̂0
t,K)− (1− α

cµ

kµ
)µ(x⊤

t θ̂0
t,K) + αcµβ0

t,I†
t

∥xt∥(V̄ 0
t,I

†
t

)−1

≤(kµ − cµ)β0
t,K∥xt∥(V̄ 0

t,K)−1 + αcµβ0
t,I†

t

∥xt∥(V̄ 0
t,I

†
t

)−1 .

(145)
Since x⊤

t θI†
t

> 0, µ(x⊤
t θK)− µ(x⊤

t θI†
t
) ≤ kµx⊤

t θK . Hence, we also have

(1− α
cµ

kµ
)µ(x⊤

t θK) + α
cµ

kµ
µ(x⊤

t θI†
t
)− µ((1− α)x⊤

t θK)

=µ(x⊤
t θK)− µ((1− α)x⊤

t θK)− α
cµ

kµ

(
µ(x⊤

t θK)− µ(x⊤
t θI†

t
)
)

≥cµαx⊤
t θK − α

cµ

kµ
kµx⊤

t θK = 0.

(146)

Combining these four cases, we have∣∣∣E[rt,I0
t
|Ft−1, It]− µ((1− α)x⊤

t θK)
∣∣∣

≤2kµβ0
t,K∥xt∥(V̄ 0

t,K)−1 + 2kµβ0
t,I†

t

∥xt∥(
V̄ 0

t,I
†
t

)−1 . (147)
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E.6 Proof of Lemma 8

The agent’s maximum-likelihood estimation can be written as the solution to the following equation∑
n∈τi(t−1)

(rn − µ(x⊤
n θ̂t,i))xn = 0. (148)

As described in the section E.2, we have gt,i(θ̂i)− gt,i((1− α)θK) = Z1 + Z2 and

x⊤
t (θ̂i − (1− α)θK) = x⊤

t G−1
t,i (Z1 + Z2). (149)

We set Z1 =
∑

n∈τi(t−1)(µ(x⊤
n θI0

n
)− µ((1− α)x⊤

n θK))xn and Z2 =
∑

n∈τi(t−1) ηnxn.

In the white-box attack case, we have E[µ(x⊤
k θI0

k
)|Fk−1] = µ((1−α)x⊤

k θK) and hence E[Z1|Fk−1] = 0. Under
the proposed black-box attack, E[Z1|Fk−1] ̸= 0 but∣∣∣E[µ(x⊤

t θI0
t
)|Ft−1, It]− (1− α)⟨xt, θK⟩

∣∣∣
≤2kµβ0

t,K∥xt∥(V̄ 0
t,K)−1 + 2kµβ0

t,I†
t

∥xt∥(
V̄ 0

t,I
†
t

)−1 . (150)

We set Z1 = Z5 + Z6, where

Z5 =
∑

n∈τi(t−1)

(µ(x⊤
n θI0

n
)− E[µ(x⊤

t θI0
t
)|Ft−1, It])xn

and
Z6 =

∑
n∈τi(t−1)

(E[µ(x⊤
t θI0

t
)|Ft−1, It]− µ((1− α)x⊤

n θK))xn.

For any context x ∈ D and arm i ̸= K, we have

|x⊤(θ̂t,i − (1− α)θK)|
≤|x⊤G−1

t,i Z2|+ |x⊤G−1
t,i Z5|+ |x⊤G−1

t,i Z6|.
(151)

Since we have
{

µ(x⊤
k θI0

k
)− E[µ(x⊤

k θI0
k
)|Fk−1, Ik]

}
k∈τi(t−1)

is a bounded martingale difference sequence w.r.t

the filtration {Fk, Ik}k∈τi(t−1) and is also kµLS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al., 2011), we know that for any δ > 0, with probability
at least 1− K−1

K δ

∥Z5∥V̄ −1
t,i
≤ 2kµLS

√
log K

δ
+ d log

(
1 + L2Ni(t)

λ0d

)
, (152)

for any arm i ̸= K and all t > 0.

We have the fact that

∥xt∥2
V −1

t,i

= x⊤
t V −1

t,i

 ∑
k∈τi(t−1)

xkx⊤
k + λI

V −1
t,i xt

≥ x⊤
t V −1

t,i

 ∑
k∈τi(t−1)

xkx⊤
k

V −1
t,i xt

=
∑

k∈τi(t−1)

(x⊤
t V −1

t,i xk)2.

(153)
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Hence,
∥xt∥2

G−1
t,i

= x⊤
t G−1

t,i Gt,iG
−1
t,i xt

≥ cµx⊤
t V −1

t,i

 ∑
k∈τi(t−1)

xkx⊤
k

V −1
t,i xt

= cµ

∑
k∈τi(t−1)

(x⊤
t G−1

t,i xk)2,

(154)

and hence
∑

k∈τi(t−1)(x⊤
t G−1

t,i xk)2 ≤ 1
c2

µ
∥xt∥2

V̄ −1
t,i

.

Then, |x⊤G−1
t,i Z6| can be upper bounded by

|x⊤G−1
t,i Z6|

≤

√√√√ ∑
k∈τi(t−1)

(
E[rk,I0

k
|Fk−1, Ik]− µ((1− α)x⊤

k θK)
)2√ ∑

k∈τi(t−1)

(x⊤
t G−1

t,i xk)2

≤

 ∑
k∈τi(t−1)

2kµβ0
k,K∥xk∥(V̄ 0

k,K)−1 + 2kµβ0
k,I†

k

∥xk∥(
V̄ 0

k,I
†
k

)−1


2

1
2

1
cµ
∥xt∥V̄ −1

t,i
,

(155)

where the first inequality is obtained from Cauchy-Schwarz inequality, the second inequality is obtained from
Lemma 7 and Equation 153.

In addition, by the fact that (a + b)2 ≤ 2a2 + 2b2 for any real number, we have

∑
k∈τi(t−1)

2kµβ0
k,K∥xk∥(V̄ 0

k,K)−1 + 2kµβ0
k,I†

k

∥xk∥(
V̄ 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2
(

2kµβ0
k,K∥xk∥(V̄ 0

k,K)−1

)2
+

∑
k∈τi(t−1)

2

2kµβ0
k,I†

k

∥xk∥(
V̄ 0

k,I
†
k

)−1


2

.

(156)

Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and get, for any arm i,∑
k∈τ†

i
(t−1)

∥xk∥2
(V 0

k,i
)−1 ≤ 2d log

(
1 + Ni(t)L2

dλ

)
≤ 2d log

(
1 + tL2

dλ

)
. (157)

Set λ = λ0, we have ∥x∥2
V̄ −1

t,i

≤ (1 + λ
λ0

)∥x∥2
V −1

t,i

≤ 2∥x∥2
V −1

t,i

.

By the fact that
∑

i τi(t − 1) = τ †
K(t − 1), and

∑
i ̸=K τi(t − 1) =

∑
i ̸=K τ †

i (t − 1), we have, for any arm i,
τi(t− 1) ⊆ τ †

K(t− 1), and τi(t− 1) ⊆
∑

j ̸=K τ †
j (t− 1). Thus,

∑
k∈τi(t−1)

∥xk∥2
(V̄ 0

k,K)−1 ≤
∑

k∈τ†
K

(t−1)

∥xk∥2
(V̄ 0

k,K
)−1 ≤ 4d log

(
1 + tL2

dλ0

)
, (158)

and ∑
k∈τi(t−1)

∥xk∥2(
V̄ 0

k,I
†
k

)−1 ≤
∑
i ̸=K

∑
k∈τ†

i
(t−1)

∥xk∥2
(V̄ 0

k,i
)−1 ≤ 4(K − 1)d log

(
1 + tL2

dλ0

)
. (159)
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By combining Equation 156, Equation 158 and Equation 159 and when K ≥ 3, we have

∑
k∈τi(t−1)

2kµβ0
k,K∥xk∥(V 0

k,K)−1 + 2kµβ0
k,I†

k

∥xk∥(
V 0

k,I
†
k

)−1


2

≤
∑

k∈τi(t−1)

2
(

2kµβ0
k,K∥xk∥(V 0

k,K)−1

)2
+

∑
k∈τi(t−1)

2

2kµβ0
k,I†

k

∥xk∥(
V 0

k,I
†
k

)−1


2

≤
(

2ϕK
kµLS + R

cµ

)2(
log K

δ
+ d log

(
1 + L2t

λ0d

))
× 8k2

µ × 16d2 log
(

1 + tL2

dλ0

)
+
(

2 Kµ

cµα

kµLS + R

cµ

)2(
log K

δ
+ d log

(
1 + L2t

λ0d

))
× 8k2

µ × 16d2(K − 1) log
(

1 + tL2

dλ0

)
≤128k2

µd2
(

2kµLS + 2R

cµ

)2(
log K

δ
+ d log

(
1 + L2t

λ0d

))
log
(

1 + tL2

dλ0

)(
(K − 1)

k2
µ

c2
µα2 + (1 + kµ

cµ
)2

)

≤128k2
µd2

(
2kµLS + 2R

cµ

)2(
log K

δ
+ d log

(
1 + L2t

λ0d

))
log
(

1 + tL2

dλ0

)
× 2K

k2
µ

c2
µα2 .

(160)

In summary, we have

|x⊤
t θ̂t,i − x⊤

t (1− α)θK |

≤2kµLS + 2R

cµ

(
1 +

16k2
µd

cµα

√
K log

(
1 + tL2

dλ0

))√
log K

δ
+ d log

(
1 + L2t

λ0d

)
∥x∥V̄ −1

t,i
.

(161)

E.7 Proof of Theorem 4

For round t and context xt, if UCB-GLM pulls arm i ̸= K, we have

x⊤
t θ̂t,K + βt,K

√
x⊤

t V̄ −1
t,Kxt ≤ x⊤

t θ̂t,i + βt,i

√
x⊤

t V̄ −1
t,i xt.

Recall βt,i = 4R
cµ

√
log K

δ + d log
(

1 + L2Ni(t)
λ0d

)
.

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
x⊤

t θK ≤ x⊤
t θ̂t,K + βt,K

√
x⊤

t V −1
t,Kxt holds with probability 1− δ

K .

Thus, by Lemma Equation 8,

x⊤
t θK ≤x⊤

t θ̂t,i + βt,i

√
x⊤

t V −1
t,i xt

≤x⊤
t (1− α)θK + 2kµLS + 2R

cµ

(
1 +

16k2
µd

cµα

√
K log

(
1 + tL2

dλ0

))√
log K

δ
+ d log

(
1 + L2t

λ0d

)
∥x∥V̄ −1

t,i
.

(162)
By multiplying both sides 1{It=i} and summing over rounds, we have

T∑
k=1

1{Ik=i}αx⊤
k θK

≤
T∑

k=1
1{Ik=i}

2kµLS + 2R

cµ

(
1 +

16k2
µd

cµα

√
K log

(
1 + tL2

dλ0

))√
log K

δ
+ d log

(
1 + L2t

λ0d

)
∥x∥V̄ −1

t,i
.

(163)
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Here, we use Lemma 11 from (Abbasi-Yadkori et al., 2011) and obtain

T∑
k=1

1{Ik=i}∥xk∥2
V −1

k,i

≤ 2d log(1 + Ni(t)L2

dλ
) ≤ 2d log

(
1 + tL2

dλ

)
. (164)

According to
∑T

k=1 1{Ik=i}∥xk∥V −1
k,i
≤
√

Ni(t)
∑T

k=1 1{Ik=i}∥xk∥2
V −1

k,i

, we have

T∑
k=1

1{Ik=i}∥xk∥V −1
k,i
≤

√
Ni(t)2d log

(
1 + tL2

dλ

)
. (165)

Set λ = λ0, we have ∥x∥2
V̄ −1

t,i

≤ (1 + λ
λ0

)∥x∥2
V −1

t,i

≤ 2∥x∥2
V −1

t,i

. Thus, we have

T∑
k=1

1{Ik=i}αx⊤
k θK

≤2kµLS + 2R

cµ

(
1 +

16k2
µd

cµα

√
K log

(
1 + tL2

dλ0

))√
log K

δ
+ d log

(
1 + L2t

λ0d

)√
4Ni(t)d log

(
1 + tL2

dλ0

)
,

(166)
and

Ni(t) =
T∑

k=1
1{Ik=i}

≤ 4d

(αγ)2

(
2kµLS + 2R

cµ

)2
log
(

1 + tL2

dλ0

)

×
(

log K

δ
+ d log

(
1 + L2t

λ0d

))(
1 +

16k2
µd

cµα

√
K log

(
1 + tL2

dλ0

))2

,

(167)

where γ = minx∈D⟨x, θK⟩.
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