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ABSTRACT
Incomplete Multi-View Clustering (IMVC) is a promising topic in

multimedia as it breaks the data completeness assumption. Most ex-

isting methods solve IMVC from the perspective of graph learning.

In contrast, self-representation learning enjoys a superior ability to

explore relationships among samples. However, only a few works

have explored the potentiality of self-representation learning in

IMVC. These self-representationmethods infer missing entries from

the perspective of whole samples, resulting in redundant informa-

tion. In addition, designing an effective strategy to retain salient

features while eliminating noise is rarely considered in IMVC. To

tackle these issues, we propose a novel self-representation learning

method with missing sample recovery and enhanced low-rank ten-

sor regularization. Specifically, the missing samples are inferred by

leveraging the local structure of each view, which is constructed

from available samples at the feature level. Then an enhanced tensor

norm, referred to as Logarithm-𝑝 norm is devised, which can obtain

an accurate cross-view description. Our proposed method achieves

exact subspace representation in IMVC by leveraging high-order

correlations and inferring missing information at the feature level.

Extensive experiments on several widely used multi-view datasets

demonstrate the effectiveness of the proposed method.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis; • Informa-
tion systems→ Clustering.

KEYWORDS
Incomplete multi-view clustering, self-representation learning, low-

rank tensor learning

1 INTRODUCTION
Multi-view learning has become a popular direction of machine

learning due to the excellent expressive capability of multi-view

data. Due to the rich complementary information embedded in

multi-view data, multi-view clustering methods have been well-

developed. Compared to single-view clustering, multi-view clus-

tering can exploit the consistency and complementary informa-

tion across the different views, leading to superior performance.
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Roughly, current multi-view clustering approaches can be cate-

gorized into the following four types: matrix factorization clus-

tering [11, 43], graph-based clustering [23, 24, 34, 41], deep mul-

tiview clustering [28, 52, 54], and multiview subspace clustering

[5, 10, 32, 45, 57]. In particular, self-representation learning meth-

ods based on low-rank tensor regularization achieve commendable

performance, where they mine complementary information from

multiple views by tensor Singular Value Decomposition (t-SVD)

based nuclear norm [8, 13, 51, 53].

Most of the existing methods are based on the completeness

assumption, which denotes that samples in all views are observed.

However, in real-world scenarios, collected instances are usually

missing in certain views due to malfunctions in sensors or data

corruption during transmission [12]. The absent views create a sig-

nificant challenge for multi-view clustering where the consistent

information across multiple views is difficult to learn. To tackle this

limitation, numerous researchers have devoted themselves to IMVC,

leading to the flourishing development of IMVC. As a foundational

work in the field of IMVC, Partial Multi-view Clustering (PVC) [21]

utilizes the Non-negative Matrix Factorization (NMF) to establish

a latent subspace under incomplete conditions. Expanding from

PVC, several impressive algorithms have emerged [17, 36, 59]. The

work in [59] introduces a novel graph Laplacian term to bridge

the connection of missing samples across multiple views. In [17]

and [36], enhanced NMF, including weighted NMF and weighted

semi-NMF are adopted to improve the ability to handle incomplete

multi-view data. The works in [48, 55] reduce the impact of incom-

plete instances and capture consistent information by inferring the

missing entries.

Apart from the above matrix factorization based methods, the

graph learning framework is introduced into IMVC. Perturbation-

oriented IMVC [42] transfers the missing problem from the perspec-

tive of instances to the graph and reduces the spectral perturbation

risk among different views. Wen et al. [47] propose an adaptive

graph completion strategy and unify the graph completion and

consensus graph learning into one framework. Liang et al. [26]
devise a graph fusion-based IMVC model that alleviates the impact

of missing instances by sample-level auto weights. Liu et al. [27]
infer the missing entries in partial graphs by graph propagation

strategy. The work in [46] directly learns the clustering results from

a consensus probability representation. Zhao et al. [60] introduce
a heterogeneous-graph learning and embedding strategy to adopt

high-order structures and recover the incomplete graph for each

view.

Although graph-based approaches have achieved impressive per-

formance, they still endure high computational complexity. In order

to enhance efficiency, anchor technology is introduced. Nie et al.
[6] and Wang et al. [40] leverage anchor graph for complete multi-

view clustering. To expand anchor graph learning into IMVC, the

following works have emerged. Anchor-based partial multi-view

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The framework of the proposed ELRSSL. Two views are illustrated herein. From left to right, the first step is extracting
features from incomplete multi-view data. The local structure corresponding to each view is calculated to infer the missing
samples. Then, self-representation subspaces are learned, meanwhile, the low-rank tensor learning is jointly performed. Finally,
the clustering results are obtained by applying spectral clustering.

clustering [16] reconstructs similarity among instances by anchors.

The work in [44] proposes a highly efficient multi-view cluster-

ing method based on a bipartite graph framework for incomplete

data. Recently, a scalable IMVC method [50] has been proposed,

which constructs the view-specific anchor graph for capturing com-

plementary information and devises a novel structure alignment

module to eliminate the misalignment of anchors.

The methods mentioned above have improved the performance

of IMVC from various perspectives, most of them are based on ma-

trix factorization or graph learning. Numerous multi-view cluster-

ingmethods have empirically demonstrated that self-representation

subspace learning and low-rank tensor constraint are beneficial

for clustering [7, 13, 15, 18, 29, 39, 53]. For complete multi-view

data, the work in [53] is the pioneer in adopting low-rank tensor

in self-representation subspace learning. Motivated by [53], t-SVD

based methods are well-developed [3, 35, 51]. To overcome the gap

of self-representation approaches in IMVC task, missing data im-

putation and self-representation are unified into a framework [29].

Further, a tensor factorization term is adopted to preserve high-

order correlation in subspaces [25]. However, the used strategy is

to infer absent samples by summarising information from whole

observed samples, resulting in redundant information. In addition,

the reservations about salient features and the elimination of noise

are neglected during exploring high-order correlation.

To tackle this issue, we propose an Enhanced Low-Rank tensor

Self-representation Subspace Learning (ELRSSL) for IMVC. In detail,

our ELRSSL recovers the missing instance by restricting similar

features which ensures the inferred entries are meaningful, and

index matrices are utilized to ensure the inferred entries belong to

missing samples. Meanwhile, a low-rank tensor learning strategy is

adopted to explore the high-order correlation across multiple views.

In addition, the large singular values are considered to be important

because they contain main feature information, while small singular

values represent the noise embedded in data. Weighted Tensor

Nuclear Norm (WTNN), which shrinks singular values by assigned

weights, is a popular technology for low-rank tensor learning [13,

15]. However, WTNN needs the a priori information about data to

assign reasonable weights. For the proposed method, an enhanced

nuclear norm is devised, which assigns weight to various singular

values with a self-adaptive weight strategy. The overall framework

is depicted in Figure 1. The main contribution of this paper is

summarised as follows.

• We present ELRSSL, a self-representation approach for IMVC

which enhances the expressive capability of subspace on

incomplete data by exploring high-order correlation and

missing information inferences at the feature level.

• An enhanced nuclear norm is devised, which assigns weight

to different singular values. The scale of weights is deter-

mined by corresponding singular values. Thus, the important

features across various views are retained while the noises

embedded in multiple views are eliminated.

• To solve the proposed method, an alternating optimization

algorithm is designed with a computational complexity anal-

ysis. The extensive experiments demonstrate the superiority

of the proposed method.

2 RELATEDWORK
2.1 Self-representation Clustering
Multi-view self-representation clustering relies on all instances

to construct coefficient matrices from multiple views. Multi-view

self-representation clustering can reflect the relationships among

instances, leading to excellent clustering performance. According

to [19, 57], the self-representation clustering for complete data can

be formulated into

min

𝑍 𝑣

𝑉∑︁
𝑣=1

L(𝑋 𝑣 − 𝑋 𝑣𝑍 𝑣) + R(𝑍 𝑣), (1)

where 𝑍 𝑣
is the subspace corresponding to 𝑣th view, the first term

denotes the loss of subspace coefficient reconstruction, and the
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second term is the regularity of 𝑍 𝑣
. In literature, L and R can be

replacedwith various norms, e.g. 𝑙2-norm, 𝑙1-norm, 𝑙2,1-norm, graph

regularity, and nuclear norm, etc. Luo et al. [33] exploit consistency
and specificity jointly for subspace. Zhang et al. [56] utilize naive
low-rank regularity to learn the subspace structure. Moreover, Cai et
al. [3] introduce a high-order manifold regularized term to capture

the manifold information of data in subspace learning. However,

this naive strategy neglects the impact of the missing instances

without any completion term. To infer the missing information,

our ELRSSL leverages a local structure at the feature level which is

restricted to similar features and ensures the inferred features are

meaningful.

2.2 Low-rank Tensor Learning
Low-rank tensor learning has been empirically proven to be ef-

fective in capturing high-order correlation [8, 13, 35, 51, 53]. The

formula for low-rank tensor learning is given as

min

Z
𝜇𝑟𝑎𝑛𝑘 (Z) + L(Z − Y),

(2)

whereZ and Y denote the learned low-rank tensor and approxi-

mation tensor, respectively. The 𝑟𝑎𝑛𝑘 () is the estimation of tensor

rank which is usually replaced with various nuclear norms, e.g.

TNN [53], weighted TNN [13] etc. Since the assumption that the

large singular values are generally associated with some salient

parts while the small singular values are the contrary, a natural idea

is to shrink large singular values less to preserve the main infor-

mation. Some remarkable approaches are developed, one popular

strategy is the WTNN [13–15]. Besides, the nonconvex low-rank

tensor approximation is widely used in various fields [8, 9]. Distinct

from the above works, our proposed ELRSSL adopts an enhanced

low-rank tensor regularity, enables the important information can

be preserved adaptively.

2.3 Incomplete Multi-view Clustering
Given an incomplete dataset {𝑋 𝑣}𝑉

𝑣=1
and indicator vector {𝑒𝑣}𝑉

𝑣=1
,

where 𝑉 is the number of views, each element of 𝑒𝑣 is defined as

follows.

𝑒𝑣𝑖 =

{
1, If 𝑖th instance is observed in 𝑣th view,

0, Otherwise.
(3)

The goal of IMVC is to partition the instances under the incomplete

condition. Based on the NMF, some simple but effective methods are

devised [17, 21, 36, 59]. Beyond, graph-based methods [20, 22, 37]

also achieve impressive performance, e.g. work in [38] learns con-

sensus graph and clustering indicator simultaneously, Liu et al. [27]
propose a graph propagation strategy to infer missing entries by

graph propagation, Guo et al. [16] captures non-linear relations by
kernel on computed anchor graph. Based on anchor technology,

the work in [30] proposes an algorithm with linear time complex-

ity and space complexity. Wen et al. [49] simultaneously consider

the local information, the complementary information, and the

discriminatory power of all views. Liu et al. [29] first introduce self-
representation subspace clustering to IMVC. Unlike prior works, we

step further by mining the high-order information while preserving

the salient feature as well as ensuring that the inferred information

is useful.

3 THE PROPOSED METHOD
Incomplete multi-view data presents a great challenge to clustering

tasks. To implement self-representation subspace learning to IMVC,

the missing information completion and consistent correlation

learning are crucial. Therefore, we devise a novel self-representation

method for IMVC as follows.

3.1 Methodology
To complete the missing instances, the local structure is lever-

aged. The completion matrix 𝐸𝑣 ∈ R𝑑𝑣×𝑛𝑚𝑣 and index matrix𝑊 𝑣 ∈
R𝑛

𝑚
𝑣 ×𝑛

corresponding to 𝑣th view are introduced, where 𝑑𝑣 and 𝑛
𝑚
𝑣

denote the dimensions of feature and number of missing instances.

The index matrix𝑊 𝑣
is constructed by

𝑊 𝑣
𝑖, 𝑗 =

{
1, If 𝑖th missing instance is 𝑗th instance in 𝑣th view,

0, Otherwise.

(4)

The completion matrix 𝐸𝑣 is learned from the existing information

by

min

𝐸𝑣

𝑉∑︁
𝑣=1

𝑑𝑣∑︁
𝑖, 𝑗

∥𝐸𝑣𝑖,: − 𝐸 𝑗, :𝑣 ∥2

2
𝐺𝑣
𝑖, 𝑗 , (5)

where 𝐺𝑣 ∈ R𝑑𝑣×𝑑𝑣 is a guidance matrix used to ensure the recov-

ered missing samples come from similar features.𝐺𝑣
is a similarity

matrix constructed in the feature perspective.

𝐺𝑣
𝑖, 𝑗 =


1, If 𝑖th and 𝑗th features are

mutually the 𝑘 closest neighbors,

0, Otherwise.

(6)

The above term completes samples from the feature level while

ensuring the recovered features are meaningful by restricting sim-

ilar features [4]. According to the normalization of the Laplacian

matrix, Formula (5) can be reformulated as

min

𝐸𝑣

𝑉∑︁
𝑣=1

𝑇𝑟 ((𝐸𝑣)𝑇 𝐿𝑣𝑔𝐸𝑣), (7)

where 𝐿𝑣𝑔 ∈ R𝑑𝑣×𝑑𝑣 is a Laplacianmatrix computed by 𝐿𝑣𝑔 = 𝐷𝑣
𝑔−𝐺𝑣

.

The𝐷𝑣
𝑔 which is calculated as𝐷𝑣

𝑔 = 𝑑𝑖𝑎𝑔({∑𝑑𝑣
𝑗
𝐺𝑣
𝑖, 𝑗
}𝑑𝑣
𝑖=1

), is a degree
matrix of 𝐺𝑣

. Then, we learn the complete feature view with the

following model.

min

𝐸𝑣 ,𝑋 𝑣

𝑉∑︁
𝑣=1

(∥𝑋 𝑣 + 𝐸𝑣𝑊 𝑣 − 𝑋 𝑣 ∥2

𝐹 + 𝛼𝑇𝑟 ((𝐸𝑣)𝑇 𝐿𝑣𝑔𝐸𝑣)), (8)

where 𝑋 𝑣 ∈ R𝑑𝑣×𝑛 is the obtained 𝑣th complete view. For self-

representation subspace learning with multi-view data, the learned

multiple subspaces present a high-order structure, which can be

represented by a low-rank tensor. As shown in Figure 2, the multi-

view subspace representation exhibits a high-order correlation.

Thus, many works establish the following model to capture the

high-order correlation [8, 13, 53].

min

Z
𝜇∥Z∥∗ + 𝜆R({𝐸𝑣}𝑉𝑣=1

),

𝑠 .𝑡 . 𝑋 = 𝑋𝑍 𝑣 + 𝐸𝑣,
(9)

where ∥ · ∥∗ is t-SVD based TNN, 𝜇 and 𝜆 are balance parameters,

𝐸𝑣 denotes the 𝑣th noise matrix, and R is the regularizations on 𝐸.
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Figure 2: The visualization of multi-view subspace represen-
tation.

Ordinary TNN treats different singular values equally. This, how-

ever, ignores the fact that different singular values hold different

contributions. For instance, given an image that is represented as

a matrix, the large singular values may contain the salient fea-

ture, while small values consist of noise. Therefore, Inspired by the

success of weighted TNN and nonconvex low-rank tensor approxi-

mation, we designed an enhanced TNN, called Logarithm-𝑝 norm.

The Logarithm-𝑝 norm is formulated as follows.

∥𝑍 ∥𝑙𝑜𝑔,𝑝 =
∑︁
𝑖

log(1 + 𝜎𝑖 (𝑍 ))𝑝 ,
(10)

where 𝜎𝑖 (𝑍 ) is 𝑖th singular values of matrix 𝑍 with non-descending

ordering. For tensorZ ∈ R𝑛1×𝑛2×𝑛3
, its Logarithm-𝑝 norm is given

as

∥Z∥𝑙𝑜𝑔,𝑝 =

𝑛3∑︁
𝑘=1

∥𝑍𝑘 ∥𝑙𝑜𝑔,𝑝 =

𝑛3∑︁
𝑘=1

min(𝑛1 .𝑛2 )∑︁
𝑖=1

log(1 + 𝜎𝑖 (𝑍𝑘 ))𝑝 , (11)

where 𝑍𝑘
denotes the 𝑘th frontal slice of

¯Z and
¯Z is obtained by

conducting Fast Fourier Transformation (FFT) onZ among third

dimension. In the next section, a detailed proof is given to show

how the Logarithm-𝑝 norm shrinks singular values to preserve the

salient feature while eliminating noise.

Finally, the overall objective can be formulated as follows.

min

Z,�̂� 𝑣 ,𝐸𝑣

𝑉∑︁
𝑣=1

(∥𝑋 𝑣 + 𝐸𝑣𝑊 𝑣 − 𝑋 𝑣 ∥2

𝐹 + 𝛼𝑇𝑟 ((𝐸𝑣)𝑇 𝐿𝑣𝑔𝐸𝑣)

+ 𝜇

2

∥𝑋 𝑣 − 𝑋 𝑣𝑍 𝑣 ∥2

𝐹 ) + ∥Z∥𝑙𝑜𝑔,𝑝 ,
(12)

where 𝛼 and 𝜇 are balance parameters, Z ∈ R𝑛×𝑉 ×𝑛
is a tensor

generated by stacking each 𝑍 𝑣
and then rotating its dimensionality

to 𝑛 × 𝑉 × 𝑛. Nevertheless, the complete feature views {𝑋 𝑣}𝑉
𝑣=1

are imputed from the observed information, and the learned sub-

spaces are constructed as a rotated tensor to capture the latent

high-order correlation. Once the optimal results are computed, off-

the-shelf spectral clustering is applied on 𝑆 = 1

𝑉

∑𝑉
𝑣=1

|𝑍 𝑣 |+| (𝑍 𝑣 )𝑇 |
2

to generate the final partition.

Algorithm 1 Optimization

Input: Incomplete multi-view data {𝑋 𝑣}𝑉
𝑣=1

, indicator vectors

{e𝑣}𝑉
𝑣=1

, and parameters {𝛼,𝛾, 𝜇};
1: Initialize:

Construct index matrices {𝑊 𝑣}𝑉
𝑣=1

by {e𝑣}𝑉
𝑣=1

;

Construct feature similarity matrix {𝐺𝑣}𝑉
𝑣=1

by 𝑘 nearest neigh-

bors algorithm;

Compute {𝐿𝑣𝑔 }𝑉𝑣=1
by performing 𝐿𝑣𝑔 = 𝐷𝑣

𝑔 −𝐺𝑣
;

Initialize {𝐽 𝑣}𝑉
𝑣=1

, {𝑍 𝑣}𝑉
𝑣=1

, and {𝑋 𝑣}𝑉
𝑣=1

to zero, while {𝐸𝑣}𝑉
𝑣=1

are initialized to random matrices.

2: while not converging do
3: for 𝑣 = 1, 2, · · · ,𝑉 do
4: Update 𝐸𝑣 by Equation (20);

5: Update 𝑋 𝑣
by Equation (16);

6: Update 𝑍 𝑣
by Equation (24);

7: end for
8: Update J by Theorem (1);

9: end while
10: Compute affinity matrix by

𝑆 =
1

𝑉

𝑉∑︁
𝑣=1

|𝑍 𝑣 | + |(𝑍 𝑣)𝑇 |
2

;

Output: The discrete partition which is generated by performing

spectral clustering on 𝑆 ;

4 OPTIMIZATION
The Formula (12) is difficult to optimize due to the coupling of

variable Z. Thus, an auxiliary variable J is introduced as follows.

min

𝑍 𝑣 ,J,�̂� 𝑣 ,𝐸𝑣

𝑉∑︁
𝑣=1

(∥𝑋 𝑣 + 𝐸𝑣𝑊 𝑣 − 𝑋 𝑣 ∥2

𝐹 + 𝛼𝑇𝑟 ((𝐸𝑣)𝑇 𝐿𝑣𝑔𝐸𝑣)

+ 𝜇

2

∥𝑋 𝑣 − 𝑋 𝑣𝑍 𝑣 ∥2

𝐹 ) + ∥J ∥𝑙𝑜𝑔,𝑝 ,

𝑠 .𝑡 . J = Z.

(13)

To solve Formula (13), we devise an iterative optimization algorithm

in which each variable is alternately optimized while others are

fixed. The overall procedure is summarised in Algorithm 1.

4.1 Solution to 𝑋 𝑣

When 𝐸𝑣 , 𝑍 𝑣
, and J 𝑣

are fixed, the optimization respects to 𝑋 𝑣

can be written as follows.

min

�̂� 𝑣

∥𝑋 𝑣 + 𝐸𝑣𝑊 𝑣 − 𝑋 𝑣 ∥2

𝐹 + 𝜇

2

∥𝑋 𝑣 − 𝑋 𝑣𝑍 𝑣 ∥2

𝐹 . (14)

To obtain the local optimal solution of Formula (14), we take the

partial derivative concerning 𝑋 𝑣
and set it to zero.

2𝑋 (𝑣) − 2𝑇 𝑣 + 𝜇𝑋 (𝑣)𝑍 𝑣 (𝑍 𝑣)𝑇 = 0, (15)

where 𝑇 𝑣 = 𝑋 𝑣 + 𝐸𝑣𝑊 𝑣
and 𝑍 𝑣 = 𝐼 − 𝑍 𝑣

. The optimal 𝑋 (𝑣)
is

obtained by

𝑋 (𝑣) = 2𝑇 𝑣 (2𝐼 − 𝜇𝑍 𝑣 (𝑍 𝑣)𝑇 )−1 . (16)
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4.2 Solution to 𝐸𝑣

When 𝑋 (𝑣)
, 𝑍 𝑣

, and J 𝑣
are fixed, the objective function of 𝐸𝑣 is

min

𝐸𝑣
∥𝑋 𝑣 + 𝐸𝑣𝑊 𝑣 − 𝑋 𝑣 ∥2

𝐹 + 𝛼𝑇𝑟 ((𝐸𝑣)𝑇 𝐿𝑣𝑔𝐸𝑣) . (17)

Since𝑊 𝑣
denotes the mapping of absent instances to all instances,

we can obtain𝑊 𝑣 (𝑊 𝑣)𝑇 = 𝐼 . Due to the unitarily invariant of

Frobenius norm, Formula (17) can be transformed into

min

𝐸𝑣
∥𝐸𝑣 + (𝑋 𝑣 − 𝑋 𝑣) (𝑊 𝑣)𝑇 ∥2

𝐹 + 𝛼𝑇𝑟 ((𝐸𝑣)𝑇 𝐿𝑣𝑔𝐸𝑣) . (18)

The partial derivative of 𝐸𝑣 is set to zero while the following equa-

tion is obtained.

2𝐸𝑣 + 2(𝑋 𝑣 − 𝑋 𝑣) (𝑊 𝑣)𝑇 + 2𝐿𝑣𝑔𝐸
𝑣 = 0. (19)

The optimal solution to 𝐸𝑣 is

𝐸𝑣 = (𝐼 + 𝐿𝑣𝑔 )−1 (𝑋 𝑣 − 𝑋 𝑣) (𝑊 𝑣)𝑇 . (20)

4.3 Solution to 𝑍 𝑣

For the optimization of 𝑍 𝑣
, the other variables are fixed. The mini-

mization problem can be formulated as follows.

min

𝑍 𝑣

𝜇

2

∥𝑋 (𝑣) − 𝑋 (𝑣)𝑍 (𝑣) ∥2

𝐹 ,

𝑠 .𝑡 . 𝐽 𝑣 = 𝑍 𝑣,
(21)

where 𝐽 𝑣 denotes the 𝑣th frontal slice of tensor J . In order to

transfer Formula (21) to an unconstrained optimization function,

an augmented Lagrangian function is introduced.

L(𝑍 𝑣) = 𝜇

2

∥𝑋 (𝑣) − 𝑋 (𝑣)𝑍 (𝑣) ∥2

𝐹 + 𝜌

2

∥𝑍 𝑣 − 𝐽 𝑣 + Λ𝑣

𝜌
∥2

𝐹 , (22)

where Λ𝑣
is Lagrange multiplier, 𝜌 is a penalty parameter.

Then, the partial derivative concerning 𝑍 𝑣
is taken to zeros.

𝜕L(𝑍 𝑣)
𝜕𝑍 𝑣

= 𝜇 ((𝑋 𝑣)𝑇𝑋 𝑣 + (𝑋 𝑣)𝑇𝑋 𝑣𝑍 𝑣) + 𝜌 (𝑍 𝑣 − (𝐽 𝑣 − Λ𝑣

𝜌
))

= 0.

(23)

The optimal𝑍 𝑣
is obtained by reformulated Equation (23) as follows.

𝑍 𝑣 = (𝐼 + 𝜇

𝜌
(𝑋 𝑣)𝑇𝑋 𝑣)−1 ((𝜇 (𝑋 𝑣)𝑇𝑋 𝑣 − Λ𝑣)/𝜌 + 𝐽 𝑣). (24)

4.4 Solution to J
To update J , the following theorem is introduced.

Theorem 1 Given a minimization problem as

min

J
∥J ∥𝑙𝑜𝑔,𝑝 + 𝜌

2

∥J − P∥2

𝐹 , (25)

where J and P are both tensor with size𝑚 ×𝑉 × 𝑛. The optimal

J can be obtained by the following steps.

(1) Transform P into
ˆP by performing FFT on P among third

dimension.

(2) Updated
ˆJ 𝑖

can be obtained by
ˆJ 𝑖 =𝑈 𝑖𝑆∇𝜙/𝜌 (Σ𝑖 ) (𝑌 𝑖 )𝑇 ,

where
ˆP𝑖 = 𝑈 𝑖Σ𝑖𝑌 𝑖

, ∇𝜙 denotes the derivative of log(1+𝑥)𝑝 ,
and the formulation of 𝑆∇𝜙/𝜌 (Σ𝑖 ) is

𝑆∇𝜙/𝜌 (Σ𝑖 ) = 𝑑𝑖𝑎𝑔(max{Σ𝑖𝑣,𝑣 −
∇𝜙 (Σ𝑖𝑣,𝑣)

𝜌
, 0}𝑉𝑣=1

)

(3) Then, stacking each
ˆJ 𝑖

to
ˆJ . The updated J can be com-

puted by performing inverse FFT on
ˆJ among third dimen-

sion.

Proof. Inherited from Equation (11), the Formula (25) can be

divided into𝑛 subproblems, while the 𝑖th subproblem can be written

as

min

𝐽 𝑖
∥ 𝐽 𝑖 ∥𝑙𝑜𝑔,𝑝 + 𝜌

2

∥ 𝐽 𝑖 − ˆP𝑖 ∥2

𝐹 . (26)

According to the non-ascending order of singular values and the

monotonicity of Equation (11), Formula (26) can be relaxed as the

following form.

min

𝐽 𝑖

𝑉∑︁
𝑣=1

(𝜙 (𝜎𝑣) + ∇𝜙 (𝜎𝑣) (𝜎𝑣 (𝐽 𝑖 ) − 𝜎𝑣)) +
𝜌

2

∥ 𝐽 𝑖 − ˆP𝑖 ∥2

𝐹 , (27)

where 𝜎𝑣 denotes the 𝑣th singular value of current 𝐽 𝑖 , 𝜎𝑣 (𝐽 𝑖 ) repre-
sents the 𝑣th singular value of updated 𝐽 𝑖 . All singular values are

non-decreasing. Since 𝜙 (𝜎𝑣) and 𝜎𝑣 are constants, we rewrite the
above problem as

min

𝐽 𝑖

𝑉∑︁
𝑣=1

∇𝜙 (𝜎𝑣)𝜎𝑣 (𝐽 𝑖 ) +
𝜌

2

∥ 𝐽 𝑖 − ˆP𝑖 ∥2

𝐹 . (28)

The optimal solution of 𝐽 𝑣 can be obtained by generalized weighted

singular value thresholding [31], which can be formulated as

𝐽 𝑖 = 𝑈 𝑖𝑆∇𝜙/𝜌 (Σ𝑖 ) (𝑌 𝑖 )𝑇 , (29)

where ∇𝜙𝑖 = 𝑝/(1 + Σ𝑖 ), meaning the shrinkage weights are gov-

erned by Σ𝑖 . Thus, we can intuitively obtain that∇𝜙𝑖 is non-decreasing
due to Σ𝑖 being non-increasing, which leads to large singular values
being preserved. □

By fixing 𝑋 (𝑣)
, 𝐸𝑣 , and 𝑍 𝑣

, the optimization of J can be formu-

lated as

min

J
∥J ∥𝑙𝑜𝑔,𝑝 + 𝜌

2

∥J − (Z + T
𝜌
)∥2

𝐹 , (30)

where T ∈ R𝑛×𝑉 ×𝑛
is a 3-order tensor constructed by stacking

each Λ𝑣
and rotating its dimension into 𝑛×𝑉 ×𝑛. The updated rule

of Formula (30) is shown in Theorem (1).

4.5 Solution to Multiplier and Penalty
Parameter

The Lagrange multiplier and penalty parameter can be updated by

Λ𝑣 = Λ𝑣 + 𝜌 (𝑍 𝑣 − 𝐽 𝑣), (31)

𝜌 = min(𝛽 ∗ 𝜌, 𝜌𝑚𝑎𝑥 ), (32)

where 𝛽 denotes the growth rate and is set to 1.5. 𝜌𝑚𝑎𝑥 is maximum

value of penalty parameter [2].

4.6 Convergence Condition
Similar to [4, 29], the convergence condition is prescribed as

|𝑜𝑏 𝑗𝑡−1 − 𝑜𝑏 𝑗𝑡 |
|𝑜𝑏 𝑗𝑡 |

< 𝜖, (33)

where 𝑜𝑏 𝑗𝑡 represents the value of objective function at the 𝑡th

iteration, and 𝜖 is a pre-defined parameter.
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Table 1: Incompete multiview datasets in experiments.

Datasets Size Clusters Views Dimensionality

3source 169 6 3 3560/3631/3068

MSRC v1 210 7 6 1302/48/· · · /256/210

Yale 165 15 3 4096/3304/6750

ORL 400 40 3 4096/3304/6750

BBC 685 5 4 4659/4633/4665/4684

BBCSport 544 5 2 3283/3183

Caltech7 1474 7 6 48/40/.../512/928

Leaves 1600 100 3 64/64/64

4.7 Convergence Analysis
Algorithm 1 decomposes the optimization problem into four sub-

problems. Each subproblem enjoys a closed-form solution. Without

loss of generality, the value of the overall objective function de-

creases with the solution of each variable. Since the non-negative

property of Formula (13), the designed iterative alternation algo-

rithm ensures the proposed method converges to a local optimum

solution.

4.8 Computational Complexity Analysis
Following, we analyze the computational complexity in detail. The

main complexity of Algorithm 1 depends on the iteration proce-

dure. Firstly, the computation of 𝐸𝑣 concerning the matrix inver-

sion. However, the inverse of (𝐼 + 𝐿𝑣𝑔 ) can be computed in ad-

vance. Therefore, the computational complexity of updating 𝐸𝑣 is

O(𝑑2

𝑣𝑛+𝑑𝑣𝑛𝑛𝑚𝑣 ) resulting frommatrix multiplication. The optimiza-

tion of 𝑋 𝑣
, involves computing the inverse matrix, with a complex-

ity of O(𝑛3). For updating 𝑍 𝑣
, the main complexity is O(𝑛3), which

comes from computing inverse matrix. Here J ∈ R𝑛×𝑉 ×𝑛
, the up-

dating J needs FFT, singular value decomposition, and inverse FFT.

The computational complexity of FFT and IFFT is O(𝑉𝑛2𝑙𝑜𝑔(𝑛)),
and the step of singular value decomposition costs O(𝑛2𝑉 2). The
total complexity of Formula (30) is O(𝑉𝑛2𝑙𝑜𝑔(𝑛) + 𝑛2𝑉 2). Thus,
the overall computational complexity of the proposed method is

O(𝑡 (𝑑2

𝑣𝑛 + 𝑛3)), where 𝑡 is the number of iterations. The compu-

tational complexity of Algorithm 1 is dependent on the cubic of

instances and the dimension of the feature, while the number of

iterations also affects the computation consumption.

5 EXPERIMENT
In this section, to verify the performance of the proposed method,

several widely-used datasets are chosen. Meanwhile, eleven state-

of-the-art IMVC algorithms are adopted as comparison methods.

In addition, model analyses, including ablation study, parameters

analysis, and convergence analysis, are performed to explore the

proposed model. At the very beginning, the experiment setup is

introduced.

5.1 Experiment Setup
5.1.1 Datasets Description. Nine multi-view datasets are adopted,

including 3source, MSRC v1, Yale, ORL, BBC, BBCSport, Caltech7,

Leaves, and UCI digits. Specifically, the detailed information of all

datasets is summarised in Table 1.

5.1.2 Incomplete Multi-view Datasets Construction. Following the

principle that each sample appears in at least one view, incomplete

multi-view datasets are generated with missing ratios at 0.2 inter-

vals from 0.1 to 0.9. Particularly, for an incomplete sample, it is

randomly absent in some views, however, present in at least one

view.

5.1.3 Compared Methods. Eleven state-of-the-art models are cho-

sen, including APMC [16], BGIMVSC [38], CBG [44], DAIMC [17],

FIMVC [30], FLSD [49], HCP [25], IMSR [29], PGP [27], PIC [42],

and SIMVC [50].

For compared methods, parameters are tuned in the range ad-

vised in the literature to report the best results. For the proposed

method, three parameters, including 𝛼 , 𝛾 , and 𝜇 are adjusted to

[10
−4
, 10

−3
, 10

−2
, 10

−1
, 10

0
, 10

1
, 10

2
, 10

3
, 10

4], [5, 10, 15, 20, 50,

100, 150, 200, 300], and [10
−4
, 10

−3
, 10

−2
, 10

−1
, 10

0
, 10

1
, 10

2
, 10

3
,

10
4], respectively. We run each method 10 cycles to calculate aver-

age performance and standard deviation for reporting.

5.1.4 Evaluation Metrics and Experiment Environment. To assess

the performance of clustering, three metrics, Accuracy (ACC), Nor-

malized Mutual Information (NMI), and Purity are adopted.

Experiments are conducted onMATLAB 2022b (64-bit) with Intel

Xeon Gold 6248R CPU, 256G RAM.

5.2 Compared Results
Table 2 reports the experiment results on all datasets with 10%

samples are incomplete. The bold and underlined indicate the best

and suboptimal results, respectively, while ’−’ denotes the unavail-
able results due to program error. Figure 3 shows the results on all

datasets with different missing rates. To visualize the running time

of different methods, we convert real runtime to relative Logarithm

runtime, which is reported in Figure 4. These provide the following

observations.

(1) The proposed method achieves superior performance on all

datasets with 10% incomplete samples. Meanwhile, PGP sur-

passes other methods except ELRSSL. For instance, compared

to the suboptimal approach, ELRSSL has 14.14%, 1.1%, 6.87%,

6.19%, 8.45%, 19.82, 3.48%, 9.64%, and 13.92% improvement

on terms of ACC. The excellent performance demonstrates

the critical role of missing instances completion and low-

rank tensor regularity.

(2) Compared to IMSR, which is a pioneering work in self-

representation learning for IMVC, the proposed method is

superior. The difference between IMSR and our ELRSSL is

that ELRSSL infers samples from the perspective of feature

and efficiently explores high-order information among multi-

ple views, resulting in a more accurate representation of sub-

spaces. Compared to HCP, which controls the tensor tubal

rank by tensor factorization, the proposed method offers

better clustering results. It demonstrates the effectiveness of

the proposed Logarithm-𝑝 norm.

(3) As shown in Figure 3, the proposed method is superior on

several datasets, such as ORL, Yale, Leaves, and UCI digits.

However, ELRSSL shows great fluctuations in performance

on BBCSport and Caltech7 datasets. We conjecture that this

is because the ORL, Yale, Leaves, and UCI digits datasets
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Table 2: Comparison results on nine datasets with missing rate 10%.

Metrics Datasets Methods
APMC[16] BGIMVSC[38] CBG[44] DAIMC[17] FIMVC[30] FLSD[49] HCP [25] IMSR[29] PGP [27] PIC [42] SIMVC[50] ELRSSL

ACC

3source 68.400.31 69.230.00 54.320.78 56.394.79 66.270.00 67.460.00 71.361.68 65.330.31 82.310.44 64.080.40 56.920.37 96.450.00
BBCsports 97.430.00 97.430.00 89.150.00 79.238.98 90.990.00 96.140.00 96.140.00 95.370.08 97.980.00 97.790.00 83.270.00 99.080.00
BBC − 85.110.00 63.140.08 61.874.13 80.040.07 84.530.00 88.180.00 91.680.00 92.550.00 91.620.10 65.810.59 99.420.00
MSRC v1 − 65.240.00 70.480.00 74.765.26 86.190.78 73.050.33 90.900.15 85.050.60 92.860.00 80.480.00 64.620.64 99.050.00
ORL 74.871.77 74.000.00 63.950.61 67.673.25 75.922.12 61.352.54 81.171.83 79.851.31 80.050.64 76.801.76 64.081.85 89.621.49
Yale 63.213.41 60.610.00 57.450.48 50.004.53 71.031.02 53.451.95 73.760.57 73.091.77 72.120.00 70.121.87 57.093.27 93.584.82
Leaves 84.200.74 87.880.00 29.940.39 62.572.71 63.211.61 60.061.78 76.941.72 76.081.80 88.631.40 68.882.24 52.571.23 92.111.34
UCI digits 76.800.00 78.100.00 26.710.14 74.209.08 86.050.11 88.480.18 85.840.04 89.610.02 75.920.12 71.890.12 67.494.05 99.250.00
Caltech101-7 − 57.800.00 48.440.00 44.805.57 51.660.04 58.110.12 57.330.31 61.590.17 66.550.11 64.060.67 54.711.59 80.470.18

NMI

3source 68.700.61 60.090.00 52.280.39 55.953.16 67.180.00 41.220.00 61.820.77 59.080.48 67.980.62 65.021.22 49.040.59 90.470.00
BBCsports 90.980.00 91.430.00 78.520.00 73.613.23 83.150.00 87.380.00 87.540.00 86.060.17 92.480.00 91.960.00 66.090.00 96.890.00
BBC − 69.460.00 55.940.14 56.453.03 62.180.07 67.810.00 70.710.00 77.310.00 79.110.00 77.550.20 43.790.21 97.890.00
MSRC v1 − 61.610.00 60.340.00 66.322.27 74.840.96 63.890.55 81.920.42 74.420.88 85.590.00 73.070.00 54.060.62 97.840.00
ORL 86.930.98 84.050.00 80.820.43 83.001.00 87.311.01 77.451.32 89.250.79 89.400.60 89.710.22 88.070.66 78.300.98 96.310.68
Yale 68.031.56 66.090.00 62.100.58 57.203.51 71.340.67 58.041.78 74.630.67 73.030.65 73.960.00 72.220.92 57.711.32 94.693.30
Leaves 92.990.31 92.350.00 58.430.65 81.421.24 80.500.57 80.140.95 87.720.70 88.080.53 94.590.38 82.931.04 73.470.59 97.440.30
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Figure 3: Comparison results on nine datasets with different missing ratios.
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Figure 4: Time report of different methods on nine incomplete multi-view datasets.
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Figure 5: The ablation study.
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Figure 6: The sensitivity analysis of parameters 𝛼 and 𝜇.
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Figure 7: The sensitivity analysis of parameter 𝑝.
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Figure 8: The convergence analysis on two datasets.

enjoy well-structured subspace, e.g. the face datasets (ORL,

Yale) hold low-rank properties and are more suitable for

self-representation subspace learning [1, 58]. Overall, the

proposed ELRSSL is superior on most datasets with various

missing ratios, demonstrating its superiority in IMVC task.

(4) Compared to anchor-based methods, ELRSSL requires more

time consumption but has better performance. Furthermore,

the proposed method is more time-consuming than the sub-

optimal method PGP, due to the computation of matrix in-

version and tensor singular value decomposition. In general,

the extra time consumption is worthwhile as the proposed

method achieves remarkable clustering performance.

5.3 Model Analysis
5.3.1 Ablation Study. An ablation study is conducted to examine

the validity of the proposed method. Based on the architecture of

ELRSSL, there are two crucial modules, including missing sample

recovery and low-rank tensor learning. Therefore, the following

two variants are designed.

(1) w\o MSR (without Missing Sample Recovery): This variant

removes the 𝛼𝑇𝑟 ((𝐸𝑣)𝑇 𝐿𝑣𝑔𝐸𝑣) (𝛼 is set to 0) and retains en-

hanced low-rank tensor learning.

(2) w\o ELTL (without Enhanced Low-rank Tensor Learning)

This variant replaces the Logarithm-𝑝 norm with the ordi-

nary TNN, which is formulated as ∥J ∥∗ =
∑
𝑘

∑
𝑖 𝜎𝑖 (𝐽𝑘 )

while missing sample recovery is retained.

Figure 5 shows the results of the ablation study. The experiment

results verify the importance of missing sample recovery by lever-

aging local structure and capturing high-order correlation among

multiple views by enhanced low-rank tensor regularity, both of

which contribute to clustering.

5.3.2 Parameter Sensitivity Analysis. There are three main hyper-

parameters for the proposed method, including 𝛼 , 𝛾 , and 𝑝 . Particu-

larly, the number of neighbors for 𝑘-nearest neighbor in Equation

(6) is fixed to 7 due to its hardness in selecting the optimal value.

The tuning range of these parameters is given in the section 5.1. As

shown in Figure 6 and Figure 7, the proposed method enjoys stable

performance.

5.3.3 Convergence Analysis. As shown in Figure 8, the objective

value decreases in each iteration, which proves the proposedmethod

can converge rapidly.

6 CONCLUSION
In this paper, an effective self-representation subspace learning

method is devised for IMVC. In particular, a local structure in each

view is introduced to recover the missing samples. Meanwhile,

we designed an enhanced low-rank tensor regularity to efficiently

capture the high-order correlation by assigning different weights to

different singular values. Extensive experiments demonstrate the

superiority of the proposed method and the improvement compared

with previous self-representation subspace learning approaches.We

plan to explore an efficient mechanism without precision reduction

for self-representation on the IMVC task in future.
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