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Abstract
Mobile agents are essential for automating001
tasks in complex and dynamic mobile envi-002
ronments. As foundation models evolve, they003
offer increasingly powerful capabilities for un-004
derstanding and generating natural language,005
enabling real-time adaptation and processing006
of multimodal data. This survey provides a007
comprehensive review of mobile agent tech-008
nologies, with a focus on recent advancements009
in foundation models. Our analysis begins by010
introducing the core components and explor-011
ing key representative works in mobile bench-012
marks and interactive environments, aiming to013
fully understand the research focuses and their014
limitations. We then categorize these advance-015
ments into two main approaches: prompt-based016
methods, which utilize large language models017
(LLMs) for instruction-based task execution,018
and training-based methods, which fine-tune019
multimodal models for mobile-specific applica-020
tions. By discussing key challenges and outlin-021
ing future research directions, this survey offers022
valuable insights for advancing mobile agent023
technologies.024

1 Introduction025

Mobile agents have achieved notable success in026

handling complex mobile environments, enabling027

the automation of task execution across various028

applications with minimal human intervention029

(Zhang et al., 2023a; Li et al., 2024b; Bai et al.,030

2024). These agents are designed to perceive,031

plan, and execute in dynamic environments, mak-032

ing them highly suitable for mobile platforms that033

demand real-time adaptability. Over the years, re-034

search on mobile agents has evolved from sim-035

ple rule-based systems to more sophisticated mod-036

els capable of handling multimodal data and com-037

plex decision-making processes (Shi et al., 2017;038

Rawles et al., 2023). At the same time, foundation039

models, such as large language models (LLMs)040

and multimodal models, have become pivotal in en-041

abling mobile agents to better understand, generate,042

and adapt to their environments, thus expanding 043

their capabilities in mobile systems (Ma et al., 044

2024; Bai et al., 2024). 045

The growing complexity of mobile environments 046

and the increasing demand for automation high- 047

light the importance of mobile agents (Deng et al., 048

2024a). They play a critical role in applications 049

such as mobile interfaces, autonomous navigation, 050

and intelligent assistance, allowing for more effi- 051

cient and intelligent task execution (Yang et al., 052

2023). As mobile technologies advance, mobile 053

agents are expected to operate in environments that 054

require continuous adaptation to changing inputs, 055

multimodal data processing, and interaction with 056

various user interfaces (Zhang et al., 2023a). The 057

ability to process and integrate diverse data sources 058

in real-time makes mobile agents essential for en- 059

abling seamless user experiences and efficient op- 060

erations in dynamic mobile platforms. 061

Despite their progress, mobile agents face sev- 062

eral challenges. Traditional evaluation methods of- 063

ten fail to capture real-world mobile tasks’ dynamic 064

and interactive nature, limiting their assessment ac- 065

curacy (Deng et al., 2024a). To address this, recent 066

benchmarks such as AndroidEnv (Toyama et al., 067

2021) and Mobile-Env (Zhang et al., 2023a) have 068

been developed to evaluate agents in more realistic, 069

interactive mobile environments, focusing on adapt- 070

ability and task performance. These benchmarks 071

provide a more comprehensive assessment of mo- 072

bile agents by measuring task completion and their 073

ability to respond to changes in the environment. 074

Addressing complex tasks while ensuring mo- 075

bile agents are multimodal, scalable, adaptable, and 076

resource-efficient remains a significant challenge. 077

Recent advancements in multimodal mobile agent 078

research can be categorized into prompt-based and 079

training-based methods. Prompt-based methods 080

leverage large language models (LLMs), such as 081

ChatGPT (OpenAI, 2023) and GPT-4 (OpenAI, 082

2023), to handle complex tasks by using instruction 083
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prompting and chain-of-thought (CoT) reasoning084

(Zhang et al., 2024c). Notable works such as AppA-085

gent (Yang et al., 2023) and AutoDroid (Wen et al.,086

2024) have demonstrated the potential of prompt-087

based systems in interactive mobile environments,088

although scalability and robustness remain ongoing089

challenges. On the other hand, training-based meth-090

ods focus on fine-tuning multimodal models, such091

as LLaVA (Liu et al., 2023a) and Qwen-VL (Bai092

et al., 2023), specifically for mobile applications.093

These models can handle rich, multimodal data094

by integrating visual and textual inputs, improving095

their ability to perform tasks like interface naviga-096

tion and task execution (Ma et al., 2024; Dorka097

et al., 2024).098

This survey provides a comprehensive review of099

multimodal mobile agent technologies, focusing100

on recent advancements and ongoing challenges.101

First, we explore the core components of mobile102

agents, including perception, planning, action, and103

memory, which collectively enable agents to oper-104

ate effectively in dynamic environments. Further-105

more, we explore the benchmarks and evaluation106

methods used to assess mobile agent performance.107

Next, we categorize mobile agents into prompt-108

based and training-based approaches, discussing109

their strengths and limitations in improving agent110

adaptability, reasoning, and task execution. Finally,111

we discuss the future development directions of112

multimodal mobile agents. By providing a clear113

understanding of the current state of mobile agent114

research, this survey identifies key areas for fu-115

ture exploration and offers insights into the devel-116

opment of more adaptive, efficient, and capable117

mobile agents.118

2 The Components of Mobile Agents119

As shown in Fig. 1, this section outlines the four120

fundamental components of mobile agents: per-121

ception, planning, action, and memory. Together,122

these components enable agents to perceive, reason,123

and execute within dynamic mobile environments,124

adapting their behavior dynamically to improve125

task efficiency and robustness.126

2.1 Perception127

Perception is the process through which mobile128

agents gather and interpret multimodal informa-129

tion from their surroundings. In mobile agents, the130

perception component focuses on handling mul-131

timodal information from different environments,132

extracting relevant information to aid in planning 133

and task execution. 134

Early research on mobile agents (Zhang et al., 135

2021; Sunkara et al., 2022; Song et al., 2023) pri- 136

marily relied on simple models or tools to convert 137

images or audio into text descriptions. However, 138

these approaches often generate irrelevant and re- 139

dundant information, hampering effective task plan- 140

ning and execution, especially in content-heavy 141

interfaces. Additionally, the input length limita- 142

tions of LLMs further amplified these challenges, 143

making it difficult for agents to filter and prioritize 144

information during task processing. Existing visual 145

encoders, mostly pre-trained on general data, are 146

not sensitive to interactive elements in mobile data. 147

To address this, recent studies by Seeclick (Cheng 148

et al., 2024) and CogAgent (Hong et al., 2024) have 149

introduced mobile-specific datasets that enhance 150

visual encoders’ ability to detect and process key 151

interactive elements, such as icons, within mobile 152

environments. 153

In contexts where API calls are accessible, 154

Mind2Web (Deng et al., 2024b) and AutoDroid 155

(Wen et al., 2024) introduces a method for pro- 156

cessing HTML-based information. This method 157

ranks key elements of HTML data and filters cru- 158

cial details to improve LLM perception of interac- 159

tive components (Li et al., 2024b). Meanwhile, 160

Octopus v2 (Chen and Li, 2024) leverages special- 161

ized functional tokens to streamline function calls, 162

significantly enhancing on-device language model 163

efficiency and reducing computational overhead. 164

2.2 Planning 165

Planning is central to mobile agents, enabling them 166

to formulate action strategies based on task objec- 167

tives and dynamic environments. Unlike agents in 168

static settings, mobile agents must adapt to ever- 169

changing inputs while processing multimodal in- 170

formation. 171

Planning strategies can be categorized as dy- 172

namic or static. In static planning, agents break 173

down tasks into sub-goals but do not re-plan if 174

errors occur (Zhang et al., 2024c). In contrast, 175

dynamic planning adjusts the plan based on real- 176

time feedback, enabling agents to revert to earlier 177

states and re-plan (Gao et al., 2023b; Wang et al., 178

2024a). Recent advances in prompt engineering 179

have further enhanced mobile agent planning. Om- 180

niAct (Kapoor et al., 2024) employs prompt-based 181

techniques to structure multimodal inputs and im- 182
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Figure 1: This pipeline shows the decision-making process of mobile agents: User instructions are processed
through web, app, and OS interfaces, followed by planning with prompt-based or training-based methods. Actions
are taken, and feedback is used to update memory, enabling continuous learning to achieve success.

prove reasoning capabilities. This approach allows183

agents to integrate external tools and adjust output184

formats dynamically and efficiently.185

2.3 Action186

The action component demonstrates how agents187

execute tasks in a mobile environment by utilizing188

three key aspects: screen interactions, API calls,189

and agent interactions. Through screen interactions,190

agents tap, swipe, or type on GUIs, imitating hu-191

man behavior to navigate apps. They also make192

API calls to access deeper system functions, such193

as issuing commands to automate tasks beyond the194

GUI (Chen and Li, 2024). Additionally, by col-195

laborating with other agents, they enhance their196

ability to adapt to complex tasks, ensuring efficient197

task execution across diverse environments (Zhang198

et al., 2024c).199

Screen Interactions In mobile environments, in-200

teractions often involve actions like tapping, swip-201

ing, or typing on virtual interfaces. Agents, such as202

those in AiTW, AITZ, and AMEX (Rawles et al.,203

2024b; Chai et al., 2024; Zhang et al., 2024c), per-204

form GUI-based actions by mimicking human inter-205

actions, ensuring they work smoothly with native206

apps. These actions go beyond simple gestures,207

including complex multi-step processes requiring208

agents to dynamically adapt to changes or new in-209

puts (Lee et al., 2021; Wang et al., 2022).210

API Calls Mobile agents rely on various methods211

to interact with GUIs and perform tasks that require212

deep integration with mobile operating systems,213

with API calls serving as the foundation (Chen and214

Li, 2024; Kapoor et al., 2024). Building on API215

calls, mobile agents can further leverage HTML 216

and XML data to access core functions, modify 217

device settings, retrieve sensor data, and automate 218

app navigation, extending their capabilities beyond 219

GUI-based inputs (Chai et al., 2024; Chen and 220

Li, 2024; Li et al., 2024b). By integrating these 221

approaches, agents can efficiently complete tasks 222

while gaining a more comprehensive understanding 223

of their environment. 224

2.4 Memory 225

Memory mechanisms are crucial for mobile agents, 226

allowing them to retain and use information across 227

tasks. Current research maps in-context learning 228

to short-term and long-term memory to external 229

vector stores. 230

Short-term Memory Managing task continuity 231

and adaptation effectively requires temporarily stor- 232

ing and reasoning about information, much like 233

human working memory. Recent advancements 234

have focused on improving the memory capabili- 235

ties of mobile agents. For example, Auto-UI (Zhan 236

and Zhang, 2023) incorporates historical text infor- 237

mation to enhance decision-making by retaining 238

past context, while UI-VLM (Dorka et al., 2024) 239

uses image-based memory storage. Unlike single- 240

modality agents, multimodal agents must handle 241

short-term memory across various data types, in- 242

cluding text, images, and interactions, ensuring 243

that crucial information from different sources is 244

retained. 245

Long-term Memory Handling long-term com- 246

plex information requires a more efficient memory 247

system. While external vector stores can retrieve 248
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past experiences, they function differently from hu-249

man long-term memory, which is highly structured250

and interconnected. A combination of parametric251

memory and vector databases is currently used to252

mimic human-like long-term memory. Parametric253

memory stores implicit and semantic information,254

while vector databases hold more recent semantic255

and episodic memories. To make querying easier,256

some approaches convert multimodal inputs into a257

unified text format for storage, simplifying retrieval258

and integration during task execution (Yang et al.,259

2023; Wang et al., 2024b; Wen et al., 2024).260

3 Mobile Datasets and Benchmarks261

Benchmarks establish a standardized testing en-262

vironment for evaluating and comparing the per-263

formance of mobile agents across both static and264

interactive settings, covering areas such as user in-265

terface automation, task completion, and real-world266

application scenarios.267

Currently, as shown in Table 5, many268

benchmarks for GUI interaction rely on static269

datasets (Sun et al., 2022; Deng et al., 2024b; Niu270

et al., 2024; Roßner et al., 2020), which provide271

fixed ground-truth annotations and evaluate mod-272

els by comparing their action sequences to prede-273

fined solutions. This method is problematic, as274

it penalizes alternative valid approaches, marking275

them as failures even if the task is successfully276

completed. Interactive benchmarks, such as An-277

droidArena (Xing et al., 2024), also use action se-278

quence similarity as a primary evaluation metric,279

resulting in an inadequate assessment of agent per-280

formance. While recent studies on LLM-based281

GUI agents (Yang et al., 2023; Wang et al., 2024a;282

Zhang et al., 2024a) incorporate LLMs or human283

evaluations, these experiments are often conducted284

in uncontrolled open environments, leading to is-285

sues with reproducibility and comparability of re-286

sults.287

3.1 Static Datasets288

Static datasets provide a controlled and predefined289

set of tasks with annotated ground-truth solutions,290

making them essential for evaluating the perfor-291

mance of mobile agents in fixed environments.292

These datasets are primarily used to assess task293

automation, where agents are required to follow294

predetermined actions or commands to complete295

specific tasks.296

Early research links referring expressions to UI297

elements on a screen, with each instance contain- 298

ing a screen, a low-level command, and the corre- 299

sponding UI element. For example, the RicoSCA 300

dataset (Deka et al., 2017) uses synthetic com- 301

mands, while MiniWoB++ (Liu et al., 2018) in- 302

cludes sequences of low-level commands for multi- 303

step tasks. 304

Recent research has shifted towards task- 305

oriented instructions, where each episode contains 306

action-observation pairs, including screenshots and 307

tree-structured representations like Android’s View 308

Hierarchy or the Document Object Model in web 309

environments. For instance, the PixelHelp (Li 310

et al., 2020a) dataset contains 187 high-level task 311

goals with step-by-step instructions from Pixel 312

Phone Help pages, while the UGIF (Venkatesh 313

et al., 2022) dataset extends similar queries to mul- 314

tiple languages. Meanwhile, MoTIF(Burns et al., 315

2021), includes 4.7k task demonstrations, with 316

an average of 6.5 steps per task and 276 unique 317

task instructions. AITW (Rawles et al., 2024b) 318

is much larger, featuring 715,142 episodes and 319

30,378 unique prompts, some inspired by other 320

datasets. 321

3.2 Simulation Environments 322

Simulation environments provide dynamic plat- 323

forms where agents engage with the environment 324

in real time, receiving feedback and adjusting their 325

actions accordingly. Unlike static datasets, these 326

environments allow for continuous, adaptive inter- 327

actions, making them critical for evaluating agents 328

in more complex, evolving scenarios. 329

Before the rise of LLM-based agents, research 330

primarily focused on reinforcement learning (RL)- 331

based agents. A prominent example is Android- 332

Env (Toyama et al., 2021), which provided RL 333

agents with an environment to interact with mobile 334

applications via predefined actions and rewards. 335

However, with advancements in LLMs, the focus 336

has shifted towards agents that can use natural lan- 337

guage understanding and generation to perform 338

more flexible and adaptive tasks (Liu et al., 2024b; 339

Sun et al., 2024b,a). 340

Simulation Environments are a key focus in cur- 341

rent research on LLM-based agents, particularly in 342

their ability to explore decision paths autonomously 343

through interactions with the environment (Liu 344

et al., 2024b; Sun et al., 2024b,a). In mobile set- 345

tings, these agents are designed to handle complex, 346

multi-step tasks and simulate human-like behav- 347
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Dataset Templates Attach Task Reward Platform

Static Dataset
RICOSCA (Deka et al., 2017) 259k VH Grounding - Android
AndroidHowTo (Deka et al., 2017) 10k - Extraction - Android
PixelHelp (Li et al., 2020a) 187 VH Apps - Android
Screen2Words (Wang et al., 2021) 112k VH Summarization - Android
META-GUI (Sun et al., 2022) 1,125 XML Apps+Web - Android
MoTIF (Burns et al., 2021) 4,707 VH Apps - Android
UGIF (Venkatesh et al., 2022) 4184 XML Grounding - Android
AitW (Rawles et al., 2024b) 30k Layout Apps+Web - Android
AitZ (Zhang et al., 2024c) 2504 CoT Apps+Web - Android
AMEX (Chai et al., 2024) 3k Layout Apps+Web - Android
Mobile3M (Chen et al., 2024a) 3M XML Apps - Android
Androidcontrol (Li et al., 2024a) 15283 VH Apps+Web - Android
MobileViews-600K (Gao et al., 2024) 600k VH Apps - Android
Ferret-UI (You et al., 2024) 120k VH Apps - IOS
Odyssey (Lu et al., 2024) 7735 - Apps+Web - Multi Platforms
ScreenSpot (Cheng et al., 2024) 1200 Layout Apps+Web - Multi Platforms
GUI-World (Chen et al., 2024a) 12379 Video Apps+Web - Multi Platforms

Interactive Environment
MiniWoB++ (Liu et al., 2018) 114 - Web (synthetic) Sparse Rewards -
AndroidEnv (Toyama et al., 2021) 100 - Apps Sparse Rewards Android
AppBuddy (Shvo et al., 2021) 35 - Apps Sparse Rewards Android
Mobile-Env (Zhang et al., 2023a) 224 VH Apps+Web Dense Rewards Android
AndroidArena (Wang et al., 2024c) 221 XML Apps+Web Sparse Rewards Android
AndroidWorld (Rawles et al., 2024a) 116 - Apps+Web Sparse Rewards Android
DroidTask (Wen et al., 2024) 158 XML Apps+Web - Android
B-MoCA (Lee et al., 2024) 60 XML Apps+Web - Android
AppWorld (Trivedi et al., 2024) 750 API Apps+Web - Android
Mobile-Bench (Deng et al., 2024a) 832 XML Apps+Web - Android
MobileAgentBench (Wang et al., 2024c) 100 VH Apps+Web Dense Rewards Android
LlamaTouch (Zhang et al., 2024d) 60 - Apps+Web - Android
Spa-Bench (Chen et al., 2024b) 340 - Apps+Web Dense Rewards Android
AndroidLab (Xu et al., 2024b) 138 XML Apps+Web Dense Rewards Android
CRAB (Xu et al., 2024a) 23 XML Apps+Web Dense Rewards Multi Platforms

Table 1: Comparison of various platforms based on parallelization, templates, tasks per template, rewards, and
supported platforms. Layout refers to fine-grained annotation of the image content, such as the positional coordinates
of elements. VH means View Hierarchy.

iors for app automation (Wen et al., 2023a,b; Liu348

et al., 2023c; Yao et al., 2022a; Shvo et al., 2021).349

A notable example is Mobile-Env (Zhang et al.,350

2023a), created to evaluate how well agents man-351

age multi-step interactions in mobile environments.352

Ultimately, this research aims to improve the adapt-353

ability and flexibility of LLM-based agents, allow-354

ing them to function in dynamic, real-world en-355

vironments with minimal reliance on predefined356

scripts or manual input.357

3.3 Real-world Environments358

Real-world Environments present a significant op-359

portunity to address one of the main limitations360

of closed-reinforcement learning settings: their in-361

ability to fully capture the complexity and variabil-362

ity of real-world interactions. While controlled363

environments are useful for training and testing364

agents, they often miss the dynamic elements of365

real-world scenarios, where factors like changing366

content, unpredictable user behavior, and diverse367

device configurations are crucial. To overcome368

these challenges, researchers are increasingly ex- 369

ploring open, real-world environments for LLM- 370

based GUI agents, enabling them to learn and adapt 371

to the intricacies of live systems and evolving sit- 372

uations (Gao et al., 2023a; Wang et al., 2024b; 373

Zhang et al., 2024a; Yang et al., 2023). However, 374

deploying agents in open-world settings introduces 375

several risks. These include safety concerns, ir- 376

reproducible results, and the potential for unfair 377

comparisons. To mitigate these issues and ensure 378

fair, reproducible evaluations, researchers advo- 379

cate for strategies such as fixing dynamic online 380

content and employing replay mechanisms during 381

evaluation (Liu et al., 2018; Shi et al., 2017; Zhou 382

et al., 2023). These methods help create a more con- 383

trolled testing environment, even within the broader 384

scope of open-world deployments. 385

3.4 Evaluation Methods 386

In evaluating agent performance, trajectory evalua- 387

tion, and outcome evaluation are two main methods. 388

Trajectory evaluation focuses on how well agent 389
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actions align with predefined paths. In contrast,390

outcome evaluation emphasizes whether the agent391

achieves its final goals, focusing on results rather392

than the specific process. The following sections393

will explore recent research advancements in these394

two areas, highlighting how more comprehensive395

evaluation strategies can enhance our understand-396

ing of agent performance in complex environments.397

Trajectory Evaluation Recent improvements in398

GUI interaction benchmarks have focused on step-399

by-step assessments, comparing predicted actions400

to reference action trajectories to evaluate agent401

performance effectiveness (Rawles et al., 2024b;402

Zhang et al., 2021). While this approach is ef-403

fective in many cases, task completion often has404

multiple valid solutions, and agents might explore405

different paths that do not necessarily follow the406

predefined trajectories. To improve the flexibility407

and robustness of these evaluations, Mobile-Env408

evaluate a subset of signals from the environment409

of an intermediate state, enabling reliable assess-410

ment across a wider range of tasks (Zhang et al.,411

2023a).412

Outcome Evaluation An agent’s success is deter-413

mined by assessing whether it reaches the desired414

final state, treating task goals as subsets of hid-415

den states, regardless of the path taken to achieve416

them. These final states can be identified through417

various system signals. Relying on a single signal418

type may not capture all relevant state transitions,419

as certain actions, such as form submissions, may420

only be visible in the GUI and not in system logs421

(Toyama et al., 2021) or databases (Rawles et al.,422

2024a). Shifting to outcome-based evaluation and423

using multiple signals can make GUI interaction424

benchmarks more reliable and adaptable, allowing425

agents to show their full abilities in various scenar-426

ios (Wang et al., 2024c; Rawles et al., 2024a).427

3.5 Performance Comparison428

Due to the limitations of current benchmarks, vari-429

ations in implementation methods, and changes in430

platforms, comparing all methods within a unified431

evaluation environment is challenging. Meanwhile,432

both prompt-based and training-based approaches433

suffer from inconsistent evaluation metrics, compli-434

cating cross-study comparisons. Methods such as435

AppAgent (Li et al., 2024b) and AutoDroid (Wen436

et al., 2024) introduce their own benchmarks and437

metrics, but only test within these benchmarks and438

compare against models like GPT-4. These dispari- 439

ties make direct experimental comparisons imprac- 440

tical at this stage. Therefore, after reviewing exper- 441

imental results from different studies, we compared 442

the AITW and MobileAgentbench benchmarks. 443

AITW measures instruction accuracy (Rawles et al., 444

2024a), and MobileAgentbench measures Success 445

Rate (Wang et al., 2024c). See tables 3 and 4 in 446

the appendix for more details and the need for stan- 447

dardized benchmarks in future research. 448

4 The Taxonomy of Mobile Agents 449

This section introduces a taxonomy of mobile 450

agents, categorizing them into two primary types: 451

prompt-based methods and training-based methods. 452

As shown in Table 6, prompt-based agents take 453

advantage of advancements in LLM to interpret 454

and execute instructions through natural language 455

processing, often focusing on tasks that require dy- 456

namic interaction with GUI. Training-based meth- 457

ods involve fine-tuning models or applying rein- 458

forcement learning to enhance agents’ decision- 459

making and adaptability over time. 460

4.1 Prompt-based Methods 461

Recent advancements in LLMs have demonstrated 462

significant potential in developing autonomous 463

GUI agents, particularly in tasks that require in- 464

struction following (Sanh et al., 2022; Taori et al., 465

2023; Chiang et al., 2023) and chain-of-thought 466

(CoT) prompting (Nye et al., 2022; Wei et al., 467

2022). CoT prompting (Wei et al., 2022; Kojima 468

et al., 2022; Zhang et al., 2023d), in particular, has 469

proven effective in enabling LLMs to handle step- 470

by-step processes, make decisions, and execute 471

actions. These capabilities have shown to be highly 472

beneficial in tasks involving GUI control (Rawles 473

et al., 2023). 474

GUI Tools Enabling LLMs to interact with GUI 475

is essential, as these models are primarily designed 476

to process natural language rather than visual el- 477

ements. GUI tools play a crucial role in bridging 478

this gap by allowing LLMs to interpret and interact 479

with visual elements through text-based commands, 480

making it possible for the models to process and 481

respond to graphical interface components. This 482

multimodal integration significantly boosts the ef- 483

ficiency and flexibility of mobile agents in com- 484

plex environments. Techniques like icon recogni- 485

tion and OCR (Zhang et al., 2021; Sunkara et al., 486
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Method Input Type Model Training Memory Multi-agents

Prompt-based Methods
DroidGPT (Wen et al., 2023b) Text ChatGPT None ✗ ✗

AppAgent (Yang et al., 2023) Image&Text GPT-4V None ✓ ✗

MobileAgent (Wang et al., 2024b) Image&Text GPT-4V & DINO & OCR None ✓ ✗

MobileAgent v2 (Wang et al., 2024a) Image&Text GPT-4V & DINO & OCR None ✓ ✓
AutoDroid (Wen et al., 2024) Text GPT-4 & Vicuna-7B None ✓ ✓
AppAgent V2 (Li et al., 2024b) Image&Text GPT-4V None ✓ ✗

VLUI (Lee et al., 2024) Image&Text GPT-4V None ✗ ✗

MobileExperts (Zhang et al., 2024b) Image&Text GPT-4V None ✗ ✓
Mobile-Agent-E (Wang et al., 2025) Image&Text GPT-4o & DINO & Qwen-VL-Plus None ✓ ✓

Training-based Methods
MiniWob (Liu et al., 2018) Image DOMNET RL-based ✗ ✗

MetaGUI (Sun et al., 2022) Image&Text Faster-RCNN & Transformer Pre-trained ✗ ✗

CogAgent (Hong et al., 2023) Image&Text CogVLM Pre-trained ✗ ✗

SeeClick (Cheng et al., 2024) Image&Text Qwen-VL Pre-trained ✗ ✗

AutoGUI (Zhang and Zhang, 2023) Image&Text BLIP-2-ViT & FLAN-Alpaca Finetune ✓ ✗

ResponsibleTA (Zhang et al., 2023c) Image&Text Swin-ViT & BART Finetune ✓ ✗

UI-VLM (Dorka et al., 2024) Image&Text Qwen-VL Finetune ✓ ✗

Coco-Agent (Ma et al., 2024) Image&Text CLIP-ViT & LLama2-7B Finetune ✓ ✗

DigiRL (Bai et al., 2024) Image&Text BLIP-2-ViT & Flan-T5 & RoBerta RL-based ✗ ✗

SphAgent (Chai et al., 2024) Image&Text SPHINX-X Finetune ✗ ✗

Octopus v2 (Chen and Li, 2024) Text Gemma-2B Finetune ✗ ✗

Octo-planner (Chen et al., 2024d) Text Phi-3 Mini Finetune ✗ ✓
MobileVLM (Wu et al., 2024a) Image&Text Qwen-VL-Chat Finetune ✗ ✗

OdysseyAgent (Lu et al., 2024) Image&Text Qwen-VL Finetune ✓ ✗

AutoGLM (Liu et al., 2024a) Image&Text ChatGLM RL-based ✗ ✗

LiMAC (Christianos et al., 2024) Image&Text Qwen2-VL-2B & AcT Finetune ✗ ✗

DistRL (Wang et al., 2024e) Image&Text BLIP-2-ViT & Flan-T5 RL-based ✗ ✗

ShowUI (Qinghong Lin et al., 2024) Image&Text Qwen2-VL-2B Finetune ✗ ✗

OmniParser (Wan et al., 2024) Image&Text BLIP-2 & OCR & YoloV8 Finetune ✗ ✗

OS-Atlas (Wu et al., 2024b) Image&Text InternVL-2-4B \ Qwen2-VL-7B Pre-trained ✗ ✗

AppVLM (Papoudakis et al., 2025) Image&Text Paligemma-3B-896 RL-based ✗ ✗

InfiGUIAgent (Liu et al., 2025) Image&Text Qwen2-VL-2B Finetune ✗ ✗

Table 2: Comparison of Mobile Agents: A Detailed Overview of Input Types, Models, Training Methods, Memory
Capabilities, and Multi-agent Support.

2022; Song et al., 2023) are used to parse GUI el-487

ements, which then converts the parsed elements488

into HTML layouts. However, this method relies489

heavily on external tools (Rawles et al., 2023; Wen490

et al., 2023a) and app-specific APIs (Zhou et al.,491

2023; Gur et al., 2023), often resulting in ineffi-492

ciencies and errors during inference. Although493

some research has investigated multimodal archi-494

tectures to process different types of inputs (Sun495

et al., 2022; Yan et al., 2023), these approaches496

still depend on detailed environment parsing for497

optimal performance. Given the importance of ac-498

curate GUI grounding, newer studies (Cheng et al.,499

2024; Hong et al., 2023) have begun exploring pre-500

training methods to improve agent performance in501

GUI tasks.502

Memory Mechanism Effective task execution in503

prompt-based methods relies on a strong memory504

mechanism to retain and use relevant information.505

In agents like AppAgent (Yang et al., 2023), the506

agent employs an exploration phase for memory,507

allowing it to learn and adapt to new applications by 508

storing interactions from prior explorations. This 509

approach enables the agent to retain knowledge 510

without needing additional training data. Mobile- 511

Agent (Wang et al., 2024b,a) automates mobile app 512

operations by analyzing screenshots with visual 513

tools, avoiding reliance on system code. 514

Complex Reasoning In agent systems, complex 515

reasoning refers to the ability of models to process, 516

analyze, and integrate information from multiple 517

sources to solve intricate tasks. This capability en- 518

hances decision-making, planning, and adaptability 519

by enabling agents to draw connections between 520

different data inputs, evaluate various outcomes, 521

and execute informed actions in dynamic environ- 522

ments. CoAT (Zhang et al., 2024c) enhances GUI 523

agent performance by integrating semantic infor- 524

mation into action generation. It combines screen 525

descriptions, action reasoning, next-action descrip- 526

tions, and predicted outcomes to improve decision 527

accuracy and consistency. 528
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4.2 Training-based Methods529

In contrast to prompt-based methods, training-530

based approaches involve explicit model optimiza-531

tion. These agents fine-tune large language models532

like LLama (Zhang et al., 2023b) or multimodal533

models such as LLaVA (Liu et al., 2023a) by col-534

lecting instruction-following data to obtain instruc-535

tion information.536

Pre-trained VLMs In mobile environments, pre-537

trained VLMs have become powerful tools for538

decision-making and interaction. Models like539

LLaVA (Liu et al., 2023a) and Qwen-VL (Bai et al.,540

2023), pre-trained on large-scale general datasets,541

capture both visual and language information ef-542

fectively. However, their applicability in mobile543

settings is limited by the lack of sensitivity to inter-544

active elements specific to mobile data. To improve545

the responsiveness of pre-trained models to inter-546

active elements in mobile data, CogAgent (Hong547

et al., 2023) collected a large-scale mobile dataset548

for pre-training representations. CogAgent (Hong549

et al., 2023) integrates visual and textual inputs550

for GUI agents, improving interaction with com-551

plex mobile UIs using VLMs. Spotlight (Li and552

Li, 2022) is a vision-language model for mobile553

UI tasks, relying solely on screenshots and spe-554

cific regions, supporting multi-task and few-shot555

learning, trained on a large-scale dataset. VUT (Li556

et al., 2021) employs a dual-tower Transformer557

for multi-task UI modeling, achieving competitive558

performance with fewer models and reduced com-559

putational costs.560

Fine-Tuning The process of fine-tuning pre-561

trained VLMs with commonsense reasoning ca-562

pabilities has been facilitated by large-scale mo-563

bile datasets, such as AitW (Rawles et al., 2024b),564

through the Visual Instruction Tuning approach.565

Existing methods primarily involve two areas:566

dataset enhancement, and training strategies im-567

provement. ScreenAI (Baechler et al., 2024) and568

AMEX (Chai et al., 2024) focus on using syn-569

thetic data and multi-level annotations to precisely570

identify and describe UI elements on mobile inter-571

faces, providing high-quality datasets for complex572

question-answering and navigation tasks. On the573

other hand, Auto-GUI (Zhan and Zhang, 2023), UI-574

VLM (Dorka et al., 2024), COCO-Agent (Ma et al.,575

2024), Octo-planner (Chen et al., 2024d), and Auto-576

Droid (Wen et al., 2024) achieve significant model577

performance improvements through strategies such578

as direct interface interaction, task instruction and 579

element layout improvement, and separating plan- 580

ning from execution. These techniques not only 581

optimize automation processes but also enhance 582

the prediction accuracy and operational efficiency 583

of models in practical applications. 584

Reinforcement Learning A dynamic approach 585

to training mobile agents is offered by reinforce- 586

ment learning, which enables them to learn from 587

interactions with environments. This method is 588

particularly effective in scenarios where the agent 589

must adapt to sequential decision-making tasks 590

or optimize its actions based on rewards. The 591

WoB (Shi et al., 2017) platform enables reinforce- 592

ment learning in real environments by allowing 593

agents to interact with websites using human-like 594

actions. Meanwhile (Shi et al., 2017) converts ac- 595

tion prediction into question-answering, improving 596

task generalization across different environments. 597

MiniWoB++ (Liu et al., 2018) introduces workflow- 598

guided exploration, which integrates expert work- 599

flows with task-specific actions, accelerating learn- 600

ing and improving task efficiency in action pre- 601

diction tasks. DigiRL (Bai et al., 2024) combines 602

offline and online reinforcement learning to train 603

device control agents. It scales online training us- 604

ing a VLM-based evaluator that supports real-time 605

interaction with 64 Android emulators, enhancing 606

the efficiency of RL-based agent training. 607

5 Conclusion 608

This survey provides a comprehensive overview 609

of multimodal mobile agent technologies. Firstly, 610

we discussed the core components—perception, 611

planning, action, and memory—that enable mo- 612

bile agents to adapt to their environments, form- 613

ing the foundation of their functionality. Next, we 614

reviewed advancements in mobile agents’ bench- 615

marks, which improve mobile agent assessments 616

but still require more comprehensive methods to 617

capture real-world dynamics. We then presented 618

a taxonomy of mobile agents, differentiating be- 619

tween prompt-based and training-based methods, 620

each with strengths and challenges in scalability 621

and adaptability. Finally, we highlighted future re- 622

search directions, focusing on security, adaptability, 623

and multi-agent collaboration to advance mobile 624

agent capabilities. 625
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6 Limitations626

This survey focuses on recent advancements in627

LLM-based mobile agents but provides limited cov-628

erage of traditional, non-LLM-based systems. The629

lack of discussion on older rule-based agents may630

limit the broader context of mobile agent technol-631

ogy development.632
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A Appendix1203

A.1 Future Work1204

In this survey, we have presented the latest advance-1205

ments in the field of mobile agents. While signif-1206

icant progress has been made, several challenges1207

remain unresolved. Based on the current state of1208

research, we propose the following future research1209

directions:1210

Model Architecture Optimization : When op-1211

timizing mobile agent performance, it is crucial1212

to consider the impact of grounding ability on the1213

action prediction task. To achieve this, the model1214

must enhance its grounding ability for accurate ele-1215

ment localization while effectively adapting to ac-1216

tion prediction tasks and making efficient decisions.1217

The Mixture of Experts (MOE) architecture plays1218

a key role in this process (Lin et al., 2024). By1219

introducing multiple expert modules, MOE allows1220

the model to dynamically select the most suitable1221

expert based on the task, making it particularly1222

effective in handling multi-domain tasks and im-1223

proving task adaptability and performance (Shu1224

et al., 2024). Therefore, adopting the MOE archi-1225

tecture enhances grounding ability while ensuring1226

strong decision-making capability in complex tasks,1227

leading to improved performance across multiple1228

domains (Wu et al., 2024c).1229

Combine with Reinforcement Learning: En-1230

hancing mobile agents’ ability to adapt to dynamic1231

and unpredictable environments is crucial. Mo-1232

bile agent tasks are fundamentally decision-making1233

tasks, not just prediction tasks (Liu et al., 2018).1234

Training through instruction fine-tuning can im-1235

prove predictions within the action space, but it1236

struggles with decision data influenced by pre-1237

dicted outcomes that cause distribution changes,1238

such as in virtual machines or simulators. These1239

scenarios require the use of reinforcement learning1240

to perform sequential decision-making tasks. How-1241

ever, research in this area is still in its early stages.1242

Current explorations, such as Digirl (Bai et al.,1243

2024), Distrl(Wang et al., 2024e) and RL4VLM1244

(Zhai et al., 2024), have not yet achieved end-to-1245

end alignment in this field. Future research should1246

explore how to utilize reinforcement learning better1247

to integrate changing interactive environments with1248

multimodal large language models for real-time1249

behavior adjustment.1250

Security and Privacy: Mobile agents face se- 1251

curity risks in open environments. Whether it in- 1252

volves tasks that make decisions in latent spaces, 1253

such as those found in the AITW (Rawles et al., 1254

2024a) and AMEX (Chai et al., 2024) datasets, or 1255

tasks like AITZ (Zhang et al., 2024c) that complete 1256

decision-making through chains-of-thought , the 1257

security of the model and its ethical aspects can 1258

impact decision-making performance (Bai et al., 1259

2022) . Future work should prioritize stronger secu- 1260

rity mechanisms to prevent malicious behavior and 1261

data breaches. It’s also necessary to develop pri- 1262

vacy protection technologies and ethical improve- 1263

ment mechanisms to ensure safe and ethical opera- 1264

tions during agent interactions. 1265

Multi-agent Collaboration: Collective intelli- 1266

gence simplifies complex problems through dis- 1267

tributed control, enhances system robustness with 1268

redundant designs, and optimizes resource usage 1269

through coordinated operations, thereby demon- 1270

strating significant efficiency and adaptability in 1271

handling large-scale, complex tasks. Improving 1272

collaboration among multiple mobile agents re- 1273

mains a key challenge. Current methods explor- 1274

ing multi-agent systems are still limited to role- 1275

playing(Li et al., 2024b), standard operating pro- 1276

cedures (Zhang et al., 2024b), and collaboration 1277

with expert models (Chen et al., 2024d). The over- 1278

all scale is small, lacking exploration into com- 1279

munication and organizational structures. Future 1280

research should focus on efficient communication 1281

and collaborative mechanisms that enable agents 1282

to dynamically form coalitions and complete tasks 1283

more effectively. 1284

Model Lightweighting: The computational re- 1285

sources on mobile devices are limited, which im- 1286

poses higher requirements for model deployment 1287

and inference. Therefore, quantization and acceler- 1288

ating inference are particularly important. Existing 1289

methods such as SphAgent (Chai et al., 2024), Co- 1290

gAgent (Hong et al., 2023), and SeeClick (Cheng 1291

et al., 2024) still have too large parameter sizes for 1292

deployment on mobile devices. The latest research, 1293

like LiMAC (Christianos et al., 2024), reduces fine- 1294

tuning costs without compressing model param- 1295

eters. Future research should focus on optimiz- 1296

ing the size of mobile agents and speeding up the 1297

inference process to ensure high performance un- 1298

der resource constraints. Additionally, refining the 1299

inference pipeline to enhance real-time decision- 1300
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making capabilities is crucial, which involves better1301

computational algorithms and hardware accelera-1302

tions to achieve faster responses and reduce energy1303

consumption.1304

A.2 Complementary Technologies1305

Effective complementary technologies are vital for1306

enhancing the performance and usability of mo-1307

bile agents, in addition to key components like1308

benchmarks, VLM models, fine-tuning methods,1309

and advanced reasoning skills. These technolo-1310

gies facilitate seamless interactions with mobile1311

environments, allowing agents to adapt, learn, and1312

perform complex tasks efficiently.1313

UIED (Xie et al., 2020) detects and classi-1314

fies GUI elements using computer vision and1315

deep learning, supporting interactive editing. We-1316

bGPT (Nakano et al., 2021) fine-tunes GPT-31317

for web-based question answering using imitation1318

learning and human feedback. WebVLN (Chen1319

et al., 2024c) trains AI agents to navigate web-1320

sites with question-based instructions, incorporat-1321

ing HTML for deeper understanding.1322

A.3 Available related technologies1323

Additionally, OmniACT (Kapoor et al., 2024) of-1324

fers a comprehensive platform for evaluating task1325

automation across various desktop applications and1326

natural language tasks. WebVoyager (He et al.,1327

2024) introduces an automated evaluation protocol1328

using GPT-4V, capturing screenshots during nav-1329

igation and achieving an 85.3% agreement with1330

human judgments. Furthermore, Widget Caption-1331

ing (Li et al., 2020b) sets a benchmark for improv-1332

ing UI accessibility and interaction by providing1333

162,859 human-annotated phrases that describe UI1334

elements from multimodal inputs, paving the way1335

for advancements in natural language generation1336

tasks. Above all, leveraging a diverse set of system1337

signals provides a more comprehensive and accu-1338

rate assessment of an agent’s performance (Xie1339

et al., 2024).1340

On desktop platforms, research has focused1341

on evaluating how well LLM-based agents uti-1342

lize APIs and software tools to complete tasks1343

such as file management and presentations (Qin1344

et al., 2023; Guo et al., 2023). AgentBench (Liu1345

et al., 2023b) offers a flexible, scalable framework1346

for evaluating agent tasks, while PPTC Bench-1347

mark (Guo et al., 2023) targets the evaluation of1348

LLM-based agents’ performance in PowerPoint-1349

related tasks.1350
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Model Overall General Install GoogleApps Single WebShop.

ChatGPT-COT (Ding, 2024) 7.72 5.93 4.38 10.47 9.39 8.42
GPT-4V ZS+HTML (Ding, 2024) 50.54 41.66 42.64 49.82 72.83 45.73
GPT-4V ZS+History (Ding, 2024) 52.96 43.01 46.14 49.18 78.29 48.18
GPT-4o (Wu et al., 2024a) 55.02 47.06 49.12 52.30 80.28 46.42
MobileAgent (Wang et al., 2024b) 66.92 55.8 74.98 63.95 76.27 63.61

InternVL +History (Wu et al., 2024a) 2.63 1.95 2.88 2.94 3.03 2.71
Qwen-VL +History (Wu et al., 2024a) 3.23 2.71 4.11 4.02 3.89 2.58
PaLM-2 (Zhang and Zhang, 2023) 39.6 – – – – –
MM-Navigator (Yan et al., 2023) 50.54 41.66 42.64 49.82 72.83 45.73
MM-Navigatorw/ text (Yan et al., 2023) 51.92 42.44 49.18 48.26 76.34 43.35
MM-Navigatorw/ history (Yan et al., 2023) 52.96 43.01 46.14 49.18 78.29 48.18
OmniParser (Wan et al., 2024) 50.54 41.66 42.64 49.82 72.83 45.73

BC (Rawles et al., 2023) 68.7 – – – – –
BC w/ history (Rawles et al., 2023) 73.1 63.7 77.5 75.7 80.3 68.5
Qwen-2-VL (Wang et al., 2024d) 67.20 61.40 71.80 62.60 73.70 66.70
Show-UI (Qinghong Lin et al., 2024) 70.00 63.90 72.50 69.70 77.50 66.60
Llama 2 (Zhang and Zhang, 2023) 28.40 28.56 35.18 30.99 27.35 19.92
Llama 2+Plan+Hist (Zhang and Zhang, 2023) 62.86 53.77 69.1 61.19 73.51 56.74
Auto-UI (Zhang and Zhang, 2023) 74.27 68.24 76.89 71.37 84.58 70.26
MobileVLM (Wu et al., 2024a) 74.94 69.58 79.87 74.72 81.24 71.70
SphAgent (Chai et al., 2024) 76.28 68.20 80.50 73.30 85.40 74.00
CoCo-LLAVA (Ma et al., 2024) 70.37 58.93 72.41 70.81 83.73 65.98
SeeClick (Cheng et al., 2024) 76.20 67.60 79.60 75.90 84.60 73.10
CogAgent (Hong et al., 2023) 76.88 65.38 78.86 74.95 93.49 71.73
CoCo-Agent (Ma et al., 2024) * 77.82 69.92 80.60 75.76 88.81 74.02

Table 3: Experimental results of different methods on static dataset AITW: Action accuracy across main setups,
highlighting overall performance in decision-making tasks. The symbol * indicates that CoCo-Agent incorporates
layout information during training, while other models rely solely on image data.

Agent SR ↑ SE ↓ Latency (s) ↓ Tokens ↓ FN Rate ↓ FP Rate ↓

AndroidArena (Xing et al., 2024) 0.22 1.13 18.61 750.47 0.09 0.33
AutoDroid (Wen et al., 2024) 0.27 3.10 4.85 963.48 0.93 0.01
AppAgent (Yang et al., 2023) 0.40 1.29 26.09 1505.09 0.17 0.40
CogAgent (Hong et al., 2023) 0.08 2.42 6.76 579.84 1.00 0.04
MobileAgent (Ding, 2024) 0.26 1.33 15.91 1236.88 0.19 0.31

Table 4: Experimental results of different methods on simulation environment MobileAgentBench. SR (Success
Rate), SE (System Error), Latency, Tokens, FN Rate (False Negative Rate), and FP Rate (False Positive Rate) are
the metrics used for comparison.

Dataset Templates Attach Task Reward Platform

Static Dataset
WebSRC (Chen et al., 2021) 400k HTML Web - Windows
WebUI (Wu et al., 2023) 400k HTML Web - Windows
Mind2Web (Deng et al., 2024b) 2,350 HTML Web - Windows
Ferret-UI (You et al., 2024) 120k - Apps - IOS
OmniAct (Kapoor et al., 2024) 9802 Ocr/Seg Web - Windows
WebLINX (Roßner et al., 2020) 2,337 HTML Web - Windows
ScreenAgent (Niu et al., 2024) 3005 HTML Web - Windows

Interactive Environment
WebShop (Yao et al., 2022a) 12k - Web Product Attrs Match Windows
WebArena (Zhou et al., 2023) 241 HTML Web url/text-match Windows
VisualWebArena (Koh et al., 2024) 314 HTML Web url/text/image-match Windows
Ferret-UI (You et al., 2024) 314 HTML Web url/text/image-match Windows
OSWorld (Xie et al., 2024) 369 - Web Device/Cloud state Linux

Table 5: Comparison of various platforms based on parallelization, templates, tasks per template, rewards, and
supported platforms.
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Method Input Type Training Memory Task Multi-agents

Prompt-based Methods
ReAct (Yao et al., 2022b) Text None ✓ Web ✗

MM-Navigator (Yan et al., 2023) Image&Text None ✗ Apps+Web ✗

MindAct (Deng et al., 2024b) Text None ✓ Apps+Web ✗

OmniAct (Kapoor et al., 2024) Text None ✗ Apps+Web ✗

Training-based Methods
VUT (Li et al., 2021) Image&Text Pre-trained ✗ Web ✗

Spotlight (Li and Li, 2022) Image&Text Pre-trained ✗ Web ✗

ScreenAI (Baechler et al., 2024) Image&Text Pre-trained ✗ Web ✗

ScreenAgent (Niu et al., 2024) Image&Text Pre-trained ✓ Web ✗

SeeClick (Cheng et al., 2024) Image&Text Pre-trained ✗ Web ✗

Table 6: Comparison of Mobile Agents: A Detailed Overview of Input Types, Models, Training Methods, Memory
Capabilities, Tasks, and Multi-agent Support. Web* means synthesized web data.
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