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ABSTRACT

Traveling waves are widely observed in the brain, but their precise computational
function remains unclear. One prominent hypothesis is that they enable the transfer
and integration of spatial information across neural populations. However, few
computational models have explored how traveling waves might be harnessed to
perform such integrative processing. Drawing inspiration from the famous “Can
one hear the shape of a drum?” problem — which highlights how spectral modes en-
code geometric information — we introduce a set of convolutional recurrent neural
networks that learn to produce traveling waves in their hidden states in response to
visual stimuli. By applying a spectral decomposition to these wave-like activations,
we obtain a powerful new representational space that outperforms equivalently
local feed-forward networks on tasks requiring global spatial context. In particular,
we observe that traveling waves effectively expand the receptive field of locally con-
nected neurons, supporting long-range encoding and communication of information.
We demonstrate that models equipped with this mechanism and spectral readouts
solve visual semantic segmentation tasks demanding global integration, where local
feed-forward models fail. As a first step toward traveling-wave-based representa-
tions in artificial networks, our findings suggest potential efficiency benefits and
offer a new framework for connecting to biological recordings of neural activity.

1 INTRODUCTION

The propagation of traveling waves of neural activity has been measured on the surface of the brain
from the earliest neural recordings (Adrian & Matthews, |1934). Driven by these observations, many
theoretical arguments have been put forth to explain the functional roles of these dynamics. A
non-exhaustive list of proposed functions includes that they are relevant to predictive coding (Alamia
& VanRullen) 2019), the representation of symmetries (Keller et al., [2024)), the consolidation of long
term memories (Muller et al., [2018]), or the encoding or motion (Heitmann & Ermentrout} 2020).

Most relevant to this study, one hypothesized role is that traveling waves serve as a mechanism for
integration and transfer of information over long distances. For example, [Besserve et al.| (2015)
use direction-specific causal information transfer metrics to demonstrate that traveling waves in the
gamma frequency band are correlated with information transfer between different cortical regions;
while |Bhattacharya et al.|(2022)) show that waves change direction during information retrieval and
processing. Despite these promising observations however, it remains challenging to investigate these
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Figure 1: Sequence of hidden states of an oscillator model trained to segment images of polygons. We
see that the shape of the hexagon is visible throughout the wave dynamics, and that waves propagate
differently within the polygon due to reflections induced by the differing natural frequencies. Full
videos at: https://github.com/anonymousl23—-user/Wave_Representations
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Figure 2: (Left) Plot of predicted semantic segmentation and select set of frequency bins for each
pixel of a give test image. (Right) The full frequency spectrum for each shape in the dataset, averaged
over all pixels containing that class label in the dataset. We see that different shapes have qualitatively
different frequency curves, allowing for > 99% pixel-wise classification accuracy on a test set.

ideas computationally due to a lack of artificial neural network models which exhibit traveling wave
dynamics. In modern artificial neural networks, information is transmitted over spatial distances or
between tokens either via extremely deep convolutional neural networks, bottleneck/pooling layers,
or all-to-all connectivity as-in Transformers (Vaswani et al.,[2023). Each of these approaches comes
with its own computational complexity and expressivity limitations, and it is therefore of great interest
to explore alternative methods to integrate disparate information in neural systems.

In this paper, we aim to make progress towards understanding the causal role of wave dynamics
in the transfer of information by filling this modeling gap, and improving our understanding how
information may be represented by traveling waves in neural systems. Specifically, in this paper, we
aim to shed light on the answer to two primary questions: I) How precisely can global information be
communicated and integrated between neurons in locally constrained architectures? II) In what format
is this transmitted information represented such that it can be read out for task-relevant processing?

To answer these questions, in the following, we introduce a set of convolutional recurrent neural
network (conv-RNN) architectures that have inherently limited receptive field sizes in the initial
forward pass, but are required to solve a global-information processing (semantic segmentation) task
through recurrent processing over time. We show that such models learn to leverage wave dynamics
to integrate information over space (Figure|[I), thereby solving global tasks while each neuron only
has access to local information at each timestep. Specifically, we leverage a spectral decomposition of
each neuron’s recurrent neural activity as our primary neural representation during training (Figure [2)),
and show that this is a viable method for extracting global information integrated through traveling
waves, while individual static snapshots of neural activity are insufficient.

2  MOTIVATION

To build intuition for how traveling waves may integrate information over space, we take inspiration
from the famous mathematical question ‘Can one hear the shape of a drum?’ posed by Mark
Kac|(1966)). Simply put, this question asks whether the boundary conditions of an idealized drum
head are uniquely identified by the frequencies at which the drum head will vibrate. Intuitively,
it is straightforward to understand that when one strikes a drum head, this initial disturbance will
propagate outwards as a traveling wave until it reaches the fixed boundary conditions where it will
reflect with a phase shift. This reflected wave will thus have collected information about the boundary,
and serves to bring it back towards the center. As the reflected wave returns towards the center, it
will eventually collide with other reflected waves from the other edges of the shape, and combine
in a superposition of wavefronts, such that eventually the displacement at each point of the drum
will inevitably be a superposition of all the traveling wave components which carry information
about the distant edges of the shape to the interior. Another way to think about Mark Kac’s original
question then, which is more directly related to the neural systems we study in this work, is how much
information can one actually gather about the global environment from the sequence of vibrations at
any single point on the ‘drum’s surface’? At the time of Mark Kac’s question, it was known that the
area of a drum-head could be deduced from its eigenspectrum uniquely; and indeed, it took more than
25 years for researchers to find counter examples of drum heads that cannot be distinguished by their
eigenspectra (Gordon et al,|1992) — implying that the amount of unique geometric information in
spectral representations is significant. In the following set of experiments, we will use this intuition
as a starting point to begin building models which propagate and combine information over space
through traveling waves, proposing to read this information out through a spectral decomposition of
the hidden state activity, much like ‘hearing the shape’ of visual objects.
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3 METHODS

In all experiments, the task is semantic segmentation, where each pixel of the original image must
be classified as either background, or one of the classes from the dataset, and models are trained to
minimize a pixel-wise cross-entropy loss. Crucially, locally restricted models all make use of shallow
convolutional encoders (with 3 x 3 kernels), convolutional recurrent connections (if recurrent), and
pixel-local decoders, ensuring that the spatial receptive field of each neuron in a single feed-forward
pass is limited to be significancy less than the inherent length scale of features necessary to identify
class labels in each dataset. The full code and video visualizations for the results in this paper are
available at: https://github.com/anonymousl23-user/Wave_Representations

3.1 DATASETS

To validate the core idea that traveling waves can be used to transmit information over large spatial
distances, and that information can be decoded via a spectral decomposition, we use three datasets:

Polygons First, we consider a simple dataset composed of polygons on black backgrounds, where
the classes are given by the number of sides of the polygons. The examples are synthetic 75 x 75
pixel grayscale images with 1 to 2 polygons, each with 3 to 6 edges (yielding 5 total classes with the
background) roughly circumscribed within circles with radii of 15 to 20 pixels. On this dataset, the
angle of the corners of the shape are sufficient to correctly classify those patches, but this information
must then be transferred to the center of the shape for correct semantic segmentation of the interior.

Tetrominoes As a second dataset with slightly increased complexity that has been employed in prior
segmentation work (Miyato et al., 2024), we employ own re-implementation of the Tetrominoes
dataset (Kabra et al.,[2019), composed of ‘Tetris’ like blocks of varying shapes and colors arranged
on a black background. This dataset increases the difficulty due to the increased number of objects
per image, and the increased complexity of the shapes themselves. Specifically, this dataset contains
6 distinct classes and the objects are 14-28 pixels long. Each image can have 1 to 5 shapes.

MNIST Finally, we use the MNIST dataset (LeCunl [1998) but increase the spatial dimensions to
56 x 56 through interpolation. The pixels are binarized at a threshold of 0.5, and are assigned the
associated class label of the digit in the image or ‘background’. This task is significantly harder than
those above since the shapes now differ between instances (i.e. each hand-wirtten 3 is unique) and
thus the model must learn these sets of invariances when processing the spectral representations.

3.2 MODELS

For an input image x € RE*H>*W the following networks output y € RY*HXW 3 set of N class
logits for each pixel, which are then passed through a softmax to compute the predicted class labels.

Local Feed-Forward CNN Baseline The CNN baselines are composed of a number (L) of convo-
lutional layers, each with (3 x 3) convolutional kernels, and 16 channels. Again, this baseline is
intended to demonstrate the inability of neurons with restricted local receptive fields to perform tasks
which require global information. Explicitly, with w! denoting layer I’s convolutional kernel:

y =o(wlxo(wr s, .o(w'xx+bl).. .+ b)) + bk (1

Locally Coupled Oscillatory RNN As a model which most closely follows the theory of ‘hearing
the shape of a drum’, we implement a recurrent neural network parameterized as a network of locally
coupled oscillators. In prior work, this model has been referred to as the Neural Wave Machine
(Keller & Welling| [2023)), based on the coRNN (Rusch & Mishra, [2021)), and is known to be biased
towards the production of traveling waves. One difference in this work is that we make the natural
frequencies of each oscillator ~, and the damping term «, a function of the input image, computed
through a shallow 3-layer CNN model. This crucially allows the way in which waves propagate over
the hidden state (and therefore the frequencies) to be dictated by the input image. The initial state of
the model is also set by the shallow 4-layer CNN encoder fy(x), with (3 x 3) kernels. Explicitly:

hy = fo(x), h =0 (w,*xh) —9(x)h — ap(x)h 2)
We initialize the recurrent convolutional kernel wy, to the finite difference approximation of the

Laplacian operator to bias towards wave propagation. Finally, we numerically integrate the second
order ODE above using euler integration with a timestep size of 0.1 for a fixed amount of time.
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Figure 3: Visualization of a subset (outlined in dashed white line) of the LSTM and coRNN hidden
state evolution after training (top) for a given image (left). We see waves propagate over the timesteps
throughout the shape. On the bottom we plot the associated pixel-wise Fourier transform of the
hidden state dynamics and observe individual shapes appear to pop out in different frequency bins.
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Convolutional LSTM We implement a convolutional variant of the LSTM to see how a recurrent
network without a traveling wave inductive bias might solve the same tasks. In this model, all
otherwise dense connections which are used to update the cell state and compute gate activations are
now replaced with local convolutions over the spatial dimensions of the hidden state. Explicitly:

xo = fo(x), it = U(Wi * X1 +b1:)7 fi =o(wpxxi 1 +bf)7 C, = tanh(we * x¢—1 + be), 3)
Ci=£f0Ci1 + t®Ci, or=0(woxxi_1+b,), hy=0,0tanh(Cy), x4 =Wo2x0(Wo1 xhy). (4

As in the coRNN, we use two hidden channels, a 4-layer CNN for fy, and two 3-layer CNNs to
initialize hy and Cy. We do no special initialization, yet as we show in Figure[3] these models still
learn to produce waves in their hidden states to solve the task.

Recurrent Readout For the recurrent models, we must decide how to read out the class label from
the sequence of hidden states. The simplest option is to feed the hidden state at the final timestep
to a pixel-wise ‘readout’ network for classification (Last in Table[T). Alternatively, we can feed a
function of the hidden states over time into the readout network. The options for such a function
include taking the maximum or mean hidden state values over time (Max and Mean respectively) and
computing the Fourier coefficient amplitudes of the time series (FFT). In all cases, we parameterize
the readout module as a 4-layer MLP.

Non-local U-Net Baseline As a competitive non-local effective upper bound on the local models’
performance, we implement a simple U-Net model (Ronneberger et al.| 2015) to perform classification.
This model contains 4 layers and up to 1024 channels in the bottleneck. Crucially, because of the
spatial bottleneck, the receptive fields of pixels in the output layer of this model cover the entire
image, allowing for simple solutions to the semantic segmentation task.

4 RESULTS

Polygons As an initial proof of concept, in Figure [I] we show the hidden state evolution for the
Locally Coupled Oscillatory RNN model on a single example of the polygons dataset. We see that the
model initializes the hidden state such that waves are propagated from the edges of the object in all
directions. From naive inspection of sequence, we can see that waves appear to propagate differently
within the object, seemingly changing the spectral representation of each point on the interior of the
hexagon. In Figure 2] we plot the spectral representation of a given test image, and the frequency
representations for each object class averaged over all pixels in the validation set which are labeled as
that class. We see that there is a clear distinction between the shapes that the model appears to pick
up on which allows for the model to identify all polygons with > 99% accuracy on a held out test set.

Tetrominoes & MNIST As feed-forward models with different receptive field sizes and local
recurrent models, in Table [I| we include the aggregated results of 300 total models. We observe
that CNNs with 2 and 4 layers perform poorly on both datasets, with performance improving as
the receptive field (RF) increases, as expected. This improvement is most pronounced in 16-layer
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MNIST Tetrominoes
Model Arch. FG-Acc FG-IoU Loss FG-Acc FG-IoU Loss

CNN 2 0.14 £0.06 0.10 £0.04 0.34 £0.13 0.24 £0.08 0.14 £0.05 0.27 £0.13
4 0.19 £0.11 0.13£0.07 0.35£0.18 031 +£0.16 020+0.11 0.28 £0.19
8 042 +0.15 030+0.11 0.25=£0.16 0.74 +£ 0.26 0.64 + 0.22 0.11 £ 0.19
16 0.57 £ 0.39 0.50 + 0.35 0.27 &= 0.29 0.40 £0.51 0.40+0.51 0.39 +£0.33
32 0.27 £0.43 0.25+0.41 0.50 +£0.31 0.33 £0.47 0.32+0.47 0.41 +£0.31
LSTM Max 0.42=£0.05 0.31+£0.04 0.21 £0.02 0.62+£0.30 0.52+0.31 0.16 £0.18
Mean 0.42 +£0.09 0.31 £0.07 0.21 £ 0.03 0.64 £0.25 0.53+0.23 0.15£0.18
Last 032£0.23 0.24£0.18 0.35+0.24 0.59 £0.41 0.52+0.38 0.24 £0.28
FFT 0.73 £ 0.27 0.66 &= 0.25 0.14 4 0.20 0.95 4 0.04 0.91 4 0.07 0.03 £ 0.02
coRNN Max 048 £0.07 0.37 £0.07 0.19 £ 0.02 0.88 £0.11 0.81 £0.15 0.05 £0.03
Mean 0.46 +=0.08 0.35 £0.07 0.20 £ 0.03 0.92 +£0.07 0.87 £0.11 0.04 £0.02
Last 0.50 £0.08 0.39£0.07 0.18 £ 0.03 0.94 £0.06 0.90£0.09 0.03 £0.02
FFT 0.76 £+ 0.05 0.65 &= 0.07 0.10 & 0.02 0.98 4 0.01 0.97 4 0.01 0.01 £ 0.00
U-Net 0.99 £0.00 0.99 £0.00 0.00 £ 0.00 1.00 £ 0.00 1.00 £0.00 0.00 £ 0.00

Table 1: Locally constrained recurrent models with timeseries readouts can semantically
segment images at the pixel level, a task requiring global information. Models with the lowest
foreground loss are in bold. Arch (architecture) refers to number of CNN layers, and type of readout
for LSTM and coRNN. Results are from 10 random seeds, displayed as mean =+ std.

CNNs on MNIST and in 8-layer CNNs on Tetrominoes (effective RF sizes of 33 and 17, respectively).
However, mean performance declines with 32 layers on MNIST and with 16 and 32 layers on
Tetrominoes, though the variance remains high. As deeper networks contain more parameters, they
pose a more challenging optimization problem, leading to inconsistent convergence. Neverthless,
peak performance continues to improve as the number of layers increases, even in the 16- and 32-layer
models, despite more failed training runs. As expected, U-Net exhibits the best performance.

Among recurrent models, those with the FFT perform best, with the coRNN outperforming baselines.
Recurrent models that rely solely on the last hidden state for predictions achieve the weakest results.
We note that it should also be possible to learn an arbitrary linear map over time as another powerful
readout mechanism in-place of the FFT, but we leave this to future work. The coRNN models exhibit
the lowest variance, indicating greater training stability. Figure [3| visualizes the recurrent states and
fourier bins for a sample image. Interestingly, the LSTM learns to generate wave dynamics despite
lacking an explicit inductive bias for doing so.

5 DISCUSSION

In the above, we have presented arguments both theoretical and empirical supporting the idea that trav-
eling waves may serve to integrate spatial information through the time dimension in otherwise locally
constrained architectures, achieving performance comparable with globally connected counterparts.
Furthermore, we have demonstrated empirically that this wave-encoded information is most directly
accessible through spectral decompositions of the hidden state, while it is generally less accessible
through standard readout methods using the final hidden state of RNNs. Finally, we showed that even
if models are not biased towards wave dynamics initially, such as the Conv-LSTM, they will still learn
to propagate waves in order to transfer information effectively through space, thereby implicating
waves and wave-based representations as an optimal solution. We hope that this work draws increased
attention to the idea that wave-based and spectral representations may carry global task-relevant
information in both biological and artificial systems, thereby encouraging their increased study.

In future work, we believe that this research direction could provide a pathway to an alternative
method for computing representational alignment between biological and artificial neural networks.
By incorporating local recurrence and spectral decompositions, the representations of these models
naturally exist in both the spatial and frequency domains for a given input, thereby making comparison
with recording methodologies such as EEG and MEG very natural. Additionally, we speculate that
this work may have implications for how something like all-to-all attention in Transformers (one of
the key bottlenecks to scaling) may be alleviated in a biologically plausible manner. More precisely,
if attention could be framed as wave-propagation and read out in frequency space, it may be possible
to achieve similar performance with significantly reduced computation cost.



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

REFERENCES

E. D. Adrian and B. H. C. Matthews. The interpretation of potential waves in the cor-
tex. The Journal of Physiology, 81(4):440—471, 1934. doi: https://doi.org/10.1113/jphysiol.
1934.sp003147. URL https://physoc.onlinelibrary.wiley.com/doi/abs/10.
1113/Jphysiol.1934.sp003147.

Andrea Alamia and Rufin VanRullen. Alpha oscillations and traveling waves: Signatures of predictive
coding? PLOS Biology, 17(10):1-26, 10 2019. doi: 10.1371/journal.pbio.3000487. URL
https://doi.org/10.1371/journal .pbio.3000487.

Michel Besserve, Scott C. Lowe, Nikos K. Logothetis, Bernhard Schoélkopf, and Stefano Panzeri.
Shifts of gamma phase across primary visual cortical sites reflect dynamic stimulus-modulated
information transfer. PLOS Biology, 13(9):1-29, 09 2015. doi: 10.1371/journal.pbio.1002257.
URL https://doi.org/10.1371/journal.pbio.1002257.

Sayak Bhattacharya, Scott L. Brincat, Mikael Lundqvist, and Earl K. Miller. Traveling waves in the
prefrontal cortex during working memory. PLOS Computational Biology, 18(1):1-22, 01 2022.
doi: 10.1371/journal.pcbi.1009827. URL https://doi.org/10.1371/journal .pcbi,
10098277.

Anand Gopalakrishnan, Aleksandar Stanié, Jiirgen Schmidhuber, and Michael Curtis Mozer. Recur-
rent Complex-Weighted Autoencoders for Unsupervised Object Discovery, October 2024. URL
http://arxiv.org/abs/2405.17283. arXiv:2405.17283.

Carolyn Gordon, David L. Webb, and Scott Wolpert. One cannot hear the shape of a drum. Bulletin
of the American Mathematical Society, 27:134—138, 1992.

Stewart Heitmann and G. Bard Ermentrout. Direction-selective motion discrimination by traveling
waves in visual cortex. PLOS Computational Biology, 16(9):1-20, 09 2020. doi: 10.1371/journal.
pcbi.1008164. URL https://doi.org/10.1371/journal.pcbi.1008164!,

Rishabh Kabra, Chris Burgess, Loic Matthey, Raphael Lopez Kaufman, Klaus Greff, Malcolm
Reynolds, and Alexander Lerchner. Multi-object datasets. https://github.com/deepmind/multi-
object-datasets/, 2019.

Mark Kac. Can One Hear the Shape of a Drum? The American Mathematical Monthly, 73(4):1-23,
1966. ISSN 0002-9890. doi: 10.2307/2313748. URL https://www. jstor.org/stable/
2313748, Publisher: [Taylor & Francis, Ltd., Mathematical Association of America].

T. Anderson Keller and Max Welling. Neural wave machines: Learning spatiotemporally structured
representations with locally coupled oscillatory recurrent neural networks. In Proceedings of the
40th International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, 2023.

T. Anderson Keller, Lyle Muller, Terrence J. Sejnowski, and Max Welling. A spacetime perspective
on dynamical computation in neural information processing systems, 2024. URL https://
arxiv.org/abs/2409.136609.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Luisa H. B. Liboni, Roberto C. Budzinski, Alexandra N. Busch, Sindy Loéwe, Thomas A. Keller,
Max Welling, and Lyle E. Muller. Image segmentation with traveling waves in an exactly solvable
recurrent neural network, November 2023. URL http://arxiv.org/abs/2311.16943.
arXiv:2311.16943.

Sindy Loéwe, Phillip Lippe, Maja Rudolph, and Max Welling. Complex-Valued Autoencoders
for Object Discovery, November 2022. URL http://arxiv.org/abs/2204.02075.
arXiv:2204.02075.


https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1934.sp003147
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1934.sp003147
https://doi.org/10.1371/journal.pbio.3000487
https://doi.org/10.1371/journal.pbio.1002257
https://doi.org/10.1371/journal.pcbi.1009827
https://doi.org/10.1371/journal.pcbi.1009827
http://arxiv.org/abs/2405.17283
https://doi.org/10.1371/journal.pcbi.1008164
https://www.jstor.org/stable/2313748
https://www.jstor.org/stable/2313748
https://arxiv.org/abs/2409.13669
https://arxiv.org/abs/2409.13669
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2311.16943
http://arxiv.org/abs/2204.02075

To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Sindy Lowe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating fea-
tures for object discovery.  Advances in Neural Information Processing Systems, 36,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/bb36593e5e438aac5dd07907e757e087-Abstract-Conference.htmll

Takeru Miyato, Sindy Lowe, Andreas Geiger, and Max Welling. Artificial Kuramoto Oscillatory
Neurons, October 2024. URL http://arxiv.org/abs/2410.13821. arXiv:2410.13821.

Lyle Muller, Frédéric Chavane, John Reynolds, and Terrence J. Sejnowski. Cortical travelling waves:
mechanisms and computational principles. Nature Reviews Neuroscience, 19(5):255-268, 2018.
doi: 10.1038/nrn.2018.20. URL https://doi.org/10.1038/nrn.2018.20.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation, May 2015. URL http://arxiv.org/abs/1505.04597.
arXiv:1505.04597 [cs].

T. Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network (cornn):
An accurate and (gradient) stable architecture for learning long time dependencies. In International
Conference on Learning Representations, 2021.

Aleksandar Stani¢, Anand Gopalakrishnan, Kazuki Irie, and Jirgen Schmidhu-
ber. Contrastive training of complex-valued autoencoders for object discov-
ery. Advances in Neural Information Processing Systems, 36, 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
2439ec22091b9d6cfbebf3284b40116e—Abstract—-Conference.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

A APPENDIX

A.1 RELATED WORK

Our work shares a strong connection with synchrony-based object-centric learning methods. One of
the pioneering efforts in this area was the development of the complex autoencoder (Lowe et al., [2022).
Since then, several advancements have been made, such as rotating features (Lowe et al., [2024),
contrastive training (StaniC et al.} 2024), and the recurrent complex autoencoder (Gopalakrishnan
et al.} 2024). The rotating features approach expanded the capabilities to multiple feature dimensions,
while the latter two approaches marked significant progress in tackling more intricate datasets.

Recently, the Artificial Kuramoto Oscillatory Neurons (AKOrN) architecture was introduced, lever-
aging a network structure based on multi-dimensional Kuramoto oscillators to perform image seg-
mentation and puzzle-solving (Miyato et al.,[2024). Unlike our method, the waves in the AKOrN
model are not used directly as a representation themselves, but instead are neglected through the use
of the ‘last hidden state’ readout method that we discuss in this paper.

In another relevant development, a complex-valued recurrent neural network designed to generate
traveling waves was proposed for image segmentation, with object binding information encoded in
the phase of these waves (Liboni et al., 2023).

While our newly proposed mechanism shares ties with the “binding by synchrony” concept, it has a
crucial distinction. Our model’s object-centricity does not rely on precise zero-lag synchrony—where
oscillators within an object are perfectly in phase—but rather on traveling waves of activity that can
be interpreted as phase-lag synchrony. The “binding operation” then involves a transformation of
the time signal into frequency space, accessible by examining the Fourier coefficients. We believe
this connection is vital, as it enables us to leverage the extensive research in early neuroscience on
“binding by synchrony” while simultaneously forming novel predictions on how such phenomena
might manifest in natural neural systems.
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A.2 EXPERIMENTAL DETAILS

This section provides details on the training and evaluation procedures for the models presented in
this paper. The full code for reproducing results and visualizations from the main text is available at:
https://github.com/anonymousl23-user/Wave_Representations.

For dataset partitioning, we use 51,000 images for training, 9,000 for validation, and 10,000 for testing
in MNIST. The Tetrominoes dataset consists of 10,000 images for training, 1,000 for validation, and
1,000 for testing.

In Table[I] we report IOU and pixel-wise accuracy exclusively for the foreground classes. The loss,
measured as cross-entropy loss, is calculated for all the classes.

A.2.1 RECURRENT AND CNN MODELS

Each model is trained for 300 epochs on the MNIST and Tetrominoes datasets. We evaluate the
validation loss at the end of every epoch and retain the model with the lowest validation loss
throughout training. The training process employs the Adam optimizer (Kingma & Bal 2017) with a
learning rate of 0.001 and a batch size of 64.

Each model is trained using multiple random seeds. For MNIST and Tetrominoes, we train each
model using 10 different random seeds. For example, the coRNN with a FFT readout is trained
on MNIST 10 times, each with a different random seed. After training, we evaluate each model
individually and present the aggregated results, including the mean and standard deviation, in Table|[T]
In total, we train 150 models on MNIST and 150 models on Tetrominoes, leading to a total of 300
models.

We train the Conv-LSTMs for 20 timesteps. The coRNN model is trained for 100 timesteps on the
MNIST and Tetrominoes datasets, while for the polygons dataset, the coRNN runs for 500 timesteps.
In the FFT readout, we use the real component of the discrete Fourier transform. This results in 50
bins for the coRNN on MNIST and Tetrominoes, and 250 bins for the polygons dataset. The LSTM
model outputs 10 Fourier bins for MNIST and Tetrominoes. Additionally, all recurrent convolutions
in this paper are performed with circular padding to avoid boundary effects.

The Conv-LSTMs and coRNNs use nearly identical CNN encoders. Both use the same 4-layer CNN
to process the input z (to initialize the input x( for the LSTM and to initialize the hidden state h for
the coRNN). The LSTM uses two 3-layer CNNss to intialize the hidden and cell states. The coRNN
uses two identical (to the LSTM) 3-layer CNNS to initialize the natural frequencies v and damping
term «, except the coRNN 3-layer CNN’s include an extra Re LU function at the end of the CNN to
support waves.

All convolutional models are trained with 16 channels. To ensure a fair comparison with the coRNN,
a linear layer operating channelwise outputs 100 channels. The readout MLP used for MNIST and
Tetrominoes consists of four layers. Its input size is given by the number of Fourier bins multiplied
by 2, followed by two hidden layers of 256 neurons each, with ReL U activation between layers, and
a final output layer producing logits for classification.

A.2.2 U-NET

We train each U-Net model on the MNIST and Tetrominoes datasets for a minimum of 25 epochs
and a maximum of 50 epochs. After completing 25 epochs, we utilize a stopping criterion: if the
model does not achieve a validation loss within 0.001 of its best value in any 10-epoch window,
training is halted and the model with the best validation loss is saved. This approach allows training
to potentially conclude as early as 25 epochs. We employ a learning rate of 0.001 using the Adam
optimizer (Kingma & Bal |2017). We train each model three times, using a different random seed
for each iteration. After training, we evaluate each model individually and present the aggregated
results, including the mean and standard deviation, in Table|l} We use a batch size of 64. We utilize
this alternative training criteria because, as shown in Table|[I] the U-Net easily solves MNIST and
Tetrominoes and does not need to train as long, and the goal is to provide an upper bound. The U-Net
uses 1024 channels
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