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Abstract

Finding the initial conditions that led to the current state of the universe is chal-
lenging because it involves searching over an intractable input space of initial
conditions, along with modeling their evolution via tools such as N-body simula-
tions which are computationally expensive. Recently, deep learning has emerged
as a surrogate for N-body simulations by directly learning the mapping between
the linear input of an N-body simulation and the final nonlinear output from the
simulation, significantly accelerating the forward modeling. However, this still
does not reduce the search space for initial conditions. In this work, we pioneer
the use of a deterministic convolutional neural network for learning the reverse
mapping and show that it accurately recovers the initial linear displacement field
over a wide range of scales (< 1-2% error up to nearly k ≃ 0.8 – 0.9 Mpc−1h),
despite the one-to-many mapping of the inverse problem (due to the divergent
backward trajectories at smaller scales). Specifically, we train a V-Net architecture,
which outputs the linear displacement of an N-body simulation, given the nonlinear
displacement at redshift z = 0 and the cosmological parameters. The results of
our method suggest that a simple deterministic neural network is sufficient for
accurately approximating the initial linear states, potentially obviating the need for
the more complex and computationally demanding backward modeling methods
that were recently proposed.

1 Introduction

The evolution of our universe can be uniquely determined by its initial conditions and the laws of
physics. To understand this cosmic history, astrophysicists use a large number of surveys (Amendola
et al., 2018; Spergel et al., 2015) and simulations (Bagla, 2002; Villaescusa-Navarro et al., 2020).
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Figure 1: Qualitative comparison of the x, y, and z displacements for a 128× 128 slice of particles
from a linear field sampled using the training parameters and the corresponding linear field predicted
by our inverse model.

These simulations compute the gravitational evolution of a system of N-body particles given a set
of nearly uniform and typically Gaussian initial conditions, representing the early universe. These
simulations, though, come with a substantial computational cost and demand an extensive investment
of both time and computational resources.

In recent years, deep-learning techniques have been shown to be extremely helpful in accelerating the
forward modeling process (He et al., 2019; Jamieson et al., 2022) by several orders of magnitude.
These deep-learning models learn the mapping between pairs of inputs and outputs from numerical
N-body simulations and act as fast and accurate approximators for these simulators.

The problem of inferring the initial state that generates a specific redshift z = 0 state of the universe
is an inverse problem and poses a more difficult challenge. Inverse problems are hard as they
require a search over an intractable space of all possible input configurations, and typically involve
a one-to-many mapping if learned as a reverse mapping. Standard neural networks are one-to-one
mappings and are thus not expected to work well in these problems. Sampling approaches such as
Hamiltonian Monte Carlo used by Bayesian Origin Reconstruction of Galaxies (BORG) (Jasche
and Wandelt, 2013; Jasche and Lavaux, 2019) are computationally prohibitive, requiring thousands
of CPU hours to generate a single posterior sample. One could resort to more complex generative
neural networks such as the recently proposed diffusion models (Legin et al., 2023). However, they
are significantly more difficult and expensive to train compared to deterministic neural networks.
Moreover, as we show in this paper, they are potentially an overkill to this problem as the distribution
of initial conditions is typically Gaussian, where a simple deterministic neural network like ours
already works surprisingly well.

Importantly, cosmological simulations are often deterministic, and therefore they are reversible in
principle. The one-to-many backward problem arises primarily due to numerical and computational
errors which get exacerbated only at small scales which are dominated by nonlinear effects, causing
divergent backward trajectories. This motivates the approach we demonstrate here: training a standard
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deterministic neural network to learn the reverse map and output the initial states of the N-body
simulations using the final states as input.

We show that despite the one-to-many nature of the reverse mapping at small scales, a simple
deterministic neural network can do a surprisingly excellent job of predicting the initial states not
only at large scales but even down to relatively small scales (k > 0.1 Mpc−1 h) where the nonlinear
dynamics of gravitational clustering become important. In fact, our model continues to have < 1−2%
error down to k ≃ 0.8 – 0.9 Mpc−1 h. Our results empirically motivate the use of neural networks
as approximate inverse-mapping black boxes that could directly generate reliable initial states for a
given output state, which could then be used as starting points for more fine-grained sampling-based
inverse modeling methods.

2 Background

Consider an N-body system with particles distributed on a uniform grid with positions q. Let ΨZA(q)
be their linear Zel’dovich approximation (ZA) approximation at redshift z = 0 (current time). Thus,
the final positions of the particles when they evolve linearly is

xlin(q) = q+ΨZA(q). (1)

Let the final nonlinear displacement of the particle initially at grid site q be ΨNL(q). Thus, the final
positions of the particles at redshift z = 0 under nonlinear evolution is

xnonlin(q) = q+ΨNL(q). (2)

In this work, we investigate the problem of predicting the linear displacement field at redshift z = 0,
given the non-linear displacement field and the cosmological parameters.

3 Methodology

We train a convolutional neural network (CNN) that takes the nonlinear displacement field ΨNL(q)
at redshift z = 0 and the value of Ωm as inputs and predicts the linear displacement field ΨZA(q)
at redshift z = 0. We directly use the V-Net architecture used in (Jamieson et al., 2022) and train it
using 100 pairs of nonlinear and linear displacement fields. In terms of the training procedure, our
method is almost identical to (Jamieson et al., 2022), with the main difference being that we pass the
nonlinear displacement field as the input to our model and ask it to predict the linear displacement
field. One of the key advantages of using a simple deterministic V-Net, instead of a generative
model such as a diffusion model, is the reduced computational complexity during both training and
inference phases. Deterministic networks do not involve complex stochastic sampling processes,
eliminating the need for numerous forward passes which makes them significantly faster and more
resource-efficient than the generative models.

For our experiments, we train our model using simulations of 1283 uniformly distributed particles
in a square box with a side-length of 250 Mpc/h. This corresponds to a Nyquist wavenumber of
k = 1.608 Mpc−1 h, the theoretical limit beyond which we can’t trust the predictions of any model
for this setting. For the training data, we randomly generated 100 linear fields for a fixed set of
cosmological parameters (Ωm = 0.300,Ωb = 0.050, h = 0.700, ns = 0.965, σ8 = 0.799). Since
running N-body simulations on these initial conditions are too computationally expensive, we use the
emulator by (Jamieson et al., 2022) to generate their corresponding nonlinear displacement fields as
our model’s training targets, which are already highly accurate for our purpose.

The architecture of our model involves three downsampling and upsampling components each and
provides a field-of-view of 963. That is, a focal particle’s initial displacement is predicted based on
its environment out to its 48th neighbors on the initial particle grid, corresponding to a distance of
93.75 Mpc/h. This finite field-of-view has a benefit: the evolution of the system on large scales is
accurately described by linear theory, so the V-Net model preserves this linear evolution on scales
larger than the field-of-view while allowing for nonlinear evolution at smaller (medium range of)
scales.

On very small scales, the particles clustered tightly into dark matter halos where their orbits become
complicated and difficult to predict. This small-scale clustering imposes a resolution limit on the
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Figure 2: Qualitative comparison of the x, y, and z displacements for a 128× 128 slice of particles
from the original nonlinear field and the nonlinear field generated from the linear field predicted by
our inverse model. The nonlinear field is generated from the forward modeling emulator (Jamieson
et al., 2022). The slice shown here is the same as the one shown in Figure 1 for a one-to-one
comparison.

inverse mapping, making it a one-to-many mapping as numerical errors and floating point precision
make the neural network model unable to fully encode the detailed textures of this virialized motion.
This limitation is also present in the forward model (Jamieson et al., 2022) and the diffusion model
(Legin et al., 2023), which tends to make halos more diffuse on small scales than in the simulations,
blurring the details of these sharp structures. For the inverse mapping, the initial linear displacements
are blurred for particles that end up inside of halos, limiting the accuracy of the inverse model
predominantly on these very small scales as shown in Section 4.3.

Sections 4.1, 4.2, and 4.3 show the in-distribution performance of our model on unseen pairs of fields
generated from the forward direction emulator (Jamieson et al., 2022) with the same cosmological
parameters as its training data. We also evaluate the out-of-distribution (OOD) performance of our
model on the Quijote simulation suite (Villaescusa-Navarro et al., 2020) in Section 4.4.

4 Results and Analysis

We evaluate our method’s performance both qualitatively and quantitatively with a variety of analyses
and statistics.

4.1 Qualitative Analysis

Figure 1 shows the x, y, and z direction displacements for a 128×128 slice of the linear displacement
field and the corresponding linear field predicted by our inverse model. The original linear field was
sampled using the cosmological parameters of the training data. Qualitatively, the predictions of our
model match very well with the original linear field that we wanted to predict.
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For further evaluation, we used the forward-direction emulator again to generate the nonlinear field
when fed the predicted linear field and compared it with the original nonlinear field in Figure 2. We
find these slices match very closely with insignificant residuals.

4.2 One-Point Statistics

Figure 3: Distribution of the displacements of particles for a given linear field and the corresponding
linear field predicted by our model. The distribution has been calculated by considering the x, y, and z
displacements of 1283 particles. Relative error denotes the relative errors in probability density for
different bins.

The initial conditions of the simulation are set up in Fourier space, with each mode of the displacement
field drawn from a random Gaussian distribution with a variance determined by the linear power
spectrum P (k), which is determined by the cosmological parameters. This construction yields a
coordinate-space displacement field that is also Gaussian, so its statistics are uniquely determined by
the two-point correlation function, which is simply the Fourier transform of the power spectrum. To
demonstrate that we have accurately recovered the initial conditions, we must show that the output of
our model has both the correct power spectrum and that its statistical distribution is Gaussian.

We plot the histogram of the probability density of the displacements of the particles for the original
linear field and the one predicted by our model (Figure 3). We expect the distribution of displacements
to match N (0, 5.275) for the simulation setting with 1283 particles in a box size of 250 Mpc/h.
Specifically, the variance of displacements along the ith Cartesian direction is given by:

σ2
i =

∫
dk3

(2π)3
(ki)2

k4
P (k), (3)

where the integral is over all wave vectors in Fourier space, k ≡ |⃗k| is the magnitude of the wave
vector and ki is its ith component. We numerically evaluate this integral on a Fourier space grid with
the same dimensions as the initial simulation grid.

From Figure 3 we see that the statistics of our model output agree well with the expected Gaussian
distribution. The bin counts also match the particular realization from this distribution of the target
data out to displacements of ∼ 10 Mpc/h, or 2σi. Extremely large displacements indicate a particle
either flowing outwards in a rare, extremely underdense environment or inwards towards a rare,
high-density peak. Based on the residuals, we see that the tails of the distribution predicted by the
model are somewhat smaller than the target data, indicating the model misplaces these particles. This
is unsurprising due both to the rarity of these trajectories and to the fact that these particles are the
most affected by extreme non-linearities in their environments, which exacerbates the one-to-many
problem.
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(a) Linear Fields

(b) Nonlinear Field

Figure 4: Two-point correlation comparison between (a) the original linear field and the linear field
predicted by our model, and, (b) the original nonlinear field and the nonlinear field generated from
the predicted linear field given by the inverse model.

4.3 Two-Point Correlation Comparison

The displacement power spectrum for a displacement field Ψ for wavenumber k is defined as

P (k) =
∑

i∈{x,y,z}

⟨Ψi(k)Ψi(k)⟩. (4)

Using this, we define the transfer function as

T (k) =
√
P (k), (5)

and the correlation coefficient as

r(k) =
Ppred×true(k)√
Ppred(k)Ptrue(k)

, (6)

where Ppred(k) is the displacement power spectrum of the predicted field, Ptrue(k) is the ground
truth power spectrum, and Ppred×true(k) is the cross power spectrum between the predicted and the
ground truth fields. Furthermore, we now define the transfer function fractional error,

∆T (k)

T (k)
=

√
Ppred(k)

Ptrue(k)
− 1, (7)

to measure the discrepancy between amplitudes of the predicted and the true fields. We also define
stochasticity,

1− r2(k) = 1−
P 2
pred×true(k)

Ppred(k)Ptrue(k)
, (8)

to capture the excess fraction of correlation in the prediction of our model that cannot be accounted
for in the target data. For an ideal match between the target and the predicted field, the values of
both these quantities should be exactly zero. Figure 4a shows the performance of our model in terms
of these quantities. We see that from large scales down to scales where k ≃ 0.8 – 0.9 Mpc−1 h,
the model achieves 1-2% percent-level accuracies for both the transfer functions and stochasticities.
Note that non-linearities become important at scales where k > 0.1 Mpc−1 h, so the model is able
to accurately learn the inverse mapping even in the moderately nonlinear regime for in-distribution
fields.
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(a) 0th percentile (Ωm = 0.296,Ωb = 0.067, h = 0.523, ns = 1.091, σ8 = 0.806)

(b) 20th percentile (Ωm = 0.311,Ωb = 0.067, h = 0.673, ns = 0.993, σ8 = 0.977)

(c) 40th percentile (Ωm = 0.373,Ωb = 0.054, h = 0.869, ns = 0.922, σ8 = 0.678)

(d) 60th percentile (Ωm = 0.412,Ωb = 0.036, h = 0.840, ns = 0.942, σ8 = 0.680)

(e) 80th percentile (Ωm = 0.491,Ωb = 0.069, h = 0.518, ns = 0.932, σ8 = 0.820)

(f) 100th percentile (Ωm = 0.497,Ωb = 0.044, h = 0.805, ns = 0.910, σ8 = 0.600)

Figure 5: Power spectra comparison between the linear fields and the inverse model predictions for
the 0th, 20th, 40th, 60th, 80th, and 100th percentile OOD Quijote simulation data points.

To further test the reliability of our model, we generated the nonlinear displacement field from our
predicted linear field by using the forward direction emulator. Since the mapping from the nonlinear
displacement field to the linear displacement field is one-to-many, it becomes critical to see that this
field matches the actual nonlinear field. Figure 4b shows the power spectra comparison between
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these two nonlinear displacement fields. We again see a good match for large to medium scales
(k < 0.5 Mpc−1 h).

4.4 Out-Of-Distribution Evaluation

Given that our model is trained on simulations generated by a neural network emulator (Jamieson
et al., 2022) with fixed cosmological parameters, there is a legitimate concern about its ability to
generalize to actual N-body simulations with different sets of cosmological parameters. To assess
this out-of-distribution (OOD) performance, we conduct a series of experiments on simulations from
the Quijote suite (Villaescusa-Navarro et al., 2020).

The Quijote suite provides 2000 linear and nonlinear fields, each consisting of 5123 particles that are
uniformly distributed in a cube of side length 1000 Mpc/h. To quantify the dissimilarity between
these simulations and our training data, we rank them based on the sum of their relative percentage
differences in Ωm and σ8 from our training values, since these two parameters have the most
significant impact on the simulated distributions. This dissimilarity metric is then used to evaluate
the model’s performance on different percentiles, with the 100th percentile simulation being the most
OOD. Notably, our model’s performance is unaffected by changes in the box size, as long as the
mean particle density remains constant.

To evaluate the model’s performance on OOD Quijote simulation data, we qualitatively compare the
x, y, and z displacements of a 512× 512 slice from the linear and nonlinear fields, similar to Section
4.1. The slices for the 0th percentile and the 20th percentile simulations are presented in Figures 8 and
11 respectively. Additionally, the one-point statistics for these simulations are provided in Figures 6
and 9, and the two-point correlation comparisons are presented in Figures 7 and 10 respectively.

To examine how the model’s performance decays as the nonlinear input gradually gets more OOD,
we plot the two-point correlations for a range of percentiles in Figure 5 and Figure 12. As expected,
for both the predicted linear field and the regenerated nonlinear field, the model performs excellently
for the 0th and 20th percentiles but gradually gets worse for higher percentiles.

5 Conclusion

In this work, we pioneer using a CNN to predict the initial linear field of an N-body simulation given
the final nonlinear field and the cosmological parameters. We show that despite the many-to-one
nature of the inverse mapping, our CNN can still recover the linear fields for a wide range of scales,
even including the smaller scales where the nonlinear physics of gravitational clustering becomes
important. In addition, we empirically demonstrate that our model generalizes reasonably well to
OOD cosmological parameters. This suggests that neural networks can be used as approximate,
inverse-mapping black boxes for generating trustworthy initial states for more fine-grained sampling-
based inverse modeling methods. Overall, our work demonstrates that despite being much simpler and
computationally cheaper than other approaches such as BORG and diffusion models, a deterministic
neural network is already capable of reconstructing surprisingly accurate initial conditions of the
universe.

In future works, we plan to explore sampling-based methods (e.g. Hamiltonian Monte Carlo (Radford,
2012), Active Learning (Ren et al., 2021), etc.) with initial states proposed by our model. We expect
that these methods will refine the initial conditions, achieving high accuracy at even smaller scales.
Another direction for future work is to enhance our model to additionally output uncertainty estimates.
This will involve uncertainty quantification (UQ) methods such as optimizing the Gaussian negative
log-likelihood loss (Nix and Weigend, 1994), re-architecting our model as a Bayesian neural network
(Goan and Fookes, 2020), or augmenting our model with conformal predictions (Angelopoulos and
Bates, 2022).
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A Appendix

A.1 Results for the 0th percentile OOD setting of cosmological parameters
(Ωm = 0.296,Ωb = 0.067, h = 0.523, ns = 1.091, σ8 = 0.806)

Figure 6: Distribution of the displacements of particles for the 0th percentile OOD Quijote simulation
linear field and the corresponding linear field predicted by our inverse model. The distribution has
been calculated by considering the x, y, and z displacements of 5123 particles separately. Relative
error denotes the relative errors in probability density for different bins. The theoretical distributions
for this setting is N (0, 6.193) (Equation 3).

(a) Power spectra comparison for linear field

(b) Power spectra comparison for nonlinear field

Figure 7: Power spectra comparison for the 0th percentile OOD Quijote simulation data point. (a)
Comparison between the original linear field and the linear field predicted by our inverse model. (b)
Comparison between the original nonlinear field and the nonlinear field predicted by the forward
emulator (Jamieson et al., 2022) for the linear field predicted by our inverse model.
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(a) Slices from Linear Fields

(b) Slices from Nonlinear Field

Figure 8: Qualitative comparison of the x, y, and z displacements for a 512× 512 slice of particles
for the 0th percentile OOD Quijote simulation data point. (a) Slice from the original linear field and
the corresponding linear field predicted by our inverse model. (b) Slice from the original nonlinear
field and the nonlinear field predicted by the forward emulator (Jamieson et al., 2022) for the linear
field predicted by our inverse model.
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A.2 Results for the 20th percentile OOD simulation from the Quijote suite
(Ωm = 0.311,Ωb = 0.067, h = 0.673, ns = 0.993, σ8 = 0.977)

Figure 9: Distribution of the displacements of particles for the 20th percentile OOD Quijote simulation
linear field and the corresponding linear field predicted by our inverse model. The distribution has
been calculated by considering the x, y, and z displacements of 5123 particles separately. Relative
error denotes the relative errors in probability density for different bins. The theoretical distributions
for this setting is N (0, 7.159) (Equation 3).

(a) Power spectra comparison for linear field

(b) Power spectra comparison for nonlinear field

Figure 10: Power spectra comparison for the 20th percentile OOD Quijote simulation data point. (a)
Comparison between the original linear field and the linear field predicted by our inverse model. (b)
Comparison between the original nonlinear field and the nonlinear field predicted by the forward
emulator (Jamieson et al., 2022) for the linear field predicted by our inverse model.
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(a) Slices from Linear Fields

(b) Slices from Nonlinear Field

Figure 11: Qualitative comparison of the x, y, and z displacements for a 512× 512 slice of particles
for the 20th percentile OOD Quijote simulation data point. (a) Slice from the original linear field and
the corresponding linear field predicted by our inverse model. (b) Slice from the original nonlinear
field and the nonlinear field predicted by the forward emulator (Jamieson et al., 2022) for the linear
field predicted by our inverse model.
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A.3 Power Spectra Analysis for Nonlinear Fields in OOD settings

(a) 0th percentile (Ωm = 0.296,Ωb = 0.067, h = 0.523, ns = 1.091, σ8 = 0.806)

(b) 20th percentile (Ωm = 0.311,Ωb = 0.067, h = 0.673, ns = 0.993, σ8 = 0.977)

(c) 40th percentile (Ωm = 0.373,Ωb = 0.054, h = 0.869, ns = 0.922, σ8 = 0.678)

(d) 60th percentile (Ωm = 0.412,Ωb = 0.036, h = 0.840, ns = 0.942, σ8 = 0.680)

(e) 80th percentile (Ωm = 0.491,Ωb = 0.069, h = 0.518, ns = 0.932, σ8 = 0.820)

(f) 100th percentile (Ωm = 0.497,Ωb = 0.044, h = 0.805, ns = 0.910, σ8 = 0.600)

Figure 12: Power spectra comparison between the actual nonlinear field and the nonlinear field
generated by the forward emulator for the linear field predicted by our inverse model for the 0th, 20th,
40th, 60th, 80th, and 100th percentile OOD Quijote simulation data points.
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