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Abstract

This paper investigates whether phonemes con-
sistently convey size-related meaning across
languages, a phenomenon known as sound
symbolism. We compile a typologically di-
verse dataset of 810 adjectives (30 per lan-
guage across 27 languages and 13 families),
each phonemically transcribed and validated
using native speaker recordings. Using bag-
of-phoneme vectors and baseline classifiers,
we show that size semantics can be predicted
from phonological features with statistically
significant accuracy, even across unrelated lan-
guages. Surprisingly, consonants such as /q/
and /fi/ emerge as highly predictive, challeng-
ing prior work that emphasizes vowel sym-
bolism. To separate symbolic patterns from
language-specific cues, we introduce an adver-
sarial model that penalizes language prediction
while preserving size-related information. Un-
der the adversarial setup, however, classifica-
tion accuracy drops to near chance—suggesting
that much of the symbolic signal may be entan-
gled with language-specific structure, or that
larger datasets may be needed to detect more
subtle cross-linguistic patterns.

1 Introduction

If you were watching a superhero movie called
Lamonians vs. Grataks: The Phoneme Accords,
chances are you’d already be rooting for the La-
monians because they sound like they would be
nicer. In a 2009 Guardian article, linguist David
Crystal posed a thought experiment: when asked
to judge two fictional alien races, most people in-
stinctively sided with the Lamonians, drawn to the
soft consonants (/1/, /m/, /n/) and long vowels
and diphthongs that give the name its gentle, lik-
able tone (Crystal (2009)). This phenomenon in
which specific sounds systematically convey partic-
ular meanings is known as sound symbolism, and it
challenges the long-standing linguistic assumption
that form and meaning are entirely arbitrary.

Sound symbolism is most familiar in ono-
matopoeia—words like buzz or crash that imitate
real-world sounds. It also manifests systematically
across languages: in Yucatec Maya, vowel length
signals event duration (Guen, 2013); in Swedish,
the prefix pj- marks pejoration (Asa Abelin, 1999);
and in Japanese, consonants in food mimetics re-
flect perceived crispness (Raevskiy et al., 2023).
Beyond language, sound symbolism has commer-
cial applications: high-frequency sounds like /i/,
/e/, and /v/ are associated with luxury and in-
crease consumer appeal in branding and hospitality
(Motoki et al., 2023).

Despite evidence from individual languages,
identifying cross-linguistic sound symbolism re-
mains methodologically difficult. First, shared
language ancestry makes it hard to disentangle
universal patterns from inherited ones. Second,
phonological inventories differ—some languages
lack certain sounds—obscuring potential effects.
Third, symbolic patterns must be separated from
language-specific signals like dialectal variation, a
task traditional methods often fail to resolve. Yet
uncovering cross-linguistic sound symbolism has
broader value. It may reveal cognitive universals in
perception, improve cross-lingual transfer in low-
resource NLP, and guide data-driven brand naming
in commercial applications.

In this work, we investigate whether sound sym-
bolism for size holds across typologically diverse
languages by testing if adjectives meaning “small”
and “large” consistently share phonological fea-
tures, regardless of language family. Our approach
includes a novel adversarial setup designed to iso-
late potentially universal sound-symbolic patterns
while controlling for language-specific influences.
Our contributions are:

* A cross-linguistic dataset of 800+ size adjec-
tives (30 per language) from 27 languages
across 13 language families, phonemically



transcribed in IPA and validated through na-
tive speaker recordings to capture contrastive
phonological distinctions.

 Baseline classification experiments using lo-
gistic regression and decision trees on bag-
of-phoneme vectors, with languages grouped
into typological bins using Levenshtein dis-
tance (a measure of phonological similarity)
to control for relatedness and assess cross-
family generalization.

* An adversarial neural model with a phoneme
encoder, a size classifier, and a language dis-
criminator trained via minimax optimization
to separate symbolic patterns from language-
specific signals.

* Identification of predictive phonemes that cor-
relate with size semantics across unrelated lan-
guages, revealing robust sound-symbolic pat-
terns and the unexpected role of consonants.

2 Related Works

The idea that speech sounds might carry meaning
isn’t new, but Sapir (1929) was the first to test it
experimentally. In his study, participants reliably
judged nonsense words like mal to represent larger
objects than mil, associating /a/ with largeness and
/i/ with smallness. This challenged the assump-
tion that word forms are entirely arbitrary. Since
then, size symbolism has emerged as one of the
most consistent patterns in sound symbolism. Yet
most research remains focused on single languages,
often Indo-European, and few computational ap-
proaches have explored whether such patterns gen-
eralize across diverse language families.

2.1 Linguistic Perspectives on Sound
Symbolism

Although the idea that sounds can carry mean-
ing is compelling, evidence from natural language
remains uneven. Some studies suggest sound-
meaning relationships are restricted to specific lex-
ical categories or language families, while others
demonstrate more universal cross-linguistic pat-
terns that transcend typological boundaries.
Winter and Perlman (2021), for example, found
that certain phonemes (such as /i/, /1/, and /t/)
were strongly associated with smallness in English-
size adjectives, but this pattern did not general-
ize to nouns or other word types, suggesting that

sound symbolism may be limited to specific lex-
ical categories. Blasi et al. (2016) analyzed the
core vocabulary of more than 6,000 languages and
found phoneme—meaning associations (e.g., /i/
with “small”, /1/ with “tongue”) that emerged in-
dependently across language families.

Shape symbolism offers another compelling
case: the maluma/takete effect, where soft-
sounding pseudowords are matched to round
shapes and sharp-sounding ones to spiky shapes,
has been widely observed across cultures. Sidhu
et al. (2021) extended this to English nouns, show-
ing that round-object words tend to include /m/
and /u/, while spiky-object words more often in-
clude /k/ and /t/ suggesting that the sound of a
word may reflect aspects of its meaning.

2.2 Computational Approaches to Sound
Symbolism

Unlike linguistic studies that rely on curated word
lists and controlled tasks, recent computational
work explores whether models trained on large-
scale data internalize symbolic patterns like the
Bouba—Kiki effect, where people intuitively match
soft sounds to round shapes and sharp sounds to
spiky ones. Passi and Arun (2024) showed that this
effect holds even for reversed speech, pure tones,
and environmental sounds, and is best predicted
by sound frequency—challenging the idea that it
depends on mouth shape.

Alper and Averbuch-Elor (2023) found that
CLIP and Stable Diffusion reliably associate pseu-
dowords with matching visual features, suggest-
ing that vision—language models can learn sound—
meaning mappings from text—image co-occurrence
alone. Similarly, Loakman et al. (2024) found that
larger LLMs and VLMs, such as GPT-4, moder-
ately align with human judgments on size symbol-
ism—despite having no explicit access to phonetic
information. Interestingly, even fictional names
reveal learnable sound—meaning patterns across
languages. Kilpatrick et al. (2023) trained ran-
dom forests on Pokémon names in Japanese, Chi-
nese, and Korean to classify them as pre- or post-
evolution, finding that models outperformed hu-
man participants and relied on phonemes like /d/,
/g/, and long vowels—demonstrating that sym-
bolic cues like size and strength generalize across
both natural and invented lexicons.
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Figure 1: Levenshtein distance heatmap showing pairwise phonological similarity between the 27 languages in our
dataset. Languages are grouped hierarchically and colored bars indicate language families.

3 Methodology

3.1 Data Collection

To investigate sound symbolism across typolog-
ically diverse languages, we compiled a dataset
of 810 adjectives—30 per language (15 denot-
ing smallness, e.g., tiny, minuscule; 15 denoting
largeness, e.g., huge, enormous)—spanning 27 lan-
guages from 13 language families. Languages were
selected using the World Atlas of Language Struc-
tures (WALS) to maximize both genetic and areal
diversity, while ensuring feasibility in terms of
speaker access and resource availability.

Each adjective list was constructed by translating
English seed words using DeepL, Google Translate,
and bilingual dictionaries. We manually filtered out
borrowings and transliterations to prioritize native
lexical items. Words were then transcribed into the
International Phonetic Alphabet (IPA) using phone-
mic transcription, which captures contrastive sound

units while abstracting away from fine-grained pho-
netic variation. This choice was motivated by both
practical and linguistic considerations. Phonemic
representations provide greater consistency across
typologically diverse languages and reduce con-
founds from dialectal variation, particularly in lan-
guages such as Arabic and Spanish. Focusing on
phoneme-level distinctions allowed us to isolate
symbolic features most relevant to meaning while
preserving cross-linguistic comparability.

We initially experimented with large language
models such as GPT and Claude for automatic tran-
scription, but found that their outputs often deviated
from canonical phonology, even in well-resourced
languages. To ensure accuracy, we adopted a hy-
brid transcription pipeline. Where available, we
used the XPF corpus—a rule-based, linguistically
grounded phoneme-mapping tool—to generate ini-
tial IPA forms (Priva et al., 2021). We then col-



lected audio recordings of the adjective lists from
native speakers via language exchange platforms
such as Tandem. These recordings were not used
as model input, but served as references for tran-
scription correction.

A trained linguist and phonetician reviewed the
recordings using acoustic analysis tools and man-
ually revised or reconstructed each transcription.
In cases where no initial transcription was avail-
able, phonological forms were created from scratch
based on the recordings. Domain experts, including
language instructors and researchers, also reviewed
or annotated the data for several languages to en-
sure quality and accuracy.

To control for shared linguistic ancestry, we used
a precomputed dataset of normalized Levenshtein
distances between languages, compiled by Svend
V. Nielsen (Nielsen, 2017) following the method
introduced by Bakker et al. (2009). These distances
(Figure 1) were derived from phonologically tran-
scribed Swadesh lists—a standardized set of core
vocabulary items (eg. “I,” “water” etc). Nielsen’s
implementation used a reduced 40-word version of
the list, chosen for high cross-linguistic comparabil-
ity. The resulting values reflect the average number
of phonological edits needed to align word pairs
across languages. We used these distances to group
languages into similarity bins for our classification
experiments.

While the per-language dataset is relatively
small, collecting speaker-validated, phonemically
transcribed data across 27 languages poses sub-
stantial logistical challenges. Our primary goal
was to ensure lexical balance and phonological
comparability, even at a modest scale. To compen-
sate for this, particularly in our adversarial setup,
we pretrained the phonological encoder on over
three million word—pronunciation pairs extracted
using WikiPron' (Lee et al., 2020), an open-source
tool for systematically retrieving IPA transcrip-
tions from Wiktionary. This large-scale pretrain-
ing enables the encoder to learn general phonotac-
tic and articulatory patterns across a broad range
of languages, enhancing its ability to detect sym-
bolic structure in our more controlled downstream
dataset.

3.2 Baseline Classifiers

We first evaluated whether size-related sound-
symbolic patterns could be detected using simple,
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interpretable models. To this end, we trained logis-
tic regression and decision tree classifiers to predict
size semantics from phonemic input alone.

Each word was represented as a bag-of-phoneme
vector based on IPA symbol counts. To ensure
consistency across transcription styles, we limited
features to core IPA characters, excluding diacritics
and suprasegmentals.

To test cross-linguistic generalization, we
grouped training languages into three bins of ty-
pological similarity relative to each target lan-
guage—Most Similar, Somewhat Similar, and
Least Similar—based on the Levenshtein distance
matrix described above. This allowed us to exam-
ine whether classifiers trained on typologically re-
lated languages performed better than those trained
on distant ones.

Logistic regression used default regularization.
Decision trees were tuned for maximum depth
(3-15) and minimum samples per split (2—10) to
control overfitting. Accuracy was used as the pri-
mary evaluation metric.

To analyze feature importance, we extracted
and aggregated logistic regression coefficients
across models and bins to identify phonemes most
strongly associated with smallness or largeness. We
did not interpret decision tree feature importances
due to structural variability across runs.

3.3 Adversarial Scrubber

Our goal is to learn phonological representations
that retain sound-symbolic information (e.g., pho-
netic cues relevant to size) while suppressing
language-specific patterns that could confound
cross-linguistic generalization. We adopt a two-
stage approach that combines phonetic pretrain-
ing with adversarial representation learning. The
model is optimized to predict semantic size (small
vs. large) while minimizing its ability to recover
the language family from the same embedding.

In the first stage, we pretrain a compact BERT
encoder on 1.6 million IPA-transcribed words from
WikiPron using a masked language modeling ob-
jective. This step encourages the model to capture
general phonological structure across typologically
diverse languages. The encoder consists of 2 trans-
former layers with 128 hidden units and a vocab-
ulary of 80 IPA characters plus standard special
tokens. After 2 epochs of training, the encoder is
frozen and used as a fixed feature extractor.

We freeze our BERT model and then fine-tune
a linear embedding layer, a sound symbolism clas-
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Figure 2: Detailed accuracy heatmap by target language and similarity bin. Each cell shows classification accuracy
for logistic regression (left) and decision tree (right) models.
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Figure 3: Overview of our adversarial training pipeline. Stage 1: Pretrain BERT on IPA-transcribed words using
masked language modeling. Stage 2: Train a language classifier on frozen embeddings. Stage 3: Fine-tune the
embedding layer and symbolism classifier while suppressing language-specific cues via adversarial loss.

sifier, and a language adversary using our curated
dataset, in which each word is annotated with both
a binary size label and a language family label. The
model architecture includes the following compo-
nents:

* Encoder (E): A linear embedding layer that
takes the BERT embeddings as input.

* Sound Symbolism Classifier (C): A single

linear layer followed by a softmax over two
classes (small vs. large).

» Language Adversary (A): A multi-class clas-
sifier trained to predict the word’s language
family from the same embedding.

To encourage the encoder to discard language-
specific information, we optimize a minimax ob-
jective:



min mjliX ﬁsymbolism(C(E(x))y ysize)

- A Elanguage(A(E(x))’ ylang)
(1

Here, Lsymbolism and Lianguage ar€ Cross-entropy
losses for size and language classification, respec-
tively. We used a conservative base value of
A = 0.01, with annealing beginning after epoch
10 to prevent premature over-scrubbing. Specifi-
cally, A increased over training using the schedule
At = 0.01 - (1 —0.9579), allowing the encoder to
first learn phonological structure before gradually
suppressing language-specific patterns.

Training alternates between two steps within
each batch: (1) updating the adversary to improve
language prediction, and (2) updating the encoder
and symbolism classifier to improve size prediction
while reducing the adversary’s ability to recover
language identity. During the second step, the ad-
versary is frozen, and the encoder is encouraged to
produce language-invariant representations.

We project BERT embeddings into a 32-
dimensional space and apply dropout (p = 0.4)
before classification. Language identity was rep-
resented using a coarse categorical label (0, 1, 2),
based on a simplified grouping created during pre-
processing. These categories roughly reflected ge-
nealogical relationships—for example, grouping
Romance languages together—but also included
some typologically diverse combinations, such as
Hindi, Russian, and German. This decision was
motivated by our limited dataset size, which made
fine-grained modeling of language structure im-
practical. While these groupings do not capture the
full complexity of linguistic relationships, they of-
fered a manageable way to test whether the model
could suppress broad language-level patterns while
still retaining symbolic cues relevant to size.

4 Results

4.1 Baseline Classification Results

Our classification experiments show that phono-
logical features carry predictive information about
size semantics across languages. Both logistic re-
gression and decision tree classifiers performed
consistently above the 50% random baseline across
all three similarity bins.

Model Most Simi- Somewhat Least Simi-
lar Similar lar

Logistic Reg.  59.0% 57.3% 54.4%

Decision Tree 65.6% 61.7% 58.1%

Table 1: Mean accuracy (%) by model and similarity
bin.

All reported results were statistically significant
compared to chance (p < 0.001 for all bins with
decision trees; p < 0.001, 0.01, and 0.05 for logis-
tic regression depending on the bin). A one-way
ANOVA revealed that differences in performance
across bins were not statistically significant for ei-
ther model (p = 0.27 for logistic regression; p=0.21
for decision trees).

Figure ?? shows the distribution of model perfor-
mance across similarity bins, and Figure 2 provides
a breakdown by target language.

4.2 Phonological Features & Size Symbolism

Analysis of feature importance in our models re-
vealed several phonemes that consistently predict
size semantics across languages. Contrary to ex-
pectations from prior literature focusing primarily
on vowel symbolism, our baseline results suggest
that consonants may also play a significant role in
sound-symbolic associations.

Based on averaged logistic regression coeffi-
cients across all languages, the phonemes most
strongly associated with largeness include /fi/,
/3/ and /y/. For smallness, the most predictive
phonemes include /q/, /?/ and /0/ (figure 4).

These results complicate the predictions of the
Frequency Code hypothesis (CITE), which sug-
gests that lower-frequency sounds should iconically
convey largeness. While some findings align with
this view—for instance, the association of the back
vowel /o/ with largeness—others are less expected.
A number of the top predictors are consonants, in-
cluding some that are relatively rare across lan-
guages, suggesting that sound-symbolic patterns
may not be limited to the well-attested vowel con-
trasts. Instead, they may also reflect more language-
specific or articulatory factors.

4.3 Adversarial Training Results

To evaluate whether language-specific signals
could be suppressed without eliminating sound-
symbolic structure, we trained an adversarial model
using the best-performing hyperparameters identi-
fied through pilot experiments that varied embed-
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Figure 4: Left: Model accuracy across language similarity groups (logistic regression and decision tree classifiers).
Right: Most predictive phonemes for size classification using logistic regression.

ding dimensionality, dropout rate, and adversarial
loss weight. These experiments aimed to balance
effective language suppression with preservation
of symbolic information. The final model achieved
52.5% symbolic classification accuracy and 22.2%
language classification accuracy on the test set.
While this indicates partial success in reducing lan-
guage cues, symbolic performance remained below
that of baseline classifiers.

The model showed a clear bias toward predicting
largeness, with a recall of 0.78 for “large” words
compared to just 0.27 for “small.” In other words,
the model frequently mislabeled small words as
large. This asymmetry may reflect that largeness
cues were more robustly encoded across languages
and better preserved under adversarial pressure. In
contrast, phonological patterns linked to smallness
may have been subtler or more language-specific,
making them more susceptible to being scrubbed
during training.

4.4 Ablation Experiments

Table 2 summarizes the results of our ablation ex-
periments. The experiment ID (leftmost column)
begins at O for the baseline model.

1. Scrambled Size Labels: To verify if clas-
sifiers learned symbolic structures instead
of memorizing artifacts, we did a con-
trol experiment with scrambled size labels.
For each language, we randomly shuffled
test set size labels while keeping class bal-

This checked if models truly cap-

tured phoneme—meaning associations, expect-

ing chance performance if semantics were
random. Logistic regression didn’t exceed

ance.

chance in any similarity bin (p = 0.82, 0.29,
and 0.20 for most, somewhat, and least similar
bins). Decision trees, however, worked above
chance in all bins (p < 0.001, 0.0064, 0.0048).

. Vowels only: Our ablation was driven by an

unexpected finding: consonants, not vowels,
were most predictive of size in our baseline
logistic regression. This is contrary to pre-
vious sound symbolism research which em-
phasizes vowels’ roles, particularly high front
vowels for smallness and back or low vowels
for largeness. Despite using only vowels, both
logistic regression and decision tree classifiers
showed strong performance with minimal de-
cline. These findings imply vowels hold a
symbolic significance but also suggest conso-
nants play an equally important role in size
semantics across languages. Further research
with larger datasets could clarify the roles of
different phoneme classes.

. High Frequency Phones only: This ablation

tested whether performance would change
when models are restricted to only the most
common phonemes cross-linguistically. The
list of 23 segments was provided by our col-
laborating phonetician and includes phones
that are widely attested across the world’s
languages. The goal was to test if symbolic
patterns persist using only globally common
sounds. Both classifiers performed nearly as
well as the full model. This suggests that
much of the sound-symbolic signal can be
recovered using only the most typologically
frequent phones, and that rarer or language-



ID Ablation Condition

LR Mean DT Mean

LR /DT by Bin

Baseline (all phonemes)

Scrambled Labels

Only Vowels

High-Frequency Phones (see Appendix A)
Only Plosives (see Appendix A)

Only Nasals (see Appendix A)

hn A WD = O

56.9 61.8 59.0/573/544 | 65.6/61.7/58.1
51.7 56.5 52.5/51.1/514 | 56.4/57.0/57.0
57.0 61.0 55.9/56.4/585 | 60.6/60.6/61.7
579 62.1 60.4/547/579 | 67.3/60.6/62.1
54.5 584 56.2/52.7/546 1 59.5/60.5/552
51.2 542 51.5/51.5/506 | 53.6/54.7/543

Table 2: Mean and bin-wise accuracy (%) for logistic regression (LR) and decision tree (DT) classifiers across
ablation conditions. Bin results are shown in the format: Most / Somewhat / Least Similar. Full phoneme sets are

listed in Appendix A.

specific phonemes may not be necessary to
detect size-related patterns.

4. Consonants only (Stops vs. Nasals): To
identify consonant types that contribute to
sound-symbolic patterns, we analyzed stops
and nasals. These were chosen for their high
frequency across languages and natural con-
trast in articulation: stops involve closure and
bursts, while nasals are sonorants produced
using continuous nasal airflow. Stops (e.g.,
/p/, /t/, /k/) are often associated with impact,
abruptness, or emphasis in sound-symbolic re-
search, whereas nasals (e.g., /m/, /n/, /y/)
tend to have a more resonant and vowel-like
acoustic profile. Stops outperformed nasals
in both models: 54.5% vs. 51.2% in logis-
tic regression and 58.4% vs. 54.2% in deci-
sion trees. Both exceeded the scrambled-label
baseline but were less accurate than the vowel-
only condition, despite consonants being top-
weighted features in the baseline.

5 Discussion

The success of logistic regression and decision tree
classifiers in predicting size semantics indicates
that phonological forms encode systematic, cross-
linguistic sound-symbolic patterns. Statistical tests
showed classification accuracy was significantly
above chance, especially for decision trees (p <
0.001). Notably, performance stayed above chance
even in the least similar bin where training and
test languages were typologically distant. The con-
sistent accuracy across bins suggests phonological
features related to size symbolism aren’t restricted
by linguistic ancestry. This challenges the idea that
sound symbolism is only from shared linguistic
ancestry, suggesting a broader cognitive basis for
phoneme-meaning associations across diverse lan-
guages. Decision trees generally outperformed lo-

gistic regression, especially in similar bins, but with
possible overfitting. Logistic regression offers a
more conservative and stable estimate, consistently
capturing robust cross-linguistic symbolic patterns.
Logistic regression and decision tree models un-
expectedly outperformed the adversarial approach,
highlighting the challenge of removing language-
specific data while preserving necessary signals for
classification. Phonological cues for size might
overlap with language patterns, meaning suppress-
ing one can also suppress the other. Baseline mod-
els did not have this restriction and used all avail-
able variations, including language-specific ones.
That said, the ablations suggest no single phoneme
group—Ilike consonants—consistently drives per-
formance. And while the baseline results seem
promising, the adversarial setup shows that much
of the signal may not reflect true cross-linguistic
symbolism.

6 Conclusion

In this work, we showed that simple, interpretable
models trained on bag-of-phoneme features can
predict “small” vs. “large” adjectives across 27
diverse languages at rates above chance (e.g., lo-
gistic regression at 59-54% accuracy and decision
trees up to 66%). An adversarial framework re-
duced language-identification to 22% while retain-
ing 52.5% size-prediction accuracy, highlighting
promising future potential for a more detailed ad-
versarial approach to modeling sound symbolism.
Our feature-weight analysis confirmed the role of
vowels and revealed consonantal predictors (e.g.,
//, /q/), challenging vowel-centric accounts. Mov-
ing forward, expanding the dataset’s scale and pho-
netic granularity—and refining adversarial objec-
tives—will be key to isolating truly universal sound-
symbolic patterns.



Limitations

A key limitation of this study is the modest size
of our dataset, which reflects the practical diffi-
culty of conducting cross-linguistic research at
scale. Recruiting native speakers for 27 lan-
guages—particularly those with limited academic
or online presence—posed a significant logistical
challenge. Ideally, all transcriptions would be vet-
ted by native speakers with formal linguistic train-
ing, but such individuals are extremely rare for
many of the languages in our sample. While we
aimed for genealogical diversity using WALS and
intentionally included languages from 13 families,
the dataset remains slightly skewed toward Indo-
European languages due to the relative accessibility
of speakers. Additionally, we relied on phonemic
rather than phonetic transcriptions; although phone-
mic representations offer greater cross-speaker con-
sistency, they may miss subtle sound-symbolic cues
present in actual pronunciation.
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A Appendix A: Ablation Phone Sets

Ablation experiment index

Experiment Name

Phonemes considered

Oand 1

Baseline and Scrambled labels

p/, o/, It, 1AL, 1Y, 1d1, fel, 13, Tk,
g/, 1q/, I/, R, I/, I/, I/, In/,
m, hyl, IN/, Il, Il IR/, Il I,
1§/, 11, 1E1, N1, 161, 131, s/, Iz,
W 130, 18t 12, Isl, il 1xd, Ix1, 1y,
sl, M/, I8/, 101, N, 11, Al I, 16/,
i, i1, 11, Iel, il el I TS
Im/, il il il 181 1R, I [ dsY,
i, Iyl, i, hel, hal, o, 11, Iyl
lol, lel, Il 19/, lel, I/, [0/, 1al,
e/, [cel, 131, 1el, 1], 1ol I/, [al,
/&, la/, o/

Only vowels

i, Iyl, i, hel, hal, o/, 1, I,
lol, lel, lel, 19/, lel, I/, [0/, 13l
lel, Ieel, I3/, lel, IA/, Idl, I, [al,
le&l/, la/, o/

High Frequency phones

pl, It I/, 1gl, 17, 16/, /A, /ml/,
m, nl, It vl s/, 2l I, B
Iwl, il lel, lol, fal, lu/

Plosives

p/, ol 1, 1Al I, Y, fel, 13, Tk,
g/, lal, lel, 1Y

Nasals

m/, /m/, i/, m/, In/, ln/, I/
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