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Abstract001

This paper investigates whether phonemes con-002
sistently convey size-related meaning across003
languages, a phenomenon known as sound004
symbolism. We compile a typologically di-005
verse dataset of 810 adjectives (30 per lan-006
guage across 27 languages and 13 families),007
each phonemically transcribed and validated008
using native speaker recordings. Using bag-009
of-phoneme vectors and baseline classifiers,010
we show that size semantics can be predicted011
from phonological features with statistically012
significant accuracy, even across unrelated lan-013
guages. Surprisingly, consonants such as /q/014
and /H/ emerge as highly predictive, challeng-015
ing prior work that emphasizes vowel sym-016
bolism. To separate symbolic patterns from017
language-specific cues, we introduce an adver-018
sarial model that penalizes language prediction019
while preserving size-related information. Un-020
der the adversarial setup, however, classifica-021
tion accuracy drops to near chance—suggesting022
that much of the symbolic signal may be entan-023
gled with language-specific structure, or that024
larger datasets may be needed to detect more025
subtle cross-linguistic patterns.026

1 Introduction027

If you were watching a superhero movie called028

Lamonians vs. Grataks: The Phoneme Accords,029

chances are you’d already be rooting for the La-030

monians because they sound like they would be031

nicer. In a 2009 Guardian article, linguist David032

Crystal posed a thought experiment: when asked033

to judge two fictional alien races, most people in-034

stinctively sided with the Lamonians, drawn to the035

soft consonants (/l/, /m/, /n/) and long vowels036

and diphthongs that give the name its gentle, lik-037

able tone (Crystal (2009)). This phenomenon in038

which specific sounds systematically convey partic-039

ular meanings is known as sound symbolism, and it040

challenges the long-standing linguistic assumption041

that form and meaning are entirely arbitrary.042

Sound symbolism is most familiar in ono- 043

matopoeia—words like buzz or crash that imitate 044

real-world sounds. It also manifests systematically 045

across languages: in Yucatec Maya, vowel length 046

signals event duration (Guen, 2013); in Swedish, 047

the prefix pj- marks pejoration (Åsa Abelin, 1999); 048

and in Japanese, consonants in food mimetics re- 049

flect perceived crispness (Raevskiy et al., 2023). 050

Beyond language, sound symbolism has commer- 051

cial applications: high-frequency sounds like /i/, 052

/e/, and /v/ are associated with luxury and in- 053

crease consumer appeal in branding and hospitality 054

(Motoki et al., 2023). 055

Despite evidence from individual languages, 056

identifying cross-linguistic sound symbolism re- 057

mains methodologically difficult. First, shared 058

language ancestry makes it hard to disentangle 059

universal patterns from inherited ones. Second, 060

phonological inventories differ—some languages 061

lack certain sounds—obscuring potential effects. 062

Third, symbolic patterns must be separated from 063

language-specific signals like dialectal variation, a 064

task traditional methods often fail to resolve. Yet 065

uncovering cross-linguistic sound symbolism has 066

broader value. It may reveal cognitive universals in 067

perception, improve cross-lingual transfer in low- 068

resource NLP, and guide data-driven brand naming 069

in commercial applications. 070

In this work, we investigate whether sound sym- 071

bolism for size holds across typologically diverse 072

languages by testing if adjectives meaning “small” 073

and “large” consistently share phonological fea- 074

tures, regardless of language family. Our approach 075

includes a novel adversarial setup designed to iso- 076

late potentially universal sound-symbolic patterns 077

while controlling for language-specific influences. 078

Our contributions are: 079

• A cross-linguistic dataset of 800+ size adjec- 080

tives (30 per language) from 27 languages 081

across 13 language families, phonemically 082
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transcribed in IPA and validated through na-083

tive speaker recordings to capture contrastive084

phonological distinctions.085

• Baseline classification experiments using lo-086

gistic regression and decision trees on bag-087

of-phoneme vectors, with languages grouped088

into typological bins using Levenshtein dis-089

tance (a measure of phonological similarity)090

to control for relatedness and assess cross-091

family generalization.092

• An adversarial neural model with a phoneme093

encoder, a size classifier, and a language dis-094

criminator trained via minimax optimization095

to separate symbolic patterns from language-096

specific signals.097

• Identification of predictive phonemes that cor-098

relate with size semantics across unrelated lan-099

guages, revealing robust sound-symbolic pat-100

terns and the unexpected role of consonants.101

2 Related Works102

The idea that speech sounds might carry meaning103

isn’t new, but Sapir (1929) was the first to test it104

experimentally. In his study, participants reliably105

judged nonsense words like mal to represent larger106

objects than mil, associating /a/ with largeness and107

/i/ with smallness. This challenged the assump-108

tion that word forms are entirely arbitrary. Since109

then, size symbolism has emerged as one of the110

most consistent patterns in sound symbolism. Yet111

most research remains focused on single languages,112

often Indo-European, and few computational ap-113

proaches have explored whether such patterns gen-114

eralize across diverse language families.115

2.1 Linguistic Perspectives on Sound116

Symbolism117

Although the idea that sounds can carry mean-118

ing is compelling, evidence from natural language119

remains uneven. Some studies suggest sound-120

meaning relationships are restricted to specific lex-121

ical categories or language families, while others122

demonstrate more universal cross-linguistic pat-123

terns that transcend typological boundaries.124

Winter and Perlman (2021), for example, found125

that certain phonemes (such as /i/, /I/, and /t/)126

were strongly associated with smallness in English-127

size adjectives, but this pattern did not general-128

ize to nouns or other word types, suggesting that129

sound symbolism may be limited to specific lex- 130

ical categories. Blasi et al. (2016) analyzed the 131

core vocabulary of more than 6,000 languages and 132

found phoneme–meaning associations (e.g., /i/ 133

with “small”, /l/ with “tongue”) that emerged in- 134

dependently across language families. 135

Shape symbolism offers another compelling 136

case: the maluma/takete effect, where soft- 137

sounding pseudowords are matched to round 138

shapes and sharp-sounding ones to spiky shapes, 139

has been widely observed across cultures. Sidhu 140

et al. (2021) extended this to English nouns, show- 141

ing that round-object words tend to include /m/ 142

and /u/, while spiky-object words more often in- 143

clude /k/ and /t/ suggesting that the sound of a 144

word may reflect aspects of its meaning. 145

2.2 Computational Approaches to Sound 146

Symbolism 147

Unlike linguistic studies that rely on curated word 148

lists and controlled tasks, recent computational 149

work explores whether models trained on large- 150

scale data internalize symbolic patterns like the 151

Bouba–Kiki effect, where people intuitively match 152

soft sounds to round shapes and sharp sounds to 153

spiky ones. Passi and Arun (2024) showed that this 154

effect holds even for reversed speech, pure tones, 155

and environmental sounds, and is best predicted 156

by sound frequency—challenging the idea that it 157

depends on mouth shape. 158

Alper and Averbuch-Elor (2023) found that 159

CLIP and Stable Diffusion reliably associate pseu- 160

dowords with matching visual features, suggest- 161

ing that vision–language models can learn sound– 162

meaning mappings from text–image co-occurrence 163

alone. Similarly, Loakman et al. (2024) found that 164

larger LLMs and VLMs, such as GPT-4, moder- 165

ately align with human judgments on size symbol- 166

ism—despite having no explicit access to phonetic 167

information. Interestingly, even fictional names 168

reveal learnable sound–meaning patterns across 169

languages. Kilpatrick et al. (2023) trained ran- 170

dom forests on Pokémon names in Japanese, Chi- 171

nese, and Korean to classify them as pre- or post- 172

evolution, finding that models outperformed hu- 173

man participants and relied on phonemes like /d/, 174

/g/, and long vowels—demonstrating that sym- 175

bolic cues like size and strength generalize across 176

both natural and invented lexicons. 177
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Figure 1: Levenshtein distance heatmap showing pairwise phonological similarity between the 27 languages in our
dataset. Languages are grouped hierarchically and colored bars indicate language families.

3 Methodology178

3.1 Data Collection179

To investigate sound symbolism across typolog-180

ically diverse languages, we compiled a dataset181

of 810 adjectives—30 per language (15 denot-182

ing smallness, e.g., tiny, minuscule; 15 denoting183

largeness, e.g., huge, enormous)—spanning 27 lan-184

guages from 13 language families. Languages were185

selected using the World Atlas of Language Struc-186

tures (WALS) to maximize both genetic and areal187

diversity, while ensuring feasibility in terms of188

speaker access and resource availability.189

Each adjective list was constructed by translating190

English seed words using DeepL, Google Translate,191

and bilingual dictionaries. We manually filtered out192

borrowings and transliterations to prioritize native193

lexical items. Words were then transcribed into the194

International Phonetic Alphabet (IPA) using phone-195

mic transcription, which captures contrastive sound196

units while abstracting away from fine-grained pho- 197

netic variation. This choice was motivated by both 198

practical and linguistic considerations. Phonemic 199

representations provide greater consistency across 200

typologically diverse languages and reduce con- 201

founds from dialectal variation, particularly in lan- 202

guages such as Arabic and Spanish. Focusing on 203

phoneme-level distinctions allowed us to isolate 204

symbolic features most relevant to meaning while 205

preserving cross-linguistic comparability. 206

We initially experimented with large language 207

models such as GPT and Claude for automatic tran- 208

scription, but found that their outputs often deviated 209

from canonical phonology, even in well-resourced 210

languages. To ensure accuracy, we adopted a hy- 211

brid transcription pipeline. Where available, we 212

used the XPF corpus—a rule-based, linguistically 213

grounded phoneme-mapping tool—to generate ini- 214

tial IPA forms (Priva et al., 2021). We then col- 215
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lected audio recordings of the adjective lists from216

native speakers via language exchange platforms217

such as Tandem. These recordings were not used218

as model input, but served as references for tran-219

scription correction.220

A trained linguist and phonetician reviewed the221

recordings using acoustic analysis tools and man-222

ually revised or reconstructed each transcription.223

In cases where no initial transcription was avail-224

able, phonological forms were created from scratch225

based on the recordings. Domain experts, including226

language instructors and researchers, also reviewed227

or annotated the data for several languages to en-228

sure quality and accuracy.229

To control for shared linguistic ancestry, we used230

a precomputed dataset of normalized Levenshtein231

distances between languages, compiled by Svend232

V. Nielsen (Nielsen, 2017) following the method233

introduced by Bakker et al. (2009). These distances234

(Figure 1) were derived from phonologically tran-235

scribed Swadesh lists—a standardized set of core236

vocabulary items (eg. “I,” “water” etc). Nielsen’s237

implementation used a reduced 40-word version of238

the list, chosen for high cross-linguistic comparabil-239

ity. The resulting values reflect the average number240

of phonological edits needed to align word pairs241

across languages. We used these distances to group242

languages into similarity bins for our classification243

experiments.244

While the per-language dataset is relatively245

small, collecting speaker-validated, phonemically246

transcribed data across 27 languages poses sub-247

stantial logistical challenges. Our primary goal248

was to ensure lexical balance and phonological249

comparability, even at a modest scale. To compen-250

sate for this, particularly in our adversarial setup,251

we pretrained the phonological encoder on over252

three million word–pronunciation pairs extracted253

using WikiPron1 (Lee et al., 2020), an open-source254

tool for systematically retrieving IPA transcrip-255

tions from Wiktionary. This large-scale pretrain-256

ing enables the encoder to learn general phonotac-257

tic and articulatory patterns across a broad range258

of languages, enhancing its ability to detect sym-259

bolic structure in our more controlled downstream260

dataset.261

3.2 Baseline Classifiers262

We first evaluated whether size-related sound-263

symbolic patterns could be detected using simple,264

1Available under the Apache 2.0 license.

interpretable models. To this end, we trained logis- 265

tic regression and decision tree classifiers to predict 266

size semantics from phonemic input alone. 267

Each word was represented as a bag-of-phoneme 268

vector based on IPA symbol counts. To ensure 269

consistency across transcription styles, we limited 270

features to core IPA characters, excluding diacritics 271

and suprasegmentals. 272

To test cross-linguistic generalization, we 273

grouped training languages into three bins of ty- 274

pological similarity relative to each target lan- 275

guage—Most Similar, Somewhat Similar, and 276

Least Similar—based on the Levenshtein distance 277

matrix described above. This allowed us to exam- 278

ine whether classifiers trained on typologically re- 279

lated languages performed better than those trained 280

on distant ones. 281

Logistic regression used default regularization. 282

Decision trees were tuned for maximum depth 283

(3–15) and minimum samples per split (2–10) to 284

control overfitting. Accuracy was used as the pri- 285

mary evaluation metric. 286

To analyze feature importance, we extracted 287

and aggregated logistic regression coefficients 288

across models and bins to identify phonemes most 289

strongly associated with smallness or largeness. We 290

did not interpret decision tree feature importances 291

due to structural variability across runs. 292

3.3 Adversarial Scrubber 293

Our goal is to learn phonological representations 294

that retain sound-symbolic information (e.g., pho- 295

netic cues relevant to size) while suppressing 296

language-specific patterns that could confound 297

cross-linguistic generalization. We adopt a two- 298

stage approach that combines phonetic pretrain- 299

ing with adversarial representation learning. The 300

model is optimized to predict semantic size (small 301

vs. large) while minimizing its ability to recover 302

the language family from the same embedding. 303

In the first stage, we pretrain a compact BERT 304

encoder on 1.6 million IPA-transcribed words from 305

WikiPron using a masked language modeling ob- 306

jective. This step encourages the model to capture 307

general phonological structure across typologically 308

diverse languages. The encoder consists of 2 trans- 309

former layers with 128 hidden units and a vocab- 310

ulary of 80 IPA characters plus standard special 311

tokens. After 2 epochs of training, the encoder is 312

frozen and used as a fixed feature extractor. 313

We freeze our BERT model and then fine-tune 314

a linear embedding layer, a sound symbolism clas- 315
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Figure 2: Detailed accuracy heatmap by target language and similarity bin. Each cell shows classification accuracy
for logistic regression (left) and decision tree (right) models.

Figure 3: Overview of our adversarial training pipeline. Stage 1: Pretrain BERT on IPA-transcribed words using
masked language modeling. Stage 2: Train a language classifier on frozen embeddings. Stage 3: Fine-tune the
embedding layer and symbolism classifier while suppressing language-specific cues via adversarial loss.

sifier, and a language adversary using our curated316

dataset, in which each word is annotated with both317

a binary size label and a language family label. The318

model architecture includes the following compo-319

nents:320

• Encoder (E): A linear embedding layer that321

takes the BERT embeddings as input.322

• Sound Symbolism Classifier (C): A single323

linear layer followed by a softmax over two 324

classes (small vs. large). 325

• Language Adversary (A): A multi-class clas- 326

sifier trained to predict the word’s language 327

family from the same embedding. 328

To encourage the encoder to discard language- 329

specific information, we optimize a minimax ob- 330

jective: 331

5



min
E,C

max
A

Lsymbolism(C(E(x)), ysize)332

− λ · Llanguage(A(E(x)), ylang)
(1)

333

Here, Lsymbolism and Llanguage are cross-entropy334

losses for size and language classification, respec-335

tively. We used a conservative base value of336

λ = 0.01, with annealing beginning after epoch337

10 to prevent premature over-scrubbing. Specifi-338

cally, λ increased over training using the schedule339

λt = 0.01 · (1− 0.95t−9), allowing the encoder to340

first learn phonological structure before gradually341

suppressing language-specific patterns.342

Training alternates between two steps within343

each batch: (1) updating the adversary to improve344

language prediction, and (2) updating the encoder345

and symbolism classifier to improve size prediction346

while reducing the adversary’s ability to recover347

language identity. During the second step, the ad-348

versary is frozen, and the encoder is encouraged to349

produce language-invariant representations.350

We project BERT embeddings into a 32-351

dimensional space and apply dropout (p = 0.4)352

before classification. Language identity was rep-353

resented using a coarse categorical label (0, 1, 2),354

based on a simplified grouping created during pre-355

processing. These categories roughly reflected ge-356

nealogical relationships—for example, grouping357

Romance languages together—but also included358

some typologically diverse combinations, such as359

Hindi, Russian, and German. This decision was360

motivated by our limited dataset size, which made361

fine-grained modeling of language structure im-362

practical. While these groupings do not capture the363

full complexity of linguistic relationships, they of-364

fered a manageable way to test whether the model365

could suppress broad language-level patterns while366

still retaining symbolic cues relevant to size.367

4 Results368

4.1 Baseline Classification Results369

Our classification experiments show that phono-370

logical features carry predictive information about371

size semantics across languages. Both logistic re-372

gression and decision tree classifiers performed373

consistently above the 50% random baseline across374

all three similarity bins.375

Model Most Simi-
lar

Somewhat
Similar

Least Simi-
lar

Logistic Reg. 59.0% 57.3% 54.4%
Decision Tree 65.6% 61.7% 58.1%

Table 1: Mean accuracy (%) by model and similarity
bin.

All reported results were statistically significant 376

compared to chance (p < 0.001 for all bins with 377

decision trees; p < 0.001, 0.01, and 0.05 for logis- 378

tic regression depending on the bin). A one-way 379

ANOVA revealed that differences in performance 380

across bins were not statistically significant for ei- 381

ther model (p = 0.27 for logistic regression; p = 0.21 382

for decision trees). 383

Figure ?? shows the distribution of model perfor- 384

mance across similarity bins, and Figure 2 provides 385

a breakdown by target language. 386

4.2 Phonological Features & Size Symbolism 387

Analysis of feature importance in our models re- 388

vealed several phonemes that consistently predict 389

size semantics across languages. Contrary to ex- 390

pectations from prior literature focusing primarily 391

on vowel symbolism, our baseline results suggest 392

that consonants may also play a significant role in 393

sound-symbolic associations. 394

Based on averaged logistic regression coeffi- 395

cients across all languages, the phonemes most 396

strongly associated with largeness include /H/, 397

/3/ and /N/. For smallness, the most predictive 398

phonemes include /q/, /P/ and /D/ (figure 4). 399

These results complicate the predictions of the 400

Frequency Code hypothesis (CITE), which sug- 401

gests that lower-frequency sounds should iconically 402

convey largeness. While some findings align with 403

this view—for instance, the association of the back 404

vowel /o/ with largeness—others are less expected. 405

A number of the top predictors are consonants, in- 406

cluding some that are relatively rare across lan- 407

guages, suggesting that sound-symbolic patterns 408

may not be limited to the well-attested vowel con- 409

trasts. Instead, they may also reflect more language- 410

specific or articulatory factors. 411

4.3 Adversarial Training Results 412

To evaluate whether language-specific signals 413

could be suppressed without eliminating sound- 414

symbolic structure, we trained an adversarial model 415

using the best-performing hyperparameters identi- 416

fied through pilot experiments that varied embed- 417
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Figure 4: Left: Model accuracy across language similarity groups (logistic regression and decision tree classifiers).
Right: Most predictive phonemes for size classification using logistic regression.

ding dimensionality, dropout rate, and adversarial418

loss weight. These experiments aimed to balance419

effective language suppression with preservation420

of symbolic information. The final model achieved421

52.5% symbolic classification accuracy and 22.2%422

language classification accuracy on the test set.423

While this indicates partial success in reducing lan-424

guage cues, symbolic performance remained below425

that of baseline classifiers.426

The model showed a clear bias toward predicting427

largeness, with a recall of 0.78 for “large” words428

compared to just 0.27 for “small.” In other words,429

the model frequently mislabeled small words as430

large. This asymmetry may reflect that largeness431

cues were more robustly encoded across languages432

and better preserved under adversarial pressure. In433

contrast, phonological patterns linked to smallness434

may have been subtler or more language-specific,435

making them more susceptible to being scrubbed436

during training.437

4.4 Ablation Experiments438

Table 2 summarizes the results of our ablation ex-439

periments. The experiment ID (leftmost column)440

begins at 0 for the baseline model.441

1. Scrambled Size Labels: To verify if clas-442

sifiers learned symbolic structures instead443

of memorizing artifacts, we did a con-444

trol experiment with scrambled size labels.445

For each language, we randomly shuffled446

test set size labels while keeping class bal-447

ance. This checked if models truly cap-448

tured phoneme–meaning associations, expect-449

ing chance performance if semantics were450

random. Logistic regression didn’t exceed451

chance in any similarity bin (p = 0.82, 0.29, 452

and 0.20 for most, somewhat, and least similar 453

bins). Decision trees, however, worked above 454

chance in all bins (p < 0.001, 0.0064, 0.0048). 455

2. Vowels only: Our ablation was driven by an 456

unexpected finding: consonants, not vowels, 457

were most predictive of size in our baseline 458

logistic regression. This is contrary to pre- 459

vious sound symbolism research which em- 460

phasizes vowels’ roles, particularly high front 461

vowels for smallness and back or low vowels 462

for largeness. Despite using only vowels, both 463

logistic regression and decision tree classifiers 464

showed strong performance with minimal de- 465

cline. These findings imply vowels hold a 466

symbolic significance but also suggest conso- 467

nants play an equally important role in size 468

semantics across languages. Further research 469

with larger datasets could clarify the roles of 470

different phoneme classes. 471

3. High Frequency Phones only: This ablation 472

tested whether performance would change 473

when models are restricted to only the most 474

common phonemes cross-linguistically. The 475

list of 23 segments was provided by our col- 476

laborating phonetician and includes phones 477

that are widely attested across the world’s 478

languages. The goal was to test if symbolic 479

patterns persist using only globally common 480

sounds. Both classifiers performed nearly as 481

well as the full model. This suggests that 482

much of the sound-symbolic signal can be 483

recovered using only the most typologically 484

frequent phones, and that rarer or language- 485
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ID Ablation Condition LR Mean DT Mean LR / DT by Bin

0 Baseline (all phonemes) 56.9 61.8 59.0 / 57.3 / 54.4 | 65.6 / 61.7 / 58.1
1 Scrambled Labels 51.7 56.5 52.5 / 51.1 / 51.4 | 56.4 / 57.0 / 57.0
2 Only Vowels 57.0 61.0 55.9 / 56.4 / 58.5 | 60.6 / 60.6 / 61.7
3 High-Frequency Phones (see Appendix A) 57.9 62.1 60.4 / 54.7 / 57.9 | 67.3 / 60.6 / 62.1
4 Only Plosives (see Appendix A) 54.5 58.4 56.2 / 52.7 / 54.6 | 59.5 / 60.5 / 55.2
5 Only Nasals (see Appendix A) 51.2 54.2 51.5 / 51.5 / 50.6 | 53.6 / 54.7 / 54.3

Table 2: Mean and bin-wise accuracy (%) for logistic regression (LR) and decision tree (DT) classifiers across
ablation conditions. Bin results are shown in the format: Most / Somewhat / Least Similar. Full phoneme sets are
listed in Appendix A.

specific phonemes may not be necessary to486

detect size-related patterns.487

4. Consonants only (Stops vs. Nasals): To488

identify consonant types that contribute to489

sound-symbolic patterns, we analyzed stops490

and nasals. These were chosen for their high491

frequency across languages and natural con-492

trast in articulation: stops involve closure and493

bursts, while nasals are sonorants produced494

using continuous nasal airflow. Stops (e.g.,495

/p/, /t/, /k/) are often associated with impact,496

abruptness, or emphasis in sound-symbolic re-497

search, whereas nasals (e.g., /m/, /n/, /N/)498

tend to have a more resonant and vowel-like499

acoustic profile. Stops outperformed nasals500

in both models: 54.5% vs. 51.2% in logis-501

tic regression and 58.4% vs. 54.2% in deci-502

sion trees. Both exceeded the scrambled-label503

baseline but were less accurate than the vowel-504

only condition, despite consonants being top-505

weighted features in the baseline.506

5 Discussion507

The success of logistic regression and decision tree508

classifiers in predicting size semantics indicates509

that phonological forms encode systematic, cross-510

linguistic sound-symbolic patterns. Statistical tests511

showed classification accuracy was significantly512

above chance, especially for decision trees (p <513

0.001). Notably, performance stayed above chance514

even in the least similar bin where training and515

test languages were typologically distant. The con-516

sistent accuracy across bins suggests phonological517

features related to size symbolism aren’t restricted518

by linguistic ancestry. This challenges the idea that519

sound symbolism is only from shared linguistic520

ancestry, suggesting a broader cognitive basis for521

phoneme–meaning associations across diverse lan-522

guages. Decision trees generally outperformed lo-523

gistic regression, especially in similar bins, but with 524

possible overfitting. Logistic regression offers a 525

more conservative and stable estimate, consistently 526

capturing robust cross-linguistic symbolic patterns. 527

Logistic regression and decision tree models un- 528

expectedly outperformed the adversarial approach, 529

highlighting the challenge of removing language- 530

specific data while preserving necessary signals for 531

classification. Phonological cues for size might 532

overlap with language patterns, meaning suppress- 533

ing one can also suppress the other. Baseline mod- 534

els did not have this restriction and used all avail- 535

able variations, including language-specific ones. 536

That said, the ablations suggest no single phoneme 537

group—like consonants—consistently drives per- 538

formance. And while the baseline results seem 539

promising, the adversarial setup shows that much 540

of the signal may not reflect true cross-linguistic 541

symbolism. 542

6 Conclusion 543

In this work, we showed that simple, interpretable 544

models trained on bag-of-phoneme features can 545

predict “small” vs. “large” adjectives across 27 546

diverse languages at rates above chance (e.g., lo- 547

gistic regression at 59–54% accuracy and decision 548

trees up to 66%). An adversarial framework re- 549

duced language-identification to 22% while retain- 550

ing 52.5% size-prediction accuracy, highlighting 551

promising future potential for a more detailed ad- 552

versarial approach to modeling sound symbolism. 553

Our feature-weight analysis confirmed the role of 554

vowels and revealed consonantal predictors (e.g., 555

/H/, /q/), challenging vowel-centric accounts. Mov- 556

ing forward, expanding the dataset’s scale and pho- 557

netic granularity—and refining adversarial objec- 558

tives—will be key to isolating truly universal sound- 559

symbolic patterns. 560
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Limitations561

A key limitation of this study is the modest size562

of our dataset, which reflects the practical diffi-563

culty of conducting cross-linguistic research at564

scale. Recruiting native speakers for 27 lan-565

guages—particularly those with limited academic566

or online presence—posed a significant logistical567

challenge. Ideally, all transcriptions would be vet-568

ted by native speakers with formal linguistic train-569

ing, but such individuals are extremely rare for570

many of the languages in our sample. While we571

aimed for genealogical diversity using WALS and572

intentionally included languages from 13 families,573

the dataset remains slightly skewed toward Indo-574

European languages due to the relative accessibility575

of speakers. Additionally, we relied on phonemic576

rather than phonetic transcriptions; although phone-577

mic representations offer greater cross-speaker con-578

sistency, they may miss subtle sound-symbolic cues579

present in actual pronunciation.580
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