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Abstract
We introduce a novel generative framework for
functions by integrating Implicit Neural Represen-
tations (INRs) and Transformer-based hypernet-
works into latent variable models. Unlike prior ap-
proaches that rely on MLP-based hypernetworks
with scalability limitations, our method employs
a Transformer-based decoder to generate INR pa-
rameters from latent variables, addressing both
representation capacity and computational effi-
ciency. Our framework extends latent diffusion
models (LDMs) to INR generation by replacing
standard decoders with a Transformer-based hy-
pernetwork, which can be trained either from
scratch or via hyper-transforming—a strategy that
fine-tunes only the decoder while freezing the pre-
trained latent space. This enables efficient adapta-
tion of existing generative models to INR-based
representations without requiring full retraining.
We validate our approach across multiple modali-
ties, demonstrating improved scalability, expres-
siveness, and generalization over existing INR-
based generative models. Our findings establish a
unified and flexible framework for learning struc-
tured function representations.

1. Introduction
Generative modelling has seen remarkable advances in re-
cent years, with diffusion models achieving state-of-the-art
performance across multiple domains, including images,
videos, and 3D synthesis (Ho et al., 2020; Dhariwal &
Nichol, 2021; Rombach et al., 2022). A key limitation of ex-
isting generative frameworks, however, is their reliance on
structured output representations, such as pixel grids, which
constrain resolution and generalisation across data modal-
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Figure 1: Samples from LDMI at multiple resolutions.

ities. In contrast, Implicit Neural Representations (INRs)
have emerged as a powerful alternative that parametrises sig-
nals as continuous functions (Sitzmann et al., 2020; Milden-
hall et al., 2021). By leveraging INRs, generative models
can represent complex data distributions at arbitrary resolu-
tions, yet learning expressive distributions over INR param-
eters remains a fundamental challenge.

A common approach to modelling distributions over INRs
is to use hypernetworks (Ha et al., 2017), which generate
the weights and biases of an INR conditioned on a latent
code (Dupont et al., 2022b; Koyuncu et al., 2023). How-
ever, MLP-based hypernetworks suffer from scalability bot-
tlenecks, particularly when generating high-dimensional
INRs, as direct parameter regression constrains flexibility
and expressiveness. More recently, Transformer-based hy-
pernetworks have been proposed to alleviate these issues,
introducing attention mechanisms to efficiently predict INR
parameters (Chen & Wang, 2022; Zhmoginov et al., 2022).
Nonetheless, existing approaches such as Trans-INR (Chen
& Wang, 2022) remain deterministic, limiting their applica-
bility in probabilistic frameworks.

In this work, we introduce a novel framework for INR gen-
eration, named Latent Diffusion Models of INRs (LDMI),
that incorporates our proposed Hyper-Transformer Decoder
(HD), a probabilistic Transformer-based decoder for learn-
ing distributions over INR parameters. Our approach com-
bines the strengths of hypernetworks with recent advances
in meta-learning for INRs while integrating into latent
diffusion-based generative frameworks. Unlike previous
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works, our HD decoder employs a full Transformer archi-
tecture, where a Transformer Encoder processes latent vari-
ables, and a Transformer Decoder generates INR parameters
via cross-attention. This design enables flexible, probabilis-
tic generation of neural representations across diverse data
modalities, surpassing the deterministic limitations of prior
Transformer-based hypernetworks (Chen & Wang, 2022;
Zhmoginov et al., 2022).

Our proposed framework, LDMI, supports two training
paradigms: (i) full training, where the model is trained from
scratch alongside a latent diffusion model (LDM; Rom-
bach et al., 2022), and (ii) hyper-transforming, where a
pre-trained LDM is adapted by replacing its decoder with
the HD, allowing for efficient transfer learning without re-
training the entire generative pipeline. This flexibility en-
ables LDMI to scale effectively while leveraging existing
pre-trained diffusion models.

Contributions Our key contributions can be summarized
as follows:

• We introduce the HD decoder, a full Transformer-based
probabilistic decoder for learning distributions over INR
parameters.

• We integrate our method into Latent Diffusion Models
(Rombach et al., 2022), with support both full training
and hyper-transforming, enabling efficient adaptation of
pre-trained models. We refer to this approach as LDMI.

• The HD decoder achieves scalability and generalisation
across data modalities, overcoming the bottlenecks of
MLP-based hypernetworks and extending beyond deter-
ministic Transformer-based methods.

• We demonstrate the effectiveness of our approach on var-
ious generative tasks, showcasing its superiority in mod-
elling high-resolution, structured data.

By integrating probabilistic INR modelling within diffusion-
based generative frameworks and efficient latent-to-
parameters generation, our work establishes a new direc-
tion for flexible and scalable generative modelling with
unconstrained resolution. The following sections provide
a detailed description of the background (Section 2), the
proposed methodology (Section 3), and empirical results
(Section 4).

2. Background and Related Work
2.1. Latent Diffusion Models

Latent Diffusion Models (LDM; Rombach et al., 2022) are a
class of generative models that learn efficient representations
by applying diffusion processes in a compressed latent space.
Unlike traditional diffusion models that operate directly in
high-dimensional data spaces y ∈ RD to approximate p(y),

LDMs first encode data into a lower-dimensional latent
space z ∈ Rd, where d≪ D, using a probabilistic encoder
Eψ(·) to produce rich latent representations qψ(z|y). These
are decoded via Dλ(·) to accurately recover data samples by
modeling the conditional distribution pλ(y|z). A β-VAE
(Higgins et al., 2017) with low β, a Vector-Quantized VAE
(VQ-VAE; van den Oord et al., 2017), or VQGAN (Esser
et al., 2021) are suitable choices for learning the structured
latent space. Additionally, for image data, perceptual losses
can be incorporated to further enhance generation quality
(Larsen et al., 2016; Johnson et al., 2016; Hou et al., 2017;
Dosovitskiy & Brox, 2016; Hou et al., 2019).

In the second stage, LDMs approximate the aggregate poste-
rior qψ(z) =

∫
qψ(z|y)pdata(y) dy with a diffusion model

pθ(z), shifting the generative modeling task from data space
to latent space and significantly reducing computational cost.
While both continuous-time SDE-based approaches (Song
et al., 2021b) and discrete Markov chain formulations (Ho
et al., 2020; Song et al., 2021a) are viable, we follow the
DDPM-based approach as adopted in the original LDM
implementation (Rombach et al., 2022).

DDPMs (Ho et al., 2020) train using an objective de-
rived from a variational lower bound on the negative log-
likelihood, reparameterized for efficiency as a denoising
task. This results in a simplified loss that closely resembles
denoising score matching (Song et al., 2021b), and is widely
used in state-of-the-art models (Saharia et al., 2022; Dhari-
wal & Nichol, 2021). For latent diffusion, the loss is applied
to z ∼ qψ(z|y), yielding:

LDDPM = Ey,z,t,ϵ

[
∥ϵ− ϵθ(zt, t)∥2

]
, (1)

where y ∼ pdata(y), z ∼ qψ(z|y), t ∼ U(1, T ), and ϵ ∼
N (0, I). This objective corresponds to predicting the added
noise in a fixed forward process, effectively denoising zt
toward the original latent z.

Sampling In DDPM, the reverse posterior density is no
longer Markovian and coincides with the inference model
proposed later in DDIM (Song et al., 2021a). In DDIM, it is
demonstrated that faster sampling can be achieved without
retraining, simply by using the posterior approximation for
the estimation ẑ, which re-defines the generative process as:

pθ(zt−1|zt) =

{
N

(
ẑ, σ2

1I
)

if t = 1

q
(
zt−1|zt, ẑ

)
otherwise,

(2)

and uses that an estimation of ẑ can be computed by

ẑ = fθ(zt, t) =
1√
ᾱt

(
zt −

√
1− ᾱt · ϵθ(zt, t)

)
, (3)

where ᾱt =
∏t
i=1 αi. This formulation leads to improved

efficiency using fewer steps. More details are provided in
Appendix A.2.
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2.2. Probabilistic Implicit Neural Representations

Implicit Neural Representations (INRs; Sitzmann et al.,
2020) model continuous functions by mapping coordi-
nates x to output features y via a neural network fΦ(y|x)
(Mildenhall et al., 2021; Mescheder et al., 2019; Tancik
et al., 2020). Recent generative approaches adapt this idea
for flexible conditional generation at arbitrary resolutions
(Dupont et al., 2022a; Koyuncu et al., 2023). Unlike mod-
els that fit p(y) over structured data, INRs approximate
the conditional p(y|x), allowing data sampling and uncer-
tainty estimation at any location—especially beneficial for
spatially-varying data.

Probabilistic INR generation typically involves meta-
learning hidden representations that are mapped to INR
parameters Φ. The main challenge lies in learning these
representations under uncertainty, with two goals: (i) em-
bedding observed data into a posterior for conditional gener-
ation, and (ii) sampling from a prior for synthesis. Koyuncu
et al. (2023) address this via a latent variable z and a varia-
tional framework combining a flow-based prior pθ(z) with
an encoder qψ(z|x,y), using an MLP-based hypernetwork
to map z to Φ (Ha et al., 2017). However, scaling to high-
resolution images is limited by the complexity of the INR
parameter space. Similarly, Dupont et al. (2022b) use ad-
versarially trained hypernetworks, which improve stability
but lack conditional generation and face the same scalability
bottlenecks.

Two recent strategies aim to address these issues. Functa
(Dupont et al., 2022a; Bauer et al., 2023) learns neural fields
per datapoint via optimization of modulation codes (referred
to as functas), then trains a generative model on the resulting
functaset. Alternatively, Chen et al. (2024) leverage LDMs
by pretraining an autoencoder (e.g., β-VAE or VQ-VAE)
with an image renderer incorporated to the decoder, and
applying a diffusion model on its latent space.

2.3. Hyper-Transformers

Hypernetworks (Ha et al., 2017) map latent representations
z to INR parameters Φ = gϕ(z), where gϕ is a learned
generator and fΦ(y|x) defines the INR. While the hyper-
network is shared across the dataset, the INR is instance-
specific, generated dynamically by the hypernetwork. This
design, however, struggles with large INRs, as generating
full parameter vectors introduces capacity and optimiza-
tion bottlenecks. To overcome this, recent work has pro-
posed Hyper-Transformers (Chen & Wang, 2022; Zhmogi-
nov et al., 2022), which use attention to generate INR pa-
rameters in modular chunks. This design avoids flattening
and allows scalable, targeted weight generation.

Building on this paradigm, recent work, (HyperDream-
Booth; Ruiz et al., 2024) extends this idea by generating

LoRA adapters for personalizing diffusion models from few
examples. While their focus is efficient adaptation, our
framework (LDMI) builds a full generative model over INR
parameter space. Our Hyper-Transformer Decoder enables
resolution-agnostic generation across modalities (images,
3D fields, climate data), representing a new direction in
function-level generative modeling.

Although prior methods succeed in deterministic reconstruc-
tion, they do not support probabilistic generation or serve as
decoders for latent variable models. Our approach addresses
this by using full Transformer architectures conditioned on
tensor-shaped latent variables.

2.4. Function-valued Stochastic Processes

Alternative approaches like Neural Diffusion Processes
(NDPs) (Dutordoir et al., 2023) and Simformer (Gloeck-
ler et al., 2024) define distributions over function values,
not over network parameters. NDPs denoise function val-
ues directly using permutation-invariant attention, mimick-
ing Neural Processes, while Simformer learns a joint diffu-
sion model over data and simulator parameters. In contrast,
our method directly generates INR parameters via a hyper-
transformer, offering continuous function generation with
resolution independence.

3. Methodology
We introduce Latent Diffusion Models of Implicit Neural
Representations (LDMI), a novel family of generative mod-
els operating in function space. While previous probabilistic
INR approaches have explored latent variable models for
INRs (Koyuncu et al., 2023; Dupont et al., 2022b) and
two-stage training schemes incorporating diffusion-based
priors in the second stage (Park et al., 2023; Dupont et al.,
2022a; Bauer et al., 2023), these methods face key limita-
tions. Notably, MLP-based hypernetworks suffer from ca-
pacity bottlenecks, while existing frameworks lack a unified
and compact approach for handling diverse data modalities.

To address these challenges, we propose the Hyper-
Transformer Decoder (HD), which extends the flexibility
of hypernetworks with the scalability of Transformer-based
architectures. Unlike prior deterministic frameworks (Chen
& Wang, 2022), HD introduces a probabilistic formulation,
enabling uncertainty modelling and improved generative
capacity for INRs.

3.1. Notation

We define F = {f : X → Y} as the space of continu-
ous signals, where X represents the domain of coordinates,
and Y the codomain of signal values, or features. Let D
be a dataset consisting of N pairs D .

= {(Xn,Yn)}Nn=1.
Here, Xn and Yn conform a signal as a collection of Dn
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(a) Encoder. (b) INR Generation.

Figure 2: Overview of the I-VAE. (a) The inference model, trained in the first stage, where an encoder maps data into the
variational parameters of the approximate posterior; (b) The full decoder: the HD module transforms the latent variable into
the weights and biases of an INR, enabling continuous signal representation.

coordinates Xn
.
= {x(n)

i }Dni=1, x
(n)
i ∈ X and signal values

Yn
.
= {y(n)

i }Dni=1, y
(n)
i ∈ Y .

3.2. Generative Model

We aim to model the stochastic process that generates con-
tinuous signals (X,Y ) using neural networks p(y|x; Φ) ≡
pΦ(y|x), known as Implicit Neural Representations (INRs).
Unlike discrete representations such as pixel grids, INRs
provide compact and differentiable function approximations,
making them well-suited for a wide range of data modalities,
including images (Chen et al., 2021), 3D shapes (Mescheder
et al., 2019), and audio (Sitzmann et al., 2020), while inher-
ently supporting unconstrained resolution.

Implicit Neural Representation Previous works have
demonstrated that even simple MLP-based architectures ex-
hibit remarkable flexibility, accurately approximating com-
plex signals. In this work, we define our INR as an MLP
with L hidden layers:

h0 = γ(x),

hl = σ(Wlhl−1 + bl), l = 1, . . . , L,

fΦ(x) = hL = WLhL−1 + bL.

(4)

where γ denotes optional coordinate encoding, and σ is
a non-linearity. The INR parameters are given by Φ =
(Wl,bl)

L
l=1. The network parametrise a likelihood distribu-

tion, λ, over the target signal, that is,

pΦ(y|x) = λ(y; fΦ(x)). (5)

Challenges in Modeling INR Parameter Distributions
Learning a generative model over the INR parameter space
Φ is highly non-trivial due to two fundamental challenges.
First, small perturbations in parameter space can result in
drastic variations in the data space, making direct modelling
difficult. Second, the dimensionality of the flattened pa-
rameter vector Φ scales poorly with the INR’s width and
depth, leading to significant computational and optimization
challenges.

A common approach in prior works (Koyuncu et al., 2023;
Dupont et al., 2022b;a) is to model Φ implicitly using an

auxiliary neural network known as a hypernetwork (Ha
et al., 2017), typically MLP-based, which modulates the
INR parameters based on a lower-dimensional latent repre-
sentation:

Φ = gϕ(z), (6)

where z ∈ RHz×Wz×dz is a tensor-shaped latent code with
spatial dimensions Hz × Wz and channel dimension dz .
This latent space serves as a compressed representation
of the continuous signal. However, MLP-based hypernet-
works introduce a fundamental bottleneck: the final layer
must output all parameters of the target INR, which leads
to scalability issues when modulating high-capacity INRs.
As a result, prior works employing MLP-based hypernet-
works typically use small INR architectures, often restricted
to three-layer MLPs (Koyuncu et al., 2023; Dupont et al.,
2022b). Additionally, these works rely on standard MLPs
with ReLU or similar activations and often preprocess co-
ordinates using Random Fourier Features (RFF) (Tancik
et al., 2020) to capture high-frequency details. However,
RFF-based embeddings struggle to generalize to unseen
coordinates without careful validation. In contrast, SIREN
(Sitzmann et al., 2020) inherently captures the full frequency
spectrum by incorporating sinusoidal activations, making it
more effective for super-resolution tasks.

However, using SIREN as the INR module introduces fur-
ther challenges. As commented by their authors, optimizing
SIRENs with not carefully chosen uniformly distributed
weights yields poor performance both in accuracy and in
convergence speed. This issue worsens when the weights
are not optimized, but generated by a hypernetwork.

To overcome these limitations, we introduce the Hyper-
Transformer Decoder (HD), a Transformer-based hypernet-
work designed to scale effectively while preserving the flex-
ibility of larger INRs and ensuring proper modulation of
SIREN weights.

3.2.1. HYPER-TRANSFORMER DECODER

The Hyper-Transformer Decoder (HD) is a central compo-
nent of our autoencoding framework for generating INRs,
referred to as I-VAE and illustrated in Figure 2. Its inter-
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Figure 3: Diagram of the Hyper-Transformer Decoder (HD). The latent variable z is tokenized and processed by a
Transformer Encoder. A Transformer Decoder, initialized with learnable grouped weights W̄i

l, cross-attends to the latent
tokens to generate the set of grouped weights Wo

l . The full weight matrices Wl are then reconstructed by combining the
grouped weights with learnable template weights W̄b

l . Biases bl are learned as global parameters.

nal architecture is detailed in Figure 3. Mathematically, it
is defined as a function of the latent tensor that produces
the parameters Φ = gϕ(z) of the INR. We elaborate on
previous work that proposed Vision Transformers (Doso-
vitskiy et al., 2021) for meta-learning of INR parameters
from images (Chen & Wang, 2022), to design an efficient
full Transformer architecture (Vaswani et al., 2017) that
processes latent variables into INR parameters.

Tokenizer The HD decoder begins by splitting tensor-
shaped latent variables into N patches zp ∈ RP 2×dz of
fixed size (P, P ), where N = Hz ·Wz/P

2. Each patch is
then flattened and projected into a lower-dimensional em-
bedding space using a shared linear transformation. The
embedding for each patch serves as an input token for the
Transformer.

Transformer Encoder Following tokenization, the first
half of the HD decoder, a Transformer Encoder, applies
multi-head self-attention mechanism, repeated for several
layers, outputting tokenized embeddings that we referred to
as latent tokens.

Transformer Decoder Unlike prior work (Chen & Wang,
2022) that only employs Transformer Encoders, we intro-
duce a Transformer Decoder that cross-attends to latent
tokens to generate output tokens, which are then mapped to
the column weights of the INR weight matrices. The input
to the Transformer Decoder consists of a globally shared,
learnable set of initial weight tokens, denoted as W̄i, which
serve as queries. The decoder processes these queries via
cross-attention with the latent tokens, which act as keys and
values to obtain the output set of column weights, Wo.

Weight Grouping Following Chen et al. (2021), we adopt
a similar weight grouping strategy to balance precision and
computational efficiency in INR parameter generation. How-
ever, our approach differs in the reconstruction strategy ap-
plied to the Transformer-generated weights.

Let W ∈ Rdout×din represent a weight matrix of an INR
layer (omitting the layer index l for simplicity), where each
column is denoted as wc for c ∈ {1, . . . , din}. Directly
mapping a Transformer token to every column is compu-
tationally expensive, as it would require processing long
sequences. Instead, we define G groups per weight matrix,
where each group represents k = din

G columns (assuming
divisibility). This results in a Transformer working with
grouped weight matrices W̄i,Wo ∈ Rdout×G, since W̄i

(input tokens) and Wo (output tokens) have the same di-
mensions. The full weight matrix is reconstructed as:

wc = R(wo
⌊c/k⌋, w̄

b
c) (7)

where R is the reconstruction operator, wc denotes the
cth column of W, and w̄b

c is the corresponding column of
W̄b ∈ Rdout×din —a set of learnable base parameters that
serve as a weight template.

In Trans-INR (Chen & Wang, 2022), the Transformer-based
hypernetwork generates normalized weights using the fol-
lowing reconstruction method:

R(norm)
(
wo

⌊c/k⌋, w̄
b
c

)
=

wo
⌊c/k⌋ ⊙ w̄b

c∥∥∥wo
⌊c/k⌋ ⊙ w̄b

c

∥∥∥ . (8)

However, we found this approach unsuitable for generating
weights in INRs with periodic activations. We hypothesize
that the normalization in Equation (8) causes the resulting
weights and their gradients to vanish when ||wo

⌊c/k⌋|| ≈ 0,
leading to training instability.

To address this, we introduce a new reconstruction oper-
ator that removes the normalization constraint, yielding
significantly more stable training, particularly for INRs with
periodic activations:

R(scale)
(
wo

⌊c/k⌋, w̄
b
c

)
= (1 +wo

⌊c/k⌋)⊙ w̄b
c. (9)

This formulation ensures that when ||wo
⌊c/k⌋|| ≈ 0, the

base weights remain unchanged, preventing instability in
the generated INR parameters.
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It is essential to distinguish between the two sets of globally
shared learnable parameters. The sequence W̄i

1:L (of length
G× L) serves as the initialization for the grouped weight
tokens and is provided as input to the Transformer Decoder.
In contrast, the sequence W̄b

1:L (of length din×L) acts as a
global reference for the full set of INR weights and is used
exclusively for the reconstruction in Equation (9).

This weight grouping mechanism allows the HD decoder
to dynamically adjust the trade-off between precision and
efficiency by tuning G. As a result, our method scales ef-
fectively across different model sizes while preserving the
benefits of Transformer-based hypernetwork parameteriza-
tion.

3.3. Variational Inference

Given our implicit modelling of INR parameters, the objec-
tive is to learn a structured and compact probabilistic latent
space pθ(z) that enables meaningful posterior inference via
Bayesian principles. Specifically, we seek to approximate
the true posterior p(z|X,Y ), facilitating accurate and flex-
ible inference. To achieve this, we extend the Variational
Autoencoder (VAE) framework (Kingma & Welling, 2013)
to the efficient generation of INRs, which we refer to as
I-VAE (depicted in Figure 2).

The complexity of the likelihood function makes the true
posterior p(z|X,Y ) intractable. To address this, VAEs in-
troduce an encoder network that approximates the posterior
through a learned variational distribution. Our encoder, de-
noted as Eψ(X,Y ), processes both coordinate inputs X
and signal values Y , outputting the parameters of a Gaus-
sian approximation:

qψ(z|X,Y ) = N
(
z; Eψ(X,Y )

)
. (10)

This formulation enables training via amortized variational
inference, optimising a lower bound on the log-marginal
likelihood log p(Y |X), known as the Evidence Lower
Bound (ELBO):

LVAE(ϕ, ψ) = Eqψ(z|X,Y )

[
log pΦ(Y |X)

]
− β ·DKL

(
qψ(z|X,Y ) ∥ p(z)

)
,

(11)

where we omit the explicit dependence of Φ on ϕ and z for
clarity. The hyperparameter β, introduced by Higgins et al.
(2017), controls the trade-off between reconstruction fidelity
and latent space regularization, regulating the amount of
information compression in the latent space. The case β = 1
corresponds to the standard definition of the ELBO.

During the first stage of training, following LDMs (Rom-
bach et al., 2022), we impose a simplistic standard Gaussian
prior p(z) = N (0, I), and we set a low β value to en-
courage high reconstruction accuracy while promoting a
structured latent space that preserves local continuity. This

Figure 4: Schematic of the DDIM-based latent diffusion.

choice facilitates smooth interpolations and improves the
quality of inferred representations.

In addition, following Rombach et al. (2022), for the case
of images, we incorporate perception losses (Zhang et al.,
2018), and patch-based (Isola et al., 2017) adversarial ob-
jectives (Dosovitskiy & Brox, 2016; Esser et al., 2021; Yu
et al., 2022).

However, while this training strategy ensures effective infer-
ence, direct generation remains poor due to the discrepancy
between the expressive encoder distribution and the simplis-
tic Gaussian prior. To address this mismatch, we introduce
a second training stage, where a diffusion-based model is
fitted to the marginal posterior distribution, enhancing the
generative capacity of the learned latent space.

3.4. Latent Diffusion

In this stage, we leverage the pre-trained I-VAE and the
highly structured latent space encoding INRs to fit a DDPM
(Ho et al., 2020) to the aggregate posterior:

qψ(z) = Epdata(X,Y )

[
qψ(z|X,Y )

]
. (12)

In other words, we fit a learnable prior over the latent space
to approximate the structured posterior induced by the en-
coder. Specifically, we minimize the Kullback-Leibler di-
vergence

DKL
(
qψ(z) ∥ pθ(z)

)
, (13)

where pθ(z) represents the learned diffusion-based prior
over the latent space. We instantiate the following variation
of the Denoising Score Matching (DSM; Vincent, 2011)
objective presented in Equation (1):

LDDPM = EX,Y ,z,ϵ,t

[
λ(t)∥ϵ− ϵθ(zt, t)∥2

]
, (14)

which is approximated via Monte Carlo sampling. Specifi-
cally, we draw (X,Y ) ∼ pdata(X,Y ), z ∼ qψ(z|X,Y ),
ϵ ∼ N (0, I), and t ∼ U(1, T ), where T denotes the num-
ber of diffusion steps. The weighting function λ(t) mod-
ulates the training objective; in our case, we set λ(t) = 1,
corresponding to an unweighted variational bound that en-
hances sample quality. The complete training procedure for
LDMI is outlined in Appendix B.
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Figure 5: Uncurated samples from GASP, Functa (diffusion-based) and our LDMI trained with CelebA-HQ at 64×64
resolution (a). In (b), our model was trained on CelebA-HQ at 256×256 using the hyper-transforming approach.

3.5. Hyper-Transforming Latent Diffusion Models

As an alternative to full training, we introduce a highly
efficient approach for training LDMI when a pre-trained
LDM for discretized data is available. In this setting, we
eliminate the need for two-stage training by leveraging the
structured latent space learned by the pre-trained LDM.
Specifically, we freeze the VAE encoder and the LDM and
train only the HD decoder to maximize the log-likelihood of
the decoded outputs, using the objective

LHT(ϕ) = Eqψ(z|X,Y )

[
log pΦ(Y |X)

]
, (15)

optionally combined with perceptual and adversarial objec-
tives. The HD decoder is sufficiently expressive to extract
meaningful information from the pre-trained latent space.

We refer to this strategy as hyper-transforming, as it enables
efficient adaptation of a standard LDM to an INR-based
framework without retraining the latent encoder or diffusion
prior. Notably, this approach is compatible with LDMs
based on VAEs, VQVAEs, or VQGANs—since all that is
required is access to a pre-trained encoder and diffusion
model. The full procedure is outlined in Algorithm 1.

4. Experiments
4.1. Training Setup

Depending on the nature of the data, we utilize different ar-
chitectures for the encoder. For image and climate data, we
employ ResNets (He et al., 2016), while for 3D occupancy
data, we employ 3D-convolutional networks.

Our evaluations1 span multiple domains: (1) natural image
datasets, including CelebA-HQ (Liu et al., 2015) at sev-
eral resolutions and ImageNet (Russakovsky et al., 2015);
(2) 3D objects, specifically the Chairs subclass from the
ShapeNet repository (Chang et al., 2015), which provides
approximately 6,778 chair models for 3D reconstruction
and shape analysis; and (3) polar climate data, using the
ERA5 temperature dataset (Hersbach et al., 2019) to ana-
lyze global climate dynamics. In our hyper-transforming
setup, we leverage publicly available pre-trained Latent Dif-
fusion Models from Rombach et al. (2022), specifically the
LDM-VQ-4 variants trained on CelebA-HQ at 256 × 256
resolution and ImageNet, respectively.

4.2. Generation

Figure 1 shows samples generated by LDMI across diverse
data modalities and resolutions. To obtain these, we sam-
ple from the latent diffusion model, decode the latents into
INRs using our HD decoder, and evaluate the resulting func-
tions on different coordinate grids. Notably, CelebA-HQ at
(256× 256) is a challenging dataset not addressed by prior
baselines.

In Figure 5, we provide samples from LDMI trained on
CelebA at 64×64 and 256×256, demonstrating its ability
to generate high-quality and diverse images across different
scales, and the qualitative superiority against the baselines.
Additionally, in Table 1, we report FID scores of our sam-

1The code for reproducing our experiments can be found at
https://github.com/ipeis/LDMI.
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Figure 6: Reconstructions from Functa (diffusion-based), VAMoH, and our LDMI compared to ground truth (GT) across
three datasets (a)–(c). In (d) and (e) LDMI was trained by hyper-transforming pre-trained LDMs.

Model PSNR (dB) ↑ FID ↓ HN Params ↓
CelebA-HQ (64× 64)
GASP (Dupont et al., 2022b) - 7.42 25.7M
Functa (Dupont et al., 2022a) ≤ 30.7 40.40 -
VAMoH (Koyuncu et al., 2023) 23.17 66.27 25.7M
LDMI 24.80 18.06 8.06M

ImageNet (256× 256)
Spatial Functa (Bauer et al., 2023) ≤ 38.4 ≤ 8.5 -
LDMI 20.69 6.94 102.78M

Table 1: Metrics on CelebA-HQ and ImageNet.

ples for CelebA and ImageNet, highlighting the model’s
performance in terms of image quality and reconstruction
accuracy. Importantly, while GASP achieves a lower FID
score on CelebA-HQ, it cannot perform reconstructions due
to its adversarial design. In contrast, our LDMI supports
both high-quality sampling and accurate reconstructions, as
demonstrated in the following experiment.

4.3. Reconstruction

Figure 6 presents a qualitative comparison between origi-
nal images from the test split and their reconstructions by
our model. As shown in the figure, our model successfully
preserves fine details and global structures across different
images. On ImageNet, our model demonstrates robust re-

construction performance across diverse object categories
and scenes, including textures, object boundaries and colour
distributions.

Quantitative evaluations in Table 1 indicate competitive
performance compared to existing INR-based generative
models. For CelebA-HQ 64× 64, we achieve a PSNR value
of 24.80 dB, which compares competitively to the previous
methods. The high PSNR score suggests there is mini-
mal information loss during the encoding-decoding process
while maintaining perceptual quality. It is important to note
several key distinctions when interpreting the comparative
results in this Table. While Functa exhibits higher PSNR val-
ues, this advantage stems from its test-time optimization pro-
cedure—fitting a separate modulation vector per test image
using ground truth information—rather than the amortized
inference approach employed by our model. This funda-
mental methodological difference undermines a direct com-
parison, though we include these results for completeness.

As for generation, our model enables seamless reconstruc-
tion at arbitrary resolutions. Figures 9 and 10 show re-
sults from LDMI trained on CelebA-HQ at (256× 256) and
(64 × 64), respectively. To achieve this, we encode the
observations, sample from the posterior distribution, and
transform these latent samples into INRs using our HD de-
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coder. The resulting INRs are then evaluated on grids of
varying resolutions to produce reconstructions ranging from
×1/8 to ×4. Importantly, such flexible resolution control is
not supported by methods like GASP, which cannot perform
reconstructions due to their adversarial design.

To further validate our claims regarding cross-modality gen-
eralization, we evaluate LDMI on two additional diverse
datasets: ShapeNet Chairs and ERA5 climate data. As
shown in Table 2, LDMI achieves higher reconstruction qual-
ity across both datasets, outperforming Functa by 9.6 dB
on Chairs and 9.7 dB on ERA5, while also improving upon
VAMoH by 0.4 dB and 5.6 dB respectively. The substantial
performance gain on the ERA5 climate dataset (44.6 dB vs.
39.0 dB for VAMoH) highlights LDMI’s exceptional capa-
bility in representing complex, continuous spatio-temporal
signals beyond standard visual data, further supporting our
argument for a truly general-purpose INR-based generative
framework.

Model Chairs (dB) ↑ ERA5 (dB) ↑
Functa (Dupont et al., 2022a) 29.2 34.9
VAMoH (Koyuncu et al., 2023) 38.4 39.0
LDMI 38.8 44.6

Table 2: Reconstruction quality (PSNR in dB) on ShapeNet
Chairs and ERA5 climate data, demonstrating LDMI’s
strong generalization capabilities across modalities. Note
that GASP is omitted as it is not applicable to INR recon-
struction tasks.

The dual capability of high-quality generation and accurate
reconstruction positions LDMI as a versatile foundation for
various downstream tasks requiring both generative and
reconstructive abilities, a unique advantage over specialized
alternatives optimized for only one of these objectives.

4.4. Hyper-Transforming

On ImageNet and CelebA-HQ at 256× 256, our LDMI was
trained using the hyper-transforming strategy. As discussed
in Section 3.5, instead of training the model from scratch,
we reuse the encoder and diffusion model from a pre-trained
LDM, training only the Hyper-Transformer Decoder. This
approach leverages both the structured latent space learned
by the autoencoder and the diffusion model already fitted to
it. Training then focuses solely on transforming latent codes
into the function space of INR parameters, enabling efficient
specialization without retraining the generative backbone.

Our method is agnostic to the latent encoder—VAE, VQ-
VAE, or VQGAN—highlighting the flexibility of the hyper-
transforming framework. These results demonstrate its scal-
ability for INR-based synthesis and adaptation of pre-trained
LDMs to resolution-agnostic generation.

In
pu

t
Sa

m
pl

es

Figure 7: Conditional inpainting results on CelebA-HQ at
256 × 256. The second and third rows present two con-
ditional samples generated by our LDMI for the missing
regions at the centre.

4.5. Data Completion

We evaluate our model on structured completion tasks,
where parts of the input are masked with predefined pat-
terns. For each case, we show the masked input and two
samples drawn from the posterior. As shown in Figure 7,
the model uses visible context to produce realistic, coherent
outputs. On CelebA-HQ 256× 256, it reconstructs missing
features—such as eyes, mouth, or hairline—while preserv-
ing consistency with the unmasked regions. These results
highlight its ability to generalize from partial observations.

5. Conclusion
We introduced Latent Diffusion Models of Implicit Neural
Representations (LDMI), a framework that combines the
expressiveness of INRs with the generative power of Latent
Diffusion Models. Our hyper-transforming approach al-
lows efficient adaptation of pre-trained LDMs to INR-based
generation without retraining the full model. Experiments
on CelebA-HQ, ImageNet, ShapeNet Chairs, and ERA5
demonstrate strong performance in both quantitative and
qualitative evaluations.

Importantly, LDMI overcomes limitations of prior hypernet-
works through a modular, probabilistic Transformer decoder
that supports scalable, expressive INR generation. While
MLP-based methods struggle with dense parameter outputs
and Transformer-based ones are typically deterministic, our
design enables probabilistic modelling and efficient synthe-
sis. Integrating INRs with latent diffusion yields a flexible,
resolution-agnostic framework—advancing generative tasks
requiring structural consistency, fidelity, and scalability.

9



Hyper-Transforming Latent Diffusion Models

Acknowledgements
This research was supported by the Villum Foundation
through the Synergy project number 50091, and by the
Novo Nordisk Foundation through the Center for Basic
Machine Learning Research in Life Science (MLLS, grant
NNF20OC0062606).

Ignacio Peis acknowledges support by Danish Data Science
Academy, which is funded by the Novo Nordisk Foundation
(NNF21SA0069429). Batuhan Koyuncu is supported by the
Konrad Zuse School of Excellence in Learning and Intelli-
gent Systems (ELIZA) through the DAAD programme Kon-
rad Zuse Schools of Excellence in Artificial Intelligence,
sponsored by the Federal Ministry of Education and Re-
search.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bauer, M., Dupont, E., Brock, A., Rosenbaum, D., Schwarz,

J. R., and Kim, H. Spatial Functa: Scaling Functa to
ImageNet Classification and Generation. arXiv preprint
arXiv:2302.03130, 2023.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. ShapeNet: An
Information-Rich 3D Model Repository. Technical Re-
port arXiv:1512.03012 [cs.GR], Stanford University —
Princeton University — Toyota Technological Institute at
Chicago, 2015.

Chen, Y. and Wang, X. Transformers as Meta-Learners for
Implicit Neural Representations. In European Conference
on Computer Vision, pp. 170–187. Springer, 2022.

Chen, Y., Liu, S., and Wang, X. Learning Continuous Image
Representation with Local Implicit Image Function. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8628–8638, 2021.

Chen, Y., Wang, O., Zhang, R., Shechtman, E., Wang, X.,
and Gharbi, M. Image Neural Field Diffusion Models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8007–8017, 2024.

Dhariwal, P. and Nichol, A. Diffusion Models Beat GANs
on Image Synthesis. In Advances in Neural Information
Processing Systems, volume 34, pp. 8780–8794, 2021.

Dosovitskiy, A. and Brox, T. Generating Images with Per-
ceptual Similarity Metrics Based on Deep Networks. In
Advances in Neural Information Processing Systems, vol-
ume 29, 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. In
International Conference on Learning Representations,
2021.

Dupont, E., Kim, H., Eslami, S. A., Rezende, D. J., and
Rosenbaum, D. From data to functa: Your data point
is a function and you can treat it like one. In Interna-
tional Conference on Machine Learning, pp. 5694–5725.
PMLR, 2022a.

Dupont, E., Teh, Y. W., and Doucet, A. Generative Models
as Distributions of Functions. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2989–
3015. PMLR, 2022b.

Dutordoir, V., Saul, A., Ghahramani, Z., and Simpson, F.
Neural Diffusion Processes. In International Conference
on Machine Learning, pp. 8990–9012. PMLR, 2023.

Esser, P., Rombach, R., and Ommer, B. Taming Transform-
ers for High-Resolution Image Synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12873–12883, 2021.

Gloeckler, M., Deistler, M., Weilbach, C. D., Wood, F.,
and Macke, J. H. All-in-one Simulation-based Inference.
In International Conference on Machine Learning, pp.
15735–15766. PMLR, 2024.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In
International Conference on Learning Representations,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi,
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A. Background Extension
A.1. Autoencoding-based Models

When opting by β-VAE (Higgins et al., 2017) for the first stage of LDMs (Rombach et al., 2022), a weak regularization
encourages accurate likelihoods pλ(y|z) parameterized by the decoder Dλ(·) while preserving latent expressiveness. This
is achieved by assuming p(z) = N (0, I) and maximizing the Evidence Lower Bound (ELBO):

LVAE = Eqψ(z|y)
[
log pλ(y|z)

]
− β ·DKL

(
qψ(z|y) ∥ p(z)

)
(16)

and setting β is set to a small value to encourage accurate reconstructions.

In contrast, VQVAE replaces the continuous latent representation with a discrete codebook. During training, the encoder
output is quantized using the closest embedding from the codebook, enabling a more structured representation. The objective
becomes:

LVQVAE = ∥y −Dλ(Eϕ(y))∥2 + ∥sg[Eϕ(y)]− z∥2 + ∥sg[z]− Eϕ(y)∥2 (17)

where sg[·] indicates a stop-gradient operation that prevents the encoder from directly updating the codebook embeddings.

A.2. Diffusion Models

In DDPM, the forward diffusion process incrementally corrupts the observed variable z0 using a Markovian noise process
with latent variables z1:T

q(z1:T |z0) :=
T∏
t=1

q(zt|zt−1), (18)

where q(zt|zt−1) := N (zt;
√
1− βtzt−1, βtI), and βt is a noise schedule controlling the variance at each time step.

The reverse generative process is defined by the following Markov chain

pθ(z0:T ) := p(zT )

T∏
t=1

pθ(zt−1|zt) (19)

where pθ(zt−1|zt) := N
(
µθ(zt, t),σ

2
t

)
is defined as a Gaussian whose mean

µθ(zt, t) =
1

√
αt

(
zt −

βt√
1− ᾱt

ϵθ(zt, t)

)
(20)

is obtained by a neural network that predicts the added noise using a neural network ϵθ(zt, t).

A more suitable inference distribution for ending with a compact objective can be expressed via the reverse posterior
conditioning on the observation z0:

q(zt−1|zt, z0) = N
(
zt−1; µ̃t (zt, z0) , β̃tI

)
, (21)

The model is learned by minimizing the variational bound on negative log-likelihood, which can be expressed as a sum of
terms,

LDDPM =

const︷ ︸︸ ︷
DKL

(
q(zT |z0) ∥ p(zT )

)
+

L0︷ ︸︸ ︷
− log p(z0|z1) +

DKL
(
q(zt−1|zt, z0) ∥ pθ(zt−1|zt)

)︸ ︷︷ ︸
Lt−1

(22)

Efficient training is achieved by uniformly sampling t ∼ U(1, T ) and optimizing the corresponding Lt−1, which, by
deriving Equation (22), can be further simplified to a denoising score-matching loss:

LDDPM = Ez0,t,ϵ

[
∥ϵ− ϵθ(zt, t)∥2

]
(23)

where ϵ ∼ N (0, I).
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A.2.1. INFERENCE

The reverse posterior density defined in Equation (21) is no longer Markovian and coincides with the inference model
proposed in DDIM (Song et al., 2021a), where it is demonstrated that faster sampling can be achieved without retraining,
simply by redefining the generative process as:

pθ(zt−1|zt) =

N
(
f
(1)
θ (z1) , σ

2
1I

)
if t = 1

qσ

(
zt−1|zt, f (t)θ (zt)

)
otherwise,

(24)

and considering that an estimation of ẑ0 = fθ(zt, t) can be computed as:

fθ(zt, t) =
1√
ᾱt

(
zt −

√
1− ᾱt · ϵθ(zt, t)

)
, (25)

where ᾱt =
∏t
i=1 αi. This formulation enables deterministic sampling with improved efficiency using fewer steps.

B. Training LDMI

Algorithm 1 Hyper-Transforming LDM

Input: Dataset {(Xi,Yi)}Ni=1, pre-trained LDM (frozen encoder Eψ , frozen diffusion model pθ), Hyper-Transformer decoder pΦ

repeat
Sample batch (X,Y ) ∼ pdata(X,Y )
Sample latent using frozen encoder: z ∼ qψ(z|Xm,Ym)
Compute likelihood loss: LHT(ϕ) using Equation (15)
if image data then

Add perceptual loss: Lpercept
Add adversarial loss: Ladv

end if
Update decoder parameters ϕ to minimize total loss

until convergence

Algorithm 2 Training LDMI

Input: Dataset (Xi,Yi)i = 1N , encoder Eψ , decoder pΦ, diffusion model pθ

Stage 1: Training I-VAE
repeat

Sample batch (X,Y ) ∼ pdata(X,Y )
Sample latent: z ∼ qψ(z|X,Y )
Compute ELBO loss: LVAE(ϕ, ψ) using Equation (11)
if image data then

Add perceptual loss: Lpercept
Add adversarial loss: Ladv

end if
Update parameters ϕ, ψ to minimize total loss

until convergence

Stage 2: Training DDPM
repeat

Sample batch (X,Y ) ∼ pdata(X,Y )
Sample latent: z ∼ qψ(z|X,Y )
Sample noise: ϵ ∼ N (0, I)
Sample timestep: t ∼ U(1, T )
Compute DDPM loss: LDDPM using Equation (14)
Update parameters θ to minimize LDDPM

until convergence
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In addition to the hyper-transforming approach described in the main text, LDMI can also be trained from scratch using
a two-stage process. This follows the standard Latent Diffusion Model (LDM) training pipeline but incorporates our
Hyper-Transformer Decoder (HD) for INR generation. The training procedure consists of:

1. Stage 1: Learning the Latent Space with I-VAE — We train a Variational Autoencoder for INRs (I-VAE) to encode
continuous signals into a structured latent space. The encoder learns an approximate posterior qψ(z|X,Y ), while
the decoder reconstructs signals from the latent variables. The training objective follows the Evidence Lower Bound
(ELBO) as defined in Equation (11). To enhance reconstruction quality, additional perceptual or adversarial losses may
be applied for certain data types.

2. Stage 2: Training the Latent Diffusion Model (LDM) — Given the structured latent space obtained in Stage 1, we fit
a diffusion-based generative model pθ(z) to the aggregate posterior qψ(z). This stage follows the standard DDPM
framework, minimizing the objective in Equation (14). The learned diffusion prior enables generative sampling in the
latent space, from which the HD decoder infers INR parameters.

The full training procedure is summarized in Algorithm 2.

C. Additional Experiments
C.1. Scalability of LDMI

A key strength of our approach lies in its parameter efficiency and scalability when compared to alternative methods. As
shown in Table 3, while previous approaches such as GASP (Dupont et al., 2022b) or VAMoH (Koyuncu et al., 2023) require
substantial hypernetwork parameters (25.7M) to generate relatively small INR weights (50K), LDMI achieves superior
performance with only 8.06M hypernetwork parameters while generating 330K INR weights for a 5-layer network.

Method HN Params INR Weights Ratio (INR/HN)

GASP/VAMoH 25.7M 50K 0.0019
LDMI 8.06M 330K 0.0409

Table 3: Parameter efficiency of hypernetworks (HN) in GASP/VaMoH and LDMI.

We confirm this efficiency effect through an ablation study comparing our transformer-based HD decoder against a standard
MLP design, as MLPs are commonly used in hypernetwork implementations despite their limitations in modeling complex
dependencies. Table 4 shows that on CelebA-HQ, our HD architecture not only achieves superior reconstruction quality
(with a 2.79 dB improvement in PSNR) but does so with significantly fewer parameters—less than half compared to the
MLP architecture.

Method HN Params PSNR (dB)

LDMI-MLP 17.53M 24.93
LDMI-HD 8.06M 27.72

Table 4: Ablation study comparing MLP and hyper-transformer HD decoders on CelebA-HQ.

This parameter efficiency highlights a crucial advantage of our approach: hyper-transformer’s ability to capture complex
inter-dimensional dependencies translates to more effective weight generation with a more compact architecture. The
superior scaling properties of LDMI suggest that it can handle larger and more complex INR architectures without prohibitive
parameter growth, making it particularly suitable for high-resolution generation tasks that demand larger INRs.

C.2. Samples at Multiple Resolutions

To further demonstrate the flexibility of our model, we present additional qualitative results showcasing unconditional
samples generated at varying resolutions. As described in the main text, we sample from the latent diffusion prior, decode
the latents into INRs using our HD decoder, and evaluate them on coordinate grids of increasing resolution.
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Figure 8: Additional uncurated samples from LDMI at multiple resolutions.

Figure 8 displays generations from LDMI trained on data across different modalities, rendered at scales ranging from ×0.125
to ×4. These results highlight the resolution-agnostic nature of our approach and its ability to produce coherent, high-quality
outputs across a wide range of spatial resolutions.

C.3. Reconstructions at Multiple Resolutions

We provide additional reconstruction results to further illustrate LDMI’s ability to operate seamlessly across a wide range of
output resolutions. Each input image is encoded into a latent representation, sampled from the posterior, and decoded into
an INR using our HD decoder. The resulting INR is then evaluated over coordinate grids of increasing density to generate
reconstructions at progressively higher resolutions.

Figures 9 and 10 present reconstructions from LDMI trained on CelebA-HQ at (256× 256) and (64× 64), respectively.
Reconstructions are rendered at resolutions ranging from ×0.125 to ×4, showcasing the model’s ability to maintain spatial
coherence and fine details even under extreme upsampling. Notably, such flexible reconstruction is not supported by baseline
methods like GASP due to architectural limitations. Furthermore, datasets of this complexity are not even addressed by
other reconstruction-capable baselines such as VAMoH (Koyuncu et al., 2023), Functa (Dupont et al., 2022b), or Spatial
Functa (Bauer et al., 2023).

D. Experimental Details
This section outlines the hyperparameter settings used to train LDMI across datasets. We describe key components, including
the encoder, decoder, diffusion model, and dataset settings. Table 5 summarizes the hyperparameters used in our experiments,
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covering both stages of the generative framework: (i) the first-stage autoencoder—either a VQVAE or β-VAE, depending on
the dataset—and (ii) the second-stage latent diffusion model. It lists architectural choices such as latent dimensionality,
diffusion steps, attention resolutions, and optimization settings (e.g., batch size, learning rate), along with details of the HD
decoder, tokenizer, Transformer modules, and INR architecture. For image-based tasks, we use perceptual and adversarial
losses to improve sample quality, following Esser et al. (2021). All models were trained on NVIDIA H100 GPUs.
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Figure 9: Reconstructions of test CelebA-HQ (256× 256) images by LDMI at multiple resolutions. The ground truth image
is first passed through the encoder, which produces the parameters of the posterior distribution. A latent code is then sampled
and transformed into the parameters of the INR using our HD decoder. By simply evaluating the INRs at denser coordinate
grids, we can generate images at increasingly higher resolutions.
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Figure 10: Reconstructions of test CelebA-HQ (64× 64) images by LDMI at multiple resolutions. The ground truth image
is first passed through the encoder, which produces the parameters of the posterior distribution. A latent code is then sampled
and transformed into the parameters of the INR using our HD decoder. By simply evaluating the INRs at denser coordinate
grids, we can generate images at increasingly higher resolutions.
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CelebA CelebA-HQ 64× 64 CelebA-HQ 256× 256 ImageNet ERA5 Chairs

resolution 64× 64 64× 64 256× 256 256× 256 46× 90 32× 32× 32
modality image image image image polar occupancy
first stage model β-VAE β-VAE VQVAE VQVAE β-VAE β-VAE

Encoder
codebook size - - 8192 8192 - -
latent channels 3 3 3 3 3 64
base channels 64 64 128 128 32 32
ch mult 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4
num blocks 2 2 2 2 2 -
dropout - 0.1 - - - 0.2
kl weight 1e-05 1e-04 - - 1.0e-6 1.0e-6
perc weight 1. 1. 1. 1. - -

Discriminator
layers 2 2 3 3 - -
n filters 32 64 64 64 - -
dropout - 0.2 - - - -
disc weight 0.75 0.75 0.75 0.6 - -

HD decoder

Tokenizer
latent size 16× 16 16× 16 64× 64 64× 64 11× 22 4× 4
patch size 2 2 4 4 1 1
heads 4 4 4 4 4 4
head dim 32 32 32 32 32 32

Transformer
token dim 192 192 384 768 136 128
encoder layers 6 6 5 6 4 3
decoder layers 6 6 5 6 4 3
heads 6 6 6 12 4 4
head dim 48 48 64 64 32 32
feedforward dim 768 768 1536 3072 512 512
groups 64 64 128 128 64 64
dropout - 0.1 0.1 - - 0.2

INR
type SIREN SIREN SIREN MLP SIREN
layers 5 5 5 5 5 5
hidden dim 256 256 256 256 256 256
point enc dim - - - - 256 -
ω 30. 30. 30. 30. - 30.

Latent Diffusion
shape z 3× 16× 16 3× 16× 16 3× 64× 64 3× 64× 64 3× 11× 22 64× 4× 4
—z— 768 768 12288 12288 726 1024
diffusion steps 1000 1000 1000 1000 1000 1000
noise schedule linear linear linear linear linear linear
base channels 64 32 224 192 64 128
ch mult 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,5 1,2,3,4 1,2
attn resolutions 2, 4, 8 2, 4, 8 8, 16, 32 8, 16, 32 - 4
head channels 32 32 32 192 32 64
num blocks 2 2 2 2 2 2
class cond - - - crossattn - -
context dim - - - 512 - -
transformers depth - - - 1 - -

Training
batch size 64 64 32 32 64 128
iterations 300k, 400k 300k, 200k 1M 140k 400k, 500k 300k, 60k
lr 1e-06, 2e-06 1e-06, 2e-06 4.5e-6 1.0e-6 1e-06, 2e-06 1e-06, 2e-06
hyper-transforming - - ✓ ✓ - -

LDM version - - VQ-F4 (no-attn) VQ-F4 (no-attn) - -

Table 5: Architecture details.
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