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ABSTRACT

We develop a cost-efficient neurosymbolic agent to address challenging multi-turn
image editing tasks such as “Detect the bench in the image while recoloring it to
pink. Also, remove the cat for a clearer view and recolor the wall to yellow.” It
combines the fast, high-level subtask planning by large language models (LLMs)
with the slow, accurate, tool-use, and local A∗ search per subtask to find a cost-
efficient toolpath—a sequence of calls to AI tools. To save the cost of A∗ on similar
subtasks, we perform inductive reasoning on previously successful toolpaths via
LLMs to continuously extract/refine frequently used subroutines and reuse them as
new tools for future tasks in an adaptive fast-slow planning, where the higher-level
subroutines are explored first, and only when they fail, the low-level A∗ search is
activated. The reusable symbolic subroutines considerably save exploration cost
on the same types of subtasks applied to similar images, yielding a human-like
fast-slow toolpath agent “FaSTA∗”: fast subtask planning followed by rule-based
subroutine selection per subtask is attempted by LLMs at first, which is expected to
cover most tasks, while slow A∗ search is only triggered for novel and challenging
subtasks. By comparing with recent image editing approaches, we demonstrate
FaSTA∗ is significantly more computationally efficient while remaining competitive
with the state-of-the-art baseline in terms of success rate.

1 INTRODUCTION

Various practical applications require multi-turn image editing, which demands applying a sequence
of heterogeneous operations—object detection, segmentation, inpainting, recoloring, and more—each
ideally handled by a specialized AI tool. While it is challenging for existing text-to-image mod-
els (Rombach et al., 2022b; Isola et al., 2018; Brooks et al., 2023; Zhang et al., 2024a) to tackle these
long-horizon tasks directly, they can be broken down into a sequence of easier subtasks. Hence, a
tool-using agent (Wang et al., 2024; Gao et al., 2024; Huang et al., 2023) has the potential to address
each subtask by careful planning of a toolpath, i.e., a sequence of tool calls. Since AI tools’ output
quality and cost can vary drastically across different tasks and even samples, the planning often
heavily depends on accurate estimation of the quality and cost of all applicable tools per step. This
raises challenges to the exploration efficiency due to the great number of possible toolpaths and
expensive computation of AI tools.

Large language model (LLM) agents usually excel at “fast” planning (Yao et al., 2023; Wei et al.,
2023; Huang et al., 2022) that breaks down an image-editing task into a sequence of high-level
subtasks without extensive exploration, thanks to their strong prior. However, they often misestimate
AI tools’ cost and quality due to a lack of up-to-date knowledge and the specific properties of each
subtask. Moreover, they also suffer from hallucinations, e.g., choosing an expensive diffusion model
instead of a simple filter when the latter suffices to complete the subtask. Compared to LLM agents,
classical A∗ search requires “slow”, expensive exploration on a dependency graph of tools, which in
return can accurately produce an optimal, verifiable toolpath.

Can we combine the strengths of LLM agents in planning efficiency and A∗ search in editing
accuracy to achieve an efficient, cost-sensitive solution for multi-turn image editing? A recent work,
CoSTA∗ (Gupta et al., 2025a), proposes to leverage an LLM agent for a high-level subtask planning,
producing a pruned subgraph of tools on which an A∗ search can be performed efficiently to find
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Table 1: Top-5 frequently used subroutines extracted by inductive reasoning in FaSTA∗ from 100
CoSTA∗ toolpaths, ranked by their total selection frequency irrespective of the corresponding subtask.

Subroutine Subtask Frequency

YOLO→ SAM→ SD Inpaint Object Removal 57/100
Grounding DINO→ SAM→ SD Inpaint Object Recoloration 49/100
YOLO→ SAM→ SD Inpaint Object Recoloration 48/100
YOLO→ SAM→ SD Inpaint Object Replacement 25/100
Grounding DINO→ SAM→ SD Erase Object Removal 22/100

a cost-quality balanced toolpath. Despite its effectiveness in challenging image editing tasks and
advantages over other baselines, the A∗ search remains a computational bottleneck.

Unlike humans who can learn reusable actions or create tools from past experiences and accumulate
such knowledge over time, CoSTA∗ is a test-time only approach, so its exploration on previous tasks
cannot be reused to improve or accelerate the planning for future tasks. In this paper, we study
how to further reduce the cost of toolpath search by reusing the knowledge learned from explored
tasks, a common feature of human learning. Inspired by photo editing applications that allow
users to record their frequently used actions for future reuse, we propose to extract the repeatedly
incurred subroutines of tool calls from the successful toolpaths of explored tasks. This is achieved
automatically by performing inductive reasoning on LLMs given previous toolpaths. Each subroutine
is represented by a symbolic rule under identifiable conditions, e.g.,

if object_area ≤ θ and mask_ratio > ϕ, then YOLO (Wang
et al., 2022)→ SAM (Kirillov et al., 2023b)→ SD
Inpaint (Rombach et al., 2022b) for Object Recoloration.

Table 1 summarizes the top five subroutines extracted by LLMs from CoSTA∗ toolpaths on 100
tasks, while Figure 1 illustrates their reuse rates. They show an unexplored reusability of subroutines
for image editing tasks. Motivated by this observation, we propose a neurosymbolic LLM agent
with a learnable memory, “Fast-Slow Toolpath Agent (FaSTA∗)”, that keeps mining symbolic
subroutines from previous experiences and reuses them in the exploration and planning for future
tasks. Its exploration stage can be explained as a novel and critical improvement to existing in-context
reinforcement learning (ICRL): instead of recording all previous tools (Wang et al., 2022; Kirillov
et al., 2023b; Rombach et al., 2022b; Liu et al., 2024) and paths and drawing contexts from them
for future exploration, FaSTA∗ condenses these paths to a few reusable subroutines by inductive
reasoning and uses these principles to guide future tasks more effectively.

As an imitation of the fast-slow planning in human cognition, the reusable subroutines enable “fast
planning” of FaSTA∗ in the planning stage. In addition to the subtask-level planning in CoSTA∗,
the LLM agent in FaSTA∗ further chooses a subroutine for each subtask. Only when there does not
exist any subroutine for the subtask, or when the subroutine’s output fails to pass the quality check
by VLMs, FaSTA∗ will resort to the “slow planning”, i.e., A∗ search on a low-level subgraph of
tools for the subtask. Hence, FaSTA∗ can entirely avoid the expensive low-level A∗ search if the
fast plan succeeds. Moreover, as more tasks have been explored and more subroutines collected,
most incoming tasks can be handled by fast planning, and only very unique or rare tasks require slow
planning. Our main contributions can be summarized as:

1. A memory of Symbolic Subroutine learned by LLMs: We extract reusable subroutines as
symbolic rules from explored tasks’ toolpaths by inductive reasoning on LLMs. They serve as
high-level actions and significantly reduce the exploration cost for future tasks.

2. Fast-Slow Planning of Toolpaths: We develop a neurosymbolic toolpath agent FaSTA∗ that
benefits from fast planning (LLMs’ subtask planning and selection of symbolic subroutines) to
produce a toolpath efficiently, and only invokes slow A∗ search when the fast planning fails.

3. FaSTA∗ achieves better cost–quality trade-offs across diverse tasks than most baselines. Compared
to CoSTA∗, it can save the cost by 49.3% with the price of merely 3.2% quality degradation.

2 RELATED WORK

Multi-turn Image Editing. Generative models excel at image synthesis and single-edits (Sordo
et al., 2025; Saharia et al., 2022; Nichol et al., 2022; Hertz et al., 2022), (e.g., (Rombach et al.,
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Figure 1: Inductive Reasoning of Reusable Subroutines. Left: Reuse rate (% of applicable subtasks
where a subroutine was utilized) of the top-5 learned subroutines. Right: Success rate (%) of fast
planning (subroutines only, without A∗ search) on subtasks for a held-out test set of tasks. It increases
exponentially as more reusable subroutines are extracted from an increasing number of explored tasks.
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Figure 2: Top: Online learning (induction) and refinement of reusable subroutines from explored
toolpaths for previous tasks. Bottom: Adaptive fast-slow planning framework in FaSTA∗. Given
a new task, FaSTA∗ first uses an LLM to generate a high-level plan of subtasks and then select a
subroutine per subtask, yielding a fast plan. Only when the subroutine’s output does not pass the
quality check by VLMs, a slow planning by A∗ search on the subtask’s tool subgraph will produce
a toolpath for the subtask.

2022b); (Saharia et al., 2022); (Ramesh et al., 2021); (Isola et al., 2018); (Chen et al., 2023a)), but
multi-turn editing from composite instructions presents unique challenges. Controllability techniques
(e.g., ControlNet (Zhang et al., 2023), sketch-guidance (Voynov et al., 2022), layout-synthesis (Chen
et al., 2023b; Li et al., 2023)) improve short-sequence precision. However, iteratively applying models
like InstructPix2Pix (Brooks et al., 2023) or those from MagicBrush (Zhang et al., 2024a) often lacks
long-sequence coherence without sophisticated planning. Agentic systems (e.g., GenArtist (Wang
et al., 2024), CLOVA (Gao et al., 2024)) decompose tasks for tool use. Nevertheless, efficient
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execution, especially for recurrent operation patterns, is a key challenge, with a lack of learning from
past patterns causing redundant computational effort.

Tool-use Agent and Planning. LLMs as reasoning agents coordinating tools show broad im-
pact (Zhang et al., 2024b; Gou et al., 2024; Qu et al., 2025; Li, 2024), especially in image editing
for orchestrating specialized tools (Gupta et al., 2025b; Gao et al., 2024; Wang et al., 2024; Shen
et al., 2024). MLLM agents (e.g., CoSTA∗ (Gupta et al., 2025b), GenArtist (Wang et al., 2024),
SmartEdit (Huang et al., 2023)) plan by decomposing goals; yet, others like Visual ChatGPT (Wu
et al., 2023) and MM-REACT (Yang et al., 2023) often explore tool calls greedily, ignoring budgets,
while dialog systems enable iterative refinement (Huang et al., 2024a). Agent planning often leverages
LLM emergent reasoning (Yao et al., 2023; Huang et al., 2022; 2024b; Gupta & Kembhavi, 2023),
sometimes augmented by explicit reasoning steps (Yao et al., 2023; Wei et al., 2023). However, gen-
erating efficient, optimal low-level tool sequences for complex image editing is challenging, as LLMs
may falter without further guidance or search (Huang et al., 2024b; Fu et al., 2024). CoSTA∗ (Gupta
et al., 2025b) improves this with LLM-planned A∗ search, but intensive search costs persist without
experience reuse. Robust learning and symbolic reuse of common, successful tool sequences are
largely missing, hindering efforts to reduce planning costs and build scalable, adaptive image editing
agents.

3 PRELIMINARIES: COSTA∗ AND EFFICIENT TOOLPATH SEARCH

We build FaSTA∗ based upon a recent framework, CoSTA∗ (Gupta et al., 2025a), to find cost-efficient
toolpaths for multi-turn image editing. CoSTA∗ uses an LLM agent to prune a high-level subtask
graph on which a low-level A∗ search is performed to determine the final toolpath. We provide a
brief overview of CoSTA∗ below. More comprehensive details are available in Appendix E.

Foundational Components of CoSTA∗. CoSTA∗ utilizes three pre-defined knowledge structures:
• A Tool Dependency Graph (TDG) to map prerequisite input/output dependency relationships

between AI tools. It can be automatically generated or human-crafted.
• A Model Description Table (MDT) to catalog AI tools, their supported subtasks (e.g., object

detection, recoloration), and input/output.
• A Benchmark Table (BT) with cost/quality data for (subtask, tool) pairs collected from published

works. It is used to initialize the heuristics in A∗ search.

These elements collectively enable mapping from high-level task requirements to specific tool
sequences and their predicted performance.

CoSTA∗ Planning Stages. The planning in CoSTA∗ unfolds in three main stages:
1. Subtask-Tree Generation: An LLM interprets the user’s natural language instruction and input

image to produce a subtask tree, Gss. This tree decomposes the overall task into smaller subtasks.
CoSTA∗ allowed this tree to have parallel branches representing alternative subtask plans.1

2. Tool Subgraph Construction: The subtask tree is then used to identify relevant tools from the
MDT and their dependencies from the TDG. This forms a final Tool Subgraph for each task, Gts,
which contains all tools for all subtasks required to accomplish the final editing task.

3. Cost-Sensitive A∗ Search: CoSTA∗ performs an A∗ search on Gts to find an optimal toolpath.
The search is guided by a cost function f(x) = g(x) + h(x), where g(x) is the accumulated
actual cost (considering time and VLM-validated quality) and h(x) is the estimated heuristic value
(derived from the BT), estimating the cost-to-go till leaf node. VLM checks after tool executions
allow for dynamic updates and path corrections upon failure.

4 FAST-SLOW TOOLPATH AGENT (FASTA∗)

4.1 FROM COSTA∗ TO FASTA∗

While CoSTA∗ (Gupta et al., 2025a) offers a solid foundation for tackling multi-turn image editing,
its reliance on A∗ search, especially for complex tasks with large Tool Subgraphs, can be computa-

1We found that a single branch is sufficient in practice and reduces CoSTA∗’s complexity (see Appendix F).
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tionally intensive. Moreover, CoSTA∗ is a test-time planning method that cannot learn from existing
experiences to accelerate future tasks’ planning. This may lead to inefficient, repeated A∗ search of
the same subroutines, given our observation of many recurring ones across tasks.

To further reduce the cost of CoSTA∗ on A∗ search and avoid exploring the same subroutines
repeatedly, we equip CoSTA∗’s hierarchical planning with online learning of symbolic subroutines
frequently used in explored tasks’ toolpaths, and choose from them to address similar subtasks in
later tasks, resulting in a novel, efficient In-Context Reinforcement Learning (ICRL) (Monea et al.,
2025) framework. FaSTA∗ still follow CoSTA∗’s initial step of decomposing each task into a chain
of subtasks, but saves considerable computation by a novel fast-slow planning that lazily triggers A∗

search for each subtask only when the selected subroutine fails.

First, we introduce a system for online inductive reasoning of subroutines (Section 4.2), where
FaSTA∗ learns from past successful (and unsuccessful) editing experiences. It identifies frequently
used, effective subsequences of tool calls for subtasks (subroutines) and the general conditions under
which they perform well. Second, these learned subroutines form the backbone of an adaptive
fast-slow execution strategy (Section 4.3). Instead of immediately resorting to a detailed A∗ search,
FaSTA∗ first attempts to apply a “Fast Plan” composed of these proven subroutines. If this fast plan is
unsuitable for a subtask or fails a quality check, FaSTA∗ then dynamically engages a more meticulous
“slow planning” of tool calls for each subtask by A∗ search.

This fast-slow planning allows FaSTA∗ to handle many tasks rapidly by selecting from learned
subroutines. However, it retains the ability to perform deeper, more complex searches when faced
with novel or challenging scenarios. The goal is to achieve a better balance of computational cost and
high-quality, making complex image editing more practical and efficient.

4.2 ONLINE LEARNING AND REFINEMENT OF REUSABLE SUBROUTINES

Our first core contribution is a neurosymbolic method for automatically discovering and refining
reusable subroutines from execution data (i.e., traces – representing the detailed execution data
logged for each subtask) during online operation. A subroutine Ps = (t1, t2, . . . , tk) represents a
frequently observed, ordered sequence of tool calls ti ∈ Vtd that effectively accomplish a specific
subtask s under certain conditions Cs. The goal is to learn and maintain a dynamic library of rules
R = {(Pj , Cj , sj)}Mj=1 mapping subtasks and context features to cost-effective subroutines, stored in
a Subroutine Rule Table (see Appendix I for the structure).

Our approach diverges from standard ICRL, which often grapples with cumbersome raw experience
logs and inefficient generalization. FaSTA∗ employs an LLM for an explicit inductive reasoning step,
analyzing execution traces not just to sample past experiences, but to synthesize compact, symbolic
(subroutine, activation rule, subtask) knowledge leading to more interpretable and generalizable rules.
Crucially, to ensure the generalizability of subroutines and a fair evaluation, the inductive reasoning
of subroutines is performed on a held-out set of new diverse tasks (e.g., random internet images
with new complex prompts) excluded from the benchmark. This online learning of symbolic rules
and subroutines aims to create an interpretable and off-the-shelf library of action rules R that can
be periodically augmented and refined based on new experiences (Algorithm 1, Appendix G). The
online learning and adaptation cycle in FaSTA∗ involves the following key stages:

1. Data Logging: FaSTA∗ continuously records detailed execution data τ (or traces) from each
subtask. The motivation is to capture rich, contextualized data about what paths were taken, under
what conditions (e.g., object size from YOLO, mask details from SAM, LLM-inferred context
like background complexity), and with what outcomes (cost, quality, failures). This logged data
serves as the raw experiences for subroutine learning. Full details are provided in Appendix M.

2. Periodic Refinement: To balance continuous learning with operational stability, the refinement
process is triggered periodically (every K = 20 tasks), using the most recent batch of accumu-
lated traces (Trecent). This ensures the system adapts to evolving patterns without excessive
computational overhead.

3. Inductive Reasoning by LLM: This is the core knowledge synthesis step. The LLM is prompted
with Trecent and the current rule set R to perform inductive reasoning, which analyzes these
experiences, identifies recurring successful subroutines, and infers the contextual conditions
(activation rules Cj) determined via robust semantic bucketing instead of numerical values under
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which they are effective, or proposes modifications to existing rules. This allows FaSTA∗ to
generate new hypotheses about efficient strategies. Appendix S provided the detailed prompts.

4. Verification and Selection of Subroutines: Recognizing LLM-proposed rules as hypotheses, this
stage rigorously validates each change ∆ before integrate it into R to ensure beneficial, robust
subroutines and prevent degradation from flawed rules. Validation uses specialized test datasets
against a baseline (CoSTA∗ or current FaSTA∗). A “Net Benefit” score (balancing cost/quality)
determines acceptance, with an LLM-based retry mechanism for refinement. Further details and
evaluation protocols are provided in Appendix G.4 and Appendix L, respectively.

More details of inductive reasoning can be found in Appendix G. This online adaptation loop allows
FaSTA∗ to continuously learn from its operational data, building and refining a library of cost-
effective, validated subroutines that enhance its “fast planning” capabilities. Figure 1 shows the reuse
rate of learned subroutines and how they improve the success rate of fast planning with increasing
experiences. More details are provided in Appendix H.

4.3 ADAPTIVE FAST-SLOW PLANNING

Following the generation of the subtask chain (Section 3) and the online refinement of the subroutine
rule libraryR (Section 4.2), FaSTA∗ employs its second main contribution: an adaptive fast-slow
planning and execution strategy. This approach aims to drastically reduce execution cost by
prioritizing an efficient “fast plan” of learned subroutines, while retaining the robustness of A∗ search
for novel or failed subtasks via a localized “slow plan” fallback. Figure 2 illustrates this process, and
Algorithm P.2 details the execution flow. The process involves two key phases: fast plan generation
and the adaptive fast-slow execution.

Execution Path Percentage

High-Level (Subroutine Success) 91%
Low-Level Fallback (No Subroutine or Check Fails) 9%

Table 2: Adaptive Fast-Slow Planning Fallback Statistics. It shows the percentage of subtasks that
can be addressed by subroutines vs. those requiring fallback to low-level A∗ search.

1. Fast Planning. Initially, FaSTA∗ generates a high-level “Fast Plan”Msubseq without search.
An LLM (GPT-4o, with prompt in Appendix R) takes an input image, user prompt, subtask plan
s1:N , and the subroutine rule set R to select an optimal subroutine Psi ∈ R or “None” for each
subtask si. The selection considers the activation rules Cj associated with each potential subroutine
Pj and the current image context. If the context satisfies Bi-Directional Block Self-Attention for Fast
and Memory-Efficient Sequence Modeling activation rules for multiple subroutines Pj applicable
to si, the one minimizing the cost-quality tradeoff score Cavg(Pj)

α × (2−Qavg(Pj))
2−α is chosen,

where Cavg(Pj) and Qavg(Pj) are the averaged cost and quality of subroutine Pj in different existing
toolpaths, and α is a used-defined trade-off coefficient as in CoSTA∗ (Gupta et al., 2025a). This
process yields the fast planMsubseq = (Ps1 , . . . ,PsN ).

2. Adaptive Fast-Slow Execution. The fast planMsubseq is then executed sequentially.

• Fast Plan Attempt: For each planned subtask si, FaSTA∗ calls the tools within Psi sequentially
and check the quality of each tool execution using a VLM as in CoSTA∗ ((Gupta et al., 2025a,
Appendix I, Fig. 12) lists details regarding the VLM check criteria).

• Slow Planning Trigger: If the fast plan cannot find any subroutine for si (i.e., si =None), or if any
tool execution in Psi fails to pass the quality check, FaSTA∗ switches to the “slow planning” for
the current subtask si. Hereby, the detailed low-level subgraph Glow(si) for si is first constructed
as per CoSTA∗ (Gupta et al., 2025a, Sec. 4.2). Subsequently, an A∗ search is performed on this
Glow(si) to find an optimal path to complete si, employing the same cost function and search
algorithm as defined in CoSTA∗ (Gupta et al., 2025a, Sec. 4.3–4.5).

This adaptive fast-slow planning ensures that the more efficient fast plan is executed by default. In
contrast, the robust but more expensive slow planning by A∗ is invoked lazily only for those subtasks
where the fast plan fails. The fallback statistics of fast-slow planning is reported in Table 4.3.
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5 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of FaSTA∗. We aim to answer:
(1) How does our method compare to the state-of-the-art CoSTA∗ in terms of execution cost and
output quality? (2) How robust is the fast-slow planning approach, and what is the impact of its core
components? All experiements have been conducted on a single NVIDIA A100 GPU.

5.1 EXPERIMENTAL SETUP
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Figure 3: Execution time (seconds) per image. FaSTA∗

and CoSTA∗ costs vary with tradeoff coefficient α.
Baseline costs are from CoSTA∗ (Gupta et al., 2025a).

Dataset. We evaluate our method on the
benchmark dataset curated and released
alongside CoSTA∗ ( (Gupta et al., 2025a)).
This dataset comprises 121 image-prompt
pairs, featuring complex multi-turn editing
instructions involving 1-8 subtasks per im-
age (amounting to 550 total image manip-
ulations or turns across the dataset), cover-
ing both image-only and mixed image-and-
text manipulations (Gupta et al., 2025a,
Appendix D). Its diversity and complex-
ity make it suitable for assessing the cost-
saving potential and robustness of our adap-
tive planner. To further ensure generaliz-
ability, we also evaluate FaSTA∗ on the
Complex-Edit benchmark, with detailed re-
sults provided in Appendix A.2.

Baselines. Our primary baseline is the original CoSTA∗ algorithm (Gupta et al., 2025a), which
represents the state-of-the-art cost-sensitive planner using A∗ search on a pruned tool subgraph.
In our ablation studies and discussions, we refer to this as the "Low-Level Only" approach. We
also acknowledge other agentic and non-agentic baselines evaluated in the CoSTA∗ paper (e.g.,
GenArtist (Wang et al., 2024), CLOVA (Gao et al., 2024), InstructPix2Pix (Brooks et al., 2023),
MagicBrush (Zhang et al., 2024a)), primarily to contextualize the Pareto optimality results, while
noting their limitations in handling the full range of tasks or performing cost-sensitive optimization.

Evaluation Metrics. We adopt the evaluation methodology from CoSTA∗ (Gupta et al., 2025a) for
fair comparisons:

• Quality (Human Evaluation): Task success is measured by human evaluation. Following (Gupta
et al., 2025a), each subtask si within a task T is assigned a score A(si) ∈ {0, x, 1}, where
x ∈ (0, 1) represents partial correctness based on predefined rules. The task accuracy A(T ) is the
average of its subtask scores, and the overall accuracy is the average A(T ) across the dataset (Gupta
et al., 2025a). We rely on human evaluation due to the limitations of automated metrics like
CLIP (Radford et al., 2021) in capturing nuanced errors in complex, multi-step, multimodal editing
tasks. More details about the reasons for resorting to human evaluation can be found in Sec. 5.2
of (Gupta et al., 2025a). More details about the evaluation process and rules for assigning partial
scores are mentioned in Appendix K.

• Cost (Execution Time): Efficiency is measured by the total execution time in seconds for each
inference, including any necessary retries.

5.2 MAIN RESULTS

Performance Analysis. As shown in Table 3 and Figure 3, FaSTA∗ achieves average quality
remarkably close to the original CoSTA∗ method, with only a minimal drop of approximately
3.2% in accuracy. However, the benefits in efficiency are substantial. Our approach reduces the
average execution cost by over 49.3%, achieving costs nearly half of CoSTA∗. This demonstrates
the effectiveness of the adaptive slow-fast strategy: by leveraging learned subroutines for common
cases (“fast planning”), we drastically cut down on expensive A∗ exploration within low-level tool
subgraphs, while the fallback mechanism ("slow planning") ensures that quality is not significantly
compromised when subroutines are unsuitable or fail. We have provided more details on quantitative
results on comparisons with other methodologies and models in Appendix J.
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Table 3: Detailed Quality Comparison (Average Human Evaluation Score) across Task Types and
Complexities. Baseline results are from CoSTA∗ (Gupta et al., 2025a). Both FaSTA∗ and CoSTA∗

adopt a balanced cost-quality trade-off by setting α = 1.
Task Type Task Category FaSTA∗ (Ours) CoSTA∗ VisProg CLOVA GenArtist Instruct Pix2Pix MagicBrush

Image-Only Tasks

1-2 subtasks 0.92 0.94 0.88 0.91 0.93 0.87 0.92
3-4 subtasks 0.91 0.93 0.76 0.77 0.85 0.74 0.78
5-6 subtasks 0.92 0.93 0.62 0.63 0.71 0.55 0.51
7-8 subtasks 0.91 0.95 0.46 0.45 0.61 0.38 0.46

Text+Image Tasks
2-3 subtasks 0.91 0.93 0.61 0.63 0.67 0.48 0.62
4-5 subtasks 0.92 0.94 0.50 0.51 0.61 0.42 0.40
6-8 subtasks 0.91 0.94 0.38 0.36 0.56 0.31 0.26

Overall Accuracy
Image Tasks 0.91 0.94 0.69 0.70 0.78 0.64 0.67
Text+Image Tasks 0.91 0.93 0.49 0.50 0.61 0.40 0.43
All Tasks 0.91 0.94 0.62 0.63 0.73 0.56 0.59

 Detect the bench in
image while recoloring
it to pink. Also, remove

the cat for a clearer
view and recolor the

wall to yellow.

Update the closed
signage to open while

detecting the trash
can and pedestrian
crossing for better

scene understanding.
Also, remove the
people for clarity.

CoSTA* / FaSTA* GenArtist MagicBrush CLOVAInstructPix2Pix INPUT

Detect the wooden
sign while replacing its

content to “SAFE
ZONE”. Also, replace
the cat in the image

with a dog.

53.8s vs 28.7s

Figure 4: Qualitative comparison of FaSTA∗ with CoSTA∗ (Gupta et al., 2025a) and other leading
image editing agents for complex multi-turn tasks. FaSTA∗ achieves visual results identical to
CoSTA∗ and significantly surpasses other baselines in accuracy and coherence. Notably, FaSTA∗

delivers this high quality at roughly half the execution cost of CoSTA∗, highlighting its superior
efficiency.
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Figure 5: Cost-Quality Pareto Frontier. FaSTA∗

with various α values against CoSTA∗ and other
baselines. FaSTA∗ achieves a superior frontier,
offering better cost-quality trade-offs.

Pareto Optimality Analysis. Figure 5 illus-
trates the Pareto frontiers achieved by varying
the cost-quality tradeoff coefficient α. FaSTA∗

consistently achieves a superior frontier com-
pared to CoSTA∗ (Low-Level Only) and domi-
nates the other baselines evaluated in (Gupta
et al., 2025a). For any given quality level
achieved by CoSTA∗, our method offers a sig-
nificantly lower cost, and for any given cost bud-
get, our method yields comparable or slightly
lower quality. This highlights the adaptability of
our approach in catering to different user prefer-
ences regarding the balance between execution
speed and output fidelity, while consistently op-
erating at a more efficient frontier than search-
ing the low-level graph alone. Like we had al-
ready mentioned earlier, FaSTA∗ becomes in-
creasingly optimal with more subroutine experi-
ence. This cost-quality tradeoff compared to CoSTA∗ w.r.t. number of subroutines mined is explained
in Appendix C.1 in greater detail.
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Qualitative Analysis Figure 4 provides qualitative comparisons of FaSTA∗ against baselines, illus-
trating its ability to handle complex multi-turn editing tasks effectively. These examples showcase the
practical benefits of our adaptive fast-slow approach in achieving desired edits. For a more detailed
qualitative analysis, including specific case studies demonstrating subroutine effectiveness, and com-
parisons of different tool paths under specific conditions, please refer to Appendix C. We also do a
similar qualitative comparison of FaSTA∗ with the very recent Gemini 2.0 Flash Preview Image Gen-
eration on some tasks from the CoSTA∗ benchmark dataset. These results can be seen in Figure 14.

5.3 ABLATION STUDIES

Impact of Subroutine Verification. To evaluate the significance of our subroutine verification step
(Section 4.2, Step 4), we compared FaSTA∗’s performance with and without this validation. We
first used an LLM to propose subroutine changes based on initial task traces. These proposals were
then either inducted directly or only after passing our full verification process. The outcomes are in
Table 4. The verification step proved crucial: FaSTA∗ with verified subroutines yielded much fewer
fallbacks to low-level A∗ search. This improvement stems from ensuring only reliable subroutines
are adopted, which prevents wasted execution on flawed proposals and avoids misdirecting the agent
when low-level search is genuinely needed.

Table 4: (Left) Impact of Subroutine Verification; (Right) Fast/Slow planning only vs. FaSTA∗

Method Low-Level
Fallback (%)

FaSTA∗ (w/o Verification) 28%
FaSTA∗ (w/ Verification) 9%

Method Avg. Quality Avg. Cost (s)

Fast plan Only 0.84 27.5
Slow plan Only 0.93 46.8
FaSTA∗ (Ours) 0.91 29.5

Fast planning only vs. FaSTA∗. To demonstrate the importance of the low-level fallback (“slow
planning”), we evaluated a variant that uses only the high-level subroutines for subtasks where
subroutines are possible. If a subroutine failed its VLM check or if no subroutine was selected
(‘None’), the planner simply failed for that subtask, without activating the low-level graph.

As shown in Table 4, relying solely on the high-level subroutines leads to a significant drop in quality
compared to our full adaptive fast-slow planning approach. While the cost is slightly lower (due to
avoiding any low-level search), the brittleness is unacceptable. Figure 6 illustrates a typical failure
case. While the High-Level Only approach fails the task, FaSTA∗ successfully recovers by falling
back to the low-level A∗ search, demonstrating the critical role of the "slow planning" component for
robustness and overall task success.

Slow planning only vs FaSTA∗. This ablation represents the original CoSTA∗ algorithm (using
the refined single-path prompt). As shown in Table 4, CoSTA∗ achieves marginally higher output
quality than FaSTA∗. However, this slight quality gain comes at the expense of significantly higher
average execution costs. The broader performance comparison, detailed in Table 3 and Figures 3 and
5, further highlights our superior cost-efficiency.

Impact of LLM Size. We evaluated a smaller model (Qwen 2.5VL 3B) for subroutine selection on
a subset of tasks. The model selected incorrect subroutines ∼40% of the time, frequently triggering
the fallback to the low-level A* search. Consequently, despite negligible API costs, the total execution
cost increased by ∼20% due to the additional cost incurred by the fallback mechanism. However, the
final output quality remained consistent, confirming the robustness of the slow-planning safety net
against planner errors.

5.4 SUMMARY AND LIMITATIONS

Our results indicate that FaSTA∗’s adaptive fast-slow execution strategy significantly improves
computational efficiency while largely maintaining the high quality of the original CoSTA∗ approach.
Ablation studies confirm the necessity of both the low-level fallback mechanism and the subroutine
verification process for robustness and efficiency. Despite its promising performance, FaSTA∗ has
a few limitations. Its initial performance on entirely new tasks may be suboptimal until sufficient
experiences are gathered for effective subroutine learning (cold start). These limitations and a
quantitative analysis of failure cases have been provided in Appendix C. Furthermore, overall
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performance and the ability to capture nuanced rules for complex tasks remain dependent on the
evolving capabilities of the underlying LLMs.

6 CONCLUSION

In this paper, we introduced FaSTA∗, a neurosymbolic agent designed to significantly enhance the
efficiency of complex, multi-turn image editing tasks. By integrating an online subroutine mining
mechanism that leverages LLM-based inductive reasoning in a modified version of In-Context
Reinforcement Learning, FaSTA∗ learns and refines a library of effective tool-use sequences and
their activation conditions from experiences. This learned knowledge underpins an adaptive fast-
slow execution strategy, where a “Fast Plan” of subroutines made by LLMs is prioritized, with a
localized A∗ search (“Slow Plan”) serving as a robust fallback for novel or challenging subtasks.
Our experiments demonstrate that FaSTA∗ achieves image quality comparable to the state-of-the-art
CoSTA∗ but at a substantially reduced computational cost, effectively addressing a key bottleneck
in prior methods. We believe that FaSTA∗’s approach of combining learned symbolic shortcuts
with principled search offers a promising direction for developing more agile, cost-sensitive, and
continually improving AI agents for complex tasks.
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Instruction
Replace the cat with rabbit High Level Only FaSTA*

Figure 6: Failure case for “High-Level Only” execution versus FaSTA∗. For the task “Replace the cat
with rabbit”, the initially selected high-level subroutine fails to produce a satisfactory result, leading
to a failed output for the “High-Level Only” approach. In contrast, FaSTA∗ detects this failure,
activates its low-level fallback mechanism for the “Object Replacement” subtask, and performs A∗

search to find a correct tool sequence, successfully completing the task.

Edited Image

Input Image

What if he was with a
backpack?

Make the donut an
apple. Take away the trees.

Change the banana to a
microphone.

Input Prompt get rid of the towel

Figure 7: Qualitative examples of FaSTA∗’s performance on sample tasks from the MagicBrush
dataset (Zhang et al., 2024a). These tasks were processed using the Subroutine Rule Table learned
from non-benchmark data. Notably, all examples shown were successfully completed by FaSTA∗

relying entirely on its “fast plan” composed of learned subroutines, without needing to resort to the
“slow planning” via A* search for any subtask.

A GENERALIZATION TO EXTERNAL DATASETS

A.1 QUALITATIVE GENERALIZATION TO MAGICBRUSH DATASET

To assess the generalizability of FaSTA∗’s learned subroutines and its adaptive planning strategy, we
tested it on a set of sample tasks derived from a different benchmark, the MagicBrush dataset (Zhang
et al., 2024a). The Subroutine Rule Table (R) used for these evaluations was the one learned through
the online inductive reasoning process described in Section 4.2, which utilized diverse non-benchmark
image/prompt pairs, ensuring no direct exposure to MagicBrush data during the subroutine learning
phase.

Our objective here was to observe if the subroutines and the Fast Plan generation logic could
effectively handle tasks from a dataset with potentially different characteristics and prompt styles
without requiring immediate fallback to low-level A* search for every step. Figure 7 presents
qualitative results for several such tasks.
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As illustrated in Figure 7 and noted in its caption, FaSTA∗ was able to successfully complete these
diverse editing tasks from the MagicBrush dataset. Significantly, for all the examples shown, the
tasks were accomplished entirely through the "Fast Plan" execution. This indicates that the learned
subroutines and their activation rules, derived from different data sources, were sufficiently general to
apply effectively to these new instances, and the LLM was able to compose a successful Fast Plan
without needing to trigger the low-level A* search fallback for any subtask. This provides positive
evidence towards the generalizability of our subroutine learning and adaptive planning approach
beyond the specific characteristics of the data used during the online refinement cycles.

A.2 QUANTITATIVE GENERALIZATION TO COMPLEX-EDIT BENCHMARK

To rigorously assess the robustness of our approach beyond the CoSTA* benchmark, we conducted
additional experiments on a subset of the Complex-Edit benchmark, an independent open-source
image-editing dataset featuring tasks with up to 8 turns. This evaluation verifies that our efficiency
gains are not an artifact of overfitting to a specific dataset distribution.

As presented in Table 5, FaSTA∗ maintains a significant efficiency advantage, reducing average
execution cost by approximately 30% compared to CoSTA∗ (55.12s vs. 78.27s), while maintaining
comparable quality (0.87 vs. 0.89). Notably, the cost savings persist across all complexity levels,
demonstrating that the adaptive Fast-Slow planning strategy generalizes effectively to independent
data distributions.

Table 5: Performance comparison on subset of Complex-Edit benchmark. FaSTA∗ achieves consistent
cost reductions while maintaining quality across varying task complexities.

Task Complexity Metric CoSTA∗ FaSTA∗ (Ours)

1-3 Subtasks Cost (s) 46.75 35.87
Accuracy 0.88 0.86

4-5 Subtasks Cost (s) 77.25 54.17
Accuracy 0.90 0.89

6-8 Subtasks Cost (s) 105.60 73.20
Accuracy 0.90 0.88

Overall Avg. Cost (s) 78.27 55.12
Avg. Accuracy 0.89 0.87

B BENCHMARK DATASET RATIONALE: COSTA* VS. MAGICBRUSH

For evaluating FaSTA∗, we primarily utilized the benchmark dataset introduced with CoSTA* (Gupta
et al., 2025a). While the MagicBrush dataset (Zhang et al., 2024a) is a prominent benchmark for
instruction-guided image editing, the CoSTA* dataset was chosen due to its specific characteristics
that better align with the capabilities we aim to demonstrate with FaSTA∗, particularly its efficiency
in handling complex, multi-step tasks.

The key distinctions motivating our choice are:

• Task Complexity and Depth: To best showcase FaSTA∗’s advantages in cost-saving through
learned subroutines and adaptive planning, complex examples involving a greater number of
sequential subtasks are essential. The CoSTA* dataset was specifically curated to include such
multi-turn editing instructions. In contrast, many tasks in the MagicBrush benchmark, while diverse,
often involve simpler, more direct edits that might not fully stress or benefit from a sophisticated
fast-slow planning approach to the same extent.

• Multimodal Capabilities: A significant aspect of modern image editing involves text-in-image
manipulation. The CoSTA* dataset includes a substantial portion of tasks requiring multimodal
processing (e.g., text replacement, text removal within an image context). The MagicBrush
benchmark, as per its original release, primarily focuses on visual edits and does not extensively
cover these text-in-image editing scenarios. FaSTA∗, like CoSTA, is designed to handle such
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multimodal tasks, making the CoSTA* dataset more suitable for a comprehensive evaluation of its
capabilities.

• Number of Manipulations/Turns: While the CoSTA* dataset has 121 image-prompt pairs, which
might be fewer than the test set size of some other benchmarks like MagicBrush, the tasks in the
CoSTA* dataset are designed to be multi-turn. As noted in Section 5, these tasks involve 1-8
subtasks per image, amounting to 550 total distinct image manipulations (or "turns") across the
dataset. This provides a rich set of complex sequences for evaluating planning efficiency.

Table 6: Conceptual Comparison of Dataset Characteristics Relevant to FaSTA∗.
Characteristic CoSTA* Dataset MagicBrush Dataset

Primary Focus Complex, Multi-Turn, Multimodal Instruction-Guided Visual Edits
Max Subtasks per Task 8 3
Max Tool Subgraph Depth 22 7
Text-in-Image Editing Supported Not supported

Table 6 provides a conceptual comparison of key characteristics relevant to our evaluation goals.
While MagicBrush is invaluable for evaluating general instruction-following in image editing models,
the CoSTA* dataset’s emphasis on longer, multi-faceted tasks involving a broader range of subtask
types (including multimodal ones) makes it a more fitting benchmark to demonstrate the specific
cost-saving and adaptive planning strengths of FaSTA∗. The goal of FaSTA∗ is not just to perform an
edit, but to do so efficiently by learning and reusing common multi-step patterns, a capability best
tested by complex sequential decision-making problems.

Recolor
the ball to

blue

FaSTA* (ours)
GDINO→SAM→SD

Inpaint
YOLO→SAM→SD

Inpaint CoSTA*SD Search&RecolorINPUT

Recolor
the

fountain to
black

Recolor
the ball to

green

Figure 8: Example demonstrating FaSTA∗’s subroutine effectiveness. FaSTA∗ uses learned rules
to select optimal paths (e.g., SD Search&Recolor for the small ball in row 1, avoiding SD
Inpaint’s potential failure), achieving results identical to CoSTA∗ at significantly lower average
cost (15.21s vs. 25.32s for these examples) by preventing unnecessary exploration of suboptimal
paths.

C DETAILED QUALITATIVE ANALYSIS AND SUBROUTINE EFFECTIVENESS

This section provides a more in-depth qualitative examination of FaSTA∗’s performance, focusing
on the benefits of learned subroutines and the efficiency gains of the adaptive fast-slow execution
strategy.
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Demonstrating Subroutine Relevance and Efficiency. To illustrate why learning subroutines is
beneficial and how FaSTA∗ achieves cost savings, we examined specific cases where input image and
prompt conditions matched learned activation rules C for particular subroutines P . Figure 8 depicts
such scenarios for recoloring tasks, comparing the outcomes and behavior of FaSTA∗, CoSTA∗, and
all potential tool paths for recoloration. Under specific conditions, certain tool paths are prone to
failure or are suboptimal. FaSTA∗, by leveraging its learned activation rules, can preemptively select
an effective subroutine, thus avoiding unnecessary exploration of these less suitable paths.

For instance, consider the first row in Figure 8, where the task is to recolor a small ball to blue.
Paths involving SD Inpaint (such as G-DINO→SAM→SD Inpaint (Rombach et al., 2022b)or
YOLO→SAM→SD Inpaint) often exhibit poor performance or fail VLM quality checks when the
target object is very small. FaSTA∗ incorporates an activation rule for its chosen subroutine (in this
case, one that selects SD Search&Recolor) that accounts for this factor. Thus, FaSTA∗ directly
employs SD Search&Recolor and successfully recolors the ball. In contrast, CoSTA∗, lacking
this specific learned rule for this context, might explore an SD Inpaint-based path first due to its
general applicability or heuristic score. Upon failure of this path (indicated by a failed VLM check),
CoSTA∗ would then use its A∗ search to backtrack and explore alternative paths, eventually finding
the SD Search&Recolor sequence and completing the task, but at the cost of the initial failed
attempt and additional search time.

This pattern, where FaSTA∗ makes a more informed initial path choice due to its learned subroutine
rules, is key to its efficiency. The figure shows that while both FaSTA∗ and CoSTA∗ can arrive at
the same high-quality final output, FaSTA∗ does so more directly. For the examples presented in
Figure 8, this translated to FaSTA∗ achieving the correct edits at an average execution cost of 15.21s,
whereas CoSTA∗ took an average of 25.32s. This highlights how FaSTA∗, by encoding successful,
context-dependent tool sequences as subroutines and applying them based on learned activation
rules, effectively halves the execution cost in these scenarios by minimizing costly trial-and-error
exploration of paths known to be suboptimal or likely to fail under specific conditions.
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Figure 9: Learning trajectory of FaSTA∗ showing the relationship between Average Execution Cost
and Average Quality as more tasks are explored (from 0 to 200). FaSTA∗ rapidly converges toward
the Pareto frontier, significantly reducing cost while maintaining high quality.

C.1 COST/QUALITY TRADE-OFF W.R.T. SUBROUTINE MINING

FaSTA∗ is designed to get optimal in terms of execution cost as more tasks are executed and
subroutines are learnt. There is however, no degradation of final quality in any case. At "cold start"
(0 explored tasks), FaSTA∗’s cost and quality are identical to the CoSTA∗ baseline. FaSTA∗ begins
to outperform FaSTA∗ in average efficiency as soon as the first effective subroutine is learned and
successfully applied. The table below illustrates how performance evolves, showing a rapid decrease
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in cost while quality remains high and stable. This learning dynamics is visualized in Figure 9,
demonstrating how the agent converges toward the Pareto frontier as it gains experience.

No. of
Explored

Tasks

Avg.
Quality

(FaSTA∗)

Avg. Exec.
Cost (s)

(FaSTA∗)

Avg. Quality
(CoSTA∗ w/

Subtask Chain)
(const.)

Avg. Exec.
Cost (s)

(CoSTA∗ w/
Subtask Chain)

(const.)

0 (Cold Start) 0.93 46.8 0.93 46.8
40 0.92 42.75 0.93 46.8
80 0.92 41.59 0.93 46.8
120 0.92 39.71 0.93 46.8
160 0.91 35.32 0.93 46.8
200 (Warmed Up) 0.91 29.25 0.93 46.8

We recognize that while FaSTA∗ covers most editing tasks, there might be novel OOD test cases
where no subroutine applies. In such cases, FaSTA∗ gracefully defaults to its "slow path". This
makes its performance for that specific task identical to CoSTA∗’s, ensuring that output quality is
not compromised, while the overall execution cost across all tasks is either identical or significantly
better.

Total Cost Analysis including LLM Overhead. We further analyze the total inference cost to
confirm that our reported efficiency gains hold even when accounting for LLM API overheads. Our
comparisons with baselines are conducted under identical conditions, including and excluding specific
factors uniformly. The primary computational bottleneck in agentic image editing is vision model
inference (e.g., Stable Diffusion), which is orders of magnitude more expensive than text processing.
By avoiding 10–20 exploratory image generation steps via Fast Planning, FaSTA∗ achieves net
savings that vastly outweigh the cost of LLM tokens. The only unique overhead in our framework
is the Inductive Reasoning phase; however, this cost is amortized over the agent’s lifespan. As the
system reaches optimal performance after ∼200 tasks (the "warm-up" phase), the reasoning overhead
becomes negligible in long-term deployment. For instance, when amortized over just 2,000 tasks,
the average cost reduction adjusts only slightly from 49.3% to ∼45.2%, maintaining a substantial
efficiency advantage over baselines.

C.2 FASTA∗ FAILURE CASE ANALYSIS

Overall, our adaptive "fast plan" is highly successful, handling 91% of subtasks efficiently. The
more robust but costly "slow path" (A* search) is only triggered in the remaining 9% of cases. This
fallback rate can be broken down as follows:

Fallback Reason Percentage of Subtasks

Selected Subroutine Failed VLM Quality Check 7%
No Applicable Subroutine Found 2%

Table 7: Fallback reasons and their frequency.

The 7% of subroutine failures typically occur on novel tasks where the image context satisfies a
subroutine’s learned activation rules but contains unforeseen complexities, leading to a VLM quality
check failure. The contribution to the 9% fallback rate varies by the complexity of the subtask
category, as detailed below:

Even in these fallback scenarios, the system defaults to the robust A* search, ensuring that the final
output quality is not compromised.
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Subtask Category Contribution to Total Fallback Rate

Text Removal 2.5%
Object Removal 2.0%
Text Replacement 1.8%
Object Replacement 1.5%
Object Recoloration 1.2%

Table 8: Per-category contribution to fallback rate.

Table 9: Fair comparison of FaSTA∗ with VisProg and CLOVA using a restricted toolset and subtask
list. Performance difference (Diff. w/ FaSTA∗) is calculated as the average of baselines vs. FaSTA∗.

Subtasks CoSTA∗ FaSTA∗ VisProg CLOVA Diff. w/ FaSTA∗

1-2 Subtasks 0.510 0.509 0.498 0.504 -1.6%
3-4 Subtasks 0.551 0.549 0.489 0.496 -10.3%
5-6 Subtasks 0.573 0.571 0.446 0.451 -21.4%
7-8 Subtasks 0.460 0.456 0.301 0.310 -33.0%

Overall Accuracy 0.525 0.521 0.436 0.446 -15.4%

Table 10: Fair comparison of FaSTA∗ with GenArtist using a restricted toolset and subtask list.
Performance difference (Diff. w/ FaSTA∗) is calculated as GenArtist vs. FaSTA∗.

Subtasks CoSTA∗ FaSTA∗ GenArtist Diff. w/ FaSTA∗

1-2 Subtasks 0.508 0.507 0.506 -0.2%
3-4 Subtasks 0.578 0.575 0.548 -4.7%
5-6 Subtasks 0.606 0.602 0.503 -16.4%
7-8 Subtasks 0.515 0.505 0.392 -22.4%

Overall Accuracy 0.553 0.547 0.495 -9.5%

D FAIR COMPARISON WITH RESTRICTED TOOLSET AND SUBTASKS

To strictly address concerns regarding equitable comparison due to toolset differences, we performed
additional ablation studies where FaSTA∗ and CoSTA∗ were restricted to the exact same toolsets
and subtasks available to the baselines. This ensures that any observed performance difference is
primarily due to the planning and execution strategy (Fast-Slow architecture and Inductive Learning)
rather than the breadth of available tools.

As shown in Table 9 and Table 10, even when handicapped with the restricted toolset, FaSTA∗

achieves performance comparable to CoSTA∗ and significantly outperforms the baselines. This
confirms that the performance gains stem from our architectural contributions rather than simply
having access to more powerful tools.

E DETAILED OVERVIEW OF COSTA∗ COMPONENTS AND PLANNING

This appendix provides a more detailed explanation of the core components and planning stages of
the CoSTA∗ agent (Gupta et al., 2025a), which form the foundation upon which FaSTA∗ builds and
modifies. The descriptions here are rephrased from the original CoSTA∗ paper to ensure clarity and
avoid direct repetition.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.1 FOUNDATIONAL KNOWLEDGE STRUCTURES IN COSTA∗

CoSTA∗ leverages three primary pre-defined knowledge structures to inform its planning and search
processes:

Model Description Table (MDT) The MDT serves as a comprehensive catalog of all AI tools
available to the agent. For each tool (e.g., YOLO (Wang et al., 2022), SAM (Kirillov et al., 2023a),
Stable Diffusion (Rombach et al., 2022a)), the MDT specifies:

• The types of subtasks it can perform (e.g., "Object Detection", "Image Segmentation", "Object
Recoloration"). CoSTA∗ considered 24 tools supporting 24 distinct subtasks.

• Its input requirements (e.g., an image, bounding boxes, segmentation masks).
• The outputs it produces (e.g., bounding boxes, edited image, extracted text).

This structured information is essential for mapping abstract subtasks to concrete tool invocations
and for constructing the Tool Dependency Graph. An excerpt of CoSTA∗’s MDT structure is shown
in (Gupta et al., 2025a, Table 1), with the full table in their appendix.

Tool Dependency Graph (TDG) The TDG, denoted Gtd = (Vtd, Etd), is a directed graph that
captures the operational dependencies between the AI tools listed in the MDT.

• Vtd is the set of all available AI tools.
• An edge (v1, v2) ∈ Etd exists if the output of tool v1 can serve as a valid input for tool v2 in the

context of certain subtasks.

The TDG represents the potential workflow sequences. CoSTA∗ can automatically construct this
graph by analyzing the input/output specifications of tools in the MDT, reducing manual effort and
facilitating updates as new tools are added (Gupta et al., 2025a, Appendix C). A visualization of the
TDG used in CoSTA∗ is provided in (Gupta et al., 2025a, Fig. 4).

Benchmark Table (BT) The BT is a critical resource for the A∗ search’s heuristic function. It
stores pre-computed or empirically measured performance data for tool-subtask pairs (vi, sj). For
each pair, the BT typically includes:

• Execution Time C(vi, sj): The average time taken by tool vi to perform subtask sj .
• Quality Score Q(vi, sj): An objective measure of the typical output quality of tool vi for subtask
sj , normalized to a [0,1] scale for comparability across different subtasks.

This data is sourced from existing benchmarks where available, or through dedicated offline evalu-
ations if necessary, as detailed in (Gupta et al., 2025a, Sec 3.3). The complete BT for CoSTA∗ is
shown in (Gupta et al., 2025a, Table 11).

E.2 COSTA∗ PLANNING AND EXECUTION STAGES

The CoSTA∗ agent follows a three-stage process to address a given multi-turn image editing task:

1. Task Decomposition and Subtask-Tree Generation Given an input image x and a natural
language instruction u, CoSTA∗ employs an LLM to decompose the complex request into a sequence
of more manageable subtasks. This decomposition results in a subtask tree, Gss = (Vss, Ess).

• Each node vi ∈ Vss corresponds to a specific subtask si (e.g., "remove car," "recolor bench to
pink").

• Edges (vi, vj) ∈ Ess represent dependencies, indicating that subtask si must be completed before
sj .

• The LLM uses a prompt template fplan(x, u, S) which includes the image, instruction, and a list of
supported subtasks S. The original CoSTA∗ framework allowed for the generation of trees with
multiple parallel paths if subtasks were independent, representing different valid execution orders.

This subtask tree provides a high-level plan for addressing the user’s request.
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2. Tool Subgraph Construction The abstract subtask tree Gss is then translated into a concrete
Tool Subgraph Gts = (Vts, Ets), which is the actual graph the A∗ search will operate on.

• For each subtask node si in Gss, the MDT is consulted to find all tools M(si) capable of performing
si.

• The TDG is then used to backtrack from these tools to include all necessary prerequisite tools and
their interconnections, forming a minimal tool subgraph Gi

td for that subtask.
• The final Gts is formed by taking the union of all such Gi

td and connecting them according to the
dependencies specified in Gss. This subgraph contains all feasible tool sequences for the given
task.

This construction prunes the global tool graph to a smaller, task-relevant search space.

3. Cost-Sensitive A∗ Search for Optimal Toolpath CoSTA∗ employs an A∗ search algorithm on
the Tool Subgraph Gts to find an optimal toolpath that balances execution cost and output quality,
according to a user-defined trade-off parameter α.

• Priority Function: The A∗ search prioritizes nodes (representing tool executions) based on the
function f(x) = g(x) + h(x).

• Actual Execution Cost g(x): This term represents the cumulative cost-quality score of the path
taken so far to reach node x. It is computed in real-time as the execution progresses. For a path of
k tool-subtask executions (vj , sj), g(x) is defined as:

g(x) =

 x∑
j=1

c(vj , sj)

α

×

2−
x∏

j=1

q(vj , sj)

2−α

where c(vj , sj) is the actual measured execution time of tool vj for subtask sj , and q(vj , sj) is the
real-time quality score of its output, validated by a VLM. The parameter α controls the emphasis
on cost versus quality (higher α prioritizes lower cost). These values include only the nodes in the
current path and each node is initialized with g(x) = ∞ and updated if a lower values is found.
The start node is initialized with g(x) = 0.

• Heuristic Cost h(x): This term is an admissible estimate of the cost-to-go from the current node x
(representing a tool-task pair (vi, si)) to a goal/leaf node in Gts. It is pre-calculated using values
from the Benchmark Table (BT) and considers the trade-off parameter α. For a node x, h(x) is
recursively defined based on its neighbors y:

h(x) = min
y∈Neighbors(x)

(
(hC(y) + C(y))α × (2−Q(y)× hQ(y))

2−α
)

where hC(y) and hQ(y) are the cost and quality components of the heuristic for neighbor y
(initialized to 0 and 1 respectively for leaf nodes), and C(y) and Q(y) are the benchmark time and
quality for tool y.

• VLM Feedback and Retries: After each tool execution, its output is evaluated by a VLM. If the
quality score falls below a predefined threshold, CoSTA∗ can trigger a retry mechanism (e.g., by
adjusting the tool’s hyperparameters) and updates g(x) with any additional costs. If retries fail, the
A∗ search naturally explores alternative paths with better f(x) scores, allowing robust recovery
from tool mispredictions or failures.

This A∗ search process aims to find a toolpath that optimally satisfies the user’s preference for cost
versus quality.

F RATIONALE FOR USING SUBTASK CHAIN GENERATION

The original CoSTA∗ agent (Gupta et al., 2025a) utilized an LLM prompt that could generate a subtask
tree Gss. This tree structure allowed for multiple parallel branches, representing alternative valid
execution orders for subtasks that were independent of each other. While flexible, exploring these
multiple branches during the subsequent A∗ search phase could potentially increase computational
cost, especially for tasks with many independent subtasks.
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We hypothesized that current Large Language Models (LLMs) and Vision-Language Models (VLMs)
might possess improved reasoning capabilities to determine a single, logical sequence of subtasks
based on the user prompt and image context directly. This improved reasoning could potentially
determine a single, optimal, or at least highly plausible, logical sequence for the required subtasks
upfront. Such a linear sequence, which we term a "subtask chain," would simplify the initial planning
structure compared to a branching tree.

To validate the feasibility of using a simpler chain structure without sacrificing outcome quality,
we conducted a preliminary experiment. We compared the performance of the original CoSTA∗

algorithm using two different prompts: the original prompt generating multi-path subtask trees, and a
modified prompt designed to generate only a single-path subtask chain. We ran both versions on a
representative subset of 50 diverse tasks from the benchmark dataset (Gupta et al., 2025a), covering
a range of subtask counts and types. The final output quality, assessed using human evaluation
metrics defined in (Gupta et al., 2025a), was found to be consistently very similar between the two
approaches, with scores varying by only 1.08% on average across the tested examples.

Given this negligible impact on final quality, we adopted the simpler single-path prompt to generate a
subtask chain for FaSTA∗, aiming to potentially reduce planning complexity. The specific prompt
used for subtask chain generation in FaSTA∗ can be found in Appendix Q.

Further analysis focused on quantifying the cost impact of this prompt change within the CoSTA∗

framework itself, independent of FaSTA∗’s subroutine mechanism. We compare the average execution
cost of CoSTA∗ using the old (multi-path tree) prompt versus the new (single-path chain) prompt
across full dataset.

Table 11: Impact of Subtask Tree Prompt on CoSTA∗.
CoSTA∗ Variant Avg. Cost (s)

CoSTA∗ (Old Prompt - Multi-Path) 58.2
CoSTA∗ (New Prompt - Single Path) 46.8

Table 11 presents these cost results. Using the single-path (chain) prompt yielded a noticeable
reduction in CoSTA∗’s average execution time (from 58.2 to 46.8 seconds). This confirms that
leveraging the LLM to generate a more constrained initial plan structure offers some efficiency
benefits even for the original A∗ search approach.

However, it is crucial to contextualize these savings. While the refined prompt contributes to
efficiency, the primary driver of the substantial cost reduction observed in the full FaSTA∗ system
(29.5s) compared to the baseline CoSTA∗ (even with the new prompt, 46.8s) is the adaptive fast-slow
execution strategy (Section 4.3) that effectively utilizes learned subroutines.

G DETAILED ONLINE SUBROUTINE INDUCTION AND REFINEMENT PROCESS

This appendix provides a detailed technical breakdown of the online adaptation and refinement loop
used by FaSTA∗ to learn and update its Subroutine Rule Table (R), as introduced in Section 4.2.

G.1 STEP 1: DATA LOGGING

For every subtask execution where multiple paths/tools possible, FaSTA∗ logs a comprehensive trace
τ . Each trace is structured to capture critical information necessary for subsequent learning. The
components of a trace typically include:

• Subtask Identification (sj): The specific type of subtask being addressed (e.g., ‘Object Recol-
oration‘, ‘Text Removal‘).

• Final Executed Tool Path (Pj): The actual sequence of tools (t1, t2, . . . , tk) that was executed by
the planner (either a pre-existing subroutine or a path found via A∗ search during a "slow planning"
phase) to complete sj .

• Context Features: A rich set of features describing the state of the image and relevant objects at
the time of executing sj . These are gathered from various sources:
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◦ Outputs from perception tools like YOLO (Wang et al., 2022) (e.g., ‘object_size‘ and
SAM (Kirillov et al., 2023b) (e.g., ‘mask_properties‘, ‘color_details‘).

◦ Higher-level semantic features inferred by an LLM query at the start of the task for relevant
objects (e.g., ‘background_content_type‘, ‘overlapping_critical_elements‘, ‘object_clarity‘).

(Further details on trace composition are in Appendix M).
• Aggregated Path Cost (Cpath): The total execution cost (e.g., sum of tool runtimes) for the path
Pj .

• Aggregated Path Quality (Qpath): The overall quality of the outcome from Pj , typically an
average of VLM scores for the constituent tools.

• Failure Information: Details of any intermediate tool failures or VLM quality check failures
encountered during the execution of Pj , including the specific context features present at the
moment of failure.

These traces are stored in a buffer B.

G.2 STEP 2: PERIODIC REFINEMENT TRIGGER

The learning process is not continuous but triggered periodically to manage computational load. After
a predefined number of task inferences, K (e.g., K = 20), the system initiates a refinement cycle.
The K most recent traces, Trecent = {τk}tk=t−K+1, are retrieved from the buffer B to serve as the
input for the learning phase.

G.3 STEP 3: INDUCTIVE REASONING BY LLM

The core of the learning process involves an LLM (OpenAI o1) performing inductive reasoning. The
LLM is prompted with:

• The set of recent traces, Trecent, which provide examples of successful and failed tool path
executions under various contexts.

• The current Subroutine Rule Table,R.

The LLM’s task (guided by the prompt in Appendix S) is to analyze these inputs to identify patterns.
It looks for correlations between context features, specific tool sequences (potential subroutines), and
their observed execution outcomes (cost, quality, success/failure). Based on these identified patterns,
the LLM proposes a set of potential changes, ∆proposals = {∆1,∆2, . . . }, to the rule setR. Each
proposed change ∆ can be one of the following:

• Adding a new subroutine Pj along with its inferred activation rule Cj for a specific subtask sj .
• Modifying the tool sequence Pj of an existing subroutine.
• Modifying the activation conditions Cj of an existing subroutine.

G.4 STEP 4: VERIFICATION AND SELECTION OF NEW/MODIFIED SUBROUTINES

Each proposed change ∆ ∈ ∆proposals undergoes a rigorous verification process before being
accepted into the active Subroutine Rule TableR. This ensures that only genuinely beneficial and
robust rules are adopted. The verification for a single proposed change ∆ (related to a subtask s∆)
proceeds as follows:

• Subtask-Specific Test Datasets: To evaluate ∆, a specialized test dataset Ds∆ is used. This
dataset, constructed from the CoSTA∗ benchmark images (Gupta et al., 2025a), contains diverse
tasks where all constituent subtask instances are exclusively of type s∆. (Details in Appendix L).

• Baseline Performance Establishment: A baseline performance pair (Cbase, Qbase) is determined
by executing a baseline system on a randomly sampled test set T ′ ⊂ Ds∆ .
◦ If this is the first refinement cycle (i.e., t = K), the baseline system is CoSTA∗.
◦ For subsequent cycles, the baseline is FaSTA∗ operating with its current, pre-change rule set
R.

• Evaluation of Proposed Change: The proposed change ∆ is provisionally applied to the current
rule setR to create a candidate rule setR′. FaSTA∗ is then executed withR′ on the same sampled
test set T ′ to obtain new performance metrics (Cnew, Qnew).
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• Performance Metrics Calculation: The percentage changes in cost and quality are computed:

∆C% =
Cnew − Cbase

Cbase
× 100

∆Q% =
Qnew −Qbase

Qbase
× 100

• Acceptance Criterion (Net Benefit): A Net Benefit score B(∆) is calculated to quantify the
overall impact of the change:

B(∆) = ∆C%−∆Q%

A change ∆ is considered beneficial and is provisionally accepted if B(∆) < 0. This criterion
prioritizes changes that yield a greater percentage improvement in cost than any percentage
degradation in quality, or improve quality with no cost increase, etc.

• Retry Mechanism for Refinement: If the initial proposed change ∆ does not meet the Net Benefit
criterion (B(∆) ≥ 0), it is not immediately discarded. Instead, feedback detailing the failure (e.g.,
specific test cases where it underperformed, the nature of Cnew vs. Cbase and Qnew vs. Qbase) is
provided to the LLM. The LLM is then prompted to refine its initial proposal, yielding a modified
change ∆′. This refinement-evaluation cycle (using a new random test sample T ′′ ⊂ Ds∆ for
re-evaluation) can be repeated up to Nretries times (e.g., Nretries = 2).

• Final Decision: The proposed change (either the original ∆ or a refined ∆′) is permanently
accepted and integrated into the main Subroutine Rule TableR only if it satisfies the B(∆) < 0
criterion within the allowed number of retries. If, after all retries, the criterion is still not met, the
proposed change is discarded for this refinement cycle.

This comprehensive verification loop ensures that the Subroutine Rule Table evolves with high-quality,
empirically validated rules.

H EFFICACY OF ONLINE SUBROUTINE LEARNING

To demonstrate the progressive effectiveness of our online subroutine induction and refinement
process (Section 4.2), we analyzed how the performance of FaSTA∗’s "Fast Plan" improved over
time. This involved tracking the success rate of the high-level Fast Plan when applied to the main
benchmark dataset at various stages of the learning process.

The learning itself was driven by execution traces from tasks distinct from this benchmark dataset.
Specifically, the data fed to the LLM for inductive reasoning (at K = 40, 80, 120, . . . cumulative
external task intervals) was generated from a continuously expanding set of diverse, newly created
prompts or random samples from broader image collections. This separation of "training/learning"
tasks from the "monitoring" benchmark tasks was crucial to ensure that the observed improvements
in Fast Plan success were due to genuine generalization of learned subroutines and not overfitting to
the benchmark data itself.

Figure 1 illustrates this learning efficacy. It shows the percentage of applicable subtasks within the
held-out benchmark portion for which FaSTA∗ successfully utilized a learned subroutine (i.e., the Fast
Plan step was not ’None’ and did not require a fallback to the Slow Path due to VLM failure). This
success rate is plotted against the cumulative number of non-benchmark "training" task executions
that had been processed to refine the Subroutine Rule Table up to that point. The analysis focuses
on subtasks where multiple tool paths are typically possible, making them prime candidates for
subroutine mining. The bar chart displays the Fast Plan success rate at discrete intervals (e.g., after
the Rule Table was updated based on 40, 80, 120, 160, and 200 external task evaluations), with an
overlaid curve highlighting the improvement trend. The final Subroutine Rule Table used for the
main benchmark evaluations reported in Section 5 is the one achieved after a substantial number of
such online learning and refinement iterations.

The increasing trend observed in Figure 1 demonstrates that as FaSTA∗ processes more diverse
external tasks and iteratively refines its Subroutine Rule Table, its ability to successfully apply
efficient, learned "fast plans" to unseen benchmark tasks improves. This, in turn, reduces the
frequency of needing to resort to the more computationally intensive "slow path" A∗ search for
subtask types amenable to subroutine learning, contributing to the overall efficiency reported in our
main results.
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Table 12: Complete Learned Subroutine Rule Table (R). Contains all mined subroutines, activation
rules, and performance metrics used in the Fast Plan generation.

Subtask Subroutine P Name Activation Rules C Avg. Cost (s) Avg. Quality

Object Recoloration Grounding DINO (Liu et al., 2024)→ SAM (Kirillov et al., 2023b)→ SD Inpaint (Rombach et al., 2022b) SR1 - object_size: Not Too Small
- overlapping_critical_elements: None (eg.
Some text written on object to be recolored and this text
is critical for some future or past subtask)

10.39 0.89

Object Recoloration SD Search & Recolor (Rombach et al., 2022b) SR2 - color_transition = not extreme luminance
change (e.g., not White↔ Black)

12.92 0.95

Object Recoloration YOLO (Wang et al., 2022)→ SAM (Kirillov et al., 2023b)→ SD Inpaint (Rombach et al., 2022b) SR3 - yolo_class_support: Object supported as a yolo
class
- object_size: Not Too Small
- overlapping_critical_elements: None (eg.
Some text written on object to be recolored and this text
is critical for some future or past subtask)

10.36 0.88

Object Replacement Grounding DINO (Liu et al., 2024)→ SAM (Kirillov et al., 2023b)→ SD Inpaint (Rombach et al., 2022b) SR4 - object_size = Not too small
- size_difference(original, target objects) = Not
too big (eg. hen to car, etc)
- shape_difference(original, target objects) = Not
too small (i.e., not confusingly similar, eg. bench and
chair)

10.41 0.91

Object Replacement SD Search&Replace (Rombach et al., 2022b) SR5 - instance_count(object_to_replace) = 1, 2
- object_clarity = High (e.g., common, opaque,
substantial, fully visible)
- shape_difference(original, target) = Not Very
Large

12.12 0.97

Object Replacement YOLO (Wang et al., 2022)→ SAM (Kirillov et al., 2023b)→ SD Inpaint (Rombach et al., 2022b) SR6 - yolo_class_support: Object supported as a yolo
class
- object_size = Not too small
- size_difference(original, target objects) = Not
too big (eg. hen to car, etc)
- shape_difference(original, target objects) = Not
too small (i.e., not confusingly similar, eg. bench and
chair)

10.38 0.91

Object Removal Grounding DINO (Liu et al., 2024)→ SAM (Kirillov et al., 2023b)→ SD Erase (Rombach et al., 2022b) SR7 - object_size = Not too big
- background_content_type = Simple_Texture
OR Homogenous_Area OR Repeating_Pattern (e.g.,
wall, sky, grass, water, simple ground)
- background_reconstruction_need = Fill-
ing/Inpainting (vs. Drawing/Semantic_Completion)

11.97 0.98

Object Removal YOLO (Wang et al., 2022)→ SAM (Kirillov et al., 2023b)→ SD Erase (Rombach et al., 2022b) SR8 - yolo_class_support: Object supported as a yolo
class
- object_size = Not too big
- background_content_type = Simple_Texture
OR Homogenous_Area OR Repeating_Pattern (e.g.,
wall, sky, grass, water, simple ground)
- background_reconstruction_need = Fill-
ing/Inpainting (vs. Drawing/Semantic_Completion)

11.95 0.98

Object Removal Grounding DINO (Liu et al., 2024)→ SAM (Kirillov et al., 2023b)→ SD Inpaint (Rombach et al., 2022b) SR9 - object_size = Not small
- background_content_type = Complex_Scene
OR Occludes_Specific_Objects
- background_reconstruction_need = Draw-
ing/Semantic_Completion (vs. Filling/Inpainting)

10.39 0.95

Object Removal YOLO (Wang et al., 2022)→ SAM (Kirillov et al., 2023b)→ SD Inpaint (Rombach et al., 2022b) SR10 - yolo_class_support: Object supported as a yolo
class
- object_size = Not small
- background_content_type = Complex_Scene
OR Occludes_Specific_Objects
- background_reconstruction_need = Draw-
ing/Semantic_Completion (vs. Filling/Inpainting)

10.37 0.95

Text Removal CRAFT (Baek et al., 2019)→ EasyOCR (Kittinaradorn et al., 2022)+DeepFont→ LLM→ SD Erase SR11 - background_content_behind_text =
Plain_Color OR Simple_Gradient OR Simple_Texture
(Not Complex_Image or Specific_Objects)
- background_reconstruction_need = Fill-
ing/Inpainting (vs. Drawing/Semantic_Completion)

17.81 0.93

Text Removal CRAFT (Baek et al., 2019)→ EasyOCR+DeepFont (Wang et al., 2015)→ LLM→ DALL-E SR12 - background_artifact_tolerance = High
(e.g., clouds, noisy textures, abstract patterns where mi-
nor flaws are acceptable)
- surrounding_context_similarity(to_text)
= Low (e.g., nearby areas do not contain other text or
fine line patterns)

17.95 0.96

Text Removal CRAFT (Baek et al., 2019)→ EasyOCR+DeepFont→ LLM→ Painting SR13 - background_content_behind_text = Uni-
form_Solid_Color (Strictly no texture, gradient, or ob-
jects)
- background_reconstruction_need = None
(Simple solid color fill is sufficient)

6.69 0.95

Text Replacement CRAFT→ EasyOCR+DeepFont→ LLM→ SD Erase→ Text Writing SR14 - background_content_behind_text =
Plain_Color OR Simple_Gradient OR Simple_Texture
(Not Complex_Image or Specific_Objects)
- background_reconstruction_need = Fill-
ing/Inpainting (vs. Drawing/Semantic_Completion)

17.85 0.92

Text Replacement CRAFT→ EasyOCR+DeepFont→ LLM→ DALL-E→ Text Writing SR15 - background_artifact_tolerance = High
(e.g., clouds, noisy textures, abstract patterns where mi-
nor flaws are acceptable)
- surrounding_context_similarity(to_text)
= Low (e.g., nearby areas do not contain other text or
fine line patterns)

18.02 0.94

Text Replacement CRAFT→ EasyOCR+ DeepFont→ LLM→ Painting→ Text Writing SR16 - background_content_behind_text = Uni-
form_Solid_Color (Strictly no texture, gradient, or ob-
jects)
- background_reconstruction_need = None
(Simple solid color fill is sufficient)

6.77 0.93

I COMPLETE SUBROUTINE RULE TABLE

The complete Subroutine Rule Table (R) used by FaSTA∗ is detailed below. This table stores
the learned subroutines (Pj), their symbolic activation rules (Cj) based on context features, the
associated subtask (sj), and the empirically measured average execution cost and quality observed
during execution of evaluation tasks (Section 4.2). It is important to note that the inductive
reasoning process for mining subroutines focuses primarily on subtasks where multiple viable
tool sequences or configurations exist (e.g., object replacement, object recoloration, text re-
moval), offering potential for optimization via learned rules. Subtasks typically solved by a single,
fixed tool path (e.g., depth estimation using MiDaS, basic text detection using CRAFT (Baek et al.,
2019)) are generally not subjected to this mining process and thus may not appear with complex
rules or multiple subroutine options in this table. It should also be noted while most information
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used in traces used for inductive reasoning is obtained as inputs from outputs of intermediate tools
along the path (eg. Object Size from YOLO (Wang et al., 2022), etc.), some information like the
background_content_type, etc. is obtained by prompting the LLM separately on the image.
This table is dynamically updated during the online refinement process.

J COMPARISON WITH OTHER STRATEGIES

J.1 WITH DIRECT CACHING

While LLM-based subroutine induction is the most suitable approach to learn symbolic rules in a
generalizable manner, the high-level similarity with direct caching might raise the question as to
which is this a better approach than the latter. A "direct cache" or memorization-based baseline is too
brittle. It would require a new task to have nearly identical conditions to a previously seen one to be
effective, which is rare. We ran a preliminary study on such a baseline, which reused a toolpath if a
new task’s context features (e.g., object size) were within a tight 5% tolerance of a cached example.

The results show that even with this tolerance, the fallback rate remains extremely high, as it struggles
to generalize. The table below compares the fallback rate of this direct cache baseline against
FaSTA*’s, clearly illustrating the significant benefit of our inductive reasoning approach.

Explored Tasks Direct Cache Fallback Rate (%) FaSTA* Fallback Rate (%)

40 98% 79%
80 98% 73%
120 97% 62%
160 96% 43%
200 95% 9%

Table 13: Fallback rates vs. explored tasks.

This comparison demonstrates that FaSTA*’s ability to learn generalized, symbolic rules is far more
effective than simple memorization, allowing it to successfully handle a much broader range of
unseen tasks.

J.2 WITH END-TO-END MODELS

We compared FaSTA∗ with a state-of-the-art closed-source model, the Gemini 2.0 Flash Preview
Image Generation, on a few tasks from our benchmark. The qualitative results, which highlight
FaSTA∗’s ability to adhere to complex instructions, are presented in Figure 13. We have also
conducted further quantitative comparisons on our evaluation benchmark with both Gemini and
GPT-4o. The results are summarized below:

Method Average Quality Score

Ours 0.91
Gemini 2.0 0.78
GPT-4o (with image editing) 0.74

Table 14: Comparison of Quality Scores with End-to-end Models

K HUMAN EVALUATION METHODOLOGY FOR ACCURACY

To ensure a robust and reliable assessment of model performance, particularly for complex, multi-step,
and multimodal editing tasks where automated metrics like CLIP (Radford et al., 2021) similarity can
be insufficient (Gupta et al., 2025a), we employ human evaluation to measure accuracy. Automated
metrics often fail to capture nuanced errors, semantic inconsistencies, or critical local changes within
complex edits (Gupta et al., 2025a, Sec 5.2, Appx J). Our structured human evaluation process
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provides a more accurate measure of task success. The variance in scores among evaluators was 0.07,
indicating strong inter-evaluator consistency.

K.1 SUBTASK-LEVEL ACCURACY SCORING

Human evaluators manually assess the output of each individual subtask si within a larger task T .
Each subtask is assigned a correctness score, denoted as A(si), based on the following scale:

• A(si) = 1, if the subtask is completed fully and correctly.
• A(si) = 0, if the subtask execution failed entirely or produced an unusable result.
• A(si) = x, where x ∈ {0.1, 0.3, 0.5, 0.7, 0.8, 0.9}, if the subtask is partially correct (Gupta

et al., 2025a, Eq. 4).

The specific score x for partial correctness is determined using predefined rules tailored to different
types of editing operations, ensuring consistency in evaluation. These rules, adapted from (Gupta
et al., 2025a), are outlined in Table 15.

Table 15: Predefined Rules (adapted from (Gupta et al., 2025a, Table 8)) for Assigning Partial
Correctness Scores in Human Evaluation.

Task Type Evaluation Criteria Assigned Score

Image-Only Tasks

Minor artifacts, barely noticeable distortions 0.9
Some visible artifacts, but main content is unaffected 0.8
Noticeable distortions, but retains basic correctness 0.7
Significant artifacts or blending issues 0.5
Major distortions or loss of key content 0.3
Output is almost unusable, but some attempt is visible 0.1

Text+Image Tasks

Text is correctly placed but slightly misaligned 0.9
Font or color inconsistencies, but legible 0.8
Noticeable alignment or formatting issues 0.7
Some missing or incorrect words but mostly readable 0.5
Major formatting errors or loss of intended meaning 0.3
Text placement is incorrect, missing, or unreadable 0.1

K.2 TASK-LEVEL ACCURACY CALCULATION

The accuracy for a complete task T , denoted as A(T ), is calculated as the arithmetic mean of the
correctness scores of all its constituent subtasks ST (Gupta et al., 2025a, Eq. 5):

A(T ) =
1

|ST |
∑

si∈ST

A(si)

This approach ensures that the task-level accuracy reflects the performance across all required steps.

K.3 OVERALL SYSTEM ACCURACY

To evaluate the overall performance of the system across the entire benchmark dataset, the overall
accuracy Aoverall is computed by averaging the task-level accuracies A(Tj) for all evaluated tasks
Tj (Gupta et al., 2025a, Eq. 6):

Aoverall =
1

|T |

|T |∑
j=1

A(Tj)

where |T | represents the total number of tasks evaluated in the dataset.

L SUBROUTINE VERIFICATION: DATASETS AND EVALUATION PROTOCOL

This section provides further details on the datasets and evaluation procedure used for verifying
proposed subroutine changes (∆) during the online refinement process described in Section G.4.
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L.1 SUBTASK-SPECIFIC TEST DATASETS (Ds∆ )

To rigorously evaluate a proposed change ∆ (which typically relates to a specific subtask type s∆,
e.g., Object Replacement), we created specialized test datasets, one for each subtask type supported
by the system (Ds∆ ).

Object Recoloration Object Replacement Object Removal Text Replacement Text Removal
Subtask Type
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Figure 10: Distribution of total manipulations (subtask occurrences) across the specialized test
datasets (Ds∆ ) used for subroutine verification.

• Image Source: These datasets reuse the base images from the original CoSTA∗ benchmark
dataset (Gupta et al., 2025a). Image-based subtask datasets (e.g.,DObject Replacement,DObject Recoloration)
utilize all 121 images. Text-related subtask datasets (e.g., DText Removal) utilize the subset of 40
images from the original benchmark that contain relevant text elements.

• Prompt Generation: For each base image and each target subtask type s∆, we generated new
prompts focused exclusively on performing operations of that type. For example, using an image
containing a cat, the prompt for the DObject Replacement dataset might be “replace the cat with a dog,”
while the prompt for the same image in the DObject Recoloration dataset could be “recolor the cat to
pink.” This ensures that when testing a change related to Object Replacement subroutines, the
evaluation focuses solely on the performance of that subtask type.

• Varying Complexity: Within each subtask-specific dataset Ds∆ , the generated tasks feature
varying complexity. For instance, in DObject Removal, some tasks might involve removing only one
object, while others might require removing six or seven different objects from the same image.
This ensures that subroutines are tested across different levels of difficulty for their specific function.

• Dataset Statistics: Figure 10 shows the distribution of total manipulations (subtask occurrences)
for each subtask-specific dataset. While image-based datasets share the same 121 base images,
the total number of manipulations can differ based on the number of relevant objects/regions
suitable for that subtask type within each image and the varying complexity levels introduced in
the prompts.

L.2 EVALUATION PROTOCOL FOR SUBROUTINE CHANGES

When evaluating a proposed change ∆ for a subroutine related to subtask s∆, we follow the procedure
outlined in Section G.4:
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Replace the lighthouse with
eiffel tower.

Replace the cat with dog, the
plant pot with a bucket and

the bench with a board.

Replace the camera with a
mobile and also replace the
statue of liberty with eiffel

tower

Input
Image

Object
Replacement

Object
Recoloration

Object
Removal

Text
Removal

Replace the cat with dog.

Recolor the camera to blue
and also the statue of liberty

to yellow

Recolor the cat to pink, the
wall to yellow and the bench

to green.

Recolor the lighthouse to
pink and the signboard to

green.

Recolor the cat to pink and
the signboard to yellow.

Remove the statue of liberty
from image.

Remove the cat and the
bench from image.

Remove the signboard from
image

Remove the cat and the
signboard.

Text
Replacement

Remove “Freedom” text
from image

Replace “Your Country” with
“My Country”

Remove “Storm” from the
text in image.

Remove the text from image

Replace “Freedom” text with
“Liberty”

Remove the text from image

Replace “Storm” text with
“Tide”.

Replace “Annual” text with
“Weekly”.

Figure 11: Illustration of subtask-specific dataset generation. A single base image from the CoSTA∗

benchmark is used with different prompts, each targeting a distinct subtask type, to create evaluation
instances for different datasets (e.g., DObject Replacement, DObject Recoloration).

• Test Set Sampling (T ′, T ′′): A random subset of tasks is sampled from the corresponding subtask-
specific dataset Ds∆ . We sample 25 tasks for image-based subtasks and 20 tasks for text-based
subtasks for each evaluation task (both baseline and candidate evaluation, including retries).

• Quality Evaluation (Qbase, Qnew): The quality score used for calculating the Net Benefit B(∆)
relies on automated VLM checks. For each task in the sampled test set T ′ (or T ′′), we execute
the respective system (baseline CoSTA∗/FaSTA∗ or FaSTA∗ with the candidate rule changeR′).
During execution, the VLM quality check is applied after relevant tool steps, using the same
methodology as used in CoSTA∗. The quality score for a single task is computed as the average of
the VLM quality scores obtained for all its constituent subtasks (which are all of type s∆ in these
specialized datasets). The final quality metric (Qbase or Qnew) used in the Net Benefit calculation
is the average of these task-level quality scores across all tasks sampled in T ′ (or T ′′).

• Cost Evaluation (Cbase, Cnew): The cost metric is the average total execution time (in seconds)
across all tasks sampled in the test set T ′ (or T ′′).

This detailed dataset construction and evaluation protocol allows for a focused and rigorous assess-
ment of the impact of proposed subroutine changes on performance for the specific subtask type they
target.

M TRACE DATA FOR INDUCTIVE REASONING

The online subroutine induction and refinement process (Section 4.2) relies on analyzing execution
traces to identify patterns and propose subroutine rules. This appendix details the composition of
these traces and provides an example.
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M.1 TRACE COMPOSITION AND DATA GATHERING

For each task processed by FaSTA∗, a detailed trace τ is logged. This trace is crucial for the LLM to
perform inductive reasoning during the periodic refinement phase. The key information captured in a
trace for each subtask within a completed task includes:

• Subtask (sj): The specific subtask being performed (e.g., Object Recoloration, Text Removal).

• Chosen Tool Path (Pj): The sequence of tools that was actually executed to complete the subtask
(this could be a selected subroutine or a path found via low-level A search).

• Context Features: A set of relevant features extracted from the image context and the state of the
objects being manipulated. This information can be gathered upfront for the relevant objects in the
image or also during the execution of different tools along the path depending on the specific detail.

– Object-Specific Features (List not exhaustive):
◦ object_size: Derived from bounding boxes provided by object detection tools like

YOLO (Wang et al., 2022) (or Grounding DINO (Liu et al., 2024) if YOLO (Wang et al.,
2022)class is not supported for a primary object).

◦ mask_properties: Such as mask area or mask ratio, obtained from segmentation
tools like SAM (Kirillov et al., 2023b).

◦ color_details: The color of the original object, also derived from the mask output
by SAM.

– Text-Specific Features:
◦ text_box_size: Obtained from text detection tools like CRAFT (Baek et al., 2019).

– Relational/Global Features (Queried from LLM): For each primary object involved in
the task, we also query an LLM at the beginning of the task to infer higher-level contextual
attributes based on the image and prompt. This is done once for all objects. Examples include:
◦ background_content_type: Describes the area surrounding or behind an object

(e.g., "Simple_Texture", "Homogenous_Area", "Complex_Scene").
◦ overlapping_critical_elements: A boolean indicating if an object overlaps

with other elements (text, other objects) that are targets in subsequent subtasks.
◦ object_clarity: (e.g., "High", "Medium", "Low" - indicating how clearly visible

and unambiguous the object is).

• Path Cost (Cpath): The aggregated execution cost (e.g., time) for the chosen tool path Pj .

• Path Quality (Qpath): The aggregated quality score for Pj , an average of VLM scores for the
tools in the path.

• Failures: Information about any tool failures or VLM quality check failures encountered during
the execution of Pj , along with the specific context features active at the time of failure.

This comprehensive trace data, particularly the context features gathered from tools like YOLO,
SAM, CRAFT (Baek et al., 2019) (Baek et al., 2019), and initial LLM queries, allows the inductive
reasoning LLM (Section 4.2, Step 3) to correlate observed conditions with the success or failure of
different tool paths, thereby proposing or refining subroutines and their activation rules.

M.2 EXAMPLE TRACE FOR AN OBJECT RECOLORATION SUBTASK

Consider an input image and prompt as shown in Figure 12. The task is “Recolor the cup to blue.” The
subtask chain might simply be ‘Object Recoloration (ball -> blue ball)’ with an initial path (Grounding
DINO (Liu et al., 2024) -> SAM (Kirillov et al., 2023b)-> SD Inpaint (Rombach et al., 2022b)) where
’SD Inpaint’ failed quality check so path was retraced and a final path (SD Search&Recolor (Rombach
et al., 2022b)) which passed all quality checks.

The logged traces for this subtask are shown on right side in Figure 12. All details extracted from
various tools used along the path, such as YOLO (Wang et al., 2022)and SAM, are included along
with the status of the path. Some extra details which are not possible to be extracted from these tools
are extracted with the help of an LLM which is called at the start of the task for all related objects
(in this case only the ball). In case of the paths where tools like the YOLO (Wang et al., 2022)or
SAM (Kirillov et al., 2023b)are not included like in case of ‘SD Search&Recolor’, we use the LLM

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

A

Path: Grounding DINO → SAM → SD Inpaint
Subtask: Object Recoloration
Object: Cup
Object Size: x1 (From YOLO)
Mask Size: x2 (From SAM)
Original Color: <RGB Values> (From SAM)
Target Color: Blue (From Prompt)
Overlapping Critical Elements: None (From LLM)
YOLO Class Support: Yes
Path Status: Fail

A

Path: SD Search&Recolor
Subtask: Object Recoloration
Object: Cup
Object Size: x1 (From YOLO)
Mask Size: x2 (From SAM)
Original Color: <RGB Values> (From SAM)
Target Color: Blue (From Prompt)
Overlapping Critical Elements: None (From LLM)
YOLO Class Support: Yes
Path Status: Success

Input Image Initial Failed Toolpath Final Successful Toolpath

Figure 12: Visual example for the object recoloration trace detailed in Appendix M.2. Left: Input
image. Right: Conceptual representation of the initial failed toolpath trace and the subsequent
successful toolpath trace with key context features noted.

to extract an approximation of size, color, etc. information as well along with the other extra details
for which this LLM was already needed.

This structured trace provides rich data for the LLM to analyze during the subroutine induction and
refinement phase.

N SUBROUTINE REUSE RATE
Figure 13 illustrates the reuse rate for each of the learned subroutines. The reuse rate is a critical
metric that quantifies the utility and applicability of each mined subroutine. Specifically, for each
subroutine, this rate is calculated as the percentage of applicable subtasks where that particular
subroutine was selected for execution and was also executed successfully. This means the calculation
considers only those instances where a subtask was of a type that the subroutine could address. For
example, if a subroutine is designed for “Object Recoloration”, its reuse rate is determined by how
often it was chosen when an “Object Recoloration” subtask was encountered, irrespective of the
total number of other subtask types (e.g., “Object Removal”, “Text Replacement”) processed. A
higher reuse rate indicates that a subroutine is frequently chosen when it is relevant, underscoring its
effectiveness and the successful learning of its activation rules. The figure displays these rates for all
sixteen subroutines (SR1 through SR16), providing insight into their individual contributions to the
agent’s efficiency.
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Figure 13: Reuse rate (%) for all learned subroutines. The rate for each subroutine is calculated based
on the percentage of applicable subtasks where it was selected for execution.
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O USE OF LARGE LANGUAGE MODELS (LLMS)

It must be noted that LLMs were not used for writing this paper from scratch. However, we use LLMs
to polish the content. Also, they do make up fundamental components of the FaSTA∗ architecture.
Their roles are integral to the methodology as has been explained below:

1. Subtask Chain Generation: The initial stage of our fast-planning pipeline relies on an
LLM to interpret the user’s multimodal input (an image and a natural language prompt).
We use GPT-4o for this purpose. The LLM decomposes the user’s complex, high-level
instruction into a logical sequence of discrete editing operations, which we call a subtask
chain. This process transforms a high-level user request into a structured, executable plan.
The specific prompt used to guide the LLM in this task decomposition stage is provided in
Appendix Q.

2. Subroutine Selection: The second stage of the "fast planning" mechanism uses GPT-o1.
For each step in the subtask chain, the LLM refers to the Subroutine Rule Table, which
is dynamically updated and the current image context to select the most appropriate, cost-
effective subroutine. If no suitable subroutine is found, the system falls back to the "slow
planning" A* search. The prompt used for this process is provided in Appendix R.

3. Online Subroutine Induction: One of the core contributions of FaSTA∗ is its ability to
learn from past experiences. This learning is driven by an LLM that performs inductive
reasoning on execution traces from previously completed tasks. The LLM analyzes logs of
successful and failed tool paths, along with their associated contextual features, to identify
recurring, efficient patterns. From these patterns, it synthesizes compact, symbolic rules
that define reusable subroutines and their activation conditions. This process is detailed in
Section 4.2, and the prompt for this symbolic reasoning task can be found in Appendix S.

4. Quality Verification: The quality score used to assess the success or failure status of an
execution is calculated using VLMs. The VLM check is applied after each tool step, where
the VLM is asked to score the editing operation for a particular tool. If this quality check
fails, FaSTA∗ falls back to the slow-planning A∗ search.

P ALGORITHMS

P.1 FASTA∗ ONLINE SUBROUTINE INDUCTION

Algorithm 1: High-Level Overview of Online Subroutine Learning. See detailed algorithm in
Appendix P.1.

1 Log execution traces (data, paths, outcomes, context) continuously
2 After K = 20 task executions, using recent traces:
3 LLM analyzes traces to propose/refine subroutines & activation rules
4 Validate proposals on test data for net cost-quality benefit
5 if validation fails then LLM refines proposal with feedback (max Nretries = 2 attempts)
6 else if validation succeeds then Update Subroutine Rule TableR with beneficial change
7 Repeat indefinitely to adapt and improve
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Algorithm 2: FaSTA∗ Online Subroutine Induction (Modified ICRL). Teal steps are specific
additions/modifications for FaSTA∗. Red italic steps indicate standard ICRL practices replaced
by FaSTA∗’s approach.
Input: LLM πLLM , Planner FaSTA∗, Initial Rule SetR0, Trace Buffer B, Update Freq. K, Max

Retries Nretries, Subtask Test Datasets {Ds}s∈S

Output: Continuously Updated Rule SetR
1 R ← R0;
2 B ← ∅;
3 t← 0;
4 while True do
5 Receive new task input (xt, ut);
6 Execute FaSTA∗ with current rulesR to get trace

τt = (subtask,Pfinal,ContextFeatures, Cpath, Qpath, Failures);
7 Add τt to Buffer B ← B ∪ {τt};
8 t← t+ 1;
9 if t > 0 and t (mod K) == 0 then

10 Trecent ← Get last K traces from B;
11 ∆proposals ← πLLM ("Propose changes to rulesR based on recent traces Trecent");
12 foreach proposed_change ∆ in ∆proposals do
13 s∆ ← GetSubtaskType(∆);
14 accepted← False;
15 current_delta← ∆;
16 for retry ← 0 to Nretries do
17 Ttest ← SampleRandomSubset(Ds∆ );
18 if t == K then
19 (Cbase, Qbase)← Evaluate(CoSTA∗, Ttest);
20 else
21 (Cbase, Qbase)← Evaluate(FaSTA∗ (R), Ttest);
22 Rcandidate ← ApplyChange(R, current_delta);
23 (Cnew, Qnew)← Evaluate(FaSTA∗ (Rcandidate), Ttest);
24 ∆C%← (Cnew − Cbase)/Cbase × 100;
25 ∆Q%← (Qnew −Qbase)/Qbase × 100;
26 B(∆eval)← ∆C%−∆Q%;
27 if B(∆eval) < 0 then
28 R ← Rcandidate;
29 accepted← True;
30 Break;
31 else if retry < Nretries then
32 feedback← AnalyzeFailure(current_delta, Cnew, Qnew, Cbase, Qbase,

Ttest);
33 current_delta← πLLM ("Refine change ∆ based on feedback: feedback");

34 // Standard ICRL might sample past episodes here to build context for next action (e.g.,
Algo 1/2 in (Monea et al., 2025)). FaSTA∗ replaces this with explicit rule update.;
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P.2 FASTA∗ ADAPTIVE FAST-SLOW EXECUTION

Algorithm 3: High-Level Overview of Adaptive Fast-Slow Planning. Detailed Algorithm can be
found in Appendix P.2.
// Input: Subtask chain, Subroutine Rule Table R

1 LLM generates a "Fast Plan" (sequence of subroutines or ’None’) for the subtask chain
2 foreach step in the Fast Plan do
3 if Fast Plan step is a valid subroutine then
4 Attempt to execute the subroutine
5 if subroutine fails VLM quality check then trigger Slow Path for this subtask
6 else
7 Trigger Slow Path for this subtask
8 if Slow Path was triggered then
9 Perform localized A∗ search on the subtask’s low-level subgraph

10 Proceed to next step upon successful completion of current subtask

Algorithm 4: FaSTA∗ Adaptive Fast-Slow Execution
Input: Input image x0, Prompt u, Subtask Chain Gsc, Subroutine Rule TableR, LLM πLLM , VLM,

Quality Threshold Qthresh, Cost params α, BT, MDT, TDG
Output: Final Edited Image xfinal

1 Generate Fast PlanMsubseq ← πLLM (x0, u,Gsc,R);
2 Current Image xcurr ← x0;
3 Path Trace τpath ← [];
4 foreach subtask si in sequence from Gsc do
5 plan_step←Msubseq(si);
6 subtask_success← False;
7 if plan_step is a Subroutine P∗

si then
/* Attempt Fast Plan */

8 temp_image← xcurr; fast_path_ok← True; subroutine_trace← [];
9 foreach tool tk in P∗

si do
10 Execute tk on temp_image to get xint, cost ck;
11 Append (tk, ck) to subroutine_trace;
12 qk ← VLMQualityCheck(xint, si, tk) ; // Per (Gupta et al., 2025a)
13 if qk < Qthresh then
14 fast_path_ok← False; Break;

15 temp_image← xint;

16 if fast_path_ok then
17 xcurr ← temp_image;
18 Append subroutine_trace to τpath;
19 subtask_success← True;

20 else
/* plan_step is ’None’ */

21 if not subtask_success then
/* Execute Slow Path (Local A∗) */

22 Glow(si)← ConstructSubgraph(si, MDT, TDG) ; // Per (Gupta et al., 2025a)
23 slow_trace← LocalAStarSearch(Glow(si), xcurr , si, α, BT, VLM, Qthresh);
24 xcurr ← xout;
25 Append slow_trace to τpath;
26 subtask_success← True;

27 Return xcurr , τpath;
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INPUT

Detect the wooden sign while
replacing its content to “SAFE
ZONE”. Also, replace the cat

in the image with a dog.

Update ‘closed’ signage to
‘open’ and detect trash can &
pedestrian crossing. Remove

the people for clarity.

Segment the dog, detect the
people, recolor the leaves to
red, and expand the image.

Detect the barn, remove the
cows, recolor the cock to

green, and expand the image.

Remove the dog, recolor the
kite to pink, segment the

child, and expand the image.

CoSTA* (52.7s)  
vs 

FaSTA* (30.2s)

Gemini 2.0
Flash Preview

Image
Generation

Figure 14: Qualitative comparison of FaSTA∗ against CoSTA∗ (Gupta et al., 2025a) and Gemini
2.0 Flash Preview for complex multi-turn editing tasks (inputs on top). FaSTA∗ produces high-
quality outputs visually identical to CoSTA∗ and superior to Gemini. Notably, FaSTA∗ achieves this
CoSTA∗-level quality at a significantly reduced execution cost, demonstrating its enhanced efficiency.
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Q LLM PROMPT FOR GENERATING SUBTASK CHAIN

You are an advanced reasoning model responsible for decomposing a given image editing
task into a structured subtask chain. Your task is to generate a well-formed subtask
chain that logically organizes all necessary steps to fulfill the given user prompt. Below
are key guidelines and expectations:

Q.1 UNDERSTANDING THE SUBTASK CHAIN

A subtask chain is a structured representation of how the given image editing task should be
broken down into smaller, logically ordered subtasks. Each node in the chain represents a
subtask which is involved in the prompt, and edges represent the ordering like which subtask
needs to be completed before or after which.
Each node of the chain represents the subtasks required to complete the task. The chain
ensures that all necessary operations are logically ordered, meaning a subtask that depends
on another must appear after its dependency.

Q.2 STEPS TO GENERATE THE SUBTASK CHAIN

• Step 1: Identify all relevant subtasks needed to fulfill the given prompt.
• Step 2: Ensure that each subtask is logically ordered, meaning operations dependent on

another should be placed later in the path.
• Step 3: Each subtask should be uniquely labeled based on the object it applies to and of the

format (Obj1→ Obj2) where obj1 is to be replaced with obj2 and in case of recoloring (obj
→ new color) while with removal just include (obj) which is to be removed. Example: If
two objects require replacement, the subtasks should be labeled distinctly, such as Object
Replacement (Obj1 -> Obj2).

• Step 4: There also might be multiple possible subtasks for a particular requirement
like if a part of task is to replace the cat with a pink dog then the two possible
ways are Object Replacement (cat-> pink dog) and another is Object
Replacement (cat->dog) -> Object Recoloration (dog->pink)

Q.3 LOGICAL CONSTRAINTS & DEPENDENCIES

When constructing the chain, keep in mind that you take care of the order as well like if a
task involves replacing an object with something and then doing some operation on the new
object then this operation should always be after the object replacement for this object since
we cannot do the operation on the new object till it is actually created and in the image.

Q.4 INPUT FORMAT

The LLM will receive:
1. An image.
2. A text prompt describing the editing task.
3. A predefined list of subtasks the model supports (provided below).

Q.5 SUPPORTED SUBTASKS

Here is the complete list of subtasks available for constructing the subtask chain: Object
Detection, Object Segmentation, Object Addition, Object Removal, Background Removal,
Landmark Detection, Object Replacement, Image Upscaling, Image Captioning, Changing
Scenery, Object Recoloration, Outpainting, Depth Estimation, Image Deblurring, Text Extrac-
tion, Text Replacement, Text Removal, Text Addition, Text Redaction, Question Answering
based on text, Keyword Highlighting, Sentiment Analysis, Caption Consistency Check, Text
Detection
You must strictly use only these subtasks when constructing the chain.

Q.6 EXPECTED OUTPUT FORMAT

The model should output the subtask chain in structured JSON format, where each node
contains:
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• Subtask Name (with object label if applicable)
• Parent Node (Parent node of that subtask)
• Execution Order (logical flow of tasks)

Q.7 EXAMPLE INPUTS & EXPECTED OUTPUTS

Q.7.1 EXAMPLE 1
Input Prompt: “Detect the pedestrians, remove the car and replacement the cat with rabbit
and recolor the dog to pink.”
Expected Subtask chain:
{

"task": "Detect the pedestrians, remove the car and

replacement the cat with rabbit and recolor the dog to pink",

"subtask_chain": [
{

"subtask": "Object Detection (Pedestrian)(1)",
"parent": []

},
{

"subtask": "Object Removal (Car)(2)",
"parent": ["Object Detection (Pedestrian)(1)"]

},
{

"subtask": "Object Replacement (Cat -> Rabbit)(3)",
"parent": ["Object Removal (Car)(2)"]

},
{

"subtask": "Object Recoloration (Dog -> Pink Dog)(4)",
"parent": ["Object Replacement (Cat -> Rabbit)(3)"]

}
]

}

Q.7.2 EXAMPLE 2
Input Prompt: “Detect the text in the image. Update the closed signage to open while
detecting the trash can and pedestrian crossing for better scene understanding. Also, remove
the people for clarity. ”
Expected Subtask chain:
{

"task": "Detect the text in the image. Update the closed

signage to open while detecting the trash can and

pedestrian crossing for better scene understanding. Also,

remove the people for clarity.",

"subtask_chain": [
{

"subtask": "Text Replacement (CLOSED -> OPEN)(1)",
"parent": []

},
{
"subtask": "Object Detection (Pedestrian Crossing)(2)",
"parent": ["Text Replacement (CLOSED -> OPEN)(1)"]
},
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{
"subtask": "Object Detection (Trash Can)(3)",
"parent": ["Object Detection (Pedestrian Crossing)(2)"]
},
{

"subtask": "Object Removal (People)(4)",
"parent": ["Object Detection (Trash Can)(3)"]

},
{

"subtask": "Text Detection ()(5)",
"parent": ["Object Removal (People)(4)"]

}
]

}

You can observe in the second example since there was a subtask related to text replacement,
it made sense to detec the text at last after all changes to text had been made. You should
always be mindful that ordering is logical and if there is a subtask whose output or input
might change based on some other subtask’s operation then it is always after this subtask on
whose operation it depends. eg- “recolor the car to pink and replace the truck with car” so
in this one the recoloration of car always depends on the replecement of truck with car so the
recoloration should always be done after replacement so you should think logically and it is
not necessary that the sequence of subtasks in subtask chain is same as they are mentioned in
the input prompt as was in this case the recoloration was mentioned before replacement in
input prompt but logically replacement will come first.

Q.8 YOUR TASK

Now, using the given input image and prompt, generate a well-structured subtask chain
that adheres to the principles outlined above.

• Ensure logical ordering and clear dependencies.
• Label subtasks by object name where needed.
• Structure the output as a JSON-formatted subtask chain.

Input Details
• Image: input image

• Prompt: [“prompt”]
• Supported Subtasks: (See the list above)

Now, generate the correct subtask chain. Before you generate the chain you need to make
sure that for every path possible in the subtask chain all the subtasks in that chain are covered
and none are skipped. Also if a prompt involves something related to object replacement then
just have that you dont need to think about its prerequisites like detecting it or anything bcz it
already covers it.
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R LLM PROMPT FOR SUBROUTINE SELECTION

So we have this image: <image> and also have the following input prompt:
<prompt>
So we got the following subtask chain:
<subtask chain>
Note that in the subtask chain within a particular node there is a bracket which tell us about
the object from and target and if there is only from then target is not mentioned like in removal
only from object is needed no target is required while for replacement/recoloration target is
also required.
Now we have the following subroutines list for each subtask and each of the subroutines
have some observations related to them which specify under which conditions they are to
be used or not. So you need to read those subroutines and their observations then check
the corresponding object for that subtask within the image like if its Object Removal
(Cat) then check the cat in image and then from the subroutines list check that if for that
particular subtask there is any subroutine in which the observation conditions are satisfied
and if so give the list of those subroutines for that subtask and you need to do this for all
subtasks in the subtask chain.
Subroutine list and the details:
{Subroutine Rule Table}

EXAMPLE:
Suppose we have an image which has lots of objects along with a very large car which has a
background with lots of objects and also a brown wooden board with some text written on it.
Now we have a prompt that remove the car and recolor the wooden board to pink and detect
the text and get the following subtask chain:
Object Removal (Car) -> Object Recoloration (Wooden Board ->
Pink Wooden Board) -> Text Detection ()
Now we see the subroutine list and find that for removal since the object is too big sub7 and
sub8 are not possible. Now in sub9 and sub10 we see that the ’car’ class is supported by yolo
so eventually we choose sub10 for this subtask. For recoloration we see that it has object
(text) which is imp and is involved in subsequent subtask so sub1 and sub3 aren’t possible
and we see that the color of board is light brown so light brown and pink dont have too much
difference so we choose sub2. For text detection there is not subroutine available so we leave
it like that.
So output will be:
Object Removal (Car) : [sub10]
Object Recoloration (Wooden Board -> Pink Wooden Board) : [sub2]
Text Detection () : [None]

Now lets say the wooden board was black in color and had to be recolored to white. In this
case the sub1 and sub3 are not possible because of the text as before but now sub2 is also not
possible because the color difference is too much. So we do not choose any subroutine for
this subtask and output is as follows:
Object Removal (Car) : [sub10]
Object Recoloration (Wooden Board -> Pink Wooden Board) : [None]
Text Detection () : [None]

Now lets change the details further. Lets say that the wooden board does not have any text
written on it and has to be recolored from pink to yellow and the text detection subtask wasn’t
present so in this case for recoloration all subroutines are possible except sub3 bcz wooden
board isnt a class supported by yolo.
New output:
Object Removal (Car) : [sub10]
Object Recoloration (Wooden Board -> Pink Wooden Board) : [sub1,
sub2]
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Now lets change it a bit assume that all conditions are as original but the car is small and
behind the car only some walls, grass, etc are present some basic stuff and not a lot of objects
like occluded people, cats, etc so in this case we will choose sub8 and sub10 for it as it is not
too plain that sub10 cannot be used and it is not way too complex that sub8 cannot be used.
New output:
Object Removal (Car) : [sub8, sub10]
Object Recoloration (Wooden Board -> Pink Wooden Board) : [sub2]
Text Detection () : [None]

Now you need to do the same things for the current case where the input prompt is :
<prompt> Subtask chain: <subtask chain>
Also multiple options are possible if they satisfy all the conditions it is not necessary that
only one is chosen and it is also possible that no subroutine fulfills all conditions so in that
case choose None so that we can do A∗ search and find the correct output. Also keep in mind
that only look at the details relevant say you need to check subroutine for some object which
is to be removed and for some activation condition you need to see if the background is busy
or plain, etc so you only see the background relevant like near that object and not for the
entire image.
So you need to extract all relevant details related to all relevant objects from the image given
to you then check the subroutine list if anyone matches and give the output.
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S LLM PROMPT FOR INDUCTIVE REASONING ON SUBROUTINES

Goal: Analyze the provided experimental run data for a specific task (e.g., Object Recol-
oration) to infer initial, potentially qualitative, activation rules (preference conditions) for
each distinct execution path employed.
<All Logged Data (The Traces)>
So we run different models and tools for different or same image editing tasks and store the
observations including what path was finally used and what were the conditions of objects,
etc. and this data is provided to you. Now we wish to infer some subroutines or commonly
used paths and their activation rules under which they are commonly activated. Can you find
some commonly used subroutines or paths and infer some rules for these paths using the
status of these cases and other factors and give the rules for both paths and they need not
be too specific but a bit vague is fine like if you observe that some particular path always
fails in case object size is less then you can give the rule that this path should be used when
object is not too small and not give any specific values so activation rule will include like
object_size = not too small, etc like this based on all factors like object size,
color transitions, etc and also it is possible that for some path it failed bcz of some specific
condition like its not necessary all conditions led to failure so you need to check which is
the condition which always leads to failures or which always leads to success and that will
constitute a rule if some condition leads to both failures and success with same value then
it means that this is not the contributing factorand there’s something else that’s causing the
failure or success and keep in mind that output rules should be of activation format like in
what cases this should be used and not negative ones so if there is some path which always
fails when object size is big then your activation rule will have object_size = small
and not some deactivation rules which has object_size = big. You should also include
some explanatory examples in the rule which can help some person or LLM understand
them better when referring to these rules. eg. if there is a rule where you want to say that
this path will only succeed when the difference between size of objects is not too big then
you can have a rule like : “size_difference(original, target objects) =
Not too big (eg. hen to car, etc)” where you include some example. You
should focus on activation rules which are like in what case this particular path will always
succeed and some activation rules should also include a kind of deactivation rule with a not
like in case you observe that some path always fails when there is some condition x where x
can be like object is too small or color difference is huge then you should infer an activation
rule that is negate of this like the rule can be object is “not” too small or color difference is
“not” huge so that these activation rules can act as a kind of deactivation rules as well and
prevent the path from getting activated in cases where we know for sure it’ll fail.

AN EXAMPLE:
Experimental Data:
Subtask: s1, Object Size: 0.7px, Original Object Color: Yellow,

Target Object Color: Black
Path used: P1
Status: Fail

Subtask: s1, Object Size: 0.2px, Original Object Color: Yellow,

Target Object Color: Green
Path used: P1
Status: Success

Subtask: s1, Object Size: 5px, Original Object Color: White,

Target Object Color: Black
Path used: P1
Status: Fail
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Subtask: s1, Object Size: 5px, Original Object Color: White,

Target Object Color: Yellow
Path used: P1
Status: Success

Subtask: s1, Object Size: 0.7px, Original Object Color: Black,

Target Object Color: White
Path used: P1
Status: Fail

Subtask: s1, Object Size: 3px, Original Object Color: Black,

Target Object Color: Yellow
Path used: P2
Status: Success

Subtask: s1, Object Size: 0.9px, Original Object Color: Black,

Target Object Color: Blue
Path used: P2
Status: Fail

Subtask: s1, Object Size: 0.2px, Original Object Color: White,

Target Object Color: Yellow
Path used: P2
Status: Fail

Subtask: s1, Object Size: 0.6px, Original Object Color: White,

Target Object Color: Blue
Path used: P3
Status: Success

So we see that paths P1 and P2 are very commonly used so these will be our subroutines or
commonly used paths and now our goal is to infer some rules under which these subroutines
or paths are commonly activated. So by observing the data you see that in P2 it always fails
when object size is small while the color transitions doesn’t matter so for P2 you can infer
an activation rule which is “object_size: not too small” and while for P1 you
observe that the object size doesn’t really matter bcz it is able to succeed in both small and
big object sizes and also fail in both cases but you observe that when the color transition is
huge like white to black or black to white it always fails while when color transition is not
extreme like white to yellow or yellow to green it is able to succeed even under same size
conditions so you can infer a rule that it depends on color transition and give a rule with
example for better understanding like: “color_transition: not too extreme
(eg. not white <-> black, etc.)”
The real experimental data will include much more info and it is your job to infer what data
is useful and find patterns in it and give corresponding rules. Also you should not mix the
observations from different paths or subtasks and treat all paths and subtasks independently so
while infering rules for some path P1 for some subtask s1 then only look at the experimental
data of that path P1 and subtask s1 and infer rules and patterns from that bcz observations of
P2 doesn’t affect P1 and neither do observations for P1 but related to s2 affect P1 for s1. So
you should know that same path can be used for different subtasks and can have different
activation rules for different subtasks so while inferring these rules you should see that you
compare the object conditions for the same subtask and same path and then reach a final
conclusion like example you have some path p1 which is used in subtasks s1 and s2

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

and based on observations there are multiple failure cases for p1 where object size is small
and subtask is s1 while there are some success cases for same p1 where object size is big and
subtask is s2 so if you combine them you won’t be infer any rule bcz nothing’s epcific but
you need to treat both the p1’s independently one is p1 with s1 and another is p1 with s2 and
so for p1 with s1 you can infer a rule that it oonly works when object size is not small.
The output format for each path for which you can infer some rule/s will be following:
Path: {path1}
Subtask: {subtask}
Activation Rules:
* Rule a1 with some explanatory example if needed
* Rule a2 with some explanatory example if needed
.
* Rule aN with some explanatory example if needed

Path: {path2}
Subtask: {subtask}
Activation Rules:
* Rule b1 with some explanatory example if needed
* Rule b2 with some explanatory example if needed
.
* Rule bN with some explanatory example if needed
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