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ABSTRACT

The enhanced reasoning capabilities of Large Language Models (LLMs) have led
to longer response sequences, yet the inference efficiency is fundamentally lim-
ited by their serial, autoregressive generation. Speculative decoding (SD) offers a
powerful solution, providing significant speed-ups through its lightweight drafting
and parallel verification mechanism. While existing work has made considerable
progress in improving the draft model’s generation efficiency and alignment, this
paper boosts SD from a new angle: the verification cost. We propose TriSpec, a
novel ternary SD framework with proxy verification. At its core, TriSpec intro-
duces a lightweight proxy model that handles the initial verification. This proxy
significantly reduces computational cost by approving easily verifiable draft se-
quences and only engages the full target model when encountering uncertain to-
kens, thus striking an optimal balance between efficiency and quality. TriSpec
can be integrated with state-of-the-art SD methods like EAGLE-3 to further re-
duce verification costs, achieving greater acceleration. Extensive experiments on
the Qwen3 and DeepSeek-R1-Distill-Qwen/LLaMA families show that TriSpec
achieves up to 30% speedup over standard SD, with up to 50% fewer target model
invocations while maintaining comparable accuracy.

1 INTRODUCTION

Large language models (LLMs) (Yang et al., 2025; Liu et al., 2024; Grattafiori et al., 2024) have
made remarkable success on complex tasks, with recent advances in reasoning leading to longer
and more sophisticated responses. This progress, however, is often hampered by the inherent la-
tency of their serial, autoregressive generation process. Speculative decoding (SD) (Leviathan et al.,
2023) addresses this efficiency bottleneck with a draft-then-verify paradigm. A small, fast drafter
proposes candidate tokens, which the large target model then verifies them in a single parallel pass,
significantly accelerating inference without compromising output quality.

Research on speculative decoding has predominantly focused on optimizing the drafting stage, fol-
lowing two main avenues: (i) reducing the drafter’s size to accelerate generation, and (ii) enhanc-
ing draft quality to improve acceptance rates. Medusa (Cai et al., 2024) and EAGLE (Li et al.,
2024a) adopt lightweight drafting heads and a single lightweight draft layer, respectively, short-
ening the compute path and markedly increasing drafting throughput. Building on this design,
subsequent work further raises acceptance rates by more judiciously allocating draft positions and
lengths (Li et al., 2024b; Zhang et al., 2024b) and by exploring improved training paradigms for
the drafter (Zhang et al., 2024a; Li et al., 2025; Liu et al., 2024). In addition, several verification-
side approaches (Bachmann et al., 2025; Narasimhan et al., 2024) relax verification constraints to
likewise improve acceptance rates, which in essence is still aimed at identifying high-quality drafts.

An analysis of the end-to-end latency (Lemma 1) in the speculative decoding paradigm reveals a
critical oversight: while existing work has effectively reduced latency with more lightweight and
better-aligned drafters, the verification cost has been largely ignored. This factor has now emerged
as a critical bottleneck limiting further efficiency gains. This observation inspired our investigation
into a more lightweight verification process, exploring whether the verification role of the large
target model could be effectively handled by a much more efficient, lightweight verifier.

Our answer to this question is a qualified “yes”. We find that smaller models from the same family
as the target model (e.g., Qwen3-1.7B and Qwen3-32B) show significant potential, as they exhibit
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Figure 1: Comparison of standard speculative decoding and TriSpec. Case I: The proxy verifier
provides local correction of drafts, bypassing the large-scale target model to gain speed. Case II:
If the proxy’s verification is deemed untrusted before the first rejection, the corresponding tokens
are escalated to the target model for authoritative validation to ensure accuracy. TriSpec employs a
margin-based criterion to classify proxy verification as trusted or untrusted.

a high degree of alignment with the output distribution. Consequently, a small model can reliably
replaces the target model for verifying the majority of tokens, and the challenge lies in a small subset
of tokens where their capabilities diverge. To delineate this capability boundary, we design a specific
margin metric that effectively distinguishes between when the smaller model is competent to handle
the verification task and when it must defer to the larger target model (Figure 2(b)).

Based on these insights, we propose TriSpec, a ternary speculative decoding paradigm that co-
ordinates three models with complementary roles. A single-layer drafter (draft model) provides
high-throughput drafting; a lightweight proxy verifier (proxy model) quickly pre-verifies the draft
and locally corrects a subset of tokens; and a large verifier (target model) supplies authoritative
verification when needed (Figure 1). Extensive experiments on Qwen3 and DeepSeek-R1-Distill-
Qwen/LLaMA families demonstrate that TriSpec delivers significant speedups over SOTA specula-
tive decoding methods. In summary, our contributions are summarized as follows:

• We identify a new perspective on SD acceleration, the verification cost. We demonstrate
that smaller models from the same family exhibit strong alignment with their larger coun-
terparts, establishing their viability as lightweight and effective proxy verifiers.

• We propose TriSpec, a ternary speculative decoding paradigm that coordinates a drafter, a
proxy verifier, and the target model. We design a margin-based routing rule to dynamically
delegate verification tasks, engaging the computationally expensive target model only when
necessary to ensure accuracy while minimizing overhead.

• Extensive experiments show that TriSpec achieves up to a 30% speedup over standard
speculative decoding and reduces invocations of the target model by more than half. This
efficiency is achieved with a minimal average accuracy drop of less than 1%.

2 BACKGROUND AND ANALYSIS ON SPECULATIVE DECODING

2.1 SPECULATIVE DECODING

Standard speculative decoding follows a draft-then-verify paradigm with two models: a draft model
Md and a target modelMt. Let V denote a finite vocabulary with size V := |V|, and let the current
decoding prefix be X ∈ V l , including both the prompt and previously generated tokens.

Drafting phase. During drafting,Md autoregressively produces k probability distributions and the
corresponding sampled tokens:(

x
(d)
1 ,p

(d)
1

)
,
(
x
(d)
2 ,p

(d)
2

)
, . . . ,

(
x
(d)
k ,p

(d)
k

)
← Md(X), (1)

where each p
(d)
i ∈ RV is the softmax probability distribution produced by the draft model at position

i and x
(d)
i ∈ V is sampled from p

(d)
i . For a probability distribution p and a token x ∈ V , we write

p(x) for the probability assigned to x.
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(a) (b)

Figure 2: (a) Latency decomposition of speculative decoding across representative methods. EA-
GLE reduces drafting cost td via a single-layer design. EAGLE-3 and related methods further
enlarge the acceptance length τ by improving draft token quality. Our proposed TriSpec introduces
a new perspective by reducing verification cost tv , thereby lowering overall latency L. (b) Distribu-
tion of token outcomes versus the proxy’s top-1–top-2 probability margin on ShareGPT. Areas are
stacked and globally normalized, so the total across all classes sums to 1.

Verification phase. In the verification stage, the target modelMt evaluates drafted tokens through
a single parallel forward pass:

(x
(t)
1 ,p

(t)
1 ), (x

(t)
2 ,p

(t)
2 ), . . . , (x

(t)
k+1,p

(t)
k+1) ← Mt(x

(d)
1 , x

(d)
2 , . . . , x

(d)
k | X), (2)

where x
(t)
i ∈ V and p

(t)
i ∈ RV denote the token and the probability distributions generated by the

target model, respectively. The verification process proceeds sequentially from left to right: each
token x

(d)
i is accepted with probability min(1, p

(t)
i (xi)/p

(d)
i (xi)) and appended to the output if

accepted. Upon the first rejection, all remaining drafted tokens are discarded, and a replacement
is sampled from the normalized positive residual of the target distribution norm(max(0, ,p

(t)
i −

p
(d)
i )). After resampling, a new round of speculative decoding starts from the updated prefix. Prior

work (Chen et al., 2023) has rigorously established that speculative sampling reproduces the exact
output distribution of naive target-model decoding and is therefore provably lossless.

2.2 LATENCY ANALYSIS OF SPECULATIVE DECODING

Lemma 1 (Latency decomposition for SD). Consider a speculative decoding process that generates
N new tokens. Let τ denote the average acceptance length (tokens accepted per verification round),
and let td, tv , and to be the average per-round drafting time, verification time, and other overhead,
respectively. Then the end-to-end latency satisfies

L =
N

τ

(
td + tv + to

)
. (3)

In practice, to is typically small and approximately constant compared to td and tv , and since stan-
dard SD is theoretically lossless (Chen et al., 2023), N can be considered constant. Consequently,

L ∝ td + tv
τ

. (4)

Remark 1. Recent progress on latency reduction has primarily been achieved by decreasing td
and increasing τ . Early SD employed a separate lightweight model as the drafter (Leviathan et al.,
2023), but the use of multi-layer attention rendered the drafting stage latency-dominant (Figure 2(a),
Sps). Lightweight drafter designs, such as the drafting heads in Medusa (Cai et al., 2024) and the
single drafting layer in EAGLE (Li et al., 2024a), significantly reduce td while maintaining a high τ
(Figure 2(a), EAGLE), making them the prevailing approach. To further increase τ , subsequent work
has improved draft-token prediction accuracy by exploring more effective draft-tree architectures (Li
et al., 2024b) and training schemes (Zhang et al., 2024a; Li et al., 2025) (Figure 2(a), EAGLE-3).
With Multi-Token Prediction (MTP) (Liu et al., 2024) integrating draft-model training into the pre-
training stage, the acceptance rate of draft tokens can even reach as high as 90%.

Remark 2. Little progress has been made in directly reducing the per-round verification time tv . In
state-of-the-art pipelines (e.g., EAGLE-3), verification has become the dominant source of per-round
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latency, as each target-model invocation traverses a long computational path with a large parameter
budget. A straightforward idea is to employ a lightweight verifier to offload part of the verification
from the target, thereby reducing the average verification time across rounds.

3 TRISPEC

In this section, we propose TriSpec, a ternary speculative decoding framework that integrates a
single-layer drafter (draft model), a lightweight proxy verifier (proxy), and the target model.

3.1 PROXY CHOICE: SAME-FAMILY SMALLER MODELS

We show that smaller models from the same family are strong candidates for lightweight proxy
verifiers capable of reducing verification costs, based on the following two key properties.

Strong Alignment. Because SD verifies tokens individually, we assess token-level alignment be-
tween the proxy and the target model on the ShareGPT dataset using Qwen3-family models. At
each position, we compare the proxy’s prediction of the next token with the target’s and classify
the results into three categories: exact match (same token), acceptable mismatch (different token but
considered acceptable by a stronger LLM), and unacceptable mismatch (otherwise). The experiment
details are provided in Appendix C.2. Under this protocol, the proxy achieves 82% exact match with
the target (EAGLE-3 drafter: 68%), with only 6% of tokens deemed unacceptable, demonstrating a
strong alignment at the token level.

Trustworthy outputs. Beyond strong alignment with the target, the proxy’s outputs are themselves
trustworthy. In the standalone example (Appendix C.1), despite phrasing differences, the proxy and
target reach the same final answer, indicating that modest token-level discrepancies between them
are tolerable. Consistently, the end-to-end relaxed-verification experiments (Appendix C.3) show
that limited deviations from the target do not materially affect accuracy. For routing, the key ques-
tion is which positions can be trusted under proxy verification. Intuitively, when the proxy is more
confident in its top-1 prediction, it is less likely to diverge from the target, and its influence on the
final answer is smaller. We quantify verification confidence as the margin between the proxy’s top-
1 and top-2 probabilities at each position. As shown in Figure 2(b), this margin cleanly stratifies
tokens: when the margin is large (e.g., > 0.5), most proxy predictions are acceptable, whereas un-
acceptable tokens concentrate near zero. Thus, the margin provides an effective, actionable criterion
for classifying the proxy’s output as trusted or untrusted.

3.2 TERNARY SPECULATIVE DECODING

Drafter selection and adapter training. We choose the single-layer drafter architecture proposed
by EAGLE (Zhang et al., 2024a; Li et al., 2025; 2024a) as our draft model, since it provides state-
of-the-art efficiency in drafting. A central principle of EAGLE is that feature-level autoregression is
empirically simpler than token-level autoregression. Accordingly, the drafter conditions on both the
immediately preceding token and its corresponding features. In particular, for the first token, it must
be seeded with features computed by the proxy or target model.

To support proxy-based verification, the drafter in TriSpec must flexibly accept features from either
source. As illustrated in Figure 3(a), we extend the original EAGLE architecture with a one-layer
MLP adapter that maps proxy features into the drafter’s expected feature space. This adapter can
be trained under two regimes: (i) joint training from scratch, where the drafter and adapter are op-
timized together using proxy and target features; or (ii) adapter-only finetuning, where a pretrained
EAGLE drafter’s weights are fixed and only the adapter is trained. We provide empirical compar-
isons of these regimes in Section 4.4.

Proxy pre-Verification. After the drafter produces a length-k draft as in Eq. 1, we exploit the lower
query cost of the proxy verifier to screen the draft before invoking the target. Concretely, given the
drafted pairs (x(d)

1 ,p
(d)
1 ), . . . , (x

(d)
k ,p

(d)
k ), the proxyMp performs a single parallel pass and returns

its own token predictions and distributions:(
x
(p)
1 ,p

(p)
1

)
,
(
x
(p)
2 ,p

(p)
2

)
, . . . ,

(
x
(p)
k+1,p

(p)
k+1

)
← Mp

(
x
(d)
1 , x

(d)
2 , . . . , x

(d)
k

∣∣X), (5)
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Figure 3: (a) Training pipeline of the draft model and adapter in TriSpec. The green, yellow, and gray
modules represent the target, proxy, and drafter components, respectively. (b) Draft tree pruning and
tree attention mask mechanisms in TriSpec.

where x
(p)
i ∈ V and p

(p)
i ∈ RV denote the proxy’s next-token prediction and its softmax dis-

tribution, respectively. Analogous to standard speculative decoding, the proxy determines token
acceptance by comparing its probability distribution with that of the drafter. Formally, for each draft
token x

(d)
i , we define a Bernoulli acceptance variable

si ∼ Bernoulli

(
min

{
1,

p
(p)
i (x

(d)
i )

p
(d)
i (x

(d)
i )

})
, i = 1, . . . , k,

which in the greedy case reduces to si = 1{x(p)
i = x

(d)
i }. Then, the proxy-side acceptance length is

τa = min
(
{ i− 1

∣∣ 1 ≤ i ≤ k, si = 0} ∪ {k}
)
. (6)

Margin-based routing strategy. Although informative, proxy-side verification alone is not suffi-
ciently reliable. Empirically (see §3.1), we observe that the margin between the proxy’s top-1 and
top-2 probabilities correlates strongly with reliability. Motivated by this, we introduce a margin-
based binary predicate g : RV → {0, 1} to assess whether the proxy’s verification can be trusted:

g
(
p
(p)
i

)
= 1

{
top1

(
p
(p)
i

)
− top2

(
p
(p)
i

)
≥ λ

}
, i = 1, . . . , k + 1, (7)

where top1(x) and top2(x) denote the largest and second-largest entries of x, and λ ∈ (0, 1) is a
tunable threshold controlling the accuracy–latency trade-off. To measure how long we can rely on
the proxy before escalation, we define the proxy-trusted prefix length as the longest initial segment
that passes the margin test:

τm = min
(
{ i− 1

∣∣ 1 ≤ i ≤ k + 1, g(p
(p)
i ) = 0} ∪ {k + 1}

)
. (8)

In particular, if g(p(p)
i ) = 1 for all i, then τm = k + 1, indicating that the proxy’s verification is

trusted for the entire draft and can reliably produce the (k + 1)-th token.

Then, the procedure of verification can be divided into two cases, depending on the necessity of
invoking the target:

(i) If τa < τm, the proxy’s verification remains trustworthy at the first rejection point, and it can
complete the verification round without invoking the target model (Figure 1 center). Accordingly, we
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Algorithm 1 TriSpec in a single round

1: Inputs: Draft modelMd, ProxyMp, TargetMt, input prefix X , margin-based threshold λ
2: for i = 1 to k do ▷ Sample k draft tokens fromMd autoregressively
3: p

(d)
i ←Md(X + [x1, . . . , xi−1])

4: xi ∼ p
(d)
i

5: end for
6: τa, [p

(p)
1 , . . . ,p

(p)
k+1]← Verify(Mp, X + [x1, . . . , xk]) ▷ Pre-verification byMp

7: g(p
(p)
i )← 1

{
top1(p

(p)
i )− top2(p

(p)
i ) ≥ λ

}
, i = 1, . . . , k + 1 ▷ Margin-based rule

8: τm ← min({ i− 1 | 1 ≤ i ≤ k + 1, g(p
(p)
i ) = 0} ∪ {k + 1}) ▷ Proxy-trusted prefix length

9: if τa < τm then ▷ Without invoking the target
10: xbonus ∼ p

(p)
τa+1

11: return X + [x1, . . . , xτa , xbonus]
12: else ▷ invoking the target for authoritative verification
13: τt, [p

(t)
τm+1, . . . ,p

(t)
k+1]← Verify(Mt, X + [x1, . . . , xk]) ▷ Verification byMt

14: xbonus ∼ p
(t)
τm+τt+1

15: return X + [x1, . . . , xτm+τt , xbonus]
16: end if

accept x(d)
1:τa

and locally correct the next token by replacing it with x
(p)
τa+1. The generated sequence

for this round is Y = {x(d)
1 , . . . , x

(d)
τa , x

(p)
τa+1}.

(ii) If τa ≥ τm, the proxy’s verification is deemed untrusted before the first rejection point, so the
verification is thus delegated to the target model (Figure 1 right). We first accept x(d)

1:τm
, prune these

tokens from the draft tree (Figure 3(b)), and pass the remaining branches to the target for validation:

(x
(t)
τm+1,p

(t)
τm+1), . . . , (x

(t)
k+1,p

(t)
k+1) ← Mt(x

(d)
τm+1, . . . , x

(d)
k | X,x

(d)
1:τm

), (9)

Applying the standard left-to-right acceptance rule to p(t) yields the target-verified acceptance
length τt. The generated sequence for this round is Y = {x(d)

1 , . . . , x
(d)
τm+τt , x

(t)
τm+τt+1}.

4 EXPERIMENTS

4.1 SETUP

Models and baselines. We evaluate TriSpec on three model families: Qwen3, DeepSeek-R1-Distill-
Qwen (denoted by DSQ), and DeepSeek-R1-Distill-LLaMA (denoted by DSL). Specifically, we
use Qwen3-32B, DSQ-32B, and DSL-70B as the target models, with Qwen3-1.7B, DSQ-1.5B, and
DSL-8B as the proxy verifiers. For each target model, we use the corresponding HASS/EAGLE3
weights as the draft models. To ensure fairness, all draft models are trained from scratch on the same
data using the official HASS and EAGLE3 codebases. As baselines, we include standard speculative
decoding and three methods for relaxed verification proposed by SpecCascade (Narasimhan et al.,
2024), plus proxy-only and target-only decoding as reference points. For all SD methods, we follow
the EAGLE-2 configuration during inference: draft tree depth 6, expansion top-k 10, and a total
budget of 60 drafted tokens. The margin threshold λ in TriSpec is set to 0.5. The details of baselines
and other implementations are shown in Appendix D.1.

Benchmarks. We evaluate on challenging reasoning benchmarks: three mathematical reasoning
datasets (GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), Gaokao-2023-EN) and
two code-generation datasets (HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)). To
further evaluate performance across different domains, we also include two general-domain tasks,
SpecBench (Xia et al., 2024) and HotpotQA Yang et al. (2018), as well as one extremely challenging
multilingual benchmark, Polymath Wang et al. (2025b). To prevent excessive GPU memory usage,
we set the maximum generation length to 8192 tokens. Consistent with prior work (Cai et al., 2024;
Li et al., 2025) on speculative decoding, we fix the batch size to 1. Given the inference cost of
reasoning models, we randomly select 100 samples of each benchmark.
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Table 1: Accuracy and speedup of different methods on five reasoning benchmarks, evaluated with
a sampling temperature of 0. “SC” denotes the SpecCascade baseline.“HASS/EAGLE3 + TriSpec”
refers to a draft model trained under the HASS or EAGLE3 pipeline and employing TriSpec for
proxy-based verification.

GSM8K MATH500 GK23-en HumanEval MBPP Avg

Model Method Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

Qwen3

Single Model (Target,32B) 98% 1.00x 85% 1.00x 75% 1.00x 87% 1.00x 77% 1.00x 84.4% 1.00x
Single Model (Proxy,1.7B) 86% 2.36x 81% 3.01x 70% 3.03x 81% 2.93x 51% 2.92x 73.8% -10.6% 2.85x

HASS 98% 2.98x 86% 2.27x 74% 2.30x 87% 2.03x 77% 2.18x 84.4% ±0% 2.35x
HASS + SC[Chow] 80% 3.33x 55% 2.60x 51% 2.64x 74% 2.23x 56% 2.33x 63.2% -21.2% 2.63x
HASS + SC[OPT] 76% 3.25x 38% 2.66x 33% 2.65x 49% 2.30x 20% 2.34x 43.2%-41.2% 2.64x
HASS + SC[Token] 98% 3.10x 86% 2.34x 74% 2.39x 87% 2.15x 74% 2.28x 83.8% -0.6% 2.63x
HASS + TriSpec 97% 3.85x 86% 3.18x 75% 3.26x 86% 2.99x 74% 2.80x 83.6% -0.8% 3.22x

EAGLE3 98% 3.25x 87% 2.73x 74% 2.77x 87% 2.71x 76% 2.77x 84.4% ±0% 2.85x
EAGLE3 + SC[Chow] 95% 3.39x 70% 2.91x 58% 2.94x 76% 2.82x 67% 2.85x 73.2% -11.2% 2.98x
EAGLE3 + SC[OPT] 93% 3.43x 58% 3.06x 42% 3.01x 61% 2.91x 49% 2.87x 60.6%-23.8% 3.06x
EAGLE3 + SC[Token] 98% 3.34x 86% 2.90x 74% 2.91x 87% 2.78x 76% 2.85x 84.2% -0.2% 2.96x
EAGLE3 + TriSpec 98% 4.18x 88% 3.49x 74% 3.55x 87% 3.27x 74% 3.24x 84.2% -0.2% 3.55x

DSQ

Single Model (Target,32B) 93% 1.00x 86% 1.00x 74% 1.00x 85% 1.00x 72% 1.00x 82.0% 1.00x
Single Model (Proxy,1.5B) 72% 3.09x 76% 3.32x 62% 3.33x 54% 3.22x 38% 3.32x 60.4% -21.6% 3.26x

HASS 93% 3.28x 88% 2.99x 72% 2.90x 84% 2.78x 73% 3.02x 82.0% ±0% 2.99x
HASS + SC[Chow] 77% 3.46x 51% 3.22x 44% 3.06x 75% 2.85x 62% 3.10x 61.8% -20.2% 3.14x
HASS + SC[OPT] 77% 3.59x 39% 3.20x 20% 3.18x 41% 2.88x 18% 3.12x 39.0%-43.0% 3.19x
HASS + SC[Token] 91% 3.41x 85% 3.13x 69% 2.96x 84% 2.80x 72% 3.04x 80.2% -1.8% 3.07x
HASS + TriSpec 91% 3.76x 87% 3.41x 74% 3.33x 85% 2.98x 71% 3.24x 81.6% -0.4% 3.34x

EAGLE3 93% 3.42x 88% 3.19x 74% 3.11x 86% 3.09x 72% 3.27x 82.6% +0.6% 3.22x
EAGLE3 + SC[Chow] 84% 3.67x 69% 3.47x 51% 3.43x 72% 3.19x 64% 3.33x 68.0% -14.0% 3.42x
EAGLE3 + SC[OPT] 81% 3.69x 58% 3.51x 45% 3.46x 54% 3.23x 48% 3.33x 57.2%-24.8% 3.44x
EAGLE3 + SC[Token] 92% 3.54x 82% 3.36x 72% 3.26x 86% 3.18x 70% 3.27x 80.4% -1.6% 3.32x
EAGLE3 + TriSpec 91% 4.14x 88% 3.69x 75% 3.63x 88% 3.32x 69% 3.57x 82.2% +0.2% 3.67x

DSL

Single Model (Target,70B) 88% 1.00x 90% 1.00x 78% 1.00x 87% 1.00x 79% 1.00x 84.4% 1.00x
Single Model (Proxy,8B) 77% 3.71x 83% 3.73x 73% 4.01x 80% 3.89x 59% 4.03x 74.4% -20.0% 3.87x

EAGLE3 88% 2.83x 89% 2.35x 76% 2.31x 84% 2.49x 80% 2.40x 83.4% -1.0% 2.48x
EAGLE3 + SC[Chow] 82% 2.90x 81% 2.50x 65% 2.61x 74% 2.58x 71% 2.57x 74.6% -9.8% 2.63x
EAGLE3 + SC[OPT] 78% 3.02x 66% 2.84x 48% 2.93x 60% 2.89x 51% 2.91x 60.6% -23.8% 2.92x
EAGLE3 + SC[Token] 87% 2.92x 88% 2.43x 75% 2.56x 85% 2.69x 78% 2.65x 82.6% -1.8% 2.65x
EAGLE3 + TriSpec 86% 3.74x 88% 3.35x 77% 3.36x 87% 3.07x 76% 3.29x 82.8% -1.6% 3.36x

Metrics. For task performance, we report pass@1 accuracy on all reasoning tasks, while using an
LLM judge score for general-domain tasks. For efficiency, we report throughput (tokens per second,
tps) and compute speedup ratio from throughput relative to naive target-only decoding. To better
quantify target invocations, we introduce the target-invocation ratio (rt), defined as the number of
target model invocations divided by the number of generated tokens. A smaller rt indicates reduced
reliance on the target and a lighter verification footprint.

4.2 EFFECTIVENESS OF TRISPEC

Table 1 reports the performance and efficiency of TriSpec under a sampling temperature of 0. On all
benchmark, TriSpec maintains performance on both mathematical and coding tasks, with an average
loss no greater than 1%. At the same time, proxy-based verification yields higher throughput than
standard SD verification. On Qwen3, TriSpec raises the average speedup of HASS from 2.30×
to 3.26× and of EAGLE3 from 2.77× to 3.55×, i.e., roughly a 30% relative improvement; on the
R1-Distill-Qwen and R1-Distill-LLaMA family, TriSpec likewise delivers about a 15% and 35%
gain over the corresponding standard SD pipelines. By contrast, other lossy approaches based on
single-layer drafters (e.g., SpecCascade) struggle to balance accuracy and speedup benefits while
delivering speedups, which highlights the superiority of TriSpec. Detailed discussions of these
methods are provided in the Appendix C.3.

A detailed breakdown of MATH500 and HumanEval is presented in Table 3. To avoid the impact of
repeated generation caused by erroneous reasoning, we compare TriSpec only with standard SD. By
introducing a proxy verifier to pre-validate drafts, TriSpec substantially reduces target invocations
(e.g., 25% vs. 10.24% for HASS and 21.8% vs. 9.95% for EAGLE3 on MATH500 with Qwen3
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Table 2: Accuracy and speedup of different methods on five reasoning benchmarks, evaluated with
a sampling temperature of 1.

GSM8K MATH500 GK23-en HumanEval MBPP Avg

Model Method Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

Qwen3

Single Model (Target,32B) 98% 1.00x 85% 1.00x 76% 1.00x 87% 1.00x 76% 1.00x 84.4% 1.00x
Single Model (Proxy,1.7B) 88% 2.62x 80% 2.84x 73% 2.90x 76% 2.90x 61% 2.90x 75.6% -8.8% 2.83x

HASS 96% 2.61x 86% 2.05x 75% 2.05x 88% 1.96x 74% 1.94x 83.8% -0.6% 2.12x
HASS + TriSpec 95% 3.01x 84% 2.51x 77% 2.54x 89% 2.31x 72% 2.25x 83.4% -1.0% 2.52x

EAGLE3 98% 2.78x 84% 2.55x 77% 2.52x 86% 2.58x 74% 2.52x 83.8% -0.6% 2.59x
EAGLE3 + TriSpec 96% 3.33x 86% 3.06x 76% 3.13x 88% 2.94x 73% 2.93x 83.8% -0.6% 3.08x

DSQ

Single Model (Target,32B) 92% 1.00x 88% 1.00x 77% 1.00x 88% 1.00x 76% 1.00x 84.2% 1.00x
Single Model (Proxy,1.5B) 71% 2.99x 78% 2.91x 66% 3.15x 62% 3.12x 47% 3.11x 64.8% -19.4% 3.06x

HASS 90% 2.97x 87% 2.19x 76% 2.33x 90% 1.98x 75% 2.04x 83.6% -0.6% 2.30x
HASS + TriSpec 89% 3.27x 87% 2.47x 77% 2.74x 87% 2.12x 73% 2.18x 82.6% -1.6% 2.56x

EAGLE3 92% 3.14x 85% 2.40x 77% 2.53x 89% 2.23x 76% 2.29x 83.8% -0.4% 2.52x
EAGLE3 + TriSpec 88% 3.40x 87% 2.79x 79% 2.92x 88% 2.36x 72% 2.42x 82.8% -1.4% 2.78x

DSL

Single Model (Target,70B) 87% 1.00x 88% 1.00x 75% 1.00x 87% 1.00x 80% 1.00x 83.4% 1.00x
Single Model (Proxy,8B) 72% 3.80x 81% 3.92x 70% 3.95x 79% 3.93x 60% 3.96x 72.4% -11.0% 3.91x

EAGLE3 85% 2.79x 88% 1.98x 76% 2.05x 88% 2.01x 81% 1.96x 83.2% +0.2% 2.16x
EAGLE3 + TriSpec 86% 3.93x 89% 2.74x 78% 3.06x 89% 2.32x 78% 2.39x 84.0% +0.6% 2.89x

Table 3: Comparison of per-sample averages across all methods on MATH500 and HumanEval:
Target-invocation ratio (rt), average per-round verification time (tv), average acceptance length (τ ),
Latency(L), and Speed.

MATH500 HumanEval

Model Method rt tv(s) τ L(s) Speed(Tok/s) rt tv(s) τ L(s) Speed(Tok/s)

Qwen3

Single Model (Target,32B) 100.00% / / 258.76 14.24 100.00% / / 234.27 14.65

HASS 25.01% 0.094 4.21 115.04 32.45 27.14% 0.103 3.93 119.32 29.80
HASS + TriSpec 10.24% 0.070 4.39 83.03 45.26 11.61% 0.077 4.41 78.74 43.38

EAGLE3 21.38% 0.094 4.72 97.52 38.96 22.05% 0.103 4.60 86.62 39.76
EAGLE3 + TriSpec 9.95% 0.071 4.59 74.73 49.74 11.15% 0.080 4.76 71.83 48.00

DSQ

Single Model (Target,32B) 100.00% / / 156.82 16.82 100.00% / / 163.68 17.35

HASS 22.59% 0.068 4.50 47.92 50.29 23.55% 0.072 4.16 56.75 48.40
HASS + TriSpec 11.10% 0.054 4.31 43.25 57.30 14.20% 0.061 4.05 52.90 51.15

EAGLE3 20.67% 0.068 4.79 46.13 53.77 21.45% 0.072 4.54 51.80 53.66
EAGLE3 + TriSpec 10.63% 0.055 4.78 42.06 60.03 13.25% 0.064 4.54 48.92 57.02

DSL

Single Model (Target,70B) 100.00% / / 256.79 8.22 100.00% / / 254.18 8.37

EAGLE3 28.70% 0.144 3.48 108.89 19.33 26.88% 0.147 3.66 107.92 20.84
EAGLE3 + TriSpec 11.60% 0.093 3.64 78.32 27.54 15.18% 0.114 3.59 87.51 25.70

family). Although TriSpec introduces a pre-validating pass, the reduced number of target invoca-
tions leads to a significant drop in the average per-round verification time tv . Meanwhile, thanks
to the proxy’s strong alignment with the target, the average acceptance length τ remains stable.
Consequently, the end-to-end latency decreases relative to standard SD.

We further evaluate TriSpec at a sampling temperature of 1.0 on Table 2. Under non-deterministic
decoding, TriSpec continues to deliver notable speedup gains while maintaining competitive accu-
racy, with an average accuracy drop no greater than 2% and speedup improvements ranging from
10% to 35% across different model families. Additionally, as shown in Appendix B.1, TriSpec
maintains strong performance across general-domain and extremely challenging benchmarks, fur-
ther evidencing its ability to generalize beyond standard reasoning tasks.

4.3 ROUTING STRATEGIES

We examine two routing families: rule-based and training-based. In the rule-based design, we use
only features from the proxy verifier rather than the draft model, because the limited capacity of the
draft models can introduce semantic bias into routing decisions. Concretely, we evaluate three rules:
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(a) (b)

Figure 4: (a) Accuracy–speed trade-offs of different routing strategies. (b) Decoding speed under
varying draft lengths for standard speculative decoding and TriSpec. All experiments are conducted
on the MATH500 dataset using Qwen3-32B as the target model.

Table 4: Performance under different draft model training strategies on the Qwen3 family. TP
denotes Training Parameters in billions.

MATH500 HumanEval

Method Training Strategy TP τ rt Speedup τ rt Speedup

HASS / 0.21 4.21 25.01% 2.27x 3.93 27.14% 2.03x
HASS + TriSpec joint training from scratch 0.26 4.39 10.24% 3.18x 4.42 11.61% 2.99x
HASS + TriSpec adapter-only finetuning 0.05 4.31 10.38% 3.08x 4.37 11.76% 2.95x

EAGLE3 / 1.35 4.72 21.38% 2.73x 4.60 22.05% 2.71x
EAGLE3 + TriSpec joint training from scratch 1.77 4.59 9.95% 3.49x 4.76 11.15% 3.27x
EAGLE3 + TriSpec adapter-only finetuning 0.42 4.52 9.99% 3.44x 4.65 11.40% 3.21x

(i) the top-1 probability of the proxy; (ii) a composite criterion that combines top-1 probability and
entropy (Wang et al., 2025a); and (iii) the probability margin between the top-1 and top-2 candidates,
which is the strategy ultimately adopted by TriSpec. For the training-based approach, we follow the
R2R dataset (Fu et al., 2025) and training procedure to train a lightweight router that identifies
divergent tokens and coordinates escalation between the proxy and the target.

Figure 4(a) shows the accuracy–speedup trade-offs across routing rules and hyperparameters. Under
appropriately calibrated thresholds, all approaches preserve accuracy to within negligible degrada-
tion, whereas their attainable speedups vary across methods. Empirically, the probability margin
between the top-1 and top-2 candidates provides the strongest accuracy–speed trade-off, so we adopt
margin-based routing as the default in TriSpec.

4.4 DRAFT MODEL TRAINING STRATEGIES

EAGLE-family draft models are parameter-efficient and relatively inexpensive to train. We recom-
mend joint from-scratch training of the draft model backbone and the adapter, which best accom-
modates feature inputs from both the target and the proxy. When backbone weights are already
available, we also consider adapter-only finetuning for TriSpec to reduce the training cost.

To compare different strategies, we use acceptance length to measure draft quality and training
parameters (TP) to assess the training cost. As shown in Table 4, the two strategies yield very similar
outcomes: joint from-scratch training attains slightly longer acceptance lengths, while adapter-only
finetuning achieves comparable quality with lower training cost. In all cases, the resulting systems
deliver end-to-end speed that substantially exceeds standard SD verification.

4.5 ABLATION STUDIES.

Token pruning strategy. In the case II of TriSpec, the target model participates in the verification
process. Since verification is parallelized, the target model can either verify all draft tokens or

9
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trust the proxy verifier’s partial validation and verify the remaining tokens, i.e., performing token
pruning. Experiments in Table 5 show that the token pruning strategy can increase the acceptance
length while maintaining accuracy. This further validates that the proxy’s judgments are trustworthy
when the proxy exhibits high confidence in its predictions.

Table 5: Ablation study of token pruning strategy
on Qwen3 family. Results are averaged across all
five benchmarks.

τ Acc. Speedup

w/ Token pruning 4.71 84.2% 3.55x
w/o Token pruning 4.58 84.2% 3.46x

Draft length. The number of tokens drafted per
round (draft length) affects the verification path
and the attainable speedup. Under proxy-based
verification, TriSpec may accept shorter drafts
due to mismatches between proxy and target
behaviors, or longer drafts owing to the token
pruning mechanism, so the optimal draft length
can differ from standard SD. Figure 4(a) com-
pares throughput across draft lengths for stan-
dard SD and TriSpec. For the Qwen3 family on
MATH500, TriSpec is faster at all draft lengths,
and the optimal draft length shifts modestly relative to standard SD—slightly longer with HASS-
trained drafters (from 4 to 5) and slightly shorter with EAGLE3-trained drafters (from 5 to 4).

5 RELATED WORK

Beyond the approaches discussed earlier, several lines of work accelerate SD in specific settings.
On the drafting side, retrieval-based methods such as REST (He et al., 2023) and LLMA (Yang
et al., 2023) identify suitable draft tokens by matching relevant segments from the input context.
Cache-reuse approaches, including GLIDE (Du et al., 2024), and MoA (Zimmer et al., 2024), lever-
age the target model’s KV cache for fast drafting. Techniques like layer-skipping (Elhoushi et al.,
2024; Zhang et al., 2023) construct simplified draft models by partially reusing the parameters of
the target model. Within the single-layer drafter designs, AdaEAGLE (Zhang et al., 2024b) and
SpecDec++ (Huang et al., 2024) dynamically control the draft length to avoid unnecessary compu-
tation. On the verification side, AASD (Wang et al., 2025a) relaxes checks under controlled con-
ditions, and Traversal Verify adopts a leaf-to-root procedure for sequence-level verification (Weng
et al., 2025). Judge Decoding (Bachmann et al., 2025) trains a small judgment model to identify and
accept correct but misaligned drafts. Despite these advances, most methods primarily pursue higher
acceptance or cheaper drafting; the per-round verification time remains largely unaddressed.

Collaboration between a small language model (SLM) and a large language model (LLM) has
been explored for acceleration. R2R (Fu et al., 2025) earns a router to switch between the SLM
and LLM. SpecCascade (Narasimhan et al., 2024) combines cascaded inference with speculative
decoding to enable cooperative generation. TriForce (Sun et al., 2024) introduces a hierarchi-
cal multi-model framework that combines retrieval-based drafting with hierarchical speculation
to alleviate KV-cache bottlenecks in long-context settings. However, it is confined to specialized
long-context scenarios or requires a drafter with strong capability, making it incompatible with the
most efficient single-layer drafter designs. In contrast, we combine an SLM, an LLM, and a single-
layer drafter in a ternary framework that leverages the strengths of all three.

6 CONCLUSION

In this work, we introduced a new perspective for accelerating speculative decoding by reducing ver-
ification time and proposed TriSpec, a ternary framework that combines a lightweight proxy verifier
with the drafter and target model. By leveraging same-family smaller models as proxies, TriSpec
exploits their strong alignment and reliable outputs to offload a substantial fraction of verification
from the target, while a margin-based routing mechanism ensures accuracy is preserved through se-
lective escalation. Extensive experiments show that TriSpec achieves up to 30% additional speedup
over standard speculative decoding and sustains accuracy with minimal loss. These results highlight
the potential of proxy verification as a new and effective direction for speculative decoding.
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ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. This paper introduces TriSpec, a framework for
accelerating speculative decoding through proxy-based verification. TriSpec is a methodology-level
contribution and does not involve the collection or use of sensitive data, personal information, med-
ical records, or high-risk application domains. All experiments are conducted on publicly available
benchmarks for language modeling, reasoning, and code generation, without introducing privacy
concerns or potential harm to individuals or communities. We also considered potential societal
impacts: TriSpec lowers the computational barrier to LLM deployment, which may broaden acces-
sibility, but could also enable faster misuse if applied to harmful models. We therefore encourage
responsible and ethical application of our framework in research and industry.

REPRODUCIBILITY STATEMENT

We place strong emphasis on the reproducibility of TriSpec. A comprehensive description of the
method and experimental design is included in the main text, with further implementation details re-
ported in the Experiment Details section in appendix. All backbone models and benchmark datasets
employed in our study are publicly available, allowing researchers to directly replicate our setup.
In addition, we document all training and evaluation configurations, including parameter choices,
hyperparameter settings, and procedural workflows, to facilitate faithful reproduction of our results.
We commit to releasing our repository publicly after the paper’s acceptance.
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A LLM USAGE STATEMENT

Below we clarify how Large Language Models (LLMs) are used in this study. During manuscript
preparation, LLMs served only as broad writing assistants; they did not contribute to idea formation
or to drafting the technical substance. In our methodology, LLMs form a central component. Specif-
ically, our approach is designed to accelerate LLM usage; we rely on LLMs (e.g., Qwen3-32B) both
for constructing training data and for generating answers used in evaluation. Further specifics appear
in the ”Experiments” section of the main paper. The authors take full responsibility for all content
written under their name.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PERFORMANCE ON SUPPLEMENTARY BENCHMARKS

To evaluate the effectiveness of our method beyond standard reasoning tasks, we conduct ex-
periments on three additional benchmarks: SpecBench, HotpotQA, and Polymath. SpecBench
comprises 480 samples spanning six categories: multi-turn conversation, translation, summariza-
tion, question answering (QA), mathematical reasoning, and retrieval-augmented generation (RAG).
Within the multi-turn conversation category, the benchmark includes diverse open-ended tasks such
as writing, roleplay, extraction, and humanities. This benchmark offers a comprehensive evaluation
of model performance across a wide range of domains. HotpotQA is a natural-language, multi-hop
question answering benchmark with explicit supporting-fact supervision, offering a distinct QA for-
mat compared to SpecBench, for which we evaluate on a subset of 500 randomly selected samples.
Polymath is a multilingual mathematical reasoning benchmark covering 18 languages and four diffi-
culty levels. To assess performance in multilingual and extremely challenging scenarios, we sample
20 high-difficulty instances from each language, yielding 360 test samples in total.

For SpecBench, given that most tasks are open-ended, we adopt the LLM-judge protocol from
FastChat (Zheng et al., 2023), using GPT-4.1 as the judgment model to score responses from 0
to 10 on a per-turn basis. For HotpotQA and Polymath, we use accuracy as the evaluation metric.

As shown in Table 6, TriSpec consistently achieves stable speed-up over the standard speculative de-
coding (SD) framework in both general-domain and extremely difficult tasks. In terms of generation
quality, on the SpecBench benchmark, the overall average score decreases by only 0.2 compared
to the target model, substantially outperforming the proxy-only setting. On HotpotQA, TriSpec ex-
hibits almost no accuracy degradation. Even on Polymath, where the gap between the proxy and the
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Table 6: Accuracy and speed in general-domain and extremely difficult scenarios.

SpecBench Polymath HotpotQA

Method Score Speedup Accuracy Speedup Accuracy Speedup

Qwen3

Single Model (Target, 32B) 8.82 1.00x 27.8% 1.00x 93.0 1.00x
Single Model (Proxy, 1.7B) 7.33 2.72x 9.4% 3.35x 84.2 2.96x

EAGLE3 8.77 2.80x 27.20% 2.34x 92.8 2.77x
EAGLE3+TriSpec 8.62 3.17x 26.11% 3.11x 92.8 3.58x

Figure 5: Radar chart illustrating score and speed across all SpecBench categories. All experiments
are conducted using models from the Qwen3 family.

target model is considerable, TriSpec maintains performance close to that of the target model, while
delivering more than 30% speed-up over standard SD. Figure 5 presents the score and speed-up for
each SpecBench category, further confirming TriSpec’s effectiveness across diverse task types.

B.2 EVALUATION ON FULL BENCHMARKS AND STATISTICAL ROBUSTNESS ANALYSIS

To assess the stability and reliability of our evaluation, we conduct two complementary experiments.
First, we extend the evaluation from 100-sample subsets to the full benchmark datasets. Table 7
reports performance and efficiency results on the Qwen3 family models across the complete test
sets. Second, we perform repeated evaluation on the GSM8K benchmark by drawing eight distinct
random subsets of 100 samples and computing the mean results with error bars, as shown in Figure 6.
Error bars in all figures denote one standard deviation across the independent runs.

Both the full-benchmark evaluation and the repeated-subset experiments consistently show that
TriSpec achieves substantially higher generation speed compared to standard speculative decoding
(SD), while incurring only minor accuracy degradation. These findings align with our main conclu-
sions and indicate that the observed improvements are not an artifact of subset selection. Moreover,
the narrow error bars in Figure 6 indicate that performance variations introduced by random subset
sampling are minor, further supporting the robustness of the observed trends.

C FURTHER ANALYSIS OF THE THREE MODELS IN TRISPEC

C.1 STANDALONE EXAMPLES

Figure 7 shows a case of individual inferences made by the three models used in TriSpec within the
Qwen3 family. The smaller model from the same family (Qwen3-1.7B, proxy verifier) are implic-
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Table 7: Accuracy and speedup results on the full benchmark suite for Qwen3 family

GSM8K MATH500 Gaokao2023en Humaneval MBPP

Method Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

Single Model (Target, 32B) 94.9% 1.00x 86.8% 1.00x 78.2% 1.00x 86.6% 1.00x 74.8% 1.00x
Single Model (Proxy, 1.7B) 86.0% 2.52x 78.2% 2.87x 69.9% 2.76x 77.4% 2.87x 52.8% 2.93x
EAGLE3 94.3% 3.29x 88.0% 2.77x 77.1% 2.77x 87.2% 2.72x 74.2% 2.71x
EAGLE3 + TriSpec 92.9% 4.08x 87.4% 3.48x 77.4% 3.39x 86.0% 3.23x 71.4% 3.33x

Figure 6: Error bars (one standard deviation) of accuracy and speed for four generation methods
across repeated random subset sampling.

itly aligned with the target model (Qwen3-32B), exhibiting notable similarity in response format
and language style, reflecting their strong alignment. Additionally, the smaller model demonstrates
reasonable inference capabilities. While there are token-level differences compared to the target
model, they are still able to produce correct answers, showcasing the reliability of their outputs.

In contrast, the single-layer drafter (EAGLE3), although trained to mimic the target model’s be-
havior, suffers from weaker contextual understanding due to the significant reduction in attention
computations. Without periodic supervision from the target model during generation, the outputs
often become illogical.

We are asked to calculate: 
55^2 - 25^2;
This is a difference of squares, 
which follows the identity: 
a^2 - b^2 = (a - b)(a + b);
Let’s apply this identity with 
a=55 and b=25:
55^2 - 25^2 = (55 - 25)(55 + 25) 
= (30)(80)= 2400;
Final Answer: 2400

We are going to calculate: 
55^2 - 25^2;
So we can use the difference of 
squares formula:
a^2 - b^2 = (a - b)(a + b);
Let a = 55 and b = 25:
55^2 - 25^2 = (55 - 25)(55 + 25) 
= (30)(80) = 2400;
Final Answer: 2400

We can use the 55 to 25 to 25 in 
the context of a number, and we 
can also factorial by 25.
Step1.The number of terms is 1.
Let’s say:
- 1/2 (a number of terms) 1.
- 1/2 (a number of terms) 2.
- 1/2 (a number of terms) 3.

...

...

Qwen3-32B: EAGLE3-Qwen3-32B:Qwen3-1.7B: 

Query:   Calculate 55^2 - 25^2

Figure 7: An example of standalone inference for the three models in TriSpec.
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C.2 TOKEN-LEVEL ALIGNMENT EXPERIMENTS

Experiment details To compare token-level alignment between the proxy verifier and the target
model, we use the ShareGPT dataset as a reference. First, we use Qwen3-32B as the target model
to generate autoregressive answers for each prompt. Then, we prefill the target completions using
Qwen3-1.7B (the proxy) and record the proxy’s next-token prediction at each position. A token
is considered an exact match if the proxy and target predictions coincide. For positions where
they differ, we consult a stronger judge (Qwen3-235B) with top-k = 3 and top-p = 0.9 sampling
parameters: if the proxy’s token is included in the set of tokens generated under these conditions,
we deem it acceptable; otherwise, it is considered unacceptable. For both the proxy and the target
model, temperature = 0 is used to ensure deterministic outputs.

Case Analysis We also performed token-level alignment comparisons for the single-layer drafter
(EAGLE3) and present a case in Figure 8, showcasing the token-level outputs of the three mod-
els along with their corresponding confidence scores. The proxy verifier typically shows higher
confidence for tokens that are exact matches, and slightly lower confidence for mismatched to-
kens, demonstrating the reliability of its judgments. Overall, the proxy verifier outperforms the
EAGLE3 drafter in alignment (82% vs. 68%). This advantage is particularly evident for decision-
critical tokens (e.g., “*” and “78”), enabling the proxy verifier to locally correct errors made by
the single-layer drafter in certain cases. Additionally, due to its limited capacity, the single-layer
drafter exhibits overconfidence in certain cases, making its confidence scores unreliable as a basis
for determining whether its outputs are acceptable.

Query

Target model output

Small model prefill
(82% matching ratio)

EAGLE3 prefill
(68% matching ratio)

 Calculate the sum of 1 to 12 

 ... So  sum  =  1 2 *  1 3  / 2 =  7 8. Let me verify that: 1 + 1 2 = 1 3 ...

                   0.76  0.86         0.98                           0.92      0.49                                       0.82 0.85  Confidence

Confidence

Target output

... ... ... ... ... ... ... ...
 ... So  sum  =  1 2 *  1 3  / 2 =  7 8. So  me verify that: 1 + 1 2 = 1 3 ...

 ... So  sum  =  1 2 *  1 3  / 2 =  7 8. Let me verify that: 1 + 1 2 = 1 3 ...

 ... So  that is 1 2 +  1 3  / 2 =  6 8. So  me verify that: 1 2 2 2 = 1 3 ...

... ... ... ... ... ... ... ...

                   0.56  0.68         0.89                           0.88      0.37                                       1.00 0.59  

Figure 8: Token-level comparison of three models in TriSpec. Blue highlights mark acceptable
mismatch tokens, and red highlights mark unacceptable mismatches. The reported matching ratios
are measured on all ShareGPT samples.

C.3 ATTEMPTS AT RELAXING VERIFICATION

This work primarily focuses on the verification side, aiming to accelerate SD by relaxing strict
verification constraints. In addition to the proxy-based verification used in TriSpec, another nat-
ural approach is to relax verification conditions to increase acceptance length, thereby achieving
acceleration. We examine two common relaxations in the SD pipeline: (i) confidence filtering,
which accepts a drafter token when the drafter’s confidence score (max pi) exceeds a threshold and
skips target verification, and (ii) top-k verification, which accepts the drafter token if it lies within
the top-k candidates of the target model. We experiment by separately using single-layer drafters
(HASS/EAGLE3 weights) and same-family smaller models as draft models. In these experiments,
we use a chain-based draft structure, with the draft length set to 3.

Single-layer drafter is difficult to relax. As shown in Figure 9(b), single-layer drafters degrade
rapidly under both settings. Confidence filtering admits high-confidence but incorrect drafts because
the single-layer drafter is capacity-limited and often overconfident. Top-k verification is brittle, as
it can accept incorrect near-optimal tokens, which single-layer drafters frequently emit at decision-
critical positions. Consequently, for single-layer drafters, relaxed verification is fragile, and small
relaxations already induce noticeable accuracy loss, which limits further acceleration.
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In our benchmark evaluation, we comprehensively assess the confidence-filter method across mul-
tiple benchmarks, with results reported in Table 1. Despite setting a relatively high threshold of
0.95, the relaxed verification based on the confidence filter still struggles to maintain accuracy. In
particular, it frequently induces repeated outputs, which we attribute to the single-layer drafter’s un-
warranted overconfidence discussed in Appendix C.2. This is also why we do not rely on feature
signals from the draft model when designing the routing strategy.

High-confidence mismatches in same-family smaller models can be tolerated. In contrast, re-
laxing verification for smaller models from the same family, when using an appropriate threshold,
does not lead to significant accuracy loss. This end-to-end experiment shows that high-confidence
mismatches in smaller models can typically be tolerated, further supporting their rationale as proxy
verifiers. A similar conclusion is also mentioned in the Judge Decoding (Bachmann et al., 2025).

(a) (b)

Figure 9: Verification relaxation in the Qwen3 family. The target model is Qwen3-32B, the small
model is Qwen3-1.7B, and HASS/EAGLE3 denote single-layer drafters trained with the respective
methods. (a–b) Accuracy on MATH500 under relaxed verification (confidence filtering and top-k
verification) across different drafters.

C.4 PROXY SELECTION IN TRISPEC

Token-Level Alignment across Model Scales Figure 10 compares the token-level exact match
ratio between Qwen3 models of varying parameter counts and the Qwen3-32B target model. Match
ratios increase with model size, but the marginal gains diminish beyond the 1.7B scale. Since token-
level alignment directly impacts a proxy’s ability to assist the target in verification, this trend is a key
factor in proxy selection. In particular, the 0.6B model surpasses the single-layer EAGLE3 drafter
by only about 6%, yielding relatively few local corrections. Conversely, the 4B model offers merely
a 2.5% increase over the 1.7B model, yet incurs substantially higher inference overhead. Balancing
speed and alignment effectiveness, we adopt the 1.7B model as the proxy in our main experiments.

Proxies from Different Model Families Employing cross-family models as proxies is a possi-
ble alternative, but it faces fundamental compatibility constraints. In particular, incompatible vo-
cabularies and tokenizers hinder reliable token-level verification and accurate local corrections of
drafted tokens. Furthermore, proxies whose generation behavior diverges substantially from that of
the target tend to bias verification decisions toward their own output distribution, lowering accep-
tance rates and disrupting the cooperative dynamics between the draft and target model. For these
reasons, TriSpec employs same-family proxies, which share the tokenizer and closely match the tar-
get’s output distribution, thereby enabling consistent token-level verification and maintaining stable
accuracy-latency trade-offs.
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Figure 10: Token-level exact match ratios of models with varying parameter scales and the EAGLE3
drafter, computed using Qwen3-32B predictions as reference.

D EXPERIMENT DETAILS

D.1 DRAFT TRAINING DETAILS

We follow the official codebases and guidelines from the respective papers to train the draft mod-
els. In TriSpec, the drafter’s backbone and adapter are jointly trained from scratch. Specifically,
HASS is trained on 68K ShareGPT examples, and EAGLE3 additionally incorporates UltraChat-
200K (Ding et al., 2023). Concretely, we first generate responses autoregressively with the target
model and then compute token-level hidden features offline with both the proxy and the target to
supervise baseline training and our adapter. Training is performed on 8× NVIDIA A100 80GB
GPUs, with hyperparameters set according to the official default settings unless otherwise noted.
Notably, during the EAGLE3 training process, we maintain a full vocabulary for training and set the
batch size to 1 to avoid out-of-memory errors. In terms of training time, for the 32B target model,
HASS/EAGLE3 typically requires 3-4 days, while TriSpec takes approximately 4-5 days due to the
additional requirement of training the proxy’s features. The details of the training cost are shown in
Table 8.

During inference, we follow the scripts provided by the official EAGLE implementation. All bench-
mark inference experiments are conducted on a single NVIDIA A100 80GB GPU.

Table 8: Training cost of EAGLE3 and TriSPec on Qwen3 family

Method Training Strategy Data Size Seq Len TP(B) Epochs Training Time(h)

EAGLE3 / 518K 2048 1.35 6 78
EAGLE3 + TriSpec joint-training 518K 2048 1.77 6 115
EAGLE3 + TriSpec adapter-only 518K 2048 0.42 3 44

D.2 BASELINE IMPLEMENTATION DETAILS: SPECCASCADE

We adopt SPECCASCADE as one of our main baselines. SPECCASCADE encompasses various rule-
based strategies for relaxed verification within speculative decoding. In our experiments, we imple-
ment three representative deferral rules:
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• Chow rule: This method compares the probability assigned by the draft model to a candi-
date token against a fixed threshold, accepting the token if it exceeds this threshold (see Ta-
ble 1 in the original SpecCascade paper). Notably, our confidence-filter method described
in Appendix C.2 is equivalent to the Chow rule.

• Optimal deferral rule: This method compares the probability assigned by the draft model
to the maximum probability from the target model’s distribution. The rejection threshold in
this method is determined as a function of the distance between the two distributions (see
Eq. (10) in the original paper).

• Token-specific deferral rule: This method decides acceptance by comparing the probabil-
ity of the candidate token in the target model’s distribution against the target’s maximum
probability. It does not use the draft model’s output distribution at all (see Eq. (14) in the
original paper).

In our implementation, we set a small α = 0.05 for rules relying on the draft model’s output distri-
bution (Chow and Optimal deferral), and a relatively larger α = 0.2 for the token-specific deferral
rule.

As shown in Table 1 of the revised paper, when the draft model is a small single-layer architecture,
deferral rules that rely on the draft model’s probability severely harm accuracy: even with very small
α, Chow and Optimal deferral rules still incur substantial degradation, consistent with our findings
in Appendix C.2. In contrast, the token-specific deferral rule maintains accuracy by relying solely
on the target model’s distribution. However, because the small drafter can only produce a limited
number of high-quality tokens, the resulting speedup gains from this rule are modest.

E CASE STUDY OF COMPLETE GENERATION

We present a TriSpec case study of complete generation and compare it with target-only and proxy-
only decoding results(Figure 11). Tokens in blue denote outputs verified or generated by the proxy
model (DSQ-1.5B), while tokens in black indicate those verified or generated by the target model
(DSQ-32B). In this example, over half of the tokens are validated by the proxy model, highlighting
TriSpec’s efficiency. When the proxy alone would err, TriSpec attains correctness by involving the
target, preserving accuracy.

Specifically, the yellow boxes highlight disagreements between the two models. The proxy incor-
rectly predicts “He runs 3 sprints each week” instead of the correct “He runs 3 sprints each session.”
In TriSpec inference, however, the proxy expresses uncertainty at this point and defers to the target
model, thereby avoiding the error and showcasing strong robustness.
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Case: GSM8K

Question: James decides to run 3 sprints 3 times a week.  He runs 60 meters each sprint.  How many 
total meters does he run a week?

GT: 540

DSQ-32B
First, I need to determine the total number of sprints James runs each week. He runs 3 sprints each session and does this 3 times a 
week. So, the total number of sprints is 3 multiplied by 3, which equals 9 sprints.
Next, I need to calculate the total distance James runs. Each sprint is 60 meters, and he completes 9 sprints in total. Therefore, the 
total distance is 60 meters multiplied by 9, which equals 540 meters.
Finally, the total number of meters James runs each week is 540 meters.
Solution:
To determine the total number of meters James runs in a week, follow these steps:
1. Calculate the total number of sprints per week:
James runs 3 sprints each session and does this 3 times a week.
Total sprints = 3 sprints/session × 3 sessions/week = 9 sprints/week
2. Determine the total distance run per week:
Each sprint is 60 meters. Therefore, the total distance is:
Total distance = 9 sprints × 60 meters/sprint = 540 meters
Final Answer:
540

DSQ-1.5B
I need to determine how many total meters James runs in a week. He runs 3 sprints each week, and each sprint is 60 meters long. To 
find the total distance, I'll multiply the number of sprints by the distance per sprint.
So, 3 sprints multiplied by 60 meters per sprint equals 180 meters. Therefore, James runs a total of 180 meters each week.
James runs 3 sprints each week, with each sprint being 60 meters long. To find the total distance he runs in a week, multiply the 
number of sprints by the distance per sprint.
Total meters = Number of sprints × Distance per sprint = 3 × 60 = 180
180

TriSpec
First, I need to determine the total number of sprints James runs in a week. He runs 3 sprints each session and does this 3 times a 
week. So, the total number of sprints is 3 multiplied by 3, which equals 9 sprints.
Next, each sprint is 60 meters long. To find the total distance James runs in a week, I multiply the number of sprints by the distance of 
each sprint. That is 9 sprints multiplied by 60 meters per sprint, resulting in 540 meters.
Therefore, James runs a total of 540 meters each week.
Solution:
To determine the total number of meters James runs in a week, follow these steps:
1. Calculate the total number of sprints per week:
James runs 3 sprints each session and does this 3 times a week.
Total sprints per week = 3 sprints/session × 3 sessions/week = 9 sprints/week
2. Determine the total distance run per sprint:
James runs 60 meters per sprint
3. Calculate the total distance run in a week:
Multiply the total number of sprints by the distance per sprint.
Total distance = 9 sprints × 60 meters/sprint = 540 meters
Final Answer:
540

Figure 11: Case study of TriSpec in GSM8K.
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