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Abstract

As Transformer models grow in complexity, their ability to generalize to novel,
compositional tasks becomes crucial. This study challenges conventional wisdom
about sparse activation in Sparse Mixture of Experts (SMoE) models when faced
with increasingly complex compositional tasks. Through experiments on the
SRAVEN symbolic reasoning task and SKILL-MIX benchmark, we demonstrate
that activating more experts improves performance on difficult tasks, with the
optimal number of activated experts scaling with task complexity. Our findings
reveal that pretrained SMoE-based Large Language Models achieve better results
by increasing experts-per-token on challenging compositional tasks.

1 Introduction

The Sparse Mixture of Experts (SMoE) model, introduced by [26], has shown exceptional promise in
the field of neural networks, especially for expanding model size without significantly increasing
computational demands. SMoE’s innovative approach involves dividing the traditional feed-forward
network into several homogeneous expert networks. These expert networks are then dynamically and
sparsely combined by a data-driven neural network called the router. This strategy enables a consid-
erable increase in the overall parameter count while maintaining relatively constant computational
costs, as only a small group of experts is activated for each input. Additionally, SMoE shows potential
for enhancing model generalization due to its special modularity [15], particularly when working
with diverse data domains. It facilitates collaborative learning among expert groups, allowing for
generalization to novel domains. More recently, SMoE has been chosen to be the standard architecture
of many Large Language Models (LLMs) due to its performance superiority [10, 28, 4, 3, 19, 22, 14].
However, compositional generalization requires the model to solve tasks composed by arbitrary
number of base skills, and such novel combination is not encountered during training and the difficulty
of such tasks can be built up exponentially. It is counterintuitive to believe that having limited number
of experts (e.g., Top-1 or Top-2 activation out of 8 experts as SMoE-based LLMs suggested) can
lead to good compositional generalization when the task becomes harder. Therefore, we are trying
to empirically study the following questions in this work: Is sparse activation always an optimal
strategy as we increase the difficulty of compositional tasks?

To address this question, our work delivers two sets of experiments as following, with a summary of
their contributions:
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• We trained standard SMoE-based Transformers from scratch on SRAVEN [24], a symbolic
synthetic compositional task, with varying difficulty levels of the task and varying number
of activated experts. Our results show that activating more experts can result higher Out-of-
Distribution (OOD) accuracy and test accuracy when we train on more difficult tasks, and
the optimal number of activated experts scales roughly with the number of features of the
synthetic task.

• We tested (inferenced) on pretrained SMoE-based Large Language Models such as Mixtral-
8×7B [10] and DBRX 132B Instruct [4] on SKILL-MIX benchmark test [29], a high level
compositional task that requires the model to construct a short paragraph fitting k skills
from linguistic studies. Our results show that these pretrained SMoE-based Large Language
Models can obtain better performance for free by activating more experts-per-token when
we test them with more challenging SKILL-MIX tasks.

2 Experiments

We postponed the related works section to Section A.1 due to page limit. We delivers two sets of
experiments to study if sparse experts activation is always optimal when handling compositional
tasks with varying difficulties during both training and inferencing phase.

2.1 Training SMoE-based Transformers on SRAVEN task

We trained standard decoder-only SMoE-based transformers on SRAVEN synthetic task. Each
transformer block consists of Multi-Head attention (e.g., softmax attention or hypernetwork linear
attention proposed by [24]) with relative positional encoding [20] and feedforward layer (FFN). The
feedforward layer in each block is a SMoE structure with 8 parallel homogeneous experts, where
each expert is a 2-layer multi-layer perceptron (MLP). The router is a simple 1-layer dense layer with
Top-K softmax gating mechanism. More implementation details can be found in Section A.2.1. For
the SRAVEN hyperparameters, we fixed the grid size of the problem to be 3× 3, meaning we fix the
number of in-context examples for the model. We have R = 8 possible rules to be sampled from. We
can adjust the task difficulty by sampling M ∈ {1, 2, · · · , R} different rules to compose the task. We
keep 25% of the whole SRAVEN examples as OOD samples to evaluate if the model can generalize
compositionally in OOD fashion.

2.1.1 Sparse activation is not optimal over all difficulty settings

We trained SMoE transformers with different Top-K routing mechanisms until the same number of
iterations over varying difficulty levels of the SRAVEN task, while setting all other model/training
hyperparameters the same. Surprisingly, Top-1 routing obtains the lowest Out-of-Distribution (OOD)
accuracy over all difficulty settings. Though Top-2 routing performs roughly the same as other more
expensive routing mechanisms when the task is easy, it also starts to fall behind as the compositional
task becomes harder, as shown in Figure 1. Similar trends can be found in the Test Accuracy
evaluations, as shown in Figure 2 in Section A.2.2. Therefore, we claim that the most commonly-used
sparse activation mechanisms are not optimal in learning compositional tasks, which challenges
previous studies [26, 10].

2.1.2 The optimal number of activated experts roughly scales with task difficulty

We also observe that as we increase the number of sampled rules M , more activated experts are
required to obtain the optimal performance correspondingly. Starting from the setting where M = 4,
the optimal number of activated experts K roughly scales up with M , and the performance gap
between each activation mechanisms also widens, as shown in Figure 1 and Figure 2. Therefore, We
conjecture that each expert can specialize on specific rules when we train the model on compositional
tasks, though such phenomenon is not observed when training on traditional language tasks [8].

2.1.3 Ablation study: Switching Softmax attention to HYLA attention

Proposed by [24], Hypernetwork Linear Attention (HYLA) encourages compositional generalization
by reinforcing the hypernetwork perspective on standard Transformers. We repeat the same set
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Figure 1: OOD Accuracy of training SMoE Transformer with softmax attention, where the difficulty
level of the task (i.e., the number of sampled rules M ) increases. ”8-k” means activating k out of 8
experts on every FFN layer. The best performing activation mechanism is labeled on the caption of
each figure.

of experiments by switching from softmax attention to HYLA attentions. We have the following
interesting findings:

• By comparing Figure 5 and Figure 1, we can see that HYLA does not improve or even
degrade the compositional generalization (especially the OOD accuracy) on SMoE models
when training on easy compositional tasks (i.e., M = 2) comparing to the case when we use
softmax attention. However, as the trained compositional task becomes more challenging,
HYLA will significantly outperform softmax attention and improve the compositional
generalization of the model over all activation mechanisms.

• As shown in Figure 4 and Figure 5, Sparse activation mechanisms like Top-1 and Top-2 are
still the worst-performing routing mechanisms over almost all task difficulty levels after
opting HYLA attention, echoing our main findings in Section 2.1.1.

• As Figure 2 and Figure 1 suggested, under softmax attention setting, increasing the num-
ber of activated experts brings improvement on both Test and OOD accuracy when the
compositional task becomes harder, though very marginal. However, the same change
in increasing the number of activated experts will bring dramatic improvement for more
challenging compositional tasks under HYLA attention setting, as shown in the last row
of Figure 4 and Figure 5. The optimal number of activated experts also roughly scales
with task difficulty M , and the best routing mechanism can outperform the second best
one significantly. We conjecture that HYLA attention can furtherly improve the expert
specialization on compositional tasks.
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2.2 Evaluating SMoE-based Large Language Models on Skill-Mix

We evaluate two instruction-tuned SMoE-based Large Language Models (Mixtral-8×7B Instruct-
v0.1 [10] and DBRX 132B Instruct [4]) on Skill-Mix. We choose GPT-4 [18] as the grading model.
We use the released 10% of the skill list and the topic list from Section A in [29]. We use the same
optimized generation prompt for querying both Mixtral and DBRX. We use the same grading prompt
and the evaluation metrics as [29] to query GPT-4 as our grading model.

2.2.1 More Experts-per-token helps compositional generalization on harder tasks

We run Skill-Mix evaluation on Mixtral-8×7B Instruct-v0.1 with varying task difficulty k (i.e., the
number of skills that the model need to compose in its generated answer) and varying number of
experts-per-token (ept). We observe similar patterns from testing both Mixtral and DBRX where the
results are shown in Table 1 and Figure 6, and summarize our main findings as following:

• As we increase the difficulty of Skill-Mix task, more experts per token are required to
maintain better performance, as shown in the highlighted part of Table 1. For example, the
generated answer produced by the default Top-2 routing gets all zeros on all grading metrics
when k = 4.

• The optimal number of experts per token roughly scales with the difficulty of Skill-Mix
k. For example, setting experts per token to be 4 or 5 obtains the best performance when
k = 4.

• Different from the SRAVEN training experiment which showcased that more activated
experts cannot give worse performance on simpler compositional tasks, the Skill-Mix evalua-
tion shows that activating more experts during inferencing can do harm to the compositional
generalization. For example, while the model with default Top-2 routing setting can ob-
tain perfect scores on k = 1 and k = 2 Skill-Mix tasks, the model’s performance can
substantially decline if we set experts per token to be 7 or 8.

Graded by GPT-4 Skill-Mix Skill-Mix Skill-Mix Skill-Mix Skill-Mix
(k=1) (k=2) (k=3) (k=4) (k=5)

ept=1 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.00 ± 0.000 0.20 ± 0.082 0.35 ± 0.100 0.00 ± 0.000

ept=2 (default) 1.00 ± 0.000 1.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
1.00 ± 0.000 1.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000

ept=3 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.40 ± 0.245 0.20 ± 0.200 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.10 ± 0.100 0.47 ± 0.082 0.60 ± 0.061 0.00 ± 0.000

ept=4 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.00 ± 0.000
0.80 ± 0.200 0.40 ± 0.245 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200
0.20 ± 0.200 0.40 ± 0.187 0.67 ± 0.105 0.75 ± 0.079 0.00 ± 0.000

ept=5 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.00 ± 0.000
0.40 ± 0.245 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200
0.20 ± 0.200 0.30 ± 0.200 0.53 ± 0.133 0.65 ± 0.100 0.00 ± 0.000

ept=6 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.20 ± 0.200 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.20 ± 0.122 0.47 ± 0.082 0.60 ± 0.061 0.00 ± 0.000

ept=7 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.10 ± 0.100 0.40 ± 0.067 0.55 ± 0.050 0.00 ± 0.000

ept=8 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.40 ± 0.245 0.20 ± 0.200 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.10 ± 0.100 0.47 ± 0.082 0.60 ± 0.061 0.00 ± 0.000

Table 1: Skill-Mix Evaluation Results on Mixtral-8×7B Instruct-v0.1 [11]. The grading metrics are
Ratio of Full Marks/Ratio of All Skills/Skill Fraction as defined in Section A.3.1.

3 Conclusion

In this paper, we pioneered to empirically investigate if the commonly-used sparse activation on
SMoE models always optimal upon compositional tasks. We delivered two sets of experiment from
both training and inferencing perspective on compositional tasks, showing that more activated experts
are required in order to generalize compositionally on more challenging tasks. We hope that our work
can shed light on building more compositional generalizable model architectures.
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A Appendix / supplemental material

A.1 Related Works

Compositional Generalization Compositional generalization refers to the ability of a system to
understand and produce novel combinations of finite number of familiar elements [9, 2]. This capa-
bility is crucial for efficient learning and robust generalization across various domains. In the field of
computer vision, studies have focused on generating images from novel concept combinations, often
using disentangled representation learning [7]. Researchers have evaluated VAE-based generative
models on compositional tasks [30, 16], exploring the relationship between disentanglement and
generalization performance in image reconstruction and generation. Recent studies have made signif-
icant strides by conducting a controlled investigation of compositional generalization in conditional
diffusion models [17, 5, 13], revealing insights into the emergence of compositional abilities and
the factors influencing out-of-distribution generation. For large language models (LLMs), recent
works have observed emergent compositional capabilities on natural languages [27, 29, 23]. A bunch
of evaluation methods have been proposed to quantify the compositional generalization, include
imposing generation constraints [29], multi-hop question answering [6], and elementary math oper-
ations [12]. Theoretical work has also made strides in understanding the conditions necessary for
achieving compositional generalization in neural networks [24, 25, 1]. However, despite the breadth
of research in this area, there remains a notable gap in studying compositional generalization within
the context of modular models, particularly Sparse Mixture of Experts models. Our work pioneered
on studying this relationship, especially on empirically understanding if sparse activation is still
optimal in the context of compositional tasks with higher and higher difficulty.

SRAVEN symbolic reasoning test Inspired by Raven Progressive Matrices (RAVEN) Test [21], a
human Intelligence Quotient test on abstract reasoning, [24] proposed the symbolic compositional
SRAVEN test that requires a model to learn the composition of arbitrarily sampled rules by searching
through a large number of possible hypotheses. Similar to RAVEN, each SRAVEN task is a 3× 3
grid and the model is asked to query the final panel on the grid given the information from the first 8
panels. Each panel is a vector of length M , where each entry on the vector corresponds to a different
rule sampled from R = 8 possible rules. Therefore, each task is composed by a finite set of rule
combinations, and the prediction will be marked as correct only if the model predict all the entries of
the final vector. More detailed description can be found in Section 4 in [24]. In this paper, we trained
SMoE-based transformers on SRAVEN task due to its compositional nature and the flexibility on
tuning the difficulty of the task.

Skill-Mix Skill-Mix [29] is a novel evaluation method for assessing language models’ compositional
abilities. It challenges models to generate short text pieces combining random sets of k skills out of
N number of linguistic skills within a given topic. Therefore, the test’s difficulty increases with k. A
Grader model (e.g., GPT-4 [18]) is used to evaluate the generated outputs based on skill application,
topic relevance, length, and coherence. In this paper, we tested SMoE-based LLMs on Skill-Mix with
varying number of k. More experimental and grading details can be found in Section C in [29].

A.2 Training SMoE-based Transformers on SRAVEN task

A.2.1 Experiment Implentation Details

1 class MlpBlock(nn.Module):
2 hidden_dim: int
3 dropout_rate: float
4

5 @nn.compact
6 def __call__(self , inputs , deterministic):
7 x = nn.Dense(self.hidden_dim)(inputs)
8 x = nn.gelu(x)
9 x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=

deterministic)
10 x = nn.Dense(inputs.shape [-1])(x)
11 x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=

deterministic)
12 return x
13
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14 class MoEBlock(nn.Module):
15 num_experts: int
16 num_experts_per_tok: int
17 hidden_dim: int
18 dropout_rate: float
19

20 def setup(self):
21 self.experts = [MlpBlock(self.hidden_dim , self.dropout_rate)

for _ in range(self.num_experts)]
22 self.gate = nn.Dense(self.num_experts , use_bias=False)
23

24 def __call__(self , x, deterministic=False):
25 orig_shape = x.shape
26 x = x.reshape(-1, x.shape [-1])
27 scores = self.gate(x)
28 expert_weights , expert_indices = jax.lax.top_k(scores , self.

num_experts_per_tok)
29 expert_weights = jax.nn.softmax(expert_weights , axis=-1)
30 # Prepare inputs for each expert
31 x_expanded = jnp.repeat(x[:, None , :], self.

num_experts_per_tok , axis =1)
32 print(’x_expanded shape:’, x_expanded.shape)
33 # Define a function to apply experts
34 def apply_experts(inputs , indices):
35 outputs = jnp.zeros_like(inputs)
36 for i in range(self.num_experts):
37 mask = indices == i
38 expert_input = jnp.where(mask[:, :, None], inputs ,

0.0)
39 expert_output = self.experts[i]( expert_input ,

deterministic=deterministic)
40 outputs = jnp.where(mask[:, :, None], expert_output ,

outputs)
41 return outputs
42 # Apply experts
43 expert_outputs = apply_experts(x_expanded , expert_indices)
44 print(’Expert outputs shape:’, expert_outputs.shape)
45 # Weight and sum expert outputs
46 y = jnp.sum(expert_outputs * expert_weights [..., None], axis

=1)
47 return y.reshape(orig_shape)

Code Listing 1: Implementation of SMoE block.
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A.2.2 Experimental Results Details

Figure 2: Test Accuracy of training SMoE Transformer with softmax attention.

Figure 3: OOD Accuracy of training SMoE Transformer with softmax attention.

9



Figure 4: Test Accuracy of training SMoE Transformer with hypernetwork linear attention.

Figure 5: OOD Accuracy of training SMoE Transformer with hypernetwork linear attention.
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A.3 Evaluating SMoE-based Large Language Models on Skill-Mix

We copied the grading metrics definitions from [29] as a reference for the readers. Note that the first
three grading metrics are very tough and most models will earn very few points when k increases, as
these metrics are conditioned on a specific event.

A.3.1 Grading Metrics Definition

Each generated text can receive up to k + 3 points: 1 point for each correctly illustrated skill, 1 point
for sticking to the topic, 1 point for coherence / making sense, and 1 point for having at most k − 1
sentence. Recall that we grade each generated text three times. In each round of grading, we parse
each of the criteria individually from the Grader model’s output. For each criterion, we then collect
the majority vote among the three grading rounds. The grading metrics are the following:

• Ratio of Full Marks: 1 if all k + 3 points are earned, and 0 otherwise

• Ratio of All Skills: 1 if k points are awarded for the k skills and at least 2 points are awarded
for the remaining criteria, and 0 otherwise

• Skill Fraction: the fraction of points awarded for the k skills if all 3 points are awarded for
the remaining criteria, and 0 otherwise

• Total Score: sum of the individual points awarded

• Total Skill Score: sum of the points awarded for the k skills

• Rescaled Score:
(

c
k+3

)k+3

where c is the total score

We then take the maximum value of the metrics among the 3 generations for a given (k skill, 1 topic)
combination, and average the maximum value across all the combinations.

A.4 Full Skill-Mix Results

Graded by GPT-4 Skill-Mix Skill-Mix Skill-Mix Skill-Mix Skill-Mix
(k=1) (k=2) (k=3) (k=4) (k=5)

ept=1 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.00 ± 0.000 0.20 ± 0.082 0.35 ± 0.100 0.00 ± 0.000

ept=2 (default) 1.00 ± 0.000 1.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
1.00 ± 0.000 1.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000

ept=3 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.40 ± 0.245 0.20 ± 0.200 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.10 ± 0.100 0.47 ± 0.082 0.60 ± 0.061 0.00 ± 0.000

ept=4 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.00 ± 0.000
0.80 ± 0.200 0.40 ± 0.245 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200
0.20 ± 0.200 0.40 ± 0.187 0.67 ± 0.105 0.75 ± 0.079 0.00 ± 0.000

ept=5 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.00 ± 0.000
0.40 ± 0.245 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200 0.20 ± 0.200
0.20 ± 0.200 0.30 ± 0.200 0.53 ± 0.133 0.65 ± 0.100 0.00 ± 0.000

ept=6 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.20 ± 0.200 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.20 ± 0.122 0.47 ± 0.082 0.60 ± 0.061 0.00 ± 0.000

ept=7 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.10 ± 0.100 0.40 ± 0.067 0.55 ± 0.050 0.00 ± 0.000

ept=8 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.40 ± 0.245 0.20 ± 0.200 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
0.00 ± 0.000 0.10 ± 0.100 0.47 ± 0.082 0.60 ± 0.061 0.00 ± 0.000

Table 2: Skill-Mix Evaluation Results on Mixtral-8×7B Instruct-v0.1 [11]. Note that we only evaluate
using Ratio of Full Marks/Ratio of All Skills/Skill Fraction metrics.
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Figure 6: Skill-Mix Evaluation Results on DBRX-instruct [4]. Note that we use all available grading
metrics.
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