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Abstract

We consider the problem of inferring high-dimensional data x in a model that
consists of a prior p(x) and an auxiliary differentiable constraint c(x,y) on x
given some additional information y. In this paper, the prior is an indepen-
dently trained denoising diffusion generative model. The auxiliary constraint
is expected to have a differentiable form, but can come from diverse sources.
The possibility of such inference turns diffusion models into plug-and-play mod-
ules, thereby allowing a range of potential applications in adapting models to
new domains and tasks, such as conditional generation or image segmentation.
The structure of diffusion models allows us to perform approximate inference
by iterating differentiation through the fixed denoising network enriched with
different amounts of noise at each step. Considering many noised versions of
x in evaluation of its fitness is a novel search mechanism that may lead to new
algorithms for solving combinatorial optimization problems. The code is available
at https://github.com/AlexGraikos/diffusion_priors.

1 Introduction

Deep generative models, such as denoising diffusion probabilistic models [DDPMs; 39, 13] can
capture the details of very complex distributions over high-dimensional continuous data p(x) [30, 7,
1, 38, 43, 15]. The immense effective depth of DDPMs, sometimes with thousands of deep network
evaluations in the generation process, is an apparent limitation on their use as off-the-shelf modules
in hierarchical generative models, where models can be mixed and one model may serve as a prior
for another conditional model. In this paper, we show that DDPMs trained on image data can be
directly used as priors in systems that involve other differentiable constraints.

In our main problem setting, we assume that we have a prior p(x) over high-dimensional data x and
we wish to perform inference in a model that involves this prior and a constraint c(x,y) on x given
some additional information y. That is, we want to find an approximation to the posterior distribution
p(x|y) ∝ p(x)c(x,y). In this paper, p(x = x0,h = {xT , ...,x1}) is provided in the form of an
independently trained DDPM over xT , . . . ,x0 (§2.2), making the DDPM a ‘plug-and-play’ prior.

Although the recent community interest in DDPMs has spurred progress in training algorithms and
fast generation schedules [30, 37, 45], the possibility of their use as plug-and-play modules has not
been explored. Furthermore, as opposed to existing work on plug-and-play models (starting from
[29]), the algorithms we propose do not require additional training or finetuning of model components
or inference networks.
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One obvious application of plug-and-play priors is conditional image generation (§3.1, §3.2). For
example, a denoising diffusion model trained on MNIST digit images might define p(x), while the
constraint c(x,y) may be be the probability of digit class y under an off-the-shelf classifier. However,
changing the semantics of x, we can also use such models for inference tasks where neural networks
struggle with domain adaptation, such as image segmentation: c(x,y) constrains the segmentation x
to match an appearance or a weak labeling y (§4). Finally, we describe a path towards using DDPM
priors to solve continuous relaxations of combinatorial search problems by treating y as a latent
variable with combinatorial structure that is deterministically encoded in x (§5).

1.1 Related work

Conditioning DDPMs. DDPMs have previously been used for conditional generation and image
segmentation [36, 42, 1]. With few exceptions – such as [3], which uses a pretrained DDPM as a
feature extractor – these algorithms assume access to paired data and conditioning information during
training of the DDPM model. In [7], a classifier p(y | xt) that guides the denoising model towards the
desired subset of images with the attribute y is trained in parallel with the denoiser. In [5], generation
is conditioned on an auxiliary image by guiding the denoising process through correction steps that
match the low-frequency components of the generated and conditioning images. In contrast, we aim
to build models that combine an independently trained DDPM with an auxiliary constraint.

Our approach is also related to work on adversarial examples. Adversarial samples are produced by
optimizing an image x to satisfy a desired constraint c – a classifier p(y|x) – without reference to
the prior over data. As supervised learning algorithms can ignore the structure in data x, focusing
only on the conditional distribution, it is possible to optimize for input x that provides the desired
classification in various surprising ways [41]. In [31], a diffusion model is used to defend from
adversarial samples by making images more likely under a DDPM p(x). We are instead interested
in inference, where we seek samples x that satisfy both the classifier and the prior. (Our work may,
however, have consequences for adversarial generation.)

Conditional generation from unconditional models. Works that preceded the recent popularity
of DDPMs [29, 9] show how an unconditional generative model, such as a generative adversarial
network [GAN; 11] or variational autoencoder [VAE; 21], can be combined with a constraint model
to generate conditional samples. Regarding generative diffusion models, recent literature has focused
on utilizing unconditional, pretrained DDPMs as priors to solve linear inverse imaging problems.
Both in [40] and [20], the authors modify the DDPM sampling algorithm, with knowledge of the
linear degradation operator, to reconstruct an image consistent with the learned prior and given
measurements. A generalization of these methods in [18] shows how any pretrained denoising
network can be used as the prior for solving linear inverse problems. We also clarify that although
the term ‘plug-and-play’ is widely used in the inverse imaging literature we refer to it in the scope of
in-domain generation under differentiable constraints, in the same sense as [29].

Latent vectors in DDPMs. Modeling the latent prior distribution in VAE-like models using a
DDPM has been studied in [38, 43]. On the other hand, in §5, we perform inference in the low-
dimensional latent space under a pretrained DDPM on a high-dimensional data space. Our approach
to semantic segmentation (§4) is also related to [34], where a prior p(z) over latents is used to tune a
posterior network q(z|x). There, the priors are of relatively simple structure and are sample-specific,
rather than global diffusion priors like in this paper.

2 Method

2.1 Problem setting

Recall that we want to find an approximation to the posterior distribution p(x|y) ∝ p(x)c(x,y),
where p(x) is a fixed prior distribution. Fixing y and introducing an approximate variational posterior
q(x), the free energy

F = −Eq(x)[log p(x) + log c(x,y)− log q(x)] (1)

is minimized when q(x) is closest to the true posterior, i.e., when KL(q(x)∥p(x|y)) is minimized.
When q(x), and the learning algorithm used to fit it, are expressive enough to capture the true
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posterior, this minimization yields the exact posterior p(x|y). Otherwise, q will capture a ‘mode-
seeking’ approximation to the true posterior [27]; in particular, if q(y) is a Dirac delta, it is optimal
to concentrate q at the mode of p(x|y). When the prior involves latent variables h (i.e., p(x) =∫
h
p(x|h)p(h) dh), the free energy is

F = −Eq(x)q(h|x)[log p(x,h) + log c(x,y)− log q(x)q(h|x)]
= −Eq(x)q(h|x)[log p(x,h)− log q(x)q(h|x)]− Eq(x)[log c(x,y)]. (2)

We are, in particular, interested in a general procedure for minimizing F with respect to an approxi-
mate posterior q(x) for any differentiable c when p is a DDPM (§2.2).

A free energy of the same structure was also studied in [43], where a DDPM p(z) over a latent space
is hybridized as a parent to a decoder p(x|z), with an additional inference model q(z|x) trained
jointly with both of these models. On the other hand, we aim to work with independently trained
components that operate directly in the pixel space, e.g., an off-the-shelf diffusion model p(x) trained
on images of faces and an off-the-shelf face classifier p(y|x), without training or finetuning them
jointly (§3.2).

2.2 Denoising diffusion probabilistic models as priors

Denoising diffusion probabilistic models (DDPMs) [39, 13] generate samples x0 by reversing a
(Gaussian) noising process. DDPMs are deep directed stochastic networks:

p(xT ,xT−1, ...,x0) = p(xT )

T∏
t=1

pθ(xt−1 | xt), (3)

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), p(xT ) = N (0, I), (4)

where µθ and Σθ are neural networks with learned parameters (often, as in this paper, Σθ is fixed to
a scalar diagonal matrix depending on t). The model starts with a sample from a unit Gaussian xT

and successively transforms it with a nonlinear network µθ(xt, t) adding a small Gaussian innovation
signal at each step according to a noise schedule. After T steps, the sample x = x0 is obtained.

In general, using such a model as a prior over x would require an intractable integration over latent
variables h = (xT , ...,x1):

p(x) =

∫
h

p(xT ,xT−1, ...,x1,x0 = x) dxT . . . dx1. (5)

However, DDPMs are trained under the assumption that the posterior q(xt|xt−1) is a simple diffusion
process that successively adds Gaussian noise according to a predefined schedule βt:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), t = 1, . . . , T. (6)

Therefore, if p(x) is the likelihood (5) of x under a DDPM, then in the first expectation of (2) we
should use q(h = {xT , ...,x1}|x0 = x) =

∏T
t=1 q(xt | xt−1). The simplest approximation to the

posterior over x = x0 is a point estimate:

q(x) = δ(x− η) (7)

where by δ we denote the Dirac delta function. Thus, we can sample xt at any arbitrary time step
using the forward noising process as

q(xt) = N (xt;
√
ᾱtη, (1− ᾱt)I) (8)

where αt = 1 − βt and ᾱt =
∏t

i=1 αt. Analogously to [13], we can also extract a conditional
Gaussian q(xt−1 | xt,η) and express the first expectation in (2) as

−Eq(x)q(h|x)[log p(x,h)− log q(x)q(h|x)] =
∑
t

KL(q(xt−1 | xt,η) ∥ pθ(xt−1 | xt)), (9)

which after reparametrization [13] leads to∑
t

wt(β)Eϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥22], xt =
√
ᾱtη +

√
1− ᾱtϵ, (10)
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Algorithm 1 Inferring a point estimate of p(x|y) ≈ δ(x− η), under a DDPM prior and constraint.

input pretrained DDPM ϵθ, auxiliary data y, constraint c, time schedule (ti)
T
i=1, learning rate λ

1: Initialize x ∼ N (0; I).
2: for i = T..1 do
3: Sample ϵ ∼ N (0; I)
4: xti =

√
ᾱtix+

√
1− ᾱtiϵ

5: x← x− λ∇x[∥ϵ− ϵθ(xti , ti)∥22 − log c(x,y)]
6: end for

output η = x

where the stage t noise reconstruction ϵθ(xt, t) is a linear transformation of the model’s expectation
µθ(xt, t):

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
. (11)

The weighting wt(β) is generally a function of the noise schedule, but in most pretrained diffusion
models it is set to 1. Thus, the free energy in (2) reduces to

F =
∑
t

Eϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥22]− Eq(x)[log c(x,y)]

=
∑
t

Eϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥22]− log c(η,y), xt =
√
ᾱtη +

√
1− ᾱtϵ. (12)

The first term is the cost usually used to learn the parameters θ of the diffusion model. To perform
inference under an already trained model ϵθ, we instead minimize F with respect to η through
sampling ϵ in the summands over t.

A similar derivation applies if a Gaussian approximation to the posterior q(x) is used (see §A). Such
an approximation allows to model not only a mode of the posterior, but the uncertainty in its vicinity.

We summarize the algorithm for a point estimate q(x) as Algorithm 1. Variations on this algorithm
are possible. Depending on how close to a good mode we can initialize η, this optimization may
involve summing only over t ≤ tmax < T ; different time step schedules can be considered depending
on the desired diversity in the estimated x. Note that optimization is stochastic and each time it is run
it can produce different point estimates of x which are are both likely under the diffusion prior and
satisfy the constraint as much as possible.

We observed that optimizing simultaneously for all t makes it difficult to guide the sample towards a
mode in image generation applications; therefore, we anneal t from high to low values. Intuitively, the
first few iterations of gradient descent should coarsely explore the search space, while later iterations
gradually reduce the temperature to steadily reach a nearby local maximum of p(x|y). Examples of
annealing schedules designed for the tasks demonstrated in §3, 4, 5 are presented in the Appendix
(Fig. B.1).

Another interesting case is when x is parametrized through a latent variable (this can be seen as a case
of a hard, non-differentiable constraint: if x is a deterministic function of y, x = f(y), then c(x,y)
is supported on the corresponding manifold). Then the procedure in Algorithm 1 can be performed
with gradient descent steps with respect to y on

∥ϵ− ϵθ(
√
ᾱtif(y) +

√
1− ᾱtiϵ, ti)∥22 (13)

instead of steps 4 and 5. (For some semantics of the latent representation, one may wish to make the
prior on x the pushforward by f of a known prior on the latent y. In this case, (13) must be weighted
by the Jacobian of f at y.)

3 Experiments: Conditional image generation

3.1 Simple illustration on MNIST

We first explore the idea of generating conditional samples from an unconditional diffusion model on
MNIST. We train the DDPM model of [7] on MNIST digits and experiment with different sets of
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Thin Thick Vert. Horiz. Class ‘3’ Class ‘3’ &
Asymmetry Asymmetry Symmetry

Figure 1: Inferred MNIST samples under different conditions c(x,y).

constraints log c(x,y) to generate samples with specific attributes. The examples in Fig. 1 showcase
such generated samples. For the digit in (a) we set the constraint log c to be the unnormalized score
of ‘thin’ digits, computed as negative of the average image intensity, whereas in (b) we invert that
and generate a ‘thick’ digit with high mean intensity. Similarly, in (c) and (d) we hand-craft a
score that penalizes the vertical and horizontal symmetry respectively, by computing the L2 distance
between the two folds (vertical/horizontal) of the digit x, which leads to the generation of skewed,
non-symmetric samples.

We also showcase how the auxiliary constraint c(x,y) can be modeled by a different, independently
trained network. The digit in Fig. 1 (e) is generated by constraining the DDPM with a classifier
network that is separately trained to distinguish between the digit class y = 3 and all other digits.
The auxiliary constraint in this case is the likelihood of the inferred digit, as it is estimated by the
classifier. Finally, for (f) we multiply horizontal symmetry and digit classifier constraints, prompting
the inference procedure to generate a perfectly centered and symmetric digit. Details of model
training and inference can be found in the Appendix (§B.1).

3.2 Using off-the-shelf components for conditional generation of faces

We consider the generation of natural images with a pretrained DDPM prior and a learned constraint.
We utilize the pretrained DDPM network on FFHQ-256 [19] from [3] and a pretrained ResNet-18
face attribute classifier on CelebA [25]. The attribute classifier computes the likelihood of presence
of various facial features y in a given image x, as they are defined by the CelebA dataset. Examples
of such features are no beard, smiling, blond hair and male. To generate a conditional sample from
the unconditional DDPM network we select a subset of these and enforce their presence or absence
using the classifier predicted likelihoods as our constraint c. If y is a set of attributes we wish to be
present, the constraint log c(x,y) can be expressed as

log c(x,y) =
∑
y∈y

log p(y | x) (14)

We only strictly enforce a small subset of facial attributes and therefore x is allowed to converge
towards different modes that correspond to samples that exhibit, in varying levels, the desired features.

In Fig. 2 we demonstrate our ability to infer conditional samples x with desired attributes y, using
only the unconditional diffusion model and the classifier p(y | x). In the first row, we show the
results of the optimization procedure of Algorithm 1 for various attributes. The classifier objective
c(x,y) manipulates the image with the goal of making the classifier network produce the desired
attribute predictions, whereas the diffusion objective attempts to pull the sample x towards the learned
distribution p(x). If we ignored the denoising loss, the result would be some adversarial noise that
fools the classifier network. The DDPM prior, however, is strong enough to guide the process towards
realistic-looking images that simultaneously satisfy the classifier constraint set.

We notice that the generated samples x, although having converged towards a correct mode of p(x),
still exhibit a noticeable amount of noise related to the optimization of classifier objective. To address
that, inspired by [31], we simply denoise the image using the DDPM model alone, starting from the
low noise level t = 200 so as to retain the overall structure. The results of this denoising are shown
in the second row of Fig. 2.

In Fig. 3 we showcase the intermediate steps of the optimization process for inference with the
conditions blond hair+smiling+not male, thus solving a problem like that studied in [8] using only
independently trained attribute classifiers and an unconditional generative model of faces. The sample
x is initialized with Gaussian noiseN (0, I), and as we perform gradient steps with decreasing values
of t, we observe facial features being added in a coarse-to-fine manner.
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Blonde Five-o’clock Oval High Eyeglasses Goatee &
Shadow Cheekbones Big Nose

Figure 2: First row: Conditional FFHQ samples x for constraints c(x,y) with various attribute sets
y. Second row: denoising as in [31] to remove artifacts that appear when optimizing with a classifier
network enforcing the constraint.

t = 1000 t = 962 t = 896 t = 807 t = 701 t = 585 t = 465 t = 349 t = 242 Denoise

Figure 3: FFHQ conditional generation for y = {Blonde, Smiling, Female}. The last step performs
denoising as in [31] to remove artifacts that appear when training on a classifier as a constraint.

In the Appendix (§B.2) we provide additional samples and further discuss the sample quality in
comparison to unconditional generation. We also present results on inference with conflicting
attributes as well as common failure cases.

4 Experiments: Semantic image segmentation

We test the applicability of diffusion priors in discrete tasks, such as inferring semantic segmentations
from images. For this purpose, we use the EnviroAtlas dataset [32] which is composed of 5-class,
1m-resolution land cover labels from four geographically diverse cities across the US; Pittsburgh,
PA, Durham, NC, Austin, TX and Phoenix, AZ. We only have access to the high resolution labels
from Pittsburgh, and the task is to infer the land cover labels in the other three cities, given only
probabilistic weak labels ℓweak derived from coarse auxiliary data [34]. We use Algorithm 1 to
perform an inference procedure that does not directly take imagery as input, but uses constraints
derived from unsupervised color clustering. We use only cluster indices in inference, making the
algorithm dependent on image structure, but not color. Local cluster indices as a representation
have a promise of extreme domain transferability, but they require a form of a combinatorial search
which matches local cluster indices to semantic labels so that the created shapes resemble previously
observed land cover, as captured by a denoising diffusion model of semantic segmentations.

DDPM on semantic pixel labels. We train a DDPM model on the 1
4 -resolution one-hot represen-

tations of the land cover labels, using the U-Net diffusion model architecture from [7]. To convert
the one-hot diffusion samples to probabilities we follow [15] and assume that for any pixel i in
the inferred sample x, the distribution over the label ℓ is, p(ℓi) ∝

∫ 1.5

0.5
N (xℓi | ηi, σ), where σ is

user-defined a parameter. We chose this approach for its simplicity and ease to apply in our inference
setting of Algorithm 1. Alternatively, we could use diffusion models for categorical data [14] with the
appropriate modifications to our inference procedure. Samples drawn from the learned distribution
are presented in Fig 4.

Inferring semantic segmentations. In order to infer the segmentation of a single image, under
the diffusion prior, we directly apply Algorithm 1 with a hand-crafted constraint c which provides
structural and label guidance. To construct c, we first compute a local color clustering z of input
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Water Impervious Surface Soil and Barren Trees and Forest Grass and Herbaceous

Figure 4: Unconditional samples from the DDPM trained on land cover segmentations (cf. Fig. 5).

Weak
Image Clustering z Labels ℓweak Inferred x Ground Truth

Figure 5: Segmentation inference results. The inferred segmentation x is initialized with the weak
labels to reduce the number of steps needed. The samples are chosen from (top to bottom) Durham,
NC, Austin, TX and Phoenix, AZ. Although AZ has a vastly different joint distribution of colors and
labels, the inferred segmentation still captures the overall structure. Note that the inference algorithm
does not use the pixel intensities in the input image, only an unsupervised color clustering.

the image (§B.3 in the Appendix). In addition, we utilize the available weak labels ℓweak [34] and
force the predicted segments’ distribution to match the weak label distribution when averaged in
non-overlapping blocks. We combine the two objectives in a single constraint c(x, z, ℓweak) by (i)
computing the mutual information between the color clustering z and the predicted labels x , trans-
formed into a valid probability distribution from the inferred one-hot vectors, in overlapping image
patches and (ii) computing the negative KL divergence between the average predicted distribution
and the distribution given by the weak labels in non-overlapping blocks

log c(x, z, ℓweak) = MI(x, z)−KL(x ∥ ℓweak). (15)

Empirically, we find that we can reduce the number of optimization steps needed to perform inference
by initializing the sample x with the weak labels ℓweak instead of random noise, allowing us to start
from a smaller ti. Examples of images and their inferred segmentations are shown in Fig. 5.

Domain transfer with inferred samples. The above inference procedure is agnostic to colors by
design, and we expect it to have a greater ability to perform in new areas than the approach in [34],
which still finetunes networks that take raw images as input. We also investigate domain transfer
approaches where patches segmented using the the diffusion prior are used to train neural networks
for fast inference. We pretrain a standard U-Net inference network p(x | I) solely on 20k batches of
16 randomly sampled 64× 64 image patches in PA. We randomly sample 640 images in each of the
other geographies and generate semantic segmentations using our inference procedure, then finetune
the inference network on these segmentations. This network is then evaluated on the entire target
geography.
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Table 1: Accuracies and class mean intersection-over-union scores on the EnviroAtlas dataset in
various geographic domains. The model in the second-to-last row was pretrained in a supervised way
on labels in the Pittsburgh, PA, region.

Durham, NC Austin, TX Phoenix, AZ

Algorithm Acc % IoU % Acc % IoU % Acc % IoU %

PA supervised 74.2 35.9 71.9 36.8 6.7 13.4
PA supervised + weak 78.9 47.9 77.2 50.5 62.8 24.2
Implicit posterior [34] 79.0 48.4 76.6 49.5 76.2 46.0

Ours (from scratch) 76.0 39.9 74.8 39.4 69.5 31.6
Ours (fine-tuned) 79.8 46.4 79.5 45.4 69.6 32.4

Full US supervised [33] 77.0 49.6 76.5 51.8 24.7 23.6

The results in Table 1 demonstrate that this approach to domain transfer is comparable with the
state-of-the-art work of [34] for weakly-supervised training. The naïve approach of training a U-Net
only on the available high-resolution PA data (PA supervised) fails to generalize to the geographically
different location of Phoenix, AZ. Similarly, the model of [33], which is a US-wide high-resolution
land cover model trained on imagery and labels, and multi-resolution auxiliary data over the entire
contiguous US also suffers. When the weak labels are provided as input (PA supervised + weak) the
results can improve significantly.

5 Experiments: Continuous relaxation of combinatorial problems

So far, we have considered inference under a DDPM prior and a differentiable constraint c(x,y). We
consider the case of a ‘hard’ constraint, where y is a latent vector deterministically encoded in an
image x (x = f(y)) and we have a DDPM prior over images pDDPM(x). We will use the variation
of Algorithm 1 described at the end of §2.2 to obtain a point estimate of the distribution over y,
p(y) ∝ pDDPM(f(y)).

We illustrate this in the setting of a well-known combinatorial problem, the traveling salesman
problem (TSP). Recall that a Euclidean traveling salesman problem on the plane is described by
N points v1, . . . , vN ∈ R2, which form the vertex set of a complete weighted graph G, where the
weight of the edge from vi to vj is the Euclidean distance ∥vi − vj∥. A tour of G is a connected
subgraph in which every vertex has degree 2. The TSP is the optimization problem of finding the
tour with minimal total weight of the edges, or, equivalently, a permutation σ of {1, 2, . . . , N} that
minimizes

∥vσ(1) − vσ(2)∥+ ∥vσ(2) − vσ(3)∥+ · · ·+ ∥vσ(N−1) − vσ(N)∥+ ∥vσ(N) − vσ(1)∥.

Although the general form of the TSP is NP-hard, a polynomial-time approximation scheme is known
to exist in the Euclidean case [2, 28] and can yield proofs of tour optimality for small problems.

Humans have been shown to have a natural propensity for solving the Euclidean TSP (see [26] for a
survey). Humans construct a tour by processing an image representation of the points v1, . . . , vN
through their visual system. However, the optimization algorithms in common use for solving the
TSP do not use a vision inductive bias, instead falling into two broad categories:

• Discrete combinatorial optimization algorithms and efficient integer programming solvers, studied
for decades in the optimization literature [24, 12, 10];

• More recently, there has been work on neural nets, trained by reinforcement learning or imitation
learning, that build tours sequentially or learn heuristics for their (discrete) iterative refinement.
Successful recent approaches [6, 23, 16, 17, 4] have used Transformer [44] and graph neural
network [22] architectures.

The algorithm we propose using DDPMs is a hybrid of these categories: it reasons over a continuous
relaxation of the problem, but exploits the learning of generalizable structure in example solutions by
a neural model. In addition, ours is the first TSP algorithm to mimic the convolutional inductive bias
of the visual system.
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Optimize latent adjacency matrix w.r.t. denoising model Recover tour

Input t =256 t =192 t =128 t =64 t =0 Extracted + 2-opt Oracle

Figure 7: The procedure for solving the Euclidean TSP with a DDPM: Gradient descent is performed
on a latent adjacency matrix A to minimize a stochastic denoising loss on an image representation
f(A) with steadily decreasing amounts of noise (here, 256 steps). In the process, pieces of the tour
are ‘burned in’ and later recombined in creative ways. Finally, a tour is extracted from the inferred
adjacency matrix and refined by uncrossing moves. For both problems shown, the length of the
inferred tour is within 1% of the optimum.

Encoding function. Fix a set of points v1, . . . , vN ∈ [0, 1] × [0, 1]. We encode an symmetric
N ×N matrix with 0 diagonal A as a 64× 64 greyscale image f(A) by superimposing: (i) raster
images of line segments from vi to vj with intensity value Aij for every pair (i, j), and (ii) raster
images of small black dots placed at vi for each i. For example, if A is the adjacency matrix of a tour,
then f(A) is a visualization of this tour as a 64× 64 image.

Diffusion model training. We use a dataset of Euclidean TSPs, with ground truth tours obtained
by a state-of-the-art TSP solver [10], from [23] (we consider two variants of the dataset, each with
∼1.5m training graphs: with 50 vertices in each graph and with a varying number from 20 to 50
vertices in each graph). Each training tour is represented via its adjacency matrix A and encoded as
an image f(A). We then train a DDPM with the U-Net architecture from [7] on all of such encoded
image. Model and training details can be found in the Appendix (§B.4). Some unconditional samples
from the trained DDPM are shown in Fig. 6; most samples indeed resemble image representations of
tours.

Figure 6: Two unconditional samples from the
diffusion model trained on images of solved TSPs.

Solving new TSPs. Suppose we are given a
new set of points v1, . . . , vN . Solving the TSP
requires finding the adjacency matrixA of a tour
of minimal length. As a differentiable relaxation,
we set A = S + S⊤, where S is a stochastic
N ×N matrix with zero diagonal (parametrized
via softmax of a matrix of parameters over rows).
We run the inference procedure using the trained
DDPM pDDPM(f(A)) as a prior to estimate A.
The hyperparameters and noise schedule are de-
scribed in §B.4. Examples of the optimization
are shown in Fig. 7.

Although the inferred A is usually sharp (i.e., all
entries close to 0 or 1), rounding A to 0 or 1 does not always give the adjacency matrix of a tour (see,
for example, the top row of Fig. 7; other common incorrect outputs include pairs of disjoint tours).
To extract a tour from the inferred A, we greedily insert edges to form an initial proposal, then refine
it using a standard and lightweight combinatorial procedure, the 2-opt heuristic [24] (amounting to
iteratively uncrossing pairs of edges that intersect). The entire procedure is shown in Fig. 7, and full
details can be found in the Appendix (§B.4).

Results. We evaluate the trained models on test sets of 1280 graphs each withN = 50 andN = 100
vertices. We report the average length of the inferred tour and the gap (discrepancy from the length
of the ground truth tour) in Table 2 (left), from which we make several observations.
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Table 2: Left: Mean tour length and optimality gap on Euclidean TSP test sets. The baseline results
from [23, 16, 4] are taken from the respective papers. The two DDPMs were trained on 1.5m images
of solved TSP instances (with different numbers of vertices) and used to infer latent adjacency
matrices in the test set. Right: Performance of the DDPM trained on images of 50-vertex TSP
instances with different numbers of inference steps (see the Appendix (§B.4) for time schedule
details). We also show the mean number of 2-opt (uncrossing) steps per instance, suggesting that the
DDPM prior assigns high likelihood to adjacency matrices that are in less need of refinement.

N = 50 N = 100

Algorithm Obj Gap % Obj Gap %

Oracle (Concorde [10]) 5.69 0.00 7.759 0.00

2-opt [24] 5.86 2.95 8.03 3.54

Transformer [23] 5.80 1.76 8.12 4.53
GNN [16] 5.87 3.10 8.41 8.38
Transformer [4] 5.71 0.31 7.88 1.42

Diffusion 20–50 5.76 1.23 7.92 2.11
Diffusion 50 5.76 1.28 7.93 2.19

N = 50 N = 100

Diff. steps Obj Gap % Steps Obj Gap % Steps

256 5.763 1.28 11.6 7.930 2.19 50.6
64 5.780 2.60 14.3 7.942 2.35 45.7
16 5.858 2.98 25.9 8.052 3.78 58.6
4 5.851 2.86 23.9 8.031 3.50 52.8

2-opt 5.856 2.95 24.4 8.034 3.54 53.0

• The right side of Table 2 shows the number of 2-opt (edge uncrossing) steps performed in the
refinement step of the algorithm when the inference algorithm is run for varying numbers of steps.
Running the inference with more steps results in extracted tours that are closer to local minima with
respect to the 2-opt neighbourhood, indicating that the DDPM encodes meaningful information
about the shape of tours.

• The DDPM inference is competitive with recent baseline algorithms that do not use beam search
in generation of the tour (those shown in the table). These baseline algorithms improve when
beam search decoding with very large beam size is used, but encounter diminishing returns as the
computation cost grows. Our performance on the 100-vertex problems is similar to [23] with the
largest beam size they report (5000), which has 2.18% gap, while having similar computation time.

• The model trained on problems with 50 nodes performs almost identically to the model trained on
problems with 50 or fewer nodes, and both models generalize better than baseline methods from
50-node problems to the out-of-distribution 100-node problems.

We emphasize a unique feature of our algorithm: all ‘reasoning’ in our inference procedure happens
via the image space. This property also leads to sublinear computation cost scaling with increasing
size of the graph – as long as it can reasonably be represented in a 64× 64 image – since most of
the computation cost of inference is borne by running the denoiser on images of a fixed size. In the
Appendix (§B.4) we explore the generalization of the model trained on 20- to 50-node TSP instances
to problems with 200 nodes and discuss potential extensions.

6 Conclusion

We have shown how inference in denoising diffusion models can be performed under constraints in
a variety of settings. Imposing constraints that arise from pretrained classifiers enables conditional
generation, while common-sense conditions, such as mutual information with a clustering or diver-
gence from weak labels, can lead to models that are less sensitive to domain shift in the distribution
of conditioning data.

A notable limitation of DDPMs, which is inherited by our algorithms, is the high cost of inference,
requiring a large number of passes through the denoising network to generate a sample. We expect
that with further research on DDPMs for which inference procedures converge in fewer steps [37, 45],
plug-and-play use of DDPMs will become more appealing in various applications.

Finally, our results on the traveling salesman problem illustrate the ability of DDPMs to reason over
uncertain hypotheses in a manner that can mimic human ‘puzzle-solving’ behavior. These results
open the door to future research on using DDPMs to efficiently generate candidates in combinatorial
search problems.

10



Acknowledgments

The authors thank the anonymous NeurIPS 2022 reviewers for their comments.

All authors are funded by their primary institutions. Partial support was provided by the NASA
Biodiversity program (Award 80NSSC21K1027), NSF grants IIS-2123920 and IIS-2212046, and the
Partner University Fund 4D Vision award.

References
[1] Tomer Amit, Eliya Nachmani, Tal Shaharabany, and Lior Wolf. Segdiff: Image segmentation

with diffusion probabilistic models. arXiv preprint 2112.00390, 2021.

[2] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and
other geometric problems. Journal of the Association for Computing Machinery, 45(5):753–782,
09 1998.

[3] Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko.
Label-efficient semantic segmentation with diffusion models. International Conference on
Learning Representations (ICLR), 2022.

[4] Xavier Bresson and Thomas Laurent. The transformer network for the traveling salesman
problem. arXiv preprint 2103.03012, 2021.

[5] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. ILVR:
conditioning method for denoising diffusion probabilistic models. International Conference on
Computer Vision (ICCV), 2021.

[6] Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the TSP by policy gradient. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 170–181. Springer
International Publishing, 2018.

[7] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image
synthesis. Neural Information Processing Systems (NeurIPS), 2021.

[8] Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based
models. Neural Information Processing Systems (NeurIPS), 2020.

[9] Jesse H. Engel, Matthew D. Hoffman, and Adam Roberts. Latent constraints: Learning to
generate conditionally from unconditional generative models. International Conference on
Learning Representations (ICLR), 2018.

[10] David Applegate et al. Concorde TSP solver. http://www.math.uwaterloo.ca/tsp/
concorde, 1997-2003.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Neural Information
Processing Systems (NeurIPS), 2014.

[12] Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic.
European Journal of Operational Research, 126(1):106–130, 2000.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Neural
Information Processing Systems (NeurIPS), 2020.

[14] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. Neural Information
Processing Systems (NeurIPS), 2021.

[15] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3D. arXiv preprint 2203.17003, 2022.

11

http://www.math.uwaterloo.ca/tsp/concorde
http://www.math.uwaterloo.ca/tsp/concorde


[16] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint 1906.01227, 2019.

[17] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
tsp requires rethinking generalization. International Conference on Principles and Practice of
Constraint Programming, 2021.

[18] Zahra Kadkhodaie and Eero Simoncelli. Stochastic solutions for linear inverse problems using
the prior implicit in a denoiser. Neural Information Processing Systems (NeurIPS), 2021.

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. Computer Vision and Pattern Recognition (CVPR), 2019.

[20] Bahjat Kawar, Gregory Vaksman, and Michael Elad. SNIPS: Solving noisy inverse problems
stochastically. Neural Information Processing Systems (NeurIPS), 2021.

[21] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. International Confer-
ence on Learning Representations (ICLR), 2014.

[22] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. International Conference on Learning Representations (ICLR), 2017.

[23] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
International Conference on Learning Representations (ICLR), 2019.

[24] Shen Lin and Brian Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2):498–516, 1973.

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. International Conference on Computer Vision (ICCV), 2015.

[26] James MacGregor and Yun Chu. Human performance on the traveling salesman and related
problems: A review. The Journal of Problem Solving, 3, 02 2011.

[27] Tom Minka. Divergence measures and message passing. Microsoft Research Technical Report,
2005.

[28] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM
Journal on Computing, 28(4):1298–1309, 1999.

[29] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug &
play generative networks: Conditional iterative generation of images in latent space. Computer
Vision and Pattern Recognition (CVPR), 2017.

[30] Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. Inter-
national Conference on Machine Learning (ICML), 2021.

[31] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. International Conference on Machine Learning
(ICML), 2022. To appear; arXiv preprint 2205.07460.

[32] Brian R. Pickard, Jessica Daniel, Megan Mehaffey, Laura E. Jackson, and Anne Neale. Envi-
roatlas: A new geospatial tool to foster ecosystem services science and resource management.
Ecosystem Services, 14(C):45–55, 2015. URL https://EconPapers.repec.org/RePEc:
eee:ecoser:v:14:y:2015:i:c:p:45-55.

[33] Caleb Robinson, Le Hou, Nikolay Malkin, Rachel Soobitsky, Jacob Czawlytko, Bistra Dilkina,
and Nebojsa Jojic. Large scale high-resolution land cover mapping with multi-resolution data.
Computer Vision and Pattern Recognition (CVPR), 2019.

[34] Esther Rolf, Nikolay Malkin, Alexandros Graikos, Ana Jojic, Caleb Robinson, and Nebojsa
Jojic. Resolving label uncertainty with implicit posterior models. Uncertainty in Artificial
Intelligence (UAI), 2022. To appear; arXiv preprint 2202.14000.

12

https://EconPapers.repec.org/RePEc:eee:ecoser:v:14:y:2015:i:c:p:45-55
https://EconPapers.repec.org/RePEc:eee:ecoser:v:14:y:2015:i:c:p:45-55


[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention
(MICCAI), 2015.

[36] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. arXiv preprint 2104.07636, 2021.

[37] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
International Conference on Learning Representations (ICLR), 2022.

[38] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2C: diffusion-decoding
models for few-shot conditional generation. Neural Information Processing Systems (NeurIPS),
2021.

[39] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. International Conference on
Machine Learning (ICML), 2015.

[40] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medi-
cal imaging with score-based generative models. In International Conference on Learning
Representations (ICLR), 2021.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, , and Rob Fergus. Intriguing properties of neural networks. International Conference on
Learning Representations (ICLR), 2014.

[42] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: conditional score-
based diffusion models for probabilistic time series imputation. Neural Information Processing
Systems (NeurIPS), 2021.

[43] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Neural Information Processing Systems (NeurIPS), 2021.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing
Systems (NIPS), 2017.

[45] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion GANs. International Conference on Learning Representations (ICLR),
2022.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See the conclusion and discussion
throughout the paper.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Although
no immediate negative societal impacts are expected, researchers should bear in mind
the risks of flexible conditional generation of images, e.g., for creating ‘deep fakes’.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] For most
experiments; see the Appendix.

13



(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the Appendix and relevant experiment sections.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Main experiments were run one time.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See the relevant

experiment sections.
(b) Did you mention the license of the assets? [No] But all datasets used are free to use for

research purposes; see the relevant citations.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


