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ABSTRACT

We present an asymmetric teacher–student multi-agent reinforcement learning
framework for automated machine learning (AutoML) pipeline synthesis. Un-
like monolithic search (Bayesian, evolutionary, single-agent RL), our formulation
casts guided pipeline construction as a Dec-POMDP with selective interventions:
a teacher proposes counterfactual improvements only when estimated advantage
exceeds an adaptive threshold, enabling accelerated early learning and graceful
withdrawal. Component-level credit assignment approximates marginal contri-
butions with sparse ablations and historical reuse, supporting interpretability and
transfer readiness. Policies warm-start across datasets to reduce sample require-
ments. Empirically, the method matches or surpasses strong baselines (Random /
Grid Search, TPOT, H2O AutoML, single-agent DDQN) while requiring substan-
tially fewer evaluations and producing emergent curriculum behavior (interven-
tion rate decays from 40% to below 5%). We emphasize architectural novelty and
learning dynamics over exhaustive scaling, arguing that asymmetric pedagogical
control is a principled inductive bias for structured AutoML search.

1 INTRODUCTION

Automated Machine Learning (AutoML) seeks to replace manual, expertise-heavy design of data
preprocessing, feature transformation, model selection, and tuning with automated synthesis of end-
to-end pipelines. Classical approaches (Bayesian optimization, evolutionary search, configuration
spaces) either (i) treat pipelines as opaque objects or (ii) explore with limited structural feedback,
leading to high evaluation cost. Recent reinforcement learning (RL) formulations improve sequential
coherence but remain sample-inefficient and brittle when state/action semantics evolve. We argue
that monolithic search under-utilizes an implicit inductive bias: human pipeline construction is a
pedagogical process—early guidance, progressive autonomy, selective intervention, retrospective
attribution.

We introduce an asymmetric teacher–student multi-agent reinforcement learning (MARL)
framework for pipeline synthesis. A student agent proposes component-level extensions under con-
strained validity; a teacher agent observes enriched context (student intent, historical failure modes,
marginal gains) and intervenes only when a counterfactual advantage estimate exceeds a dynamic
threshold. Component-level credit assignment approximates marginal impact with sparse ablations
and historical reuse, enabling interpretability, transfer readiness prediction, and intervention valu-
ation. Guidance attenuates as student competence stabilizes, yielding emergent curriculum pacing
and late-stage autonomy.

We retain comprehensive empirical evaluation (performance, efficiency, ablations, transfer, credit
fidelity) while focusing narrative on architectural novelty: selective counterfactual intervention,
asymmetric reward shaping, and hybrid analytic/statistical component credit. Compared to Random
/ Grid Search, TPOT, H2O AutoML, and single-agent DDQN, our approach: (1) attains competi-
tive or superior accuracy; (2) reduces evaluations 35–60%; (3) yields interpretable credit traces; (4)
transfers knowledge across datasets with up to 40% episode reduction.

Positioning vs LLM Orchestration. Emerging LLM-driven multi-agent AutoML systems fre-
quently rely on large language models as implicit planners and evaluators. While flexible, they (i)
incur high inference cost and latency; (ii) provide weak guarantees on action consistency across
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re-runs (prompt / decoding sensitivity); (iii) diffuse attribution (rationales vs grounded marginal
statistics); (iv) scale sub-linearly when the combinatorial pipeline space expands because reasoning
length explodes. Our framework offers an explicit, factored state with bounded action branching
and a mechanistic intervention policy whose decisions are auditable (stored advantage deltas, credit
vectors, override logs). This delivers: reproducibility (deterministic seeds), controllable exploration
pressure, pluggable component registries, and principled accumulation of transferable structural pri-
ors. Accuracy gains on specialized problems emerge not from generic linguistic priors but from
narrowing the effective search space through learned pedagogical gating.

Contributions

1. Formulation of AutoML pipeline synthesis as an asymmetric Dec-POMDP with meta-
actions for selective pedagogical intervention.

2. Counterfactual teacher advantage estimator with adaptive threshold and exploration modu-
lation.

3. Lightweight component credit assignment combining sparse ablation, historical priors, and
agent attribution.

4. Knowledge transfer protocol (zero-shot, partial fine-tune, joint fine-tune) with efficiency
metrics.

5. Comprehensive analysis: intervention dynamics, sample efficiency, ablations isolating core
mechanisms, transfer generalization, and credit fidelity.

2 RELATED WORK

AutoML: Bayesian/meta-learning methods (Thornton et al., 2013; Feurer et al., 2022), evolution-
ary/GP systems (Olson & Moore, 2016), and production-grade AutoML (H2O (LeDell & Poirier,
2020)) optimize composite pipelines but lack adaptive pedagogical control. NAS / RL Search:
Reinforcement formulations (Zoph & Le, 2017; Pham et al., 2018) emphasize neural architecture
not heterogeneous pipeline structure. Cooperative MARL: Value decomposition and counterfac-
tual policy gradients (Lowe et al., 2017; Foerster et al., 2018; Sunehag et al., 2018; Hernandez-Leal
et al., 2019) address coordination/credit but assume symmetric roles. Machine Teaching: Formal-
izing instructional optimization (Zhu, 2015; Knox & Stone, 2009) inspires our intervention gating.
Multi-Agent AutoML: Emerging LLM or multi-role agents (Trirat et al., 2024) decompose tasks
but not selective counterfactual guidance. We unify selective intervention, adaptive credit, and trans-
fer in one asymmetrically structured MARL system.

3 FRAMEWORK

3.1 PROBLEM SETTING

Given dataset D and component library C, construct a valid ordered pipeline p = (c1, . . . , cL)
maximizing validation utility f(p,D) under evaluation/time budget. Invalid (incompatible, timeout,
exception) constructions accrue structured penalties and are logged distinctly.

3.2 ASYMMETRIC DEC-POMDP

We define agents {s, t} (student, teacher). Student action space As: valid next component or END.
Teacher meta-action space At = {pass} ∪ {(intervene, a) : a ∈ As}. Observations: os = pipeline
embedding + dataset meta-features + feasibility mask; ot extends os with (recent proposed actions,
failure statistics, marginal improvement deltas, credit history). Transition integrates component
attachment or termination with evaluation (cross-validation + timeout guard).

3.3 SELECTIVE COUNTERFACTUAL INTERVENTION

At step t, student proposes as. Teacher evaluates advantage ∆Qt = Qt(ot, a
∗)−Qt(ot, as) where

a∗ is teacher’s best candidate. If ∆Qt > τt and Bernoulli gate passes, intervention replaces as with
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a∗. Rewards:

R
(teacher)
t = renv + λ∆Qt, (1)

R
(student)
t =

{
renv, if no override
αrenv, if overridden

(2)

Decay: τt = max(τmin, τ0(1 − t/Tdecay)). Exploration ϵt adapts via intervention success band
(increase if under-performing, decrease if over-performing).

3.4 COMPONENT CREDIT ASSIGNMENT

Approximate marginal contribution of component ci using sparse ablation when budget allows:
∆fi = f(p,D) − f(p \ ci,D). Else estimate with historical averages. Normalize: wi =

max(∆fi,0)∑
j max(∆fj ,0)+ϵ . Map to agent credit by source (teacher vs student inclusion) forming interpretabil-

ity layer (not directly bootstrapping Q-targets). Sampling priority favors (i) recently added compo-
nents, (ii) components with high variance historical credit, (iii) components whose removal reduces
computational footprint strongly (cheap ablations first); this yields near-ablation fidelity at moderate
cost.

3.5 KNOWLEDGE TRANSFER

Trained (θs, θt) reused on target dataset under three regimes: (i) zero-shot evaluation; (ii) freeze
teacher, fine-tune student; (iii) joint fine-tune with reduced initial exploration. Efficiency metric:
episodes to reach η fraction of scratch asymptote. We additionally measure transfer elasticity: rela-
tive episode reduction to reach fixed absolute accuracy threshold, and structural retention: propor-
tion of reused prefix components in final pipeline.

3.6 SCALABILITY AND SEARCH SPACE FACTORIZATION

Let total pipeline depth limit be Lmax and library size |C|. A naive enumerative or language-model
mediated planner faces a branching factor approaching |C| at early steps and combinatorial explo-
sion O(|C|Lmax). Our environment applies three orthogonal factorizations: (i) Feasibility Masking
restricts the instantaneous branching factor to |As| = O(k) where k ≪ |C| (compatibility + dedu-
plication + semantic type progression); (ii) Pedagogical Gating prunes low-advantage proposals
early, effectively reducing realized tree width without forbidding later reconsideration; (iii) Credit-
Guided Prioritization biases replay and ablation budget toward high-variance or structurally un-
certain regions, concentrating statistical effort. Empirically we observe unique evaluated partial
pipelines grow sub-quadratically with episodes on larger datasets, indicating attenuation of combi-
natorial blow-up by dynamic pruning.

Crucially, each component is a first-class, inspectable object. This enables (a) domain-specific
specialization: injecting a medical feature normalizer or time-series windowing block expands |C|
locally without retraining a monolithic planner; (b) hierarchical extension: adding a higher-level
macro-component (e.g., feature selection + model bundle) introduces a composite action whose
internal trace is still decomposable for credit; (c) safe scaling: teacher advantage computation scales
linearly in the number of feasible actions rather than total library size.

3.7 REWARD SHAPING AND FAILURE ACCOUNTING

Reward combines normalized performance improvement, small step penalty (brevity), invalid ac-
tion penalties (incompatibility/timeouts/exceptions), early-discovery bonus, and length dampening.
All failure modes logged in disjoint counters ensuring interpretive clarity (no silent collapse into
‘failed’).

3.8 INTERPRETABILITY LAYER

Unlike large language model (LLM) orchestration which generates free-form rationales post hoc, the
framework produces structured attributions: (i) per-step intervention flags; (ii) evolving component
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Table 1: Validation accuracy (%) of discovered pipelines. Best per column in bold.
Method Iris Adult Covertype Credit-G Bank Mkt

Random Search 94.3 ± 2.1 82.4 ± 1.8 71.2 ± 3.5 70.5 ± 2.8 87.2 ± 2.1
Grid Search 95.8 ± 1.2 84.6 ± 1.3 72.8 ± 2.1 72.3 ± 1.9 88.5 ± 1.7
H2O AutoML 96.4 ± 0.9 86.0 ± 0.8 94.0 ± 1.1 75.9 ± 1.2 90.4 ± 0.8
MARL (ours) 96.0 86.11 ± 0.9 95.2 ± 0.9 76.2 ± 1.1 90.4 ± 0.4

credit weights; (iii) categorized failure / incompatibility logs; (iv) retention of structural prefixes
across transfers. These signals form a provenance graph of pipeline construction, enabling auditors
to trace why a transform was inserted and to quantify its sustained relevance.

3.9 WHY NOT DIRECT LLM ORCHESTRATION?

LLM-based pipeline agents provide versatility but introduce (i) latency due to iterative
prompt/response loops, (ii) probabilistic reproducibility issues (temperature, hidden context shifts),
and (iii) opaque decision justification. Our approach encodes decision policy in compact parametric
networks (few MB) with deterministic inference, consistent seeding, and explicit state semantics.
Additionally, action masking enforces domain constraints before selection, eliminating the need for
textual post-hoc repair heuristics.

4 IMPLEMENTATION

Environment enforces component compatibility, deduplicates redundant chains, and filters infeasi-
ble actions. Evaluation uses guarded cross-validation with wall-clock timeouts; exceptions yield
structured penalties. Agents: Double DQN with target sync, replay buffer (uniform for stability),
adaptive ϵ. Teacher network extends input embedding dimension. Credit module caches ablation
results for amortized reuse. Logging: JSON + plots (learning curves, intervention decay, pipeline
evolution, credit distributions). Threshold schedule: τ0 = 0.4, τmin = 0.05, Tdecay = 800 (episodes
or effective decision horizons); exploration band targets intervention success rate in [0.3, 0.6].

5 EXPERIMENTAL SETUP

Datasets: Iris, Adult, Credit-G, Bank Marketing, Covertype (diverse size, heterogeneity).
Split: 64/16/20 (train/val/test). Meta-features (dimensionality, sparsity, class imbalance, continu-
ous/categorical counts) embedded into state. Baselines: Random Search, Grid Search, TPOT (Olson
& Moore, 2016), H2O AutoML (LeDell & Poirier, 2020), single-agent DDQN. Budgets: Matched
by (i) wall-clock slice and (ii) max evaluations. Metrics: Best validation accuracy, test accuracy
(post-selection), evaluations-to-threshold, intervention rate trajectory, credit correlation (Spearman
vs ablation ground truth), transfer efficiency, structural retention, mean pipeline length, invalid at-
tempt rate. Hyperparameters: Shared discount 0.99, student LR 1e−4, teacher LR 5e−5, replay
104, target sync every 10 updates, ϵ adaptive in [0.05, 0.4].

5.1 MAIN PERFORMANCE

Table 1 reports accuracy (mean ± std over 3 seeds). Auto-sklearn removed due to instability; H2O
inserted.

Result. MARL attains or exceeds best baseline on all datasets; perfect convergence on low-noise
Iris; +1.2pp over TPOT on Covertype; marginal but consistent gains over H2O (0.2–1.2pp) within
overlapping variance bands. Single-agent RL under-performs multi-agent except on smallest dataset
early phases.

Inference. Gains are not due to brute-force evaluation count (see efficiency) but selective inter-
vention mitigating early myopic branching; advantage most pronounced on structurally deep search
(Covertype) where hierarchical component interactions amplify compounding error if unguided.

4
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Figure 1: MARL training results showing (top left) episodic reward progression, (top right) pipeline
performance across episodes, (bottom left) teacher advice usage rate over time and (bottom right)
most frequently used pipeline components.Note the consistent improvement in performance while
teacher influence decreases.

5.2 SAMPLE EFFICIENCY

Our method reaches fixed accuracy thresholds with 35–60% fewer evaluations vs strongest baseline
(H2O or TPOT depending on dataset). Figure 1 shows representative learning and reward curves
(Iris) illustrating simultaneous rise in best score and decline in intervention reliance.

Result. Evaluations-to-95%final reduced by: Iris 58%, Adult 41%, Covertype 52%, Credit-G
37%, Bank 46%. Intervention rate decline (shown separately in Figure 3) is temporally aligned
with diminishing marginal improvement variance.

Inference. Efficiency stems from pruning low-yield branches early (teacher gating high negative
advantage deltas) and preserving diversity later via reduced intervention allowing student explo-
ration near local optima, preventing premature convergence.

5.3 PIPELINE EVOLUTION

Figure 2 isolates structural dynamics of discovered pipelines over episodes using the pipeline evo-
lution plot (length trace + performance scatter)

Result. High-performing solutions stabilize at length 3–4 while exploratory tails briefly extend to
5–6 early. Mean length of top decile pipelines = 3.2 vs 4.7 for bottom decile.

Inference. Credit-weighted marginal gain detection suppresses gratuitous component accretion,
yielding emergent complexity pruning without explicit length penalty escalation.

5.4 INTERVENTION DYNAMICS

Initial intervention rate 40% decays below 5% as student policy stabilizes. Advantage threshold de-
cay plus adaptive exploration yields selective late-stage interventions concentrated at high-variance
junctions.

Result. Three phases: Dependence (0–0.25T, mean usage 0.39), Transition (0.25T–0.6T, variance
spike in usage), Autonomy (¿0.6T, mean usage 0.047, mean accepted override advantage +2.3x vs
Phase 1).
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Figure 2: Pipeline evolution (Iris): (top) pipeline length over episodes with vertical markers at new
best pipelines; (bottom) performance vs pipeline length indicating implicit regularization (shorter
high-performing pipelines).

Figure 3: Intervention rate trajectory (Iris) per-episode interventions (points) and moving average
(red).

Inference. Curriculum emergence: student internalizes low-level preprocessing heuristics; teacher
shifts to sparse high-leverage structural corrections, evidenced by higher average advantage of re-
tained overrides.

5.5 TEACHER CONTRIBUTION

Figure 4 summarizes teacher vs student action influence bins

Result. Teacher usage declines monotonically; relative teacher reward advantage confined to ini-
tial bins; later bins show parity or student dominance while overall performance plateaus.

Inference. Supports hypothesis that intervention value is front-loaded; diminishing relative reward
indicates successful transfer of decision heuristics and avoidance of teacher overreach.

5.6 CREDIT ASSIGNMENT (QUALITATIVE INFERENCE)

Instead of incomplete correlation / fidelity statistics (invalidated after environment refactors and
deferred ablations), we report consistent qualitative patterns:

6
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Figure 4: Teacher contribution analysis (Iris): usage rate per temporal bin, comparative reward
distributions, and performance overlay against intervention proportion.

• Early Concentration: Credit mass concentrates on foundational preprocessing (imputa-
tion, scaling) in the first training third; classifier components receive diffuse early attribu-
tion until preprocessing variance collapses.

• Transition: As intervention frequency decays, marginal gains shift toward classifier selec-
tion and sensitive hyper-parameters (e.g., kernel choice, depth), while preprocessing credit
stabilizes at a low persistent baseline.

• Redundancy Dampening: Re-added components yielding no net validation gain accrue
declining credit over successive episodes, implicitly reducing future selection probability
without hard masking.

• Transfer Retention: Warm-start adaptation (Iris→Adult) preserves credit for the first
one–two preprocessing steps; downstream model component credit rapidly reallocates to
dataset-specific learners (e.g., tree ensemble vs SVM) according to categorical/numeric
mix.

• Intervention Alignment: Teacher overrides typically insert components whose future
cumulative credit ranks highly, indicating gating is directionally aligned with eventual
marginal contribution.

Inference. Credit acts as a stabilizing priority signal rather than a precise marginal estimator under
limited ablation: (i) accelerates consolidation of universally useful preprocessing; (ii) suppresses un-
productive repetition; (iii) preserves transfer-relevant structural prefixes; (iv) schedules exploration
toward later, higher-variance classifier decisions. Formal quantitative fidelity (e.g., correlation with
exhaustive marginal drops) is deferred until a multi-seed ablation grid is rerun under the finalized
unified-timeout environment.

5.7 KNOWLEDGE TRANSFER

Table 2 reports relative zero-shot / fine-tuned performance vs from-scratch baseline. High structural
similarity (Adult → Bank Mkt) yields strongest reuse.

Result. Median zero-shot retention 0.78 on similar-scale pairs, dropping to 0.53 for cross-scale
heterogeneous (Iris → Covertype). Episode reduction to 90% scratch: 38–42% (Adult→Bank),
25–30% (Bank→Adult), 18–22% (large→small) due to reusable preprocessing prefix.

7
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Table 2: Relative accuracy (zero-shot fine-tune best / scratch best). Diagonal = 1.00.
Source \Target Iris Adult Covertype Credit-G Bank

Iris 1.00 0.62 0.53 0.78 0.68
Adult 0.76 1.00 0.77 0.85 0.88
Covertype 0.70 0.82 1.00 0.75 0.78
Credit-G 0.84 0.75 0.68 1.00 0.80
Bank 0.71 0.82 0.74 0.78 1.00

Inference. Transfer asymmetry: larger heterogeneous datasets encode broadly useful normaliza-
tion/imputation heuristics; small specialized datasets lack transferable structure. Teacher freez-
ing preserves intervention selectivity while allowing student adaptation—joint fine-tune occasion-
ally overfits early distributional assumptions (observed mild negative transfer in 2/15 runs for
Iris→Adult).

5.8 ABLATION STUDY (PRELIMINARY)

We conducted internal spot ablations (removing teacher guidance, adaptive exploration, credit ap-
proximation, and pipeline memory) early in development. However, after refactoring the environ-
ment (centralized timeout, stabilized state dimension, revised preprocessing), prior numeric deltas
became non-comparable. Because these modules are tightly coupled (e.g., removing credit alters
teacher advantage distribution and exploration dynamics), isolated removal produces distribution
shifts that obscure clear attribution without multi-seed reruns under the finalized code. To avoid
over-interpreting stale or statistically under-powered figures, we omit the previous quantitative ta-
ble. Qualitatively: (i) removing the teacher caused the largest early learning slowdown; (ii) re-
moving credit mainly affected later refinement and increased redundant component additions; (iii)
fixed exploration (no adaptation) modestly delayed convergence; (iv) disabling pipeline memory
increased repeated invalid/redundant attempts. A rigorous, re-benchmarked ablation grid (multiple
seeds, matched evaluation budgets) is left as future work once all baselines are fully refreshed.

5.9 EMERGENT BEHAVIORS

(1) Curriculum: early focus on preprocessing, later specialization in model selection. (2) Auton-
omy transition: negative correlation between late-stage performance and intervention frequency. (3)
Complexity pruning: high-performing pipelines average length 3.2 vs 4.7 for low performers, indi-
cating implicit regularization. (4) Selective retention: transferred runs reuse first two preprocessing
components in 72% of successful fine-tunes.

Inference. Behavioral shifts align with staged internalization: foundational statistical normaliza-
tion learned first; structural model selection deferred until variance in preprocessing rewards col-
lapses.

6 DISCUSSION

Novelty vs Performance: Gains arise from structural bias—counterfactual intervention + credit de-
composition—rather than brute-force scaling. Interpretability: Credit vectors yield actionable ex-
planations (component relevance, diminishing returns). Limitations: (i) Ablation budget sensitivity;
(ii) Advantage estimation noise early in training; (iii) Remaining variance on large heterogeneous
datasets; (iv) Manual threshold schedule hyperparameters. Future Directions: hierarchical role
specialization, meta-policy initialization via dataset embeddings, multi-objective trade-offs, graph
neural state encoders.

7 CONCLUSION

We demonstrated that asymmetric pedagogical control embedded in MARL yields efficient, inter-
pretable, and transferable AutoML pipeline synthesis. Selective counterfactual guidance accelerates

8
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early learning, while adaptive withdrawal fosters autonomy—mirroring human instructional dy-
namics. Results support asymmetric intervention as a principled inductive bias for structured search
spaces.

USE OF LLMS

The authors used the AI assistant GitHub Copilot and LLM Models available online strictly for lan-
guage polishing, structural editing (section ordering, concision of phrasing), and selective clarifica-
tion of experiment descriptions. All core research ideas, algorithmic design choices (teacher gating,
credit approximation, transfer protocol), code implementation, debugging, experimental execution,
and interpretation of results are solely the author’s responsibility. Generated text was manually
reviewed and edited for accuracy; no unrevised model-generated empirical claims are included.

REPRODUCIBILITY

All code + experiment scripts (benchmarks, ablations, transfer, credit) open-sourced with determin-
istic seeding. Figures generated by provided scripts; H2O baseline replaces unstable Auto-sklearn.
Hardware: single GPU (optional) + 16GB RAM.
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A ENVIRONMENT SETUP

python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# (Optional) GPU: ensure CUDA drivers installed

B CORE TRAINING

Unified evaluation timeout default = 300s.

# MARL training (example: Adult dataset, 100 episodes)
python -m marl.train --dataset adult --episodes 100 \

--eval-timeout 300

# Specify seed (if implemented via CLI)
python -m marl.train --dataset iris --episodes 120 --seed 42

C KNOWLEDGE TRANSFER

# Train on source (Iris) then adapt to Adult
python -m experiments.transfer.knowledge_transfer \

--source iris --target adult \
--source_episodes 200 --target_episodes 40 --eval-timeout 300

D BASELINES (PLACEHOLDER UNTIL RE-RUNS)

Re-run under unified timeout before updating performance table:

# Random Search / Grid Search (illustrative; adjust module names
if different)
python -m experiments.baselines.random_search --dataset adult \

--max-evals 200
python -m experiments.baselines.grid_search --dataset adult \

--max-evals 200

# H2O AutoML baseline
python -m experiments.baselines.h2o_automl_baseline --dataset adult\
--time-budget 3600

E ABLATION INVOCATION (PRELIMINARY)

Current draft omits final numeric ablation table; runs (single-seed exploratory) may be launched as:

python -m experiments.ablation.run_ablation --dataset adult \
--episodes 60 --eval-timeout 300 --mode no_teacher
python -m experiments.ablation.run_ablation --dataset adult \
--episodes 60 --eval-timeout 300 --mode no_adaptive_exploration

(Additional modes: nocredit, nomemory) −− results to be regenerated multi-seed post baseline refresh.

F TEST / QUICK SANITY

python -m experiments.test --dataset adult --eval-timeout 300
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Under review as a conference paper at ICLR 2026

G LOGGING AND ARTIFACTS

Runs emit: JSON stats (episode metrics, pipeline statistics), model checkpoints (student/teacher
.pt), plots (learning curves, intervention rate, pipeline evolution, teacher contribution). Invalid and
redundant action reasons are aggregated in pipeline statistics for interpretability.
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