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ABSTRACT

Distribution estimation (DE) is one of the effective strategies for few-shot learn-
ing (FSL). It involves sampling additional training data for novel categories by
estimating their distributions employing transferred statistics (i.e., mean and vari-
ance) from similar base categories. This strategy enhances data diversity for novel
categories and leads to effective performance improvement. However, we argue
that relying solely on coarse-grained estimation at category-level fails to generate
representative samples due to the discrepancy between the base categories and the
novel categories. To pursue representativeness while maintaining the diversity of
the generated samples, we propose Hybrid Granularity Distribution Estimation
(HGDE), which estimates distributions at both coarse-grained category and fine-
grained instance levels. In HGDE, apart from coarse-grained category statistics,
we incorporate external fine-grained instance statistics derived from nearest base
samples to provide a representative description of novel categories. Then we fuse
the statistics from different granularity through a linear interpolation to finally
characterize the distribution of novel categories. Empirical studies conducted on
four FSL benchmarks demonstrate the effectiveness of HGDE in improving the
recognition accuracy of novel categories. Furthermore, HGDE can be applied to
enhance the classification performance in other FSL methods. The code is avail-
able at: https://anonymous.4open.science/r/HGDE-2026

1 INTRODUCTION

In recent years, deep learning has exhibited remarkable capabilities in computer vision tasks (Rawat
& Wang, 2017). These significant advancements heavily rely on the availability of large labeled
datasets, which is a time-consuming or even practically infeasible process. To address this challenge,
few-shot learning (FSL) has been developed as a solution to recognize novel objects (query set) with
only a limited number of labeled samples (support set).

In the typical FSL scenario, a feature extractor like a Convolutional Neural Network (CNN) or Vi-
sion Transformer (ViT) is trained on a large set of labeled samples, referred to as the base set. Then
a few extracted features from the support set are leveraged to build a classifier for recognizing cat-
egories within the query set. Recently, some works (Yang et al., 2021; Liu et al., 2023a;b) have
explored the strategy of distribution calibration (DC) (also known as distribution estimation (DE))
to alleviate the data scarcity of the support set. These methods are grounded on the assumption
that each feature dimension of the samples follows a Gaussian distribution, and the statistics of the
Gaussian distribution can be transferred across similar categories (Salakhutdinov et al., 2012). Con-
sequently, they transfer the statistics of similar base categories to describe the distribution of each
novel category in the support set, enabling the sampling of additional training data. As illustrated
in Figure 1, given a sample “Hyena dog”, DC transfers the statistics of the most similar categories
(blue ellipse), such as “Saluki”, “Tibetan mastiff ” and “Arctic fox” to describe the distribution of
“Hyena dog”. Although the previous work Yang et al. (2021) has demonstrated the effectiveness of
coarse-grained category-level distribution estimation. We still observe that the prototypes of these
categories not only are widely separated in the feature space but also are not sufficiently close to the
support category. To validate these observations, we analyze the statistics of similar categories and
instances, and the results in Table 5 and Table 6 indicate that similar categories exhibit high diversity
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but low similarity, while similar instances exhibit low diversity but high similarity. Consequently,
we can infer the success of category-level distribution estimation is due to the provision of diverse
information for the novel category, which ensures the diversity of generated samples.

However, due to the discrepancy between the similar base categories and the novel category,
these prototypes struggle to accurately represent the novel categories, thus making it challeng-
ing to generate representative samples and thus limiting the performance. In contrast, the rep-
resentative ability of similar instances demonstrated in Table 6 is unpossessed for the simi-
lar categories. As depicted in Figure 1, specific samples (located in green dotted ellipse )
within the base categories, such as “Saluki”, “Tibetan mastiff” and “Arctic fox”, exhibit higher
feature similarity to the novel category “Hyena dog” in comparison to their category proto-
types. Consequently, these samples are more effective in representing the label of “Hyena dog”.

Hyena 
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Tibetan mastiff Set

Saluki Set Arctic fox Set

Similar Categories

Similar Samples

Prototype (Mean)

Sample

Similarity

Figure 1: The strategy for category-
level and instance-level estimation.

Drawing from the preceding analysis, we conduct the en-
hancement of the category-level distribution estimation
on the fine-grained instance level and propose our Hybrid
Granularity Distribution Estimation.

Our HGDE method fuses the statistics estimated from
both coarse-grained category-level and fine-grained
instance-level data to derive a distribution for each novel
category. Specifically, we select several categories and
samples in the base set that are similar to the given novel
category. We then estimate the mean statistics on the
category-level and instance-level for the novel category
using a similarity-based refinement. This refined estima-
tion achieved through weighted sum provides a more ac-
curate result compared to the commonly used average op-
eration (e.g., Yang et al. (2021)). Regarding covariance

statistics, the category-level estimated covariance is the average of the covariances of the selected
categories, and the instance-level estimated covariance is calculated across the selected instances.
Additionally, we refine these estimated covariances to filter out less informative components and
only preserve principal components using eigendecomposition Yuan & Gan (2017). Finally, we use
a simple yet effective linear interpolation to fuse the means and covariances at different levels to
obtain the final estimated statistics for the novel category.

The key contributions of our approach can be summarized as follows: (1) We explore the effective-
ness of fine-grained instance-level distribution estimations and then transfer statistics from both the
coarse-grained category-level and the fine-grained instance-level to ensure the generation of diverse
and representative additional samples. (2) We introduce refinement techniques to strengthen the
capture of distribution statistics at both levels, respectively. (3) Our HGDE exhibits effectiveness
across a wide range of FSL benchmarks and flexibility in its application to various FSL methods.

2 RELATED WORKS

2.1 TYPICAL METHODS FOR FEW-SHOT LEARNING

Recent FSL works have achieved promising performance by developing a robust feature extractor
(backbone) through effective structural design or model training. Meta-learning (Rusu et al., 2019;
Lee et al., 2019) is one of the most effective methods due to its ability to quickly adaption. It
can be broadly categorized into two types: optimization-based methods and metric-based methods.
Optimization-based methods like MAML (Finn et al., 2017) and Reptile (Nichol & Schulman, 2018)
focus on learning an initial set of model parameters that can be fine-tuned easily to adapt to new
tasks. Metric-based methods, including ProtoNet (Snell et al., 2017) and RENet (Kang et al., 2021),
train a neural network to effectively separate samples from the same category, bringing them closer
in the feature space, while pushing samples from different categories farther apart.

2.2 DATA AUGMENTATION FOR FEW-SHOT LEARNING

Data augmentation is another type of conventional and efficient method to address the issue of lim-
ited data and enhance its representational capability. They primarily focus on designing effective
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Figure 2: The overview of our approach. We extract features using a frozen CNN or ViT for the
given categories and samples. Then we design two-level statistics estimation in (a) Distribution
Estimation to capture the distribution characteristics. Next, we fuse the two-level statistics to derive
the final estimated distribution of the support category in (b) Distribution Fusion. Finally, we
generate additional samples based on the estimated distribution.

strategies or training auxiliary modules to generate a large number of samples and improve their
discriminative ability. Such as Variational Auto-Encoder (VAE) (Schönfeld et al., 2019), Generative
Adversarial Network (GAN) (Li et al., 2020). However, due to the time-consuming and expensive
nature of training generative networks, another effective augmentation method is Distribution Cali-
bration (DC)(Yang et al., 2021; Li et al., 2022; Liu et al., 2023a), which focuses on estimating the
unseen classes by transferring statistics from the seen classes, and then samples are sampled from
the distribution with its corresponding label. For example, Yang et al. propose LRDC (Yang et al.,
2021) which calibrates the novel category distribution based on their similarity with the base classes.
Liu et al. calibrate the distribution by transferring the statistics from the query samples.

3 METHODS

In this section, we first revisit the preliminaries of the FSL. Then we delve into the specifics of our
HGDE as depicted in Figure 2. Finally, we describe the classifier training and inference procedures.

3.1 PRELIMINARIES

The FSL dataset consists of three main parts: the base set Db, the support set Ds, and the query
set Dq . The base set Db contains a substantial number of labeled samples, usually hundreds per
category, and is employed to train the feature extractor associated with the label set denoted as Yb.
The support set Ds and the query set Dq share the same label space, known as Ynovel, which is
disjoint from Yb. The goal of FSL is to accurately classify the unlabeled samples from the query set
by leveraging both the base set and the support set. In the support set, N categories are randomly
sampled from Ynovel, each contributing K samples. This setup is commonly referred to as the
N -way-K-shot recognition problem.

3.2 HYBRID GRANULARITY DISTRIBUTION ESTIMATION

Our work operates on features, where all samples are transformed into feature vectors denoted as
f ∈ Rd using the pre-trained feature extractor, and d is the dimension of the feature vector. Based
on the assumption (Yang et al., 2021) that the feature vectors follow a Gaussian distribution, we
calculate the prototype (mean) of class m in the base set:

pm
b =

1

|Dm
b |

∑|Dm
b |

i=1
fm,i
b , (1)

where fm,i
b is the feature of the i-th sample from the base class m, and |Dm

base| denotes the total
number of samples in the class m. Since the feature vector is multidimensional, we use covariance
to provide a more comprehensive representation of the variance. The covariance for the features
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from base class m is calculated as:

Σm
b =

1

|Dm
b | − 1

∑|Dm
b |

i=1
(fm,i

b − pm
b )(fm,i

b − pm
b )T. (2)

For the support set, we calculate the prototype(s) corresponding to their respective categories:

pn
s =

1

|Dn
s |

∑|Dn
s |

i=1
fn,i
s , (3)

where fn,i
s is the feature of the i-th sample from class n in the support set, and |Dn

s | is the total
number of the samples in the class n. After the above calculations, we then leverage the statistics of
the categories and instances to perform the category-level and instance-level distribution estimations,
respectively. Based on these estimated distributions, we fuse them to finally capture the distribution
of each support category. The overview of our HGDE is illustrated in Figure 2.

3.2.1 CATEGORY-LEVEL DISTRIBUTION ESTIMATION

The statistics of each category in the base set are calculated through Equation 1 and Equation 2, and
we transfer these statistics to describe the distribution of categories in the support set. For the given
prototype pn

s from the support set, we select the top k closest base categories:

Sn
cat = {m | zm,n ∈ topk(Zn

cat)}, Zn
cat = {−||pn

s − pm
b ||2}|Yb|

m=1, (4)

where Sn
cat stores the set of k nearest base categories corresponding to pn

s , and Zn
cat collects the

Euclidean distance between pn
s and all base categories. Additionally, |Yb| indicates the total number

of categories in the base set. Based on the aforementioned observations, we employ the statistics of
these similar base categories to estimate the statistics for the category of pn

s :

µn
cat =

1

|Sn
cat|+ 1

(
∑

m∈Sn
cat

wmpm
b + pn

s ), Σn
cat =

1

|Sn
cat|

∑
m∈Scat

Σm
b . (5)

µn
cat and Σn

cat are the estimated mean and covariance, respectively. The weights wm are assigned
to the closest base class prototypes to control their contributions in mean estimation:

wm = min( 1√
−zm,n

+ c1, 1), m ∈ Sn
cat, (6)

where c1 is a constant for decaying wj . For the N -way-K-shot classification problem, we can derive
the N distributions, denoting as the following:

Ucat = {(µ1
cat,Σ

1
cat), ..., (µ

n
cat,Σ

n
cat), ..., (µ

N
cat,Σ

N
cat)}. (7)

The aforementioned procedure is independent of the value of K. Whether it is one shot or more
than one shot, we only estimate a single distribution for each category in the support set,

3.2.2 INSTANCE-LEVEL DISTRIBUTION ESTIMATION

The instance-level estimation shares similarities with the category-level estimation. We leverage
the statistics of the entire feature from the base set, represented as Fb = [f1

b , ...f
j
b , ...,f

|Db|
b ] to

characterize the support set. For the prototype pn
s from the support set, we select the top k most

similar base samples based on their cosine distance:

Sn
ins = {j | zj,n ∈ topk(Zj

ins)}, Zj
ins = {cos(pn

s ,f
j
b ), ∀f

j
b ∈ Fb}, (8)

where Sn
ins represents the associated k nearest base samples, and Zj

ins is the collections of the
distance between pn

s and all base samples. As the base set contains a large number of samples, there
could be a few outliers that influence the selection process. We utilize the cosine distance instead
of the Euclidean distance due to its robustness to outliers (Qian et al., 2004). Based on the above
calculations, we estimate the instance-level statistics for the category of pn

s :

µn
ins =

1

|Sn
ins|+ 1

(
∑

j∈Snins

rjf
j
b + pn

s ), Σn
ins =

1

|Sn
ins| − 1

∑|Sn
ins|

j=1
(f j

b − µb)(f
j
b − µb)

T, (9)
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where µb = 1/|Sn
ins|

∑|Sn
ins|

j=1 f j
b is the mean of the selected similar base samples, and rj follows the

same idea as in Equation 6, determining the contributions of each selected sample in the estimation:
rj = (zj)

t + c2, j ∈ Sn
ins, (10)

where t and c2 are both constant to control the range of rj . Depending on the above calculation, we
derive the N distributions corresponding to the total categories of the support set:

Uins = {(µ1
ins,Σ

1
ins), ..., (µ

n
ins,Σ

n
ins), ..., (µ

N
ins,Σ

N
ins)}, (11)

The Equation 7 and Equation 11 denote the estimated distributions from category-level and instance-
level, respectively, and we fuse them to characterize the distribution of categories in the support set.

3.2.3 DISTRIBUTION FUSION

The estimated covariance Σn
cat and Σn

ins are based on statistical calculation and can be rewritten as:

Σn
cat =

∑d

i=1
λi
catv

i
catv

i
cat

T
, Σn

ins =
∑d

i=1
λi
insv

i
insv

i
ins

T
, (12)

where λi
cat, i = 1, · · · , d and λi

ins, i = 1, · · · , d are the eigenvalues of Σn
cat and Σn

ins, respectively,
arranged in descending order. vi

cat and vi
ins are their corresponding eigenvectors. Typically, the

feature dimension d is a large number, such as 512 or 640. Based on the covariance matrix analysis
in Yuan & Gan (2017), the small values of covariance are less informative and can be regarded as
noise components. In order to obtain the statistics more accurately, we reconstruct the estimated
covariance to filter out noise components and preserve the principal components as follows:

Σ̃n
cat =

∑L

i=1
λi
catv

i
catv

i
cat

T
, Σ̃n

ins =
∑L

i=1
λi
insv

i
insv

i
ins

T
, (13)

where L denotes the number of the first largest eigenvalues of Σcat
r and Σins

r . The reconstructed
Σ̃cat

r and Σ̃ins
r are more informative and we utilize them to replace the covariance in the Ucat and

Uins respectively. Based on these two-level statistics estimation, we fuse their mean and covariance
through a linear interpolation to characterize the distribution for the category of pn

s :

µn
fsn = αµn

cat + (1− α)µn
ins, Σn

fsn =
1

2
(Σ̃n

cat + Σ̃n
ins) +∆. (14)

where ∆ is a diagonal matrix with small values added to prevent the singularities (Guerci, 1999),
and α is the coefficient to balance the proportion of estimated instance-level and category-level
distribution. Finally, we express the distribution of each category in the support set as follows:

Ufsn = {(µ1
fsn,Σ

1
fsn), ..., (µ

n
fsn,Σ

n
fsn), ..., (µ

N
fsn,Σ

N
fsn)}. (15)

where Ufsn gathers distributions for all categories in the support set. These distributions benefit
from both category-level and instance-level statistics, enabling the generation of more diverse and
representative samples.

3.3 CLASSIFIER TRAINING AND INFERENCE

For each category in the support set, we use the distribution in Ufsn to generate additional samples:
Dfsn = {fn

fsn | fn
fsn ∼ N (µn

fsn,Σ
n
fsn), ∀(µn

fsn,Σ
n
fsn) ∈ Ufsn}, (16)

where Dfsn collects the whole generated samples for all categories in the support set. Inspired by
the Xu & Le (2022), we assume that the distance between the generated sample and the support
prototype reflects its representativeness. To ensure that only the most representative samples are
employed for training, we set a threshold ϵ to constrain samples with distances smaller than ϵ.:

D̃fsn = {fn
fsn | ||fn

fsn − pn
s ||2 < ϵ, ∀fn

fsn ∈ Dfsn}. (17)
The set of all generated samples for each class in the support set, combined with the original samples
from the support set, is denoted as Ds = D̃fsn ∪ Dsupport. This combined dataset is then used to
train the classifier, which is designed as a fully connected layer optimized with cross-entropy loss:

LCE =
1

|Ds|
∑

(f ,y)∼Ds

CrossEntropy(f , y), (18)

where y ∈ Ynovel is the label of f . In the inference stage, we use the trained classifier to predict the
feature from the query set into a specific category directly.
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Figure 3: The classification accuracy (%) with varying numbers of selection, considering: (a)
category-level selection with and without weight described in Equation 6, (b) instance-level se-
lection with and without weight described in Equation 3.2.2.

4 EXPERTIMENTS

In this section, we first describe the experimental settings, then we perform ablation studies to ana-
lyze the contributions of different operations in HGDE. Finally, we compare the performance of our
approach with other state-of-the-art (SOTA) methods.

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on four benchmark datasets, i.e., Mini-ImageNet (Vinyals et al.,
2016), Tiered-ImageNet (Ren et al., 2018), CUB (Wah et al., 2011), and CIFAR-FS (Krizhevsky
et al., 2009). These datasets provide comprehensive evaluation scenarios.
Mini-ImageNet: comprising 100 categories, each containing 600 images, it is split into three seg-
ments: 64 base categories for training, 16 novel categories for validation, and the remaining 20 novel
categories for testing. Tiered-ImageNet: containing 779165 images from 608 categories, where 351
base categories are used for training, 97 novel categories are used for validation, and the remaining
160 novel categories are used for testing. CUB: including 200 bird categories with 11788 images.
We follow the split strategy from Yang et al. (2021), where 100 categories are used for training, 50
for validation, and 50 for testing. CIFAR-FS: derived from CIFAR-100 (Krizhevsky et al., 2009). It
is divided into 64 training categories, 16 validation categories, and 20 testing categories, with each
category containing 600 images.

Evaluation. We report the accuracy results for conducting N -way-K-shot tasks. In each task,
N novel categories are randomly chosen, and within each category, K samples are designated for
training. Additionally, 15 samples from each of the N categories are reserved for testing. The
reported results are performed on 600 tasks.

Implementation Details. We employ the WRN, ResNet, and ViT as feature extractors to ensure a
fair comparison with previously published results. All the feature representations are extracted from
the feature extractor while keeping it freezing. Our approach involves generating samples alongside
support set samples to train the classifier. We employ Adam optimization (Kingma & Ba, 2015)
with an initial learning rate of 0.001 and a weight decay of 0.0001. The parameters c1 and c2 are set
to 0.3, while the value of t is set to 0.9. Moreover, we generated a total of 1000 samples from the
our estimated distribution.

4.2 ABLATION STUDY

In the ablation study, we evaluate the effectiveness of various modules of HGDE using the validation
set from Mini-ImageNet and the feature extractor employed is the same as Yang et al. (2021).

4.2.1 THE NUMBER OF SELECTING THE BASE CATEGORIES AND SAMPLES.

In this experiment, we investigate the effects of top k and weighted statistics in µn
cat and µn

ins
under K = 1, respectively. The category-level selection ranges from 2 to 32, and the instance-level
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varies with the generation constraint ϵ.

selection ranges from 1000 to 2500. The results are illustrated in Figure 3. Firstly, we observe
that the weighted statistics consistently lead to improved classification results compared to the non-
weighted. This improvement is evident across various numbers of selected base categories or base
samples. Secondly, when increasing the number of selected base categories, we notice a significant
decrease in the classification performance. This decline is attributed to excessive noise introduced by
incorporating too many categories. Besides, We also conclude that k = 2 for category-level selection
and k = 1000 for instance-level selection achieves the best performance.

4.2.2 THE EFFECTS OF RETAINING PRIMARY COMPONENTS.

In this experiment, we demonstrate the efficacy of reconstruction to determine the optimal principal
component retention for estimated covariance. We vary the number of preserved primary com-
ponents from 10 to 640, aligning with the feature representation dimension, under K = 1. The
results are shown in Figure 4, where the brown and blue histograms represent the gains achieved for
category-level and instance-level estimation, respectively. The results demonstrate the effectiveness
of the reconstruction strategy for both category-level and instance-level estimation. For category-
level estimation, preserving the first 110 principal eigenvalues and their corresponding eigenvectors
yields the best improvements, while retaining the first 160 principal eigenvalues and their corre-
sponding eigenvectors achieves the best improvements for instance-level estimation.

4.2.3 THE EFFECTS OF DISTRIBUTION FUSION.

In this study, we assess the impact of the fusing strategy and compare it with the individual category-
level and instance-level estimated distribution. Our goal is to determine the optimal fusion parameter
α in both K = 1 and K = 5 settings. The results are illustrated in Figure 5, depicting variations of
α between 0.1 and 0.9. Under the K = 5, the fused distribution consistently demonstrates superior
performance compared to both the estimated category-level and instance-level distributions across
the entire range of α values. In the K = 1 setting, the fused distribution outperforms the category-
level and instance-level distributions with smaller values of α. Based on these results, we choose
α = 0.2 to fuse the estimated category-level and instance-level distributions.

In addition, we conduct a separate analysis of the effects resulting from the estimated category-level
and instance-level distributions. The results are summarized in Table 2. which shows that both
estimations contribute significantly to the classification performance. The estimated instance-level
distribution achieves nearly 2.7% and 1% improvements under K = 1 and K = 5, respectively.
Moreover, combining the generated samples from estimated category-level and instance-level dis-
tributions leads to even more remarkable classification gains, as indicated by the second-to-last row
in Table 2. Our HGDE, utilizing the fused distribution to generate samples, achieves the most re-
markable performance, with over 3.3% and 3% improvements on K = 1 and K = 5, respectively.
These results provide strong validation for the effectiveness of our HGDE.

4.2.4 THE EFFECTIVENESS OF GENERATION CONSTRAINT.

In this study, we conduct a comparison analysis of the classification performance with and without
a generation constraint strategy in Equation 17. The results are illustrated in Figure 6, where the
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Table 1: The classification accuracy (%) with different
distributions, where Cat. and Ins. denote category-
level and instance-level estimation, respectively.

Cat. Ins. K = 1 K = 5

% % 68.90 ± 0.83 83.30 ± 0.53
% " 71.65 ± 0.56 84.35 ± 0.56
" % 70.14 ± 0.55 83.54 ± 0.59
" " 71.38 ± 0.88 85.20 ± 0.55
HGDE 72.32 ± 0.75 86.60 ± 0.51

86.6

86.8

w/o constraint, K= 5

6.5 7.5 8.5 9.5 10.5 ∞

72.4

72.6

w/o constraint, K= 1

Value of ε

Ac
cu

ra
cy

 (%
)

w/ constraint, K = 1 w/ constraint, K = 5

Figure 6: The classification accuracy (%)
varies with the fusion ratio α.
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Figure 7: Feature value distributions.

Table 2: The metric results between
generated samples by HGDE and
ground truth data. KL div., mean simi.,
and var. simi. denote the KL diver-
gence, mean similarity, and variance
similarity, respectively.

Metric K = 1 K = 5
KL div. 0.0325 0.0188

mean simi. 0.09925 0.9482
var. simi. 0.9800 0.9481

threshold varies from 6.5 to ∞. The findings demonstrate that the generation constraint strategy
consistently yields improvements of nearly 0.2% for both the K = 1 and K = 5 settings. This
strategy filters out samples that are more representative and closer to the support set samples, thereby
improving the classification performance. However, it’s worth noting that as the threshold ϵ increases
beyond a certain point, the improvements begin to taper off. This is because the large threshold fails
to adequately filter out the high representative samples. Therefore, in our experiments, we set ϵ = 8.

4.2.5 DISTRIBUTION VISUALIZATION.

In this section, we illustrate the sample distribution of our HGDE and ground truth by visualizing
the feature value, as depicted in Figure 7. To conduct this analysis, We randomly select several
novel categories from the support set, such as “Lion,” “Cuirass,” and “Bookshop”. Then we count
the whole feature values of generated data by HGDE and compare them to those of ground truth data
for these categories. We find that the value distribution of generated data closely aligns with that of
the ground truth data. Besides, we also calculate the metrics, e.g., KL divergence, mean similarity,
and variance similarity. The results are shown in Table 2. We observe that the samples generated
by our HGDE exhibit low KL divergence and high similarity with ground truth data in the whole
dataset perspective. These observations demonstrate the effectiveness of our HGDE approach in
addressing the data scarcity problem in FSL.

4.2.6 COMPARISONS WITH OTHER METHODS.

We compare the performance of our method with the latest approach with the Mini-ImageNet and
Tiered-ImageNet datasets. Table 3 shows the results, including LEO (Rusu et al., 2019), IFSL (Yue
et al., 2020), S2M2 (Mangla et al., 2020), RENet (Kang et al., 2021), FeLMi (Roy et al., 2022),
TaFDH (Hu et al., 2023), SUN (Lin et al., 2023), and FewTURE (Lin et al., 2023) At the same time,
we apply our approach to recently proposed popular FSL methods, i.e., LRDC, Meta-Baseline, and
SMKT. We clearly observe that our approach consistently improves the classification performance
across all settings. For different features extracted with various methods, we perform comparable
results with the baseline (“LRDC”) and obtain the best performance with features from Zhou et al.
(2021) (“SMKT + HGDE”). In particular, the improvements are generally more significant in the
1-shot setting compared to the 5-shot setting. These findings demonstrate the effectiveness of our
approach across different FSL methods and datasets.
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Table 3: The accuracies (%) by different methods on the novel categories from Mini-ImageNet
Vinyals et al. (2016) and Tiered-ImageNet Ren et al. (2018). † denotes our implementation.

Method Mini-ImageNet Tiered-ImageNet
K = 1 K = 5 K = 1 K = 5

W
R

N
-2

8-
10

LEO Rusu et al. (2019) 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 82.06 ± 0.08
IFSL Yue et al. (2020) 64.12 ± 0.44 80.97 ± 0.31 69.96 ± 0.46 86.19 ± 0.34
S2M2 Mangla et al. (2020) 64.93 ± 0.18 83.18 ± 0.11 73.71 ± 0.22 88.59 ± 0.14
LRDC Yang et al. (2021) 68.57 ± 0.55 82.88 ± 0.42 74.38† ± 0.93 88.12† ± 0.59
HGDE 69.77 ± 0.80 84.40 ± 0.51 74.82 ± 0.93 89.06 ± 0.56
HGDE (Logistic Regression) 69.85 ± 0.80 84.63 ± 0.51 75.22 ± 0.90 88.60 ± 0.60

R
es

N
et

-1
2 RENet Kang et al. (2021) 67.60 ± 0.44 82.58 ± 0.30 71.61 ± 0.51 85.28 ± 0.35

FeLMi Roy et al. (2022) 67.47 ± 0.78 86.08 ± 0.44 71.63 ± 0.89 87.01 ± 0.55
TaFDH Hu et al. (2023) 67.79 ± 0.79 82.29 ± 0.55 72.92 ± 0.89 85.68 ± 0.62
Meta-Baseline Chen et al. (2021) 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.74 ± 0.18
Meta-Baseline + HGDE 64.27 ± 0.78 80.08 ± 0.57 69.40 ± 0.96 84.17 ± 0.60

V
iT

SUN Dong et al. (2022) 67.80 ± 0.45 83.25 ± 0.30 72.99 ± 0.50 86.74 ± 0.33
FewTURE Hiller et al. (2022) 72.40 ± 0.78 86.38 ± 0.49 76.32 ± 0.87 89.96 ± 0.55
SMKT† Lin et al. (2023) 74.28 ± 0.18 88.61 ± 0.48 77.78± 0.94 90.88 ± 0.54
SMKT + HGDE 74.72 ± 0.84 88.85 ± 0.47 78.94 ± 0.89 91.31 ± 0.54

Table 4: The accuracies (%) by different methods on the novel categories from CUB Wah et al.
(2011) and CIFAR-FS Krizhevsky et al. (2009). † denotes our implementation.

Method CUB CIFAR-FS
K = 1 K = 5 K = 1 K = 5

W
R

N
-2

8-
10

S2M2 Mangla et al. (2020) 80.68 ± 0.81 90.85 ± 0.44 74.81 ± 0.19 87.47 ± 0.13
RENet Kang et al. (2021) 79.49 ± 0.44 91.11 ± 0.24 74.51 ± 0.46 86.60 ± 0.32
PT-NCM Hu et al. (2021) 80.57 ± 0.20 91.12 ± 0.10 74.64 ± 0.21 87.64 ± 0.12
H-OT Guo et al. (2022) 81.23 ± 0.35 91.45 ± 0.38 75.40 ± 0.30 87.50 ± 0.30
LRDC Yang et al. (2021) 79.56 ± 0.87 90.67 ± 0.35 74.98 ± 0.86 86.54 ± 0.61
HGDE 81.36 ± 0.78 91.64 ± 0.41 76.09 ± 0.85 88.03 ± 0.59
HGDE (Logistic Regression) 81.30 ± 0.78 91.72 ± 0.42 76.07 ± 0.85 88.06 ± 0.59

V
iT

SUN Dong et al. (2022) 67.80 ± 0.45 83.25 ± 0.30 72.99± 0.50 86.74 ± 0.33
FewTURE Hiller et al. (2022) 72.40 ± 0.78 86.38 ± 0.49 76.32 ± 0.87 89.96 ± 0.55
SMKT† Lin et al. (2023) - - 79.68 ± 0.81 90.64 ± 0.58
SMKT + HGDE - - 80.73 ± 0.84 90.86 ± 0.56

For CUB and CIFAR-FS datasets, we employ both WRN-28 and ViT-S as the feature extractors.
The compared methods include RENet (Kang et al., 2021), H-OT (Guo et al., 2022), PT-NCM (Hu
et al., 2021), S2M2 (Mangla et al., 2020), SUN (Dong et al., 2022), and FewTURE (Hiller et al.,
2022). We apply our approach to LRDC and SMKT, and the results are summarized in Table 4. The
results demonstrate that our method consistently outperforms the compared methods. Our approach
outperforms it significantly by 1.8% and 0.97% under K = 1 and K = 5 on CUB, respectively.
Notably, for the K = 1 task on CIFAR-FS, we achieve improvements of over 1% compared to
LRDC and SMKT, respectively. In the K = 5 task on CIFAR-FS, our approach obtains an accuracy
improvement of 1.52% over LRDC. These performance improvements demonstrate the effectiveness
of our method in enhancing FSL tasks, even in comparison to robust baselines like SMKT.

5 CONCLUSION

In this work, we have proposed Hybrid Granularity Distribution Estimation (HGDE) to address the
challenges in few-shot learning. Our approach can be seen as the generalized DC method. Specif-
ically, (1) Our approach ensures diverse and representative additional samples. (2) We introduce
statistics refinement to boost the distribution estimation. (3) Our HGDE is simple yet effective
in improving the classification performance. Note that the DE-based works including ours all are
grounded on the Gaussian distribution followed by features. In the future, we intend to explore
alternative assumed distributions, such as non-Gaussian distributions.
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A APPENDIX

A.1 ANALYSIS OF DIVERSITY AND REPRESENTATIVENESS

We assess the diversity and representativeness of category-level and instance-level through mean
similarity and multiply distance (“Multi. Dis.”), where “Multi. Dis.” has the definition as follows:

Mcat(i) =
∑
j,j ̸=i

∥pi − pj∥2,pi,pj ∈ Sins,

Mins(i) =
∑
j,j ̸=i

∥fi − fj∥2,fi,fj ∈ Sins,
(19)

where p denotes the prototype belonging to the similar base category set Scat and f refers to the
feature of the similar instance set Sins. Mcat and Mins represent the calculated results of “Multi.
Dis.” in Table 5 and Table 6, respectively. We choose to utilize “Multi. Dis.” instead of “vari-
ance similarity” because “multiply distance” effectively measures the diversity among similar base
categories (samples). In contrast, “variance similarity” essentially shares a similar measurement
characteristic to mean similarity. Table 5 presents the category-level statistical results, given the
category “Hyena Dog”, we observe that as the categories become more similar, the mean similarity
increases. Furthermore, each of these similar categories exhibits distances to all other categories that
are approximately equivalent. This finding underscores the diversity of the category-level estima-
tion. In contrast, Table 6 showcases the instance-level statistical results. We notice that all similar
samples share a high mean similarity. Additionally, their multiply distances are notably smaller in
comparison to those presented in Table 5. This finding aligns with the representativeness of the
instance-level estimation.

Table 5: The mean similarity between
“Hyena Dog” and similar base categories,
along with the multiply distance (“Multi.
Dis.”) for each similar category.

Hyena Dog Multi. Dis.mean similarity
Saluki 0.90 1.90

Tibetan mastiff 0.78 1.89
Arctic fox 0.73 1.74
Triceratops 0.67 1.69

Rock Beauty 0.64 1.76
Bolete 0.62 1.82

Table 6: The mean similarity between
“Hyena Dog” and similar base samples,
along with the multiply distance (“Multi.
Dis.”) for each similar sample.

Hyena Dog Multi. Dis.mean similarity
Instance-1 0.889 1.28
Instance-2 0.886 1.26
Instance-3 0.884 1.51
Instance-4 0.881 1.40
Instance-5 0.880 1.37
Instance-6 0.880 1.43

A.2 THE EFFECTIVENESS FOR THE NUMBER OF GENERATED SAMPLES
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Figure 8: The classification accuracy (%) varies with the number of generated samples
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We evaluate the effectiveness of the number of generated samples on the validation set in MiniIm-
agenet for both K = 1 and K = 5, respectively. In Figure 8, we compare the accuracy of samples
generated from fused distribution to the total samples (Cat.&Ins.) generated from the category-level
estimated distribution and the instance-level estimated distribution, respectively. It’s evident that the
samples generated from the fused distribution achieve high accuracy compared to those generated
from the estimated category-level and instance-level distributions. This indicates that the fused dis-
tribution produces a greater number of high-quality samples beyond the individual category-level
and instance-level generated samples.

A.3 THE RESULTS OF ADDITIONAL SELECTION STRATEGIES.

We conduct experiments on additional selection strategies including random selection in the dataset,
all samples in the dataset, and selection from the support class, and the results are shown in Table 7.

Table 7: The classification accuracy (%) with different strategies on Mini-Imagenet.

K = 1 K = 5
HGDE

(random selecting samples in the dataset) 23.5 ± 0.59 40.1 ± 0.77

HGDE
(all samples in the dataset) 24.4 ± 0.86 20.32 ± 0.87

HGDE
(selected samples belong to the same category) 72.32 ± 0.33 86.49 ± 0.25

HGDE
(total calculation) 69.85 ± 0.80 86.43 ± 0.51

Based on the above results, we observe that distribution estimation by randomly selecting samples
and selecting all samples in the dataset can’t estimate the distribution of the support samples ac-
curately. Consequently, the estimated distribution of these two selection strategies fails to generate
valuable samples for few-shot learning. On the other hand, selecting samples that belong to the
same category of the support prototypes achieves the best performance, but this strategy entails data
leakage, which is practically unfair in the few-shot learning setting.

A.4 THE ANALYSIS OF TIME CONSUMPTION.

In this section, we evaluate the time consumption of different operations and the total operations of
our HGDE in comparison with the LRDC, and the results are summarized in Table 8.

Table 8: The time consumption of different level estimations, LRDC, and our HGDE using Mini-
Imagenet on NVIDIA 3090 GPU.

K = 1
(600 tasks)

K = 5
(600 tasks)

Category-level Estimation 272.2s 273.6s
Instance-level Estimation 303.7s 305.8s

LRDC 276.3s 412.6s
HGDE

(without similarity calculation) 361.3s 363.7s

HGDE
(total calculation) 366.6s 368.6s

The above results demonstrate that our instance estimation requires slightly more time than category
estimation in both the 1-shot and 5-shot scenarios. This is due to the larger number of samples
compared to the number of categories. However, the time consumption of similarity calculation can
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be disregarded in the overall calculation of HGDE. In the comparison between LRDC and HGDE,
our HGDE introduces a limited additional training time in the 1-shot scenario. On the other hand,
in the 5-shot scenario, HGDE requires less training time because our approach conducts estimation
only once for each support prototype, whereas LRDC conducts estimation as many times as the
number of support samples. This demonstrates the efficiency of HGDE.

A.5 THE APPLICATIONS OF HGDE

In this section, we apply our HDGE to the recently popular Vision-Language Models prompt-based
methods, e.g., Tip Zhang et al. and APE Zhu et al. (2023), to demonstrate its effectiveness. The
results are shown in Table 9.

Table 9: The application of our HGDE to other Vision-Language Model prompt-based methods.

Method K=16 K=8
Tip 62.03 61.44

HGDE+Tip 62.42 61.76
APE 63.02 62.53

HGDE+APE 63.43 63.92

The above results show that our HGDE can effectively improve the performance of Tip and APE,
which has demonstrated its effectiveness.

14


	Introduction
	Related Works
	Typical methods for Few-shot Learning
	Data Augmentation for Few-shot Learning

	Methods
	Preliminaries
	HYBRID GRANULARITY Distribution Estimation
	Category-level Distribution Estimation
	Instance-level Distribution Estimation
	Distribution Fusion

	Classifier Training and Inference

	Expertiments
	Experimental Settings
	Ablation Study
	The number of selecting the base categories and samples.
	The effects of retaining primary components.
	The effects of distribution fusion.
	The effectiveness of generation constraint.
	Distribution Visualization.
	Comparisons with Other Methods.


	Conclusion
	Appendix
	Analysis of diversity and representativeness
	The effectiveness for the number of generated samples
	The results of additional selection strategies.
	The analysis of time consumption.
	The applications of HGDE


