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Abstract

The scarcity of high-quality multimodal biomedi-
cal data limits the effective supervised fine-tuning
(SFT) of Large Language Models (LLMs) for
specialized tasks. We introduce MINT (Multi-
modal Integrated kNowledge Transfer), a frame-
work that aligns unimodal decoder-only models
with domain-specific patterns from multimodal
biomedical data through preference optimization,
primarily implemented using the Odds Ratio Pref-
erence Optimization (ORPO) framework. MINT
leverages upstream multimodal machine learn-
ing models to transfer domain expertise to down-
stream text-only or image-only LLMs, as demon-
strated in two applications: (1) Rare genetic dis-
ease prediction from texts; (2) Tissue type classi-
fication using cell nucleus images. In both cases,
MINT-based models outperform those enhanced
with alternative approaches such as Supervised
Fine-tuning and Retrieval Augmented Generation,
even surpassing much larger foundation models in
some scenarios. Our study highlights how MINT
effectively grafts the classification strengths of
encoder-only models into large decoder-only mod-
els, enhancing reasoning abilities, and reducing
hallucination in biomedical applications.

1. Introduction

Language Models (LLMs) have achieved remarkable ad-
vances in natural language understanding and reason-
ing (Vaswani et al., 2017; Wolf et al., 2020; McKinzie et al.).
Recent models with expanded context windows (Dubey
et al., 2024; Meta, 2024a;b) have enhanced their potential
for biomedical applications (Kim et al., 2024; do Olmo
et al., 2024). Despite these advances, adapting LLMs to
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domain-specific biomedical tasks remains challenging, es-
pecially when multimodal data are scarce or specialized
clinical reasoning is required.

Supervised fine-tuning (SFT) (Gunel et al., 2020; Chen
et al.) is commonly employed for adapting LLMs to specific
tasks. While effective for basic linguistic applications (Al-
Moslmi et al., 2020; Etzioni et al., 2005; Daiber et al.),
SFT faces critical limitations for complex biomedical tasks.
First, SFT primarily learns from positive examples only,
lacking the ability to explicitly distinguish between correct
and incorrect responses. Second, it struggles with structured
prediction and logical reasoning tasks (Wu et al., 2024b;
Berglund et al., 2023; Zhu et al., 2024) that require nuanced
discrimination between similar patterns. Third, SFT often
fails to capture the internal decision patterns that domain
experts use to differentiate between similar cases, especially
in data-scarce biomedical domains. These limitations make
it difficult for SFT-based models to achieve expert-level
performance on specialized tasks like rare disease diagnosis.

To address these challenges, we propose Multimodal
Integrated kNowledge Transfer (MINT), a framework that
aligns LLMs with domain-specific patterns from multimodal
biomedical databases through preference optimization. The
key innovation of MINT lies in its ability to learn the inter-
nal decision patterns that distinguish correct from incorrect
responses by leveraging preferences generated from up-
stream multimodal models. Unlike SFT, which only learns
what is correct, MINT explicitly learns both what is correct
and what is incorrect, enabling more nuanced discrimination
between similar cases.

MINT bridges the modality gap between multimodal
training data and unimodal inference through two key
components: (1) an upstream pipeline where a multi-
modal ML model generates a preference learning dataset
with preferred and unfavored responses, and (2) a down-
stream pipeline where these preference-labeled inputs align
LLMs using techniques like Direct Preference Optimization
(DPO) (Rafailov et al., 2024) or Odds Ratio Preference Op-
timization (ORPO) (Hong et al.). This approach enables
the LLM to internalize the decision-making patterns of the
multimodal expert model, achieving superior performance
even with single-modality inputs during inference.
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We demonstrate MINT’s effectiveness on two challeng-
ing biomedical tasks. For rare disease prediction, we
leverage GestaltMML (Wu et al., 2024a), a multimodal
model trained on facial images and clinical texts. Our
MINT-aligned text-only model significantly outperforms
SFT (52.99% vs. 37.53% Top-10 accuracy) and RAG
(52.99% vs. 6.52%). Detailed analysis reveals that MINT-
enhanced models learn to prioritize disease-specific phe-
notypic patterns that human experts would consider, while
avoiding common misdiagnoses. For tissue type classifi-
cation, MINT substantially improves Llama 3.2-Vision-
11B-Instruct’s ability to distinguish between histologi-
cally similar tissues, nearly doubling the Top-5 accuracy
(57.58% vs. 32.21%) compared to the base model.

Importantly, MINT-enhanced models maintain their gen-
eral capabilities while gaining domain-specific expertise.
By grafting the classification strengths of encoder models
into decoder-based LLMs through preference optimization,
MINT enables models to learn the internal decision pat-
terns that distinguish correct from incorrect responses. This
approach offers advantages over both SFT, which lacks
contrastive learning signals, and RAG, which introduces
latency during inference. Our work establishes MINT as
a powerful framework for enhancing LLMs’ performance
on specialized biomedical tasks by learning expert-level
discrimination patterns from multimodal data.

2. Related Work

Multimodal Learning in Biomedicine combines informa-
tion from different modalities (Wu et al., 2024a; Huang
et al., 2023), but typically requires multimodal inputs dur-
ing inference. MINT transfers knowledge from multimodal
models to unimodal LLMs, enabling them to benefit from
multimodal data even with single-modality inputs.

Preference Optimization for LLMs has evolved from Re-
inforcement Learning from Human Feedback (RLHF) (Yu
et al., 2022; Engstrom et al., 2020; Engstrom et al.) to
more direct methods like DPO (Rafailov et al., 2024) and
ORPO (Hong et al.). Unlike traditional applications focused
on aligning with human preferences, MINT uniquely ap-
plies these techniques to transfer domain-specific decision
patterns from expert multimodal models to unimodal LL.Ms.

LLMs for Biomedical Applications include clinical doc-
ument summarization (Afantenos et al., 2005; Mamykina
et al., 2012), patient scheduling (Tripathi et al., 2024; Qiu
et al., 2024), and rare disease diagnosis (Kim et al., 2024;
do Olmo et al., 2024). While approaches like RAG (Lewis
et al., 2020; Wu et al., 2025) enhance LLMs with external
knowledge at inference time, MINT embeds domain exper-
tise by learning internal decision patterns during training for
more efficient and nuanced inference.

Knowledge Transfer Between Model Architectures often
relies on techniques like knowledge distillation (Gunel et al.,
2020) that require parallel training of teacher and student
models. MINT offers a novel approach using preference
optimization to transfer not just knowledge but also decision-
making patterns from encoder-based multimodal models to
decoder-based LLMs.

3. Preliminaries

Large Language Models (LLMs). The downstream tar-
gets of our knowledge transfer approach are autoregressive
decoder-only LLMs. Given an input z € X, an LLM
models the conditional probability of the next token y, given
all previous tokens: pg(y: | x,y<¢). For classification, we
convert labels into text format.

Multimodal Machine Learning (MML) Models. The
upstream knowledge sources are multimodal models in-
tegrating information from different modalities. For rare
disease prediction, we use GestaltMML (Wu et al., 2024a),
which combines features from facial images with clinical
phenotypes. For tissue classification, we use PLIP (Huang
et al., 2023), which integrates histopathological images with
diagnostic reports.

Supervised Fine-tuning (SFT). Traditional SFT minimizes
the negative log-likelihood loss:

Lser = —logpe(y | ), (1

where py(y | «) is the probability of generating the correct
label y given input x.

Retrieval-Augmented Generation (RAG) RAG (Lewis
et al., 2020; Gao et al., 2023) combines retrieval systems
with LLMs to enhance text generation by augmenting the
model’s input with relevant information retrieved from exter-
nal knowledge sources. This approach has proven effective
for knowledge-intensive tasks across various domains, in-
cluding question answering and biomedical text processing
(Jiang et al., 2023; Wu et al., 2025). RAG enables mod-
els to access domain-specific knowledge without requiring
extensive fine-tuning, making it particularly valuable for
specialized applications.

Preference Optimization. These techniques leverage both
preferred responses y* and non-preferred responses ¢/ to
better align models with desired outputs.

Direct Preference Optimization (DPO) (Rafailov et al.,
2024) maximizes the log odds ratio between preferred and
non-preferred responses:

Lppo = —logo (Blogpe(ym — Blo
pref(yw | ‘T)

po(y' | ) )

pref(yl | I)
1
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where pyr is a frozen reference model and [ controls regu-
larization strength.

Odds Ratio Preference Optimization (ORPO) (Hong et al.),
our primary approach, combines SFT and preference learn-

ing:

Lorpo = Lspr + ¢ - Log, 3
where
Lor = —logo(log ORy(y",y")) )
and
Oddsy (y™)
R w 1 —

is the odds ratio between preferred and non-preferred re-
sponses. The parameter o balances SFT and preference
optimization.

4. MINT Framework

MINT (Multimodal Integrated Knowledge Transfer) is a
framework designed to transfer domain-specific knowledge
from multimodal models to unimodal LLMs through prefer-
ence optimization. As shown in Figure 1, MINT consists of
two main stages: (1) Upstream Preference Dataset Construc-
tion and (2) Downstream LLM Alignment. This framework
enables unimodal models to benefit from multimodal exper-
tise without requiring multimodal input during inference.

4.1. Upstream Pipeline

The upstream pipeline employs a multimodal model g4 to
convert raw multimodal data into a so-called preference-
learning dataset. For each sample i € {1,...,N} we
observe (2!, 2}™°, y*), where '™ and z;"**° denote the
text and image modalities, respectively, and y; is the ground-

truth label. Feeding the multimodal pair into g4 yields a

2

predictive distribution py, (y| T, xi'mage)'

Preferred & non-preferred label sets. From this distri-
bution we extract the top-k labels Y = Top-k (p¢(- |
o™, ")) as preferred responses and the bottom-q la-
bels Y = Bottom-q(-) as non-preferred responses. If
yr ¢ Y we replace the lowest-ranked element of Y;
with y; and shuffle it to the top-rank to ensure the ground
truth is always preferred. We then form every ordered pair
(y¥,y') € Y x Y} and attach it to the unimodal input
2 = 2! to obtain triples (2™, y",y'), which constitute
the preference dataset Dy used in Alg. 1.

Acceptance-over-Rejection ratio. The hyper-parameter
choice (k, q) controls the Acceptance-over-Rejection ratio
AoR = k/q, balancing positive and negative feedback and
thereby influencing the downstream ORPO learning dynam-
ics.

Algorithm 1 MINT Framework
Require: Multimodal model g,, LLM fp, dataset
{2, 2™y

top-k, bottom-q, ORPO weight A, learning rate 7;
Phase 1 Upstream Pipeline: // Construct preference

dataset
Dpref — @;
for: = 1to N do

poly | 28, i) = gy (@, 2]™);
Y;" < top-k labels from py(y | 27, x
Y} « bottom-g labels from py(y | 2, x
if y* ¢ Y then
| Replace lowest-ranked label in Y, with y';

end
for y* € Y, do

for y' € Y} do

| Add (#4757, ) to Dy
end

end

image ,
i)

image)

7

end
Phase 2 Downstream Pipeline: // ORPO training on pref-
erence data
while not converged do
Sample batch B C Dyrer;
Lspr + —‘Tlg| Z(z,yw,yl)eg log po(y"™ | x);
for (z,y",y') € Bdo
Pw < po(y” [ 2): P poly' | 2);

w w/(1=Pw) .
ORy(z,y",y') + %

end

Lo + — 1 Y- log r(log ORg(x, 4, 4));
Lorro < Lspr + X - Lor;

0« 0 —n-VyLorpo;

end

4.2. Downstream Pipelines

To benchmark our method, we first consider standard Super-
vised Fine-tuning (SFT, top-right of Fig. 1). Given the pref-
erence dataset Dprer, SFT minimizes Lgpr = — log pa (y* |
x) on the preferred labels only. Although easy to imple-
ment, SFT teaches the LLM what to predict but ignores
what to avoid, since non-preferred labels 3! never appear in
the objective.

MINT with DPO. In the MINT-DPO variant (bottom-left
of Fig. 1) we first obtain a reference model fy by SFT.
Subsequently, we optimize a policy model fy with the DPO
loss introduced in Section 3 Equation (2) thereby contrast-
ing preferred (y*) and nonpreferred (y') labels while the
reference model regularizes the update.

MINT with ORPO (default). Our default implementation,
MINT-ORPO (bottom right of Fig. 1), eliminates the need
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Figure 1. Overview of the MINT (Multimodal Integrated Knowledge Transfer) framework. (Top-Left) Upstream Pipeline: A multimodal
model generates preferred (top-k) and non-preferred (bottom-¢q) responses from multimodal inputs, creating a preference dataset. (Top-
Right) Baseline: Traditional Supervised Fine-Tuning (SFT) approach. (Bottom) MINT implementations: The preference dataset is used to
align unimodal LLMs through either Direct Preference Optimization (DPO, Bottom-Left) or Odds Ratio Preference Optimization (ORPO,

Bottom-Right), with ORPO serving as our default implementation.

for a separate reference model by jointly optimizing the
single-stage objective introduced in Section 3 Equation (3),
where the odds-ratio term (4) provides both positive and neg-
ative feedback and empirically produces stabler gradients
when | Dyg| is small.

Take-away. Both MINT-DPO and MINT-ORPO exploit
the full preference data set (2™, y*, y') € Dy, allowing
the LLM to learn not only what is correct, but also which al-
ternatives must be down-weighted, a capability absent from
plain SFT. The complete training routine is summarized in
Algorithm 1.

4.3. Biomedical Applications
We apply MINT to two challenging biomedical tasks:

For rare disease prediction, we use GestaltMML as the
upstream multimodal model, with k¥ = ¢ = 10. The Gestalt-
MML processes (z'$X', 2;"**°) pairs containing clinical phe-
notypes and facial images, while the downstream LLM
makes predictions using only =,

For tissue type classification, we use PLIP as the upstream
multimodal model, with £ = ¢ = 5. While the downstream
model is technically a vision-language model (Llama 3.2-
Vision-11B-Instruct), we effectively treat this as an image-
only task. This is because the text input during inference
is merely a generic prompt (e.g., “What is shown in this
figure?”) that provides no task-specific information. The
model must rely entirely on the visual features from cell
nucleus images to classify tissue types.

For both tasks, we convert the classification problem into

a text generation task, enabling evaluation using standard
metrics like Top-N accuracy. Table 2 and Table 3 shows
examples of the prompts used for these tasks. Complete
prompt specifications can be found in the supplementary
material A.2.

4.4. Bias Mitigation Considerations.

To mitigate potential biases in preference dataset construc-
tion, we implement several safeguards: (1) we ensure bal-
anced representation across different demographic groups in
our training data; (2) we use multiple random seeds for all
experiments to account for initialization-dependent biases;
(3) we validate our approach on external datasets with differ-
ent distributions. However, we acknowledge that systematic
biases may still exist and recommend future work to develop
more robust preference elicitation methods that account for
uncertainty and demographic fairness.

5. Experiments
5.1. Experiment Setup

We evaluate MINT on two biomedical tasks: (1) Rare dis-
ease prediction from clinical text descriptions and (2) Tissue
type classification from histological nucleus images.

Datasets. For rare disease prediction, we use the Gestalt-
Matcher Database (GMDB) (Lesmann et al., 2023) with
6,522 training ad 386 in-distribution testing samples.
For out-of-distribution external validation, we use 5,980
Phenopacket-derived clinical notes (Wu et al., 2025) split
into overlapping and disjoint disease subsets compared to
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GMDB disease types. For tissue type classification, we
use the PanNuke dataset (Gamper et al.; 2020) with 5,436
training and 2,330 testing images across 19 tissue types.

Models. For rare disease prediction, we primarily use Llama
3.2-3B-Instruction as the downstream model and Gestalt-
MML as the upstream model, which serves as our main
experimental setting. For tissue type classification, we use
Llama 3.2-Vision-11B-Instruct with PLIP as the upstream
model. We also evaluate MINT on a wide range of mod-
els with varying sizes and architectures, including Llama
3.2 (1B, 3B), Gemma-2 (2B, 9B), and Llama 3.1 (8B, 70B,
405B). Due to computational constraints, only inference is
performed on the largest models (70B, 405B). Full results
across all model sizes and architectures are presented in
Table 1 in the Appendix.

Implementation Details. We use LoRA fine-tuning (Hu
et al., 2021) with rank 128 and scaling factor 64 for 3B/11B
models, and rank 256/scaling factor 128 for 1B models,
with dropout 0.05. We train all models with a learning rate
of 5e~®. For SFT, we train for 5 epochs; for MINT with
DPO, we first perform SFT for 5 epochs and then DPO for
an additional 2 epochs; for MINT with ORPO (our default
implementation), we train for 5 epochs. For preference
datasets, we set k = ¢ = 10 for rare disease prediction and
k = q = 5 for tissue classification as default settings. All
experiments are conducted on 4 NVIDIA A100 GPUs with
40GB memory each.

Baselines. We compare MINT against: (1) Base models
without enhancement; (2) RAG (Lewis et al., 2020) (for rare
disease only); (3) SFT (Gunel et al., 2020); and (4) MINT
with DPO (Rafailov et al., 2024).

RAG Implementation. For the rare disease prediction task,
we implement RAG using Llamalndex (Liu, 2022) to con-
struct our retrieval database. The database is built from two
key biomedical resources: OMIM (Online Mendelian Inher-
itance in Man) (Zeeberg et al., 2005) and HPO (Human Phe-
notype Ontology) (Zhong et al., 2004). To improve retrieval
precision, we preprocess these datasets by systematically
mapping HPO and OMIM terms to their corresponding dis-
ease names, ensuring that phenotypic and disease-related
terminology is accurately aligned.

To enhance the embedding representations for diseases
and phenotypes, we adopt NeuML/pubmedbert-base-
embeddings (Gu et al., 2021), a biomedical sentence trans-
former specifically trained on large-scale biomedical lit-
erature. This model captures the complex relationships
and semantics of medical terms, allowing our system to
understand the nuances of disease and phenotype descrip-
tions more effectively. During inference, the RAG system
retrieves relevant disease information based on the input
clinical phenotypes and provides this context to the LLM

for generating predictions. Note that RAG is only imple-
mented for the rare disease prediction task, as the tissue type
classification task relies primarily on visual features that are
not well-represented in text-based knowledge bases.

Evaluation Metrics.
We assess model performance using four key metrics:

Hallucination-Free Accuracy (HFA). A response is con-
sidered non-hallucinatory if it contains exactly m labels in
the required format and all labels match known entries in
our reference database with similarity score > 0.6, where
m = 10 for rare disease prediction and m = 5 for tissue
type classification.

Top-N Accuracy. After passing the HFA check, a response
is correct for Top-N accuracy if the ground truth label ap-
pears among the N generated labels with similarity score
> 0.8. We use N = 10 for rare disease prediction and
N =5 for tissue type classification.

Top-1 Accuracy. After passing the HFA check, a response
is correct for Top-1 accuracy if the first (highest-ranked)
generated label matches the ground truth with similarity
score > 0.8.

Coverage-Avoidance Ratio (CAR). For response R;, pre-
ferred labels Y, and non-preferred labels Y} (from Algo-
rithm 1), we define:

Y2 N Ry |R; NY}|
Cri=—"—+—, Agi=1-——5"
| R - | R
2Ck 7"
CAR = E —Er T et
(k’q) Ck i + qu

where (', ; measures coverage of preferred labels, A, ; mea-
sures avoidance of non-preferred labels, and CAR is their
harmonic mean.

SequenceMatcher. Python algorithm to compute string sim-
ilarity ratios between 0 and 1 based on longest contiguous
matching subsequences, handling variations in naming con-
ventions (e.g., "Williams-Beuren Syndrome” vs. "Williams
Beuren Syndrome”).

6. Results

Table 1 presents our comprehensive evaluation results for
both rare disease prediction and tissue type classification
tasks across different enhancement techniques. We analyze
these results in detail below.

6.1. Rare Disease Prediction

Main Results. On the main GMDB dataset, MINT consis-
tently outperforms all baselines across all metrics. The base
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Figure 2. Performance comparison of different enhancement techniques. (Left) Rare disease prediction performance showing Top-10
accuracy, Top-1 accuracy, and CAR across all methods. (Right) Tissue type classification performance showing Top-5 accuracy, Top-1
accuracy, and CAR. MINT consistently outperforms all baselines across both tasks.

Llama 3.2-3B-Instruct model demonstrates limited ability to
predict rare diseases, achieving only 5.19% Top-10 accuracy.
RAG offers minimal improvement (6.52%), suggesting that
simply retrieving relevant information without properly in-
tegrating it into the model’s reasoning process is insufficient
for this complex task.

SFT substantially improves performance (37.53% Top-10
accuracy), while DPO provides a slight additional gain
(38.49% Top-10 accuracy). MINT significantly outperforms
these approaches, achieving 52.99% Top-10 accuracy, rep-
resenting a 37.7% relative improvement over DPO. The
improvement in Top-1 accuracy is even more substantial
(43.49% for MINT vs. 27.07% for DPO), indicating MINT’s
superior ability to identify the most likely diagnosis.

The CAR metric further highlights MINT’s effectiveness
(0.2877 vs. 0.2780 for DPO and 0.1665 for SFT), showing
that MINT not only improves recall of correct diseases but
also better avoids implausible ones. All enhancement tech-
niques maintain high HFA values (>98.9%), with MINT
achieving the highest at 99.91%.

External Validation. To assess generalization capabilities,
we evaluate all methods on Phenopacket-derived clinical
notes, split into overlapping diseases (those seen during
training) and disjoint diseases (unseen during training). For
overlapping diseases, MINT outperforms all baselines with
66.91% Top-10 accuracy and 47.56% Top-1 accuracy, show-
ing even stronger relative improvements than on the main
dataset.

For disjoint diseases (zero-shot scenario), all preference-
based methods (SFT, DPO, MINT) show reduced perfor-
mance, while RAG achieves the best results (24.17% Top-10
accuracy) compared to MINT (10.48%). This pattern reveals
the complementary strengths of these approaches: MINT ex-
cels when it has encountered similar disease patterns during
training, while RAG’s retrieval capability provides an ad-
vantage for previously unseen conditions. This suggests that

99.91  99.37 98.77 99.4:
100 99.43 100

52.99

43.39
39.19

28.77
25.97,
24.38
22,085, 47

30 27.27 pa-2e.

21.08
2 19.18
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0

Top-10 (%)
AoR=0.67

15.96

I 10.99 10,36

Top-1 (%)
mAoR=0.4 mAOR=0.33

Hallucination-Free Accuracy
AoR=1

100 * CAR (A=1)
mA0R=0.5

Figure 3. Effect of varying Acceptance-over-Rejection (AoR) ra-
tios on MINT performance for rare disease prediction. A balanced
ratio (k/q = 10/10) yields optimal performance across all met-
rics.

combining MINT with retrieval mechanisms could be par-
ticularly effective for comprehensive rare disease prediction
systems.

Impact of Acceptance-over-Rejection Ratio. Figure 3
shows how varying the balance between accepted and re-
jected samples affects MINT’s performance. A balanced
ratio (k/q = 10/10) yields the best performance (53.88%
Top-10 accuracy), with accuracy decreasing as the ratio be-
comes more imbalanced (20.21% at 10/30). This suggests
that a well-balanced preference dataset provides clearer and
more stable gradient signals for learning disease ranking
patterns.

6.2. Tissue Type Classification

In the tissue type classification task, MINT again demon-
strates substantial improvements over all baselines. The
base vision-language model achieves moderate performance
(32.21% Top-5 accuracy), while SFT and DPO both im-
prove to 41.46%. Interestingly, while SFT improves Top-5
accuracy, it slightly decreases Top-1 accuracy from 16.96%
to 13.22%, suggesting that it helps identify plausible tissues
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Table 1. Performance comparison across tasks and enhancement techniques. Results show Hallucination-Free Accuracy (HFA), Top-V
Accuracy (N = 10 for rare disease, N = 5 for tissue type), Top-1 Accuracy, and Coverage-Avoidance Ratio (CAR). External validation
results for rare disease prediction are shown for Phenopacket-derived clinical notes with overlapping and disjoint diseases. Bold values

indicate best performance for each metric in each category.

Task Method HFA (%)t Top-N (%)t Top-1(%)t CART
Base Model 91.61 5.19 1.06 0.0522
Rare Disease +RAG 98.90 6.52 0.91 0.0517
Prediction +SFT 99.71 37.53 26.86 0.1665
(GMDB Test Dataset) +MINT with DPO 99.63 38.49 27.07 0.2780
+MINT with ORPO 99.91 52.99 43.49 0.2877
Base Model 99.94 5.13 342 -
Rare Disease +RAG 100.00 30.11 26.45 -
(Phenopacket-derived +SFT 99.94 46.40 14.65 -
Overlapping Diseases)  +MINT with DPO 99.94 60.99 26.56 -
+MINT with ORPO 99.89 66.91 47.56 -
Base Model 99.99 20.00 11.29 -
Rare Disease +RAG 100.00 24.17 13.80 -
(Phenopacket-derived +SFT 100.00 9.16 8.46 -
Disjoint Diseases) +MINT with DPO 99.99 9.48 7.71 -
+MINT with ORPO 99.90 10.48 7.00 -
Tissue Type Base Model 100.00 32.21 16.96 0.2965
Classification +SFT . 100.00 41.46 13.22 0.4065
(PanNuke Test Dataset) +MINT with DPO 100.00 41.46 13.91 0.5196
+MINT with ORPO 100.00 57.58 28.41 0.5203

but may struggle with precise ranking.

MINT significantly outperforms these approaches, achiev-
ing 57.58% Top-5 accuracy (a 38.9% relative improvement
over SFT/DPO) and 28.41% Top-1 accuracy (a 104.2% rel-
ative improvement over the base model). The CAR metric
shows similar patterns, with MINT achieving the highest
value (0.5203), slightly outperforming DPO (0.5196) and
substantially exceeding SFT (0.4065). All methods maintain
perfect HFA values (100%), indicating that hallucination is
not a significant issue for this task.

Discriminating Similar Tissues. Figure 4 presents a case
study comparing the models’ ability to distinguish between
histologically similar bile duct and colon tissues. For bile
duct samples, MINT consistently assigns rank 1 to the cor-
rect tissue while relegating the visually similar colon tissue
to lower ranks (average rank 5.75). In contrast, SFT shows
considerable confusion, assigning average ranks of 1.25 to
bile duct (correct) and 2.00 to colon (incorrect).

Similarly, for colon samples, MINT assigns rank 1 to the
correct tissue and pushes bile duct to much lower positions
(average rank 4.00), while SFT shows significant confusion
with average ranks of 1.25 for colon (correct) and 1.50 for
bile duct (incorrect). This demonstrates MINT’s superior
ability to learn subtle discriminative features between vi-
sually similar tissues through its preference optimization
approach.

6.3. Preservation of General Capabilities

A potential concern with domain-specific enhancement is
whether it compromises a model’s general capabilities. Fig-
ure 5 shows the performance of different approaches on
general language and vision benchmarks. For rare disease
prediction models, we evaluate on six language understand-
ing benchmarks: MMLU, TruthfulQA, HellaSwag, Wino-
grande, ARC, and GSMS8k. For tissue classification models,
we use SEED-Bench, a comprehensive multimodal bench-
mark.

The results confirm that all enhancement techniques, includ-
ing MINT, maintain performance comparable to the base
models across all benchmarks. This indicates that MINT’s
domain-specific improvements do not come at the expense
of general language or visual understanding capabilities, a
crucial property for models that may be deployed in diverse
real-world settings.

6.4. Theoretical Understanding

While our work provides strong empirical evidence for
MINT’s effectiveness, we acknowledge that the theoretical
understanding of why preference optimization successfully
transfers multimodal knowledge to unimodal models war-
rants further investigation. We hypothesize that preference
optimization enables the model to learn not just the map-
ping from inputs to outputs, but the underlying decision
boundaries that distinguish between correct and incorrect
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Figure 5. Preservation of general capabilities. Left: Performance
on six language understanding benchmarks for rare disease pre-
diction models. Right: Performance on SEED-Bench for tissue
classification models.

predictions. When the upstream multimodal model gen-
erates preferences based on its multimodal understanding,
these preferences encode the discriminative patterns learned
from both text and image modalities. Through preference
optimization, the downstream unimodal model internalizes
these decision patterns, effectively inheriting the multimodal
model’s ability to distinguish between similar cases even
when processing only a single modality.

The connection between preference learning and knowl-
edge transfer can be understood through the lens of im-
plicit knowledge distillation. Unlike traditional knowledge
distillation that transfers soft probabilities, MINT trans-
fers ranked preferences, which may preserve more nuanced
decision-making patterns. Future theoretical work could
formalize this connection and provide bounds on the knowl-
edge transfer efficacy. The detailed analysis is included
in A.7.

7. Conclusion

In this study, we introduced MINT (Multimodal Integrated
Knowledge Transfer), a framework for aligning unimodal

LLMs with domain-specific knowledge from multimodal
biomedical sources through preference optimization. Our
experiments on rare disease prediction and tissue type classi-
fication demonstrate MINT’s effectiveness, improving Top-
10 accuracy from 5.19% to 52.99% for rare disease pre-
diction and Top-5 accuracy from 32.21% to 57.58% for
tissue classification, outperforming both SFT and DPO ap-
proaches. We found that a balanced ratio of preferred and
non-preferred examples provides optimal learning signals,
and that MINT excels at distinguishing between similar
cases (e.g., histologically similar tissues) - a critical ca-
pability for clinical applications. While MINT performs
best on in-distribution samples, combining it with retrieval
mechanisms could address zero-shot scenarios with previ-
ously unseen classes. MINT offers advantages over existing
approaches: compared to SFT, it enables more nuanced
discrimination between similar cases; compared to RAG,
it internalizes domain knowledge during training, eliminat-
ing inference-time latency. Future work includes exploring
hybrid approaches with retrieval mechanisms, extending to
additional biomedical tasks, and investigating interpretabil-
ity techniques to understand the patterns learned through
preference optimization.

Impact Statement

This work aims to advance machine learning applications
in healthcare by enabling more accurate rare disease predic-
tion and tissue type classification from limited modalities.
While MINT offers potential benefits for clinical diagnostic
workflows, particularly in resource-constrained settings, we
acknowledge that any Al-based diagnostic system should
serve as a supportive tool for healthcare professionals rather
than a standalone solution. Future deployment should ad-
dress potential demographic biases in training data and main-
tain transparency about model capabilities and limitations
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to ensure equitable performance across diverse populations.
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A. Additional Experimental Details
A.1. Full Implementation Details

All experiments were implemented using PyTorch and the Hugging Face Transformers library. For LoRA fine-tuning, we
used the PEFT library with the following configuration:

¢ LoRA rank: 128 for 3B/11B models, 256 for 1B models

* LoRA alpha: 64 for 3B/11B models, 128 for 1B models

* LoRA dropout: 0.05

* LoRA target modules: query, key, value, and output projection matrices

* Training precision: bfloat16

For training, we used the AdamW optimizer with a learning rate of 5¢~° and a cosine learning rate schedule with 500
warm-up steps. We applied gradient clipping with a maximum norm of 1.0 to prevent gradient explosion. For both SFT and

MINT with ORPO, we trained for 5 epochs, while for MINT with DPO, we first performed SFT for 5 epochs and then DPO
for an additional 2 epochs.

For ORPO training, we set the weighting factor A (controlling the balance between SFT loss and odds ratio loss) to 1.0. For
DPO, we set 3 (controlling KL divergence from the reference model) to 0.1.

We created preference datasets by extracting predictions from the upstream multimodal models (GestaltMML and PLIP).
For rare disease prediction, we used Nvidia TensorRT for inference acceleration of the GestaltMML model. For tissue type
classification, we integrated the official PLIP implementation for generating predictions.

A.2. Prompt Templates and Examples

Tables 2 and 3 provide detailed information about the prompts and examples used in our experiments.

Table 2. Prompt templates for rare disease prediction and tissue type classification tasks.

Component

Description

Rare Disease
Diagnosis System
Prompt

You are a genetic counselor. Your task is to identify potential rare diseases based on given
phenotypes. Follow the output format precisely.

Disease
User

Rare
Diagnosis
Prompt

A [AGE] years old [GENDER] patient of [ETHNICITY] descent exhibits the following
phenotypes: [PHENOTYPES]. What are the potential diagnoses? Based on this informa-
tion, provide a numbered list of EXACTLY 10 potential rare diseases.

Tissue Type Clas-
sification System
Prompt

You are a professional pathologist analyzing nucleus images. For each image, identify
the most likely tissue types based on the nuclear morphology. Follow the output format
precisely.

Tissue Type
Classification
User Prompt

Based on the morphological features observed in the provided nucleus image, which tissue
types could this nucleus originate from? List exactly 5 tissue types in decreasing order of
likelihood.

Preference Learn-
ing Format

[SYSTEM PROMPT] [USER PROMPT] Chosen Response: [CHOSEN RESPONSE]
Rejected Response: [REJECTED RESPONSE]

These tables illustrate how our preference datasets were constructed from the outputs of the upstream multimodal models.
For each task, we show the complete process from input data through multimodal model processing to the generation
of preferred (chosen) and non-preferred (rejected) responses. The chosen responses contain the top predictions from the
upstream model, while the rejected responses contain the bottom predictions, enabling effective preference learning.

A.3. Results Across Model Sizes

Table 4 presents detailed results across different model sizes and architectures.
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Table 3. Examples showing the complete pipeline from multimodal model outputs to preference dataset construction.

Rare Disease Prediction

Component Description

Input A 3 year(s) old male patient with long palpebral fissure, growth delay, decreased body
weight, eversion of lateral third of lower eyelids, feeding difficulties.

Upstream Model Text: Same as above. Image: Facial photograph
Input

Upstream Model Kabuki syndrome (0.28), Rubinstein-Taybi syndrome (0.19), Williams-Beuren syndrome
Output (Top-10) (0.15), DiGeorge syndrome (0.12), Cornelia de Lange syndrome (0.09), etc.

Upstream Model Bardet-Biedl syndrome (0.0004), Wolfram syndrome (0.0003), Marfan syndrome (0.0003),
Output (Bottom- Waardenburg syndrome (0.0002), etc.

10)

Chosen Response  POTENTIAL_DISEASES: 1. Kabuki syndrome 2. Rubinstein-Taybi syndrome . .. 10. Cohen
syndrome

Rejected

Response POTENTIAL_DISEASES: 1. Bardet-Biedl syndrome 2. Wolfram syndrome . . . 10. Ellis-van
Creveld syndrome

Tissue Type Classification
Component Description
Input

Nucleus histology image of colon tissue

Upstream Model Image: Same as above / Text: “ What tissue type does this nucleus belong to?”
Input

Upstream Model Colon (0.35), Stomach (0.18), Breast (0.12), Prostate (0.08), Esophagus (0.06)
Output (Top-5)

Upstream Model Skin (0.004), Bile Duct (0.003), Thyroid (0.002), Liver (0.001), Adrenal Gland (0.001)
Output (Bottom-
5)

Chosen Response  MOST_LIKELY _TISSUE: 1. Colon 2. Stomach 3. Breast 4. Prostate 5. Esophagus

Rejected
Response MOST_LIKELY TISSUE: 1. Skin 2. Bile Duct 3. Thyroid 4. Liver 5. Adrenal Gland

A.4. Effect of AoR Ratio

Table 5 shows detailed results for different Acceptance-over-Rejection (AoR) ratios on the rare disease prediction task.

A.S. General Capability Evaluation Details

To evaluate preservation of general capabilities, we used the following benchmarks:
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Table 4. Performance of MINT across different model sizes and architectures on the rare disease prediction task. Standard deviations are
computed across three random seeds.

Model HFA (%) Top-10 (%) Top-1 (%) CAR

Llama 3.2-1B-Instruct 95.04+1.15  4.24£0.23  0.65£0.18  0.02924+0.0016
+ MINT 99.48+0.37 34.28+1.21 23.91+3.41 0.2120+0.0018
Llama 3.2-3B-Instruct 91.61+0.59  5.19£0.01 1.06£0.02  0.0522+0.0025
+ MINT 99.91+0.15  52.99+1.69 43.49+0.57 0.2877+0.0035
Llama 3.1-8B-Instruct 95.07£1.45  6.63£0.21 1.67£0.17  0.0797£0.0005
+ MINT 97.28+2.02 25.91+3.29 16.97+0.92 0.2326+0.0009
Gemma-2-2B-Instruct 100.00+0.00  6.99+0.00 1.79£0.03  0.1065+0.0063
+ MINT 99.04+1.36  16.32+0.00  8.04+0.01  0.1743+0.0051
Gemma-2-9B-Instruct 99.56+0.63  12.37£0.82  5.03£0.16  0.1368+0.0047
+ MINT 99.61+0.55 33.80+£1.25 23.40+0.85 0.2465+0.0122

Llama 3.1-70B-Instruct* 99.74+0.16  21.24+0.27 11.92+0.08 0.112240.0031
Llama 3.1-405B-Instruct*  100.00£0.00 26.17£0.22 11.66£0.08 0.1221+0.0019

*Due to computational constraints, only inference was performed on these models.

Table 5. Effect of varying Acceptance-over-Rejection (AoR) ratios on MINT performance for rare disease prediction using Llama
3.2-3B-Instruct. The k value is fixed at 10, while q varies from 10 to 30.

AoR Ratio (k/q) HFA (%) Top-10 (%) Top-1(%) CAR

10/10 (1.0) 100.00 53.88 44.04 1.63
10/15 (0.67) 99.48 38.13 28.29 1.47
10720 (0.5) 98.96 26.06 15.96 1.38
10/25 (0.4) 99.97 21.07 10.99 1.25
10/30 (0.33) 100.00 20.21 10.36 1.21

Language Benchmarks. For rare disease prediction models, we evaluated on six standard benchmarks:

* MMLU: 57 subjects across STEM, humanities, social sciences, with 14,042 multiple-choice questions

Truthful QA: 817 questions designed to test tendency to reproduce false claims
* HellaSwag: 10,042 commonsense inference questions with 4 choices each

* Winogrande: 1,267 commonsense reasoning questions based on Winograd schemas

ARC: 7,787 grade-school science questions with challenging reasoning

» GSMBSk: 1,319 grade-school math problems requiring multi-step solutions

We used 5-shot evaluation for all language benchmarks to provide a fair comparison across different models.

Vision-Language Benchmark. For tissue classification models, we used SEED-Bench which contains 19,000 multiple-
choice questions across 12 evaluation dimensions. We report scores on the visual perception dimensions most relevant to the
tissue classification task.

A.6. Dataset Details

GestaltMatcher Database (GMDB). The GMDB dataset contains facial images and clinical phenotypes for patients with
genetic disorders. For our experiments, we used version 1.0.9, which includes 6,908 samples across ~520 disease classes.
We split the data into 6,522 training samples and 386 testing samples, ensuring no patient appears in both sets. The text
input for each sample consists of demographic information (age, gender, ethnicity) and a list of HPO terms representing
observed phenotypes.
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Phenopacket-derived Clinical Notes. This external validation dataset consists of 5,980 synthetically generated clinical
notes. Each note follows the structure of real clinical documentation and describes a patient case with observed phenotypes
and the correct diagnosis. We divided this dataset into two subsets: 1,638 samples with 72 diseases that overlap with our
training set, and 4,342 samples with 456 diseases that do not appear in our training set.

PanNuke Database. This dataset contains 481 visual fields of H&E-stained histology slides across 19 tissue types, with
205,343 labeled nuclei. We used the official train/test split, resulting in 5,436 training images and 2,330 testing images.
Each image shows a single nucleus with surrounding context, and the task is to identify the tissue of origin from the 19
possible tissue types.

A.7. Theoretical Understanding

While our work provides strong empirical evidence for MINT’s effectiveness, we provide theoretical insights into why
preference optimization successfully transfers multimodal knowledge to unimodal models.

A.7.1. KNOWLEDGE TRANSFER THROUGH PREFERENCE LEARNING

The effectiveness of MINT can be understood through three theoretical perspectives:

Implicit Multimodal Knowledge Distillation Traditional knowledge distillation transfers soft probabilities from teacher
to student models (Hinton et al., 2015). MINT extends this concept by transferring ranked preferences that encode
decision-making patterns learned from multimodal data. When the upstream multimodal model generates preference
rankings based on joint text-image understanding, these rankings encapsulate the discriminative patterns that distinguish
between correct and incorrect responses across modalities.

Formally, let g, (x'*, x'™m¢) be the multimodal teacher model that produces a predictive distribution over labels ). The

preference ranking 74 : ) — R derived from this distribution contains implicit knowledge about the joint multimodal
decision process:

74 (y) = log py(y[x', x™) ®)

Through preference optimization, the unimodal student model fy learns to approximate this ranking using only text input:

o (Xtext) ATy (Xtext7 Ximage) (6)

This enables the student to make decisions that reflect multimodal understanding using only single-modality inputs.

Decision Boundary Learning Unlike supervised fine-tuning that only learns positive examples, MINT explicitly learns
decision boundaries between correct and incorrect responses. The odds ratio in ORPO:

w Oddsg (y™ po(y™) /(1 — pg(y®

ORy (4", y') = 9(yl) _ Doy z)/( e(yl )
Oddse(y')  po(y")/(1 —pe(y'))

encourages the model to not only increase probability for preferred responses but simultaneously decrease probability

for non-preferred ones. This contrastive learning enables more nuanced discrimination between similar cases—a critical
capability in biomedical applications where subtle differences distinguish between similar diseases or tissue types.

(N

The ORPO loss can be decomposed as:

Lorpo = Lsrr + o - Lor (8
= —log po(y*“'|x) — alog o(log OR4(y*,y/")) )

where the first term ensures the model learns to generate preferred responses, and the second term enforces relative preference
ordering.

14



Submission to ICML 2025 GenBio Workshop

Multimodal Pattern Compression The preference dataset construction process acts as a compression mechanism that
distills multimodal expertise into preference rankings. When the multimodal model processes (x'X, x/™3¢¢) pairs, it learns
complex feature interactions across modalities. The resulting preference rankings serve as a compressed representation of
these interactions.

Let h'*' = Encoderey (x**!) and him2e¢ = Encoderimage(ximage) be the encoded representations of text and image modalities.
The multimodal model learns a joint representation:

hjoim _ ffusion (htext7 himage) ( 10)

The preference ranking generated from this joint representation:

74 = Rank(pg(y/™)) ()

contains information about both modalities. Through preference optimization, the unimodal model learns to approximate
this ranking using only h'*":

o (htext) ATy (hjoim) (1 2)

A.7.2. INFORMATION-THEORETIC PERSPECTIVE

From an information-theoretic standpoint, MINT can be viewed as a method for preserving mutual information between
multimodal inputs and outputs while reducing the input dimensionality.

Let [(X'ext Ximage: y) denote the mutual information between multimodal inputs and the target labels. Traditional
approaches that discard one modality suffer from information loss:

I(Xtexl; Y) < I(}(lext7 Ximage; Y) (13)

MINT attempts to recover some of this lost information through the preference learning process. Specifically, the preference
rankings 7 derived from multimodal models contain additional information:

I(X®UILY) > (X' Y) (14)

The effectiveness of knowledge transfer depends on how much of the multimodal mutual information can be captured in the
preference rankings:

_ I(xtexl, H, Y) _ I(xtext; Y)
n= I(Xtexl’ Ximage; y) _ I(Xlexl; Y)

15)

where 7 € [0, 1] represents the knowledge transfer efficiency.

A.7.3. CONVERGENCE PROPERTIES

The ORPO objective combines supervised learning and preference optimization, creating a multi-objective optimization
problem. We can analyze the convergence properties of this combined objective.

Let 0gpy be the optimal parameters for the SFT objective and 6y be the optimal parameters for the odds ratio objective. The
ORPO objective seeks to find:

6* = arg ngn [ESFT(Q) + OZ,COR(Q)] (16)

15



Submission to ICML 2025 GenBio Workshop

Under certain regularity conditions (convexity of individual losses, Lipschitz continuity), the combined objective converges
to a point that balances both objectives. The parameter « controls the trade-off between learning preferred responses and
learning preference rankings.

When o = 0, we recover standard SFT: §* — 0. When o — oo, the optimization focuses primarily on preference
ranking: 0% — 05;.

The optimal value of o depends on the quality of the preference dataset and the alignment between the SFT and preference
objectives.

A.7.4. THEORETICAL LIMITATIONS AND FUTURE DIRECTIONS

While this analysis provides insights into MINT’s mechanisms, several theoretical questions remain:

Transfer Efficiency Bounds We lack formal bounds on 7, the knowledge transfer efficiency. Establishing such bounds
would require characterizing the relationship between text-image feature alignment and transferable information.

Preference Quality Measures No formal metrics exist to evaluate the quality of preference datasets for knowledge
transfer. Developing such metrics would enable principled preference dataset construction.

Optimization Landscape The non-convex nature of neural network optimization means that the combined ORPO
objective may have multiple local minima. Understanding the optimization landscape could inform better training strategies.

Generalization Bounds Traditional generalization bounds for supervised learning may not apply directly to preference-
based learning. Developing preference-specific generalization bounds would strengthen theoretical foundations.

Future theoretical work should focus on: (1) establishing formal knowledge transfer guarantees, (2) characterizing the
optimization landscape of combined objectives, and (3) developing information-theoretic frameworks for multimodal
knowledge compression.
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