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ABSTRACT

Transformer-based architectures have been widely used to obtain high accu-
racy values in multiple fields including natural language processing (NLP), com-
puter vision, and more. Multi-head attention is the key factor in the success of
Transformer-based architectures that has been found to be computationally expen-
sive. Significant research effort has been devoted to improve attention compute
efficiency by reducing the self-attention complexity or pruning redundant atten-
tion heads. Previous pruning work either presents training-testing inconsistency
or enforces hard structural constraints which limit model performance. We pro-
pose the notion of almost-sure sparsity to overcome these limitations and develop
a generic framework for Pruning with Almost-Sure Sparsity (PASS) targets over
attention heads. To further boost efficiency, we design a novel technique, concen-
trator, based on which we develop PASSCONC (PASS with CONCentrator). We
investigate PASS and PASSCONC on two widely studied architectures: encoder-
decoder (ED) Transformer and BERT. Experiments on IWSLT14 German-to-
English translation and GLUE benchmark tasks demonstrate that our approaches
outperform the SOTA by up to 1.33 higher BLEU scores, 1.44% higher accuracy,
and 60% higher attention layer speedups.

1 INTRODUCTION

Transformer-based architectures (Vaswani et al., 2017) have become a lead force in the domain of
natural language processing (NLP) research, which have achieved the state-of-the-art results in a
wide range of NLP tasks, including machine translation (Vaswani et al., 2017), text summarization
(Liu & Lapata, 2019), and question answering (Devlin et al., 2018). More recently, significant
research effort has been made to apply Transformer-based architectures to computer vision tasks
including image classification (Chen et al., 2020; Dosovitskiy et al., 2020), object detection (Carion
et al., 2020; Zhu et al., 2020), and video processing (Zeng et al., 2020; Zhou et al., 2018). Due to
their strong representation capability (Han et al., 2020), Transformer-based architectures are found
to achieve comparable or better performance than other deep learning models like CNN (LeCun
et al., 1998) and RNN (Rumelhart et al., 1985).

Multi-head attention mechanism is the key factor for the high performance of Transformer-based
architectures including the most powerful large language models (LLM) (Brown et al., 2020). It
has been shown that multi-head attention not only helps with performance improvements (Vaswani
et al., 2017), but also subject-verb agreement (Tang et al., 2018) and model interpretability analysis
(Voita et al., 2019; Clark et al., 2019). However, attention computation is typically expensive and
has been found to account for over 50% inference latency (Wang et al., 2020a) due to its quadratic
complexity and a lack of hardware optimization for its complex memory operations (e.g., splitting
attention heads, reshaping and transposing key and value matrices).

Significant research effort has been devoted to improve attention inference efficiency from two or-
thogonal perspectives: reducing self-attention complexity and pruning redundant attention heads.
As a representative work of the first stream, sparse attention (Roy et al., 2021; Tay et al., 2020;
Child et al., 2019) focuses on sparsifying the attention distribution over tokens for each head to
improve efficiency and head diversity. Linformer (Wang et al., 2020b) reduces the self-attention
complexity from O(N2) to O(N) with low-rank matrix approximation. While reducing the compu-
tation complexity of each single head, these techniques assume that all attention heads are of equal
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Figure 2: PASS can result in better subnetwork performance by engaging all heads in training time and consis-
tent train-test performance by achieving almost-sure sparsity targets.

importance and lose the opportunity of achieving further efficiency improvements by correctly prun-
ing redundant heads altogether. Recent work demonstrates the over-parameterization phenomenon
in multi-head attention models. On OpenSubtitles dataset (Lison & Tiedemann, 2016), Voita et al.
shows that pruning all but 4 heads out of 48 leads to a mere 0.25 drop in BLEU score. Michel et al.
observes that a heuristic-based iterative approach can prune up to 40% heads from BERT, with-
out incurring any significant performance deterioration. Moreover, by pruning 50% of all attention
heads from BERT, Michel et al. observes a 17.5% speedup in inference for high batch sizes. These
findings open the door for pruning attention heads from Transformer-based architectures in order to
achieve efficiency improvements while maintaining high model inference performance, compared
to the original unpruned model.

Figure 1: Illustration of joint pruning
on multi-head attention. Gates take
values from [0, 1] and apply to atten-
tion heads before summation.

One line of work explores the possibility of pruning redun-
dant attention heads from fully trained models (Michel et al.,
2019). Methods like this are classified as pipelined pruning
methods (Li et al., 2021). This paradigm identifies important
attention heads from pretrained models and prunes uninforma-
tive heads subject to heuristic-based importance thresholds or
rankings. Due to the separation between training and prun-
ing, it is usually challenging for pipelined pruning methods
to recover model capacity from pruning loss, especially in ag-
gressive pruning settings (Li et al., 2021). In contrast, another
pruning paradigm, called joint pruning, blends the pruning ob-
jective into the training objective and is shown to outperform
pipelined pruning by identifying subnetworks of higher performance at the same sparsity levels (Li
et al., 2021). Joint pruning, as the name implies, jointly learns a set of trainable gate variables which
indicate the presence of each attention head, as shown in Figure 1. Voita et al. learns the distribution
for each gate and sparsifies the model by regularizing the likelihood for each gate to be open. At
inference time, Voita et al. compares gate closing and opening probabilities to identify if an attention
head can be pruned confidently.

A recently emerging research interest in attention head pruning is to sparsify attention heads based
on user-specified sparsity targets. Li et al. iteratively applies the Gumbel-softmax trick (Gumbel,
1954) to select the top-K most important attention heads for given sparsity targets. At each training
iteration, only selected attention heads get updated, which limits the final model capacity from better
generalization with more heads in early training stages. Xia et al. learns gate variable distributions
and achieves the target sparsity in expectation. Though allowing all heads to participate in model
training in a probabilistic manner, Xia et al. may end up with partially closed gates which leads to
undesirable performance drops at test time after discretizing gate values.

Motivated by these limitations, we propose the notion of almost-sure sparsity, which allows us to en-
gage all heads during model training as well as consistently end up with subnetworks of desired spar-
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sity levels, as illustrated in Figure 2. We say a gate can be closed almost surely if the corresponding
gate closing probability equals 1. In this paper, we develop PASS, a generic framework for Pruning
with Almost-Sure Sparsity targets by jointly learning gate distributions with the training process. To
push the envelope on inference efficiency, we propose a novel technique, concentrator, upon which
we develop PASSCONC (PASS with CONCentrator) . We evaluate our methods with encoder-
decoder (ED) Transformer models and BERT models on IWSLT14 German-to-English translation
(Cettolo et al., 2014) and 4 GLUE benchmark tasks (Wang et al., 2018). We explore the Pareto front
between model performance and inference efficiency for subnetworks identified by PASS, PASS-
CONC, and recent work (Li et al., 2021; Xia et al., 2022; Voita et al., 2019). Experiments show
that PASS and PASSCONC outperform the baselines across a majority of experiment settings, by
identifying subnetworks of higher speedups and comparable or better model performance. For ex-
ample, on the 4 GLUE benchmark tasks, PASSCONC achieves a 185.2% attention layer speedup on
average that is 60% higher than all baselines with even higher accuracy. This observation suggests
that PASS and PASSCONC are capable of identifying subnetworks of high model capability and
can be applied to resource-limited applications to achieve good performance-efficiency trade-off.

We make the following contributions.

1. We propose a novel notion of almost-sure sparsity to bridge the gap between real-world
sparsity requirements and the probabilistic nature of recent pruning work.

2. We develop an effective model pruning framework PASS to prune models to specified
almost-sure sparsity levels.

3. We propose a novel technique, concentrator, to further push the envelope on model infer-
ence efficiency and develop PASSCONC.

4. We evaluate PASS and PASSCONC on ED Transformer and BERT models with well estab-
lished NLP tasks. Experiments show that PASS and PASSCONC outperform baselines by
obtaining significant efficiency improvements and better performance-efficiency trade-off.

2 METHODOLOGY

2.1 GENERIC MODEL PRUNING THROUGH PROBABILISTIC GATING

A frequently encountered task in machine learning is to find the model that minimizes the negative
log-likelihood of an observed dataset, which can be formulated as follows:

θ∗ = argmin
θ

− log P (D|θ) (1)

where D is an observed dataset and θ = {θ1, θ2, · · · , θ|θ|} stands for the parameters of a parame-
terized model (e.g., a neural network). In real-world applications, we typically have model sparsity
constraints to prevent high inference latency or reduce memory footprints (Gupta & Agrawal, 2022).
A recent line of work (Louizos et al., 2017; Voita et al., 2019) pursues this goal by training gate vari-
ables, z = {z1, z2, · · · , z|θ|}, jointly with parameters, θ. Each zi ∈ z has support [0, 1]. The
objective function Eq. 1 can be re-parameterized as,

θ∗ = argmin
θ

− log P (D|θ ⊙ z) (2)

where ⊙ indicates component-wise multiplication between network parameters θ and the gate vari-
ables z. Typically, z is a latent variable following the posterior distribution p(z|D), which reflects
the user-defined sparsity constraints. The objective function Eq. 2 becomes

θ∗ = argmin
θ

− log Ep(z|D)[P (D|θ ⊙ z)] (3)

We aim to optimize the expected likelihood over the posterior distribution of the gate variables z.

The objective function described by Eq. 3 is mathematically intractable when the posterior p(z|D)
is a priori unknown. As an attempt to tackle such intractability, we can first derive the evidence
lower bound of the log-likelihood in Eq. 3 which is a widely used technique in previous variational
inference work (Vahdat et al., 2018b;a). Since we are interested in minimizing the negative log-
likelihood, it gives us an upper bound for the objective in Eq. 3 1,

− logEp(z|D)[P (D|θ ⊙ z)] ≤ −Eq(z;Φ)[logP (D|θ ⊙ z)] +KL (q(z; Φ)||p (z|D)) (4)
where q(z; Φ) is an approximate posterior distribution parameterized by Φ = {ϕ1, ϕ2, · · · , ϕ|θ|}.
Detailed derivation can be found in Appendix A.3. Minimizing this upper bound with respect to

1The posterior distribution p also depends on the models but we ignore it here since it does not change the
inequality.
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q(z; Φ) results in q(z; Φ) = p(z|D) and turns the inequality into an equality (Beal, 2003). By
denoting this upper bound as L(θ,Φ), we can then formulate the learning problem as,

L(θ,Φ) = −Eq(z;Φ)[log P (D|θ ⊙ z)] +KL(q(z; Φ)||p(z|D))

θ∗,Φ∗ = argmin
θ,Φ

L(θ,Φ) (5)

We aim to jointly learn the optimal network parameters θ∗ and the distribution of gate variables, Φ∗,
by minimizing the upper bound L(θ,Φ).
The foregoing analysis gives a generic framework to enforce sparsity over neural models which is
agnostic to the underlying network structures. To prune attention heads, all we need is to assign each
head a gate variable and solve Eq. 5 with z = {z1, z2, · · · , z|H|}, where H is set of all attention
heads. Given the generalizability of our framework, we do not explicitly distinguish attention head
pruning in following analysis until Section 2.4.

2.2 ALMOST-SURE SPARSITY

Figure 3: Lagrangian Multipliers
(LAG) ends up with partially closed
gates while PASS ensures almost-
sure sparsity (s = 78%).

The KL-divergence term in Eq. 5 is still mathematically in-
tractable when the true posterior p(z|D) is unknown. A line of
work (Voita et al., 2019) tackles this intractability by replacing the
KL-divergence term with distribution-independent surrogates. A
widely used surrogate (Voita et al., 2019) is λ

∑
zi∈z Pr[zi ̸= 0],

which can be seen as a special case of the KL-divergence term
that assumes a constant ratio log qΦ(zi)

p(zi|D) = λ. Though this surro-
gate circumvents the intractability issue, it is often challenging to
identify the right λ for a given sparsity target s (Xia et al., 2022)
. Other work utilizes surrogates in the form of Lagrangian Mul-
tipliers (Wang et al., 2020c; Xia et al., 2022) to enforce sparsity
in expectation for a given target. Though this approach is able
to achieve target sparsities in a probabilistic manner, it may end
up with partially closed gates and cause undesirable performance
degradation at test time after discretizing gate values, as illustrated in Figure 3.

In light of the limitations of previous work, we introduce the notion of almost-sure sparsity and
propose a novel surrogate which allows us to learn empirically good approximate posteriors as well
as discover subnetworks with desired target sparsities almost surely. The intuition behind the almost-
sure sparsity is simple. Note that a model has sparsity s provided a fraction s of the gates are closed
in the network. From a probabilistic perspective, it is natural to ask a subnetwork to be “confident”
about which gates should be closed. In other words, gates should be closed with high probability.
Mathematically, an event is said to happen almost surely, if it happens with probability 1 (Jacod &
Protter, 2003). Formally, we define almost-sure sparsity as follows.

Definition 1 (Almost-sure Sparsity) Given s ∈ [0, 1), gate variables z have almost-sure sparsity
s if ∃zc ⊆ z with |zc| = ⌈|z| · s⌉, such that Pr[zi is closed] = 1, ∀zi ∈ zc and Pr[zi is open] = 1,
∀zi ∈ z \ zc.

We argue that the almost-sure sparsity is better aligned with the sparsity notion we need in static
subnetworks and enables the subnetwork discovery with desired sparsity targets. Next, we present
learning objectives designed to achieve almost-sure sparsity targets specified by users.

2.3 LEARNING OBJECTIVE WITH ALMOST-SURE SPARSITY

We aim to learn a good approximate posterior q(z; Φ) with desired almost-sure sparsity. In this
paper, we adopt the Hard Concrete distribution (Louizos et al., 2018) as the basic form of the ap-
proximate posterior q(z; Φ), given its continuous-discrete nature and its wide application in model
pruning (Voita et al., 2019; Xia et al., 2022).

Hard Concrete distribution has its support over the closed interval [0, 1] and non-zero probability
mass at 0 and 1. Hard Concrete distribution is derived by stretching and collapsing the Concrete
distribution (Maddison et al., 2016), as illustrated in Figure 4 (left). We introduce derivation de-
tails in Appendix A.1. For each gate zi ∈ [0, 1] following Hard Concrete distribution, the cor-
responding probability mass at 0 and 1 with respect to q(zi;ϕi) are given as q(zi = 0;ϕi) =

sig
(
β log

(
−γ
ζ

)
− ϕi

)
, q(zi = 1;ϕi) = sig

(
ϕi − β log

(
1−γ
ζ−1

))
. For simplicity of notation, we
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denote q0(ϕi) := q(zi = 0;ϕi), the gate closing probability, and q1(ϕi) := q(zi = 1;ϕi), the
gate opening probability. Due to the monotonicity of the sigmoid function, when ϕi increases,
q1(ϕi) increases and q0(ϕi) decreases, and gate zi is more likely to open. We further define
qnb(ϕi) = 1 − q0(ϕi) − q1(ϕi) as the probability for zi being non-binary. We use β = 0.33,
γ = −0.1, and ζ = 1.1 by default, following previous work (Voita et al., 2019). Clearly, the closing
and opening probability of each zi ∈ z are differentiable functions of ϕi ∈ Φ, as shown in Figure
4 (right). By jointly learning Φ with the network parameters, we are able to almost-surely close
(resp. open) gates zi ∈ z by continuously increasing (resp. decreasing) the values of ϕi ∈ Φ,
using gradient-descent optimizers. At each training iteration, gates are sampled w.r.t. the learnt
distribution and then applied to attention heads to achieve pruning.

Figure 4: (left) Hard concrete distribution derived
by streching-and-collapsing a Concrete distribution.
(right) Closing and opening probability of gating vari-
ables are differentiable functions of ϕi. β = 0.33,
γ = −0.1, ζ = 1.1.

At the end of pruning, we want q(z; Φ) to
achieve almost-sure sparsity for a given target
s. Our strategy is to design a learning objective
that meets the desired almost-sure sparsity at
its optimum, and optimize it along with model
training. It is worth pointing out that there ex-
ists a family of learning objectives satisfying
this criterion. However, not all of them can be
easily optimized to their minimum, especially
by gradient descent optimizers (Kingma & Ba,
2015). For example, one may propose to mini-
mize the following objective.

Rbase(Φ, s) =

|θ|∑
i=1

qnb(ϕi) +

∣∣∣∣∣∣s|θ| −
|θ|∑
i=1

q0(ϕi)

∣∣∣∣∣∣ (6)

It can be easily seen that Rbase takes on its minimum value 0 when achieving almost-sure sparsity
s. However, there exist local optima that may prevent gradient descent optimizers from converging
to the global optimum. To illustrate this, for simplicity, we visualize the values of Rbase in a 2-
gates setting z = {z1, z2} in Figure 5. With 2 gates and a sparsity target s = 0.5, we want one
gate to be almost-surely closed and the other gate almost-surely open. In Figure 5, such global
optima correspond to the top-left and bottom-right corner where one of ϕ1 or ϕ2 takes on a high
value and the other takes on a low value. However, it can be clearly observed that there exist
a local optimum in the top-right region which corresponds to the situation where both gates are
open with high probability. In other words, with Rbase, if both ϕ1 and ϕ2 happen to take positive
values due to noise from the training process or bad initialization, the gradient descent direction
will increase the probability for both gates to be open and fail to meet the sparsity target s = 0.5.
Under weak conditions2, we can prove that the gradient descent direction of Rbase always leads to

a higher opening probability for gate zi if ϕi ≥ log(
−1−

√
1−g(a)g(−a)

g(a) ), where g(a) = 2ea − e−a,
a = β log(−γ

ζ ).

In light of the limitation of Rbase, we propose the following learning objective,

Rpass(Φ, s) =

|θ|∑
i=1

qnb(ϕi) +

∣∣∣∣∣∣s|θ| −
|θ|∑
i=1

q0(ϕi)

∣∣∣∣∣∣+
∣∣∣∣∣∣(1− s)|θ| −

|θ|∑
i=1

q1(ϕi)

∣∣∣∣∣∣ (7)

Rpass does not suffer from the local optimality issue that Rbase does, as illustrated in Figure 5.
In fact, we can show that minimizing Rpass always generates neither over-sparse nor over-dense
subnetworks. In order to show this formally, define the expected density as 1

|θ|
∑|θ|

i=1 q1(ϕi), and the

expected sparsity as 1
|θ|

∑|θ|
i=1 q0(ϕi). We have the following lemma.

Lemma 1 Minimizing Rpass always leads to a subregion in the search space where the expected
sparsity is no more than s and expected density is no more than 1− s.

2We assume the Hard Concrete distribution is equally stretched in both directions, which gives γ + ζ = 1.
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Proof can be found in Appendix A.2. By substituting the KL-divergence term in Eq. 5 with Rpass,
we obtain the PASS optimization objective where λ is the regularization coefficient.

Lpass(θ,Φ) = −Eq(z;Φ)[log P (D|θ ⊙ z)] + λRpass(Φ, s)

θpass,Φpass = argmin
θ,Φ

Lpass(θ,Φ) (8)

2.4 CONCENTRATOR

Figure 5: Values of Rbase and Rpass with Φ =
{ϕ1, ϕ2} and s = 0.5.

To further improve model inference efficiency,
we propose the use of concentrator. Wang et al.
observed that the auxiliary operations in multi-
head attention computation (e.g., reshaping and
transposing matrices, heads splitting, and con-
catenation) account for 73% of the overall la-
tency in attention layers. The run-time over-
head can hardly be avoided as long as there ex-
ist unpruned heads in the attention layers. Con-
sider subnetworks of the same attention head sparsity, intuitively, if the unpruned attention heads
are inclined to concentrate among a few layers, the other layers can be entirely skipped, saving the
run-time overhead and improving inference efficiency. Given this, we propose the concentrator to
encourage the unpruned attention heads to be concentrated on as few layers as possible.

Given a Transformer-based model of L layers and H heads per layer, the concentrator is defined as
Rconc(Φ) =

∑L
l=1

(
1−

∏H
h=1 q0(ϕl,h)

)
, where ϕl,h is the distribution parameter for the h-th gate

variable on the l-th layer. Notice that 1 −
∏H

h=1 q0(ϕl,h) indicates if the l-th layer can be entirely
skipped: it takes on a value 0 only if all heads of the layer have a closing probability 1. Rconc is a
summation of the layer-wise indicators over all layers and has regularization effects by penalizing
the levels of unconcentration. We introduce λc to control the concentrator effects and obtain the
following optimization objective for PASSCONC, i.e., PASS with concentrator.

Lpassconc(θ,Φ) = −Eq(z;Φ)[log P (D|θ ⊙ z)] + λRpass(Φ, s) + λcRconc(Φ)

θpassconc,Φpassconc = argmin
θ,Φ

Lpassconc(θ,Φ) (9)

In practice, with proper training settings, the proposed approach can discover subnetworks with
the desired sparsities and high accuracy. Note that we approach almost sure sparsity by increasing
or decreasing ϕi ∈ Φ with gradient-descent optimizers. However, as ϕi’s get polarized, their gra-
dients gradually converge to 0 as illustrated in Figure 4 (right). Consequently, gates closed (resp.
opened) with high probability in early training stage are unlikely to be self-adaptively re-opened
(resp. closed) in later training iterations, which may lead to sub-optimal pruning results. We pro-
pose to resolve this issue with a clipping and selective reopening strategy. The idea of clipping
is widely used in training deep learning models to avoid gradient exploding and vanishing (Zhang
et al., 2019; Koloskova et al., 2023).In this same spirit, we clip ϕi to predefined ranges to alleviate
the aforementioned issues caused by small gradients.3 To further incentivize training dynamics, we
propose to selectively reopen closed gates with respect to the gate quality. There is a line of work
on how to measure gate qualities, including importance score (Michel et al., 2019), head confidence
(Voita et al., 2019), LPR (Ding et al., 2017), etc. We choose head confidence because it is found
to be an informative heuristic notion (Behnke & Heafield, 2020) and requires little to no additional
computation. The confidence of a head is the average maximum attention weights of tokens in a set
of sentences (Voita et al., 2019). We normalize confidence scores for each attention head and reopen
almost-surely closed gates4 with a probability equal to the normalized scores.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

3.1.1 MODEL, DATA, AND METRICS

Model: We investigate two widely-used Transformer-based architectures: encoder-decoder (ED)
Transformer (Vaswani et al., 2017) and BERT (Devlin et al., 2018). We use the FAIRSEQ toolkit
(Ott et al., 2019) to implement a 6-layer ED Transformer with 72 heads in total, and the HUGGING
FACE codebase (Wolf et al., 2020) to implement a 12-layer BERT with 144 heads in total.

3In our implementation, we empirically choose [−5, 5] as the clipping range.
4To reopen an almost-surely closed gate zi, we manually decrease its closing probability by increasing ϕi.
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Datasets: Following previous work (Li et al., 2021), the ED Transformer model is trained and
evaluated on the IWSLT14 German-to-English translation dataset (Cettolo et al., 2014). The BERT
model is fine-tuned and evaluated on 4 benchmark NLP tasks from the GLUE benchmark (Wang
et al., 2018) including the Multi-Genre Natural Language Inference (MNLI) dataset (Williams et al.,
2018), the Question-answering NLI (QNLI) dataset (Rajpurkar et al., 2016), the Quora Question
Pairs (QQP) dataset (Sharma et al., 2019), and the Stanford Sentiment Treebank (SST-2) dataset
(Socher et al., 2013).

Metrics: We use BLEU score (Papineni et al., 2002) as the metric to measure model performance on
the translation task following previous work (Li et al., 2021; Michel et al., 2019), and use accuracy
as the metric on the 4 GLUE benchmark tasks following Wang et al. (2018). In addition, we are also
interested in the efficiency improvements achieved by PASS and PASSCONC. We use wall clock
time to measure the efficiency w.r.t. latency.

3.1.2 BASELINES

We consider three strong baselines that prune attention heads to a specified sparsity level.

Voita et al. (2019) (Voita) Voita et al. (2019) follows the joint pruning paradigm and prunes at-
tention heads by applying the stochastic approximation to L0 regularization (Louizos et al., 2018)
to gate closing probabilities. Voita et al. (2019) achieves pruning by jointly training models with
the following regularization term Rvoita(Φ) = λv

∑|H|
h=1(1 − q0(ϕh)), where λv can be used to

indirectly control the achieved sparsities 5.

Differentiable Subset Pruning (DSP) DSP Li et al. (2021) applies the Gumbel-softmax trick
(Gumbel, 1954) to select the top-K attention heads for a given sparsity target. DSP learns a
K-hot vector gh by iteratively applying Gumbel-softmax K times, where gh =

∑K
k=1 g

k
h =∑K

k=1
exp(rkh/τ)∑H

h′=1
exp(rk

h′/τ)
, rkh = rk−1

h + log(1 − gk−1
h ), and r1h = wh + nh. wh denotes trainable

parameter indicating head importance, nh ∼ Gumbel(0, 1) is Gumbel noise, and τ is a hyper-
parameter that controls the annealing temperature.

Lagrangian Multiplier (LAG) A recent line of work (Xia et al., 2022; Wang et al., 2020c) employs
Lagrangian Multiplier (Wang et al., 2020c) to enforce sparsity in expectation. Given a sparsity target
s, LAG trains models along with the regularization term Rlag = λ1(ŝ− s)+λ2(ŝ− s)2, where ŝ is
the expected sparsity. λ1 and λ2 are trainable parameters and will be optimized jointly in training.

3.1.3 PROTOCOLS

We express sparsity targets over attention heads H interchangeably as s ∈ (0, 1) and as integer K
where K = ⌊(1 − s)|H|⌋, the number of unpruned heads. Unless stated otherwise, for a given
sparsity target K, we evaluate all methods by selecting the top-K most important heads w.r.t. the
corresponding ranking metrics, i.e., the gate opening probabilities for PASS, PASSCONC, Voita,
and LAG, and the head importance score wh for DSP. Detailed hyper-parameter settings are in
Appendix A.4. We test all methods on both architectures with target tasks (30 training epochs for
ED Transformer; 3 fine-tuning epochs for BERT as in Li et al.). All experiments are conducted
on a high performance compute cluster equipped with NVIDIA P100 GPUs (each with 12GB GPU
RAM). All codes will be released through GitHub after reviews.

3.2 PASS AND PASSCONC IMPROVE MODEL PERFORMANCE

We investigate the model performance of subnetworks identified by PASS, PASSCONC, LAG, DSP,
and Voita under various sparsity constraints. We compare all five methods on both ED Transformer
and BERT models. The results are summarized in Table 1. More results are in Appendix A.5.

On IWSLT14 German-to-English translation task, PASS and PASSCONC outperform all 3 baselines
in a majority of sparsity settings. When K = 16, both PASS and PASSCONC achieve BLEU scores
of ∼ 32.7, which is ∼ 1.3 higher than DSP ∼ 1.8 higher than LAG, and ∼ 5.2 higher than Voita. On
the 4 GLUE benchmark tasks, we observe a similar trend in high sparsity situations. When K = 16,
PASS and PASSCONC achieve average model accuracy of 86.27% and 85.25% respectively, while
DSP drops to 84.47%, LAG drops to 83.84%, and Voita drops to 84.83%. When sparsity targets are

5We use the recommended λv values from (Li et al., 2021) for each sparsity setting.
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BLEU(IWSLT14) AVG Accuracy(MNLI, QQP, QNLI, SST-2)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 32.73 32.70 31.40 30.91 27.55 86.27 85.25 84.47 83.84 84.83
32 33.45 33.48 33.42 32.66 32.80 87.59 86.47 88.36 86.99 87.15
48 33.89 33.91 34.00 33.12 32.97 88.65 88.30 88.52 88.02 88.02
64 34.01 34.05 33.89 33.02 33.20 88.72 88.62 88.81 88.40 84.20

Table 1: Subnetwork performance on IWSLT14 De-En translation task and GLUE benchmark tasks.

Speedup(IWSLT14) (%) AVG Speedup(MNLI, QQP, QNLI, SST-2) (%)

K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita

16 144.3 162.8 141.1 141.1 142.7 114.4 185.2 123.1 120.4 126.1
32 115.5 118.7 118.7 110.4 117.6 107.1 135.6 107.3 105.4 105.3
48 101.6 104.1 105.8 102.4 102.4 103.1 109.3 102.7 102.9 103.8
64 100.8 104.1 100.0 100.0 100.0 103.2 106.4 102.9 103.0 103.0

Table 2: Attention layer speedups on IWSLT14 De-En translation task and GLUE benchmark tasks.

low, PASS is able to match or outperform all 3 baselines, while PASSCONC can be outperformed
by the strongest baseline DSP while still being comparable to the remaining two.

One interesting observation is that Voita delivers surprisingly low accuracy in low sparsity settings
(e.g., K = 64) with GLUE benchmark tasks. The degraded performance can be attributed to its
intrinsic sensitivity to the choice of λv , which is used to indirectly control sparsity targets. Li et al.
(2021) observed that a small increase in λv (e.g., 0.0009 → 0.0014) may lead to drastic change of
achieved sparsity (e.g., the number of unpruned heads decreases from 30 to 11), which suggests that
Voita is inadequate when users require subnetworks of pre-defined number of attention heads.

3.3 PASSCONC IMPROVES MODEL EFFICIENCY

We evaluate the attention layer speedups for subnetworks identified under various sparsity con-
straints, at inference time. We report the inference speedups in comparison to the unpruned model.
The results are summarized in Figure 6 and Table 2. More results can be found in Appendix A.5.

On the 4 GLUE benchmark tasks with BERT models, PASSCONC outperforms all baselines across
a majority of sparsity constraints with great efficiency improvements and comparable or better ac-
curacy. When K = 16, PASSCONC achieves a 185.2% speedup, which is ∼ 60% higher than all
baselines, and an average accuracy 85.25% that is also higher than DSP, LAG, and Voita. PASS
has a better accuracy but a lower speedup. As the sparsity targets decrease (i.e, as K increases), the
speedups achieved by all methods in general goes down but PASSCONC always dominates the com-
petition in terms of efficiency, at the price of a relatively small drop in performance. On IWSLT14
German-to-English task with ED Transformer model, PASSCONC outperforms all baseline meth-
ods in almost all sparsity settings, (see Table 2). When K = 16, PASSCONC achieves a 162.8%
speedup, which is more than 20% higher than all baselines, with at least 1.3 higher BLEU scores.

Figure 6: Attention layer speedups v.s. subnetwork performance on IWSLT14 De-En translation task and
GLUE benchmark tasks.
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3.4 ABLATION STUDY

Previous analysis of PASS and PASSCONC demonstrates the significant efficiency improvements
brought about by the concentrator (see §2.4). We validate that the clipping and reopening strategy
is necessary for PASSCONC to obtain significant efficiency improvements. As shown in Figure 7,
without the clipping and reopening strategy, the speedups achieved by PASSCONC can reduce by
up to 70%! This observation demonstrates the necessity of dynamically re-activating closed gates to
help model converge to cost-effective regions, as desired by concentrator.

4 RELATED WORK

Figure 7: Ablation study on the clipping
and reopening strategy.

Unstructured pruning has been well studied in the literature
(Gupta & Agrawal, 2022) and dates back to Optimal Brain
Damage (LeCun et al., 1989). Unstructured pruning prunes
individual parameters and identifies subnetworks of high
sparsity. However, unstructured pruning hardly achieves
practical efficiency improvements without specialized soft-
ware and hardware supports (Xia et al., 2022). In contrast,
structured pruning prunes groups of parameters within cer-
tain structures (e.g., channels and attention heads). Struc-
tured pruning has been widely explored in computer vision
tasks (He et al., 2017) and has started to attract research in-
terest in the NLP community. Research efforts have been
devoted to designing pruning strategies at both coarse- and fine-grained levels (Xia et al., 2022;
Prasanna et al., 2020) over structures like feed-forward layers and attention heads. Previous work
on attention head pruning (Li et al., 2021; Michel et al., 2019; Voita et al., 2019) either presents a
lack of training-testing consistency by focusing on sparsity in expectation, or leads to limited model
capacity due to hard structural constraints. We focus on structured pruning and propose the notion
of almost-sure sparsity to overcome the above limitations.

In addition to pruning, many other techniques have been developed to obtain inference efficiency for
deep learning models. Other than sparsity over the number of attention heads, a line of work (Roy
et al., 2021; Child et al., 2019) focuses on sparsifying the attention distribution over tokens for each
head to improve efficiency and head diversity. Recently, Correia et al. and Treviso et al. propose
to adaptively sparsify the attention distribution by enforcing low attention scores to be exactly 0
through α-entmax (Peters et al., 2019). Wang et al. develops efficient self-attention design of linear
complexity by using low-rank matrix approximation. Other techniques include quantization (Shen
et al., 2020), knowledge distillation (Hinton et al., 2015), parameter sharing (Ling et al., 2015),
tensor decomposition (Oseledets, 2011) etc. We refer interested readers to (Gupta & Agrawal, 2022;
Treviso et al., 2022) for a comprehensive survey.

5 DISCUSSION AND CONCLUSION

We propose a novel notion of almost-sure sparsity, develop a generic framework for Pruning with
Almost-Sure Sparsity (PASS) targets, and demonstrate its pruning capacity with attention heads.
To further push the envelope on inference efficiency, we propose a novel technique, concentrator,
based on which we develop PASSCONC (PASS with CONCentrator). We investigate PASS and
PASSCONC on two widely studied architectures: encoder-decoder (ED) Transformer and BERT.
Experiments on IWSLT14 German-to-English translation and 4 GLUE benchmark tasks (Wang
et al., 2018) demonstrate that PASS and PASSCONC outperform the SOTA methods DSP, LAG,
and Voita by identifying subnetworks of up to 1.33 higher BLEU scores, 1.44% higher accuracy,
and 60% higher speedups, at the same sparsity levels.

We conclude that PASS and PASSCONC can be used to identify high performance subnetworks and
help address the challenge of deploying large language models in resource-limited applications. In
the future, we would like to explore the possibility of extending the proposed framework to multiple
model structures (e.g., feed-forward layers) and prune for meeting other target footprint metrics
such as latency and memory, in addition to sparsity. Also, since both PASS and PASSCONC are
agnostic to the underlying self-attention implementation, it is intriguing to investigate the compound
efficiency improvements achieved by combining our approaches with other efficiency techniques
such as linear multi-attention (Wang et al., 2020b).
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attention sparsity in transformers. arXiv preprint arXiv:2109.12188, 2021.

Marcos Treviso, Tianchu Ji, Ji-Ung Lee, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael
Hassid, Kenneth Heafield, Sara Hooker, Pedro H. Martins, André F. T. Martins, Peter Milder,
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A APPENDIX

A.1 HARD CONCRETE DISTRIBUTION (LOUIZOS ET AL., 2018)

Hard Concrete distribution is derived from the Concrete distribution (Maddison et al., 2016). The
cumulative distribution function of a binary Conrete random variable zci ∈ (0, 1) is as follows:

Qc(z
c
i ;β, ϕi) = sig ((log zci − log(1− zci ))β − ϕi) (10)

where sig(x) = 1
1+e−x is the sigmoid function and 0 < β < 1 is a constant. We can obtain the

Hard Concrete distribution by first stretching the support of the Concrete distribution from (0, 1)
to (γ, ζ), where γ < 0, ζ > 1, and then collapsing the probability mass on (γ, 0] (resp. [1, ζ))
to the endpoint 0 (resp. 1). Equivalently, for each Concrete random variable zci ∈ (0, 1), we can
obtain a Hard Concrete random variable zi = min(1,max(0, zci (ζ − γ) + γ). For each zi, the
closing probability q(zi = 0;ϕi) = Pr[zci ≤ −γ

ζ−γ ] = Qc(
−γ
ζ−γ ;β, ϕi), and the opening probability

q(zi = 1;ϕi) = Pr[zci ≥ 1−γ
ζ−γ ] = 1 − Qc(

1−γ
ζ−γ ;β, ϕi). By plugging in Eq. 10, we have the gate

closing and opening probabilities.
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A.2 PROOF OF LEMMA 1

We include the proof of Lemma 1 as follows.

Proof: We prove this lemma by showing that, in every possible case, the gradient descent direction
of the objective Rpass always leads to a subregion in the search space where the expected sparsity is
no more than s and expected density is no more than 1−s. Recall that we define expected density as
1
|θ|

∑|θ|
i=1 q1(ϕi), and the expected sparsity as 1

|θ|
∑|θ|

i=1 q0(ϕi). For the simplicity of proof language,
we use Ed to denote the expected density and Es to denote the expected sparsity. Intuitively, as
the expected density increases (resp. decreases), the expected sparsity will monotonically decrease
(resp. increase). One important observation is that, the sum of expected density and sparsity is
always less than 1, due to the fact that q1(ϕi) + q0(ϕi) = 1− qnb(ϕi) and qnb(ϕi) > 0.

Given a sparsity target s, depending on the values of expected density and sparsity, there are three
possible situations: (i) the easiest case is that the model is already neither over-sparse nor over-
dense (i.e., Ed ≤ 1 − s and Es ≤ s). In this case, we can rewrite Rpass(Φ, s) = 2

∑|θ|
i=1 qnb(ϕi).

Minimizing Rpass(Φ, s) amounts to minimizing qnb(ϕi), which polarizes the gates to achieve the
required almost-sure sparsity, until either Ed = 1 − s, Es < s or Ed < 1 − s, Es = s which is
aligned with Lemma 1. (ii) high expected density and low expected sparsity (i.e., Ed ≥ 1 − s

and Es ≤ s), in which case we can rewrite Eq. 7 to obtain Rpass(Φ, s) =
∑|θ|

i=1 qnb(ϕi) + s|θ| −∑|θ|
i=1 q0(ϕi)− (1− s)|θ|+

∑|θ|
i=1 q1(ϕi). Because qnb(ϕi) + q1(ϕi) = 1− q0(ϕi), we can further

simplify Rpass(Φ, s) to be Rpass(Φ, s) = 2
∑|θ|

i=1

(
s − q0(ϕi)

)
. Clearly, minimizing Rpass(Φ, s)

amounts to increasing q0(ϕi) that leads to lower expected density and higher expected sparsity until
Ed = 1 − s, Es < s, which is aligned with Lemma 1; (iii) low expected density and high
expected sparsity (i.e., Ed ≤ 1 − s and Es ≥ s). Similarly, we can rewrite Rpass(Φ, s) =

2
∑|θ|

i=1

(
1 − s − q1(ϕi)

)
. Minimizing Rpass(Φ, s) amounts to increasing q1(ϕi) that brings down

expected sparsity as well as increases expected density until Ed < 1 − s, Es = s, which is aligned
with Lemma 1; It is impossible to have both high expected density and expected sparsity due to
Es + Ed < 1. We have shown that Lemma 1 holds in all possible cases. 2

A.3 DERIVATION OF THE UPPER BOUND IN EQ. 4

Here we present how to derive the upper bound in Eq. 4.
− logEp(z|D)[P (D|θ ⊙ z)]

= − log

∫
z

p(z|D)P (D|θ ⊙ z)

= − log

∫
z

p(z|D)P (D|θ ⊙ z)
qΦ(z)

qΦ(z)

= − log EqΦ(z)

[
P (D|θ ⊙ z)

p(z|D)

qΦ(z)

]
≤ −EqΦ(z)

[
log

(
P (D|θ ⊙ z)

p(z|D)

qΦ(z)

)]
= −EqΦ(z)[log P (D|θ ⊙ z)]

+KL (qΦ (z) ||p (z|D))

(11)

A.4 HYPER-PARAMETER SETTINGS

We adopt an exponential escalation strategy to increase the value of regularization coefficient λ.
λ = λbase · λ#train itr /#n step

0 (12)
where λbase and λ0 are hyper-parameters. We choose #n step as 1, 000 in all experiments. As
for PASSCONC, λc is defined as the minimal ratio between sparsifier gradients and concentrator
gradients of ϕi ∈ Φ for all heads to ensure that the concentrator is not dominated by the sparsifier
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ED Transformer BERT

λbase 1 1e-5
λ0 2 1000

learning rate
for Φ 0.2 0.5

Table 3: Hyper-parameters

Figure 8: Attention layer speedups v.s. subnetwork performance on MNLI, QQP, QNLI, and SST-2.

while the concentration effect is modest to avoid damaging model training quality.

λc = λ ·min

{∣∣∣∣∂Rpass

∂ϕi

∣∣∣∣/ ∣∣∣∣∂Rconc

∂ϕi

∣∣∣∣ ∣∣∣ϕi ∈ Φ

}
(13)

λc is adaptively updated in the middle of training, and set to 0 in both the early training phase and the
last few training iterations to help improve model performance and achieve sparsity convergence.
We use the same inverse square root learning rate schedules for model training as in Li et al..

We use the following hyper-parameters across all our experiments, as summarized in Table 3. For
experiments involving concentrators, λc is set to 0 during the first 20, 000 iterations and the last
7, 000 iterations when training ED Transformer models. For BERT models, λc is set to 0 except for
iterations between 2, 000 and 5, 000.

A.5 EFFICIENCY AND PERFORMANCE EVALUATION ON MNLI, QQP, QNLI, AND SST-2

In this section, we provide detailed speedup and performance results on each of the 4 GLUE bench-
mark tasks, as shown in fig. 8 and tables 4 to 7.
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Speedup(MNLI) (%) Speedup(QQP) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 124.2 262.7 112.5 113.2 132.9 108.2 171.2 112.7 133.1 125.4
32 117.7 141.3 106.7 103.5 102.8 103.4 138.8 112.3 107.8 107.8
48 103.2 107.4 102.5 102.5 106.7 103.4 118.9 102.7 102.4 103.0
64 103.5 107.8 102.8 102.5 104.1 103.4 107.5 102.7 103.4 102.1

Table 4: Attention layer speedups at different sparsity levels, on MNLI and QQP.

Speedup(QNLI) (%) Speedup(SST-2) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 113.8 143.7 118.3 127.5 138.8 111.5 163.3 148.8 107.9 107.2
32 105.1 125.6 103.1 108.2 107.9 102.2 136.7 106.9 102.2 102.8
48 103.8 103.5 103.1 103.5 102.8 101.9 107.2 102.5 103.1 102.5
64 103.8 107.5 103.1 103.1 103.1 102.2 102.8 102.8 102.8 102.8

Table 5: Attention layer speedups at different sparsity levels, on QNLI and SST-2.

Accuracy(QNLI) (%) Accuracy(SST-2) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 86.03 84.79 84.59 83.49 84.90 90.48 89.33 83.37 86.81 88.76
32 88.43 85.83 88.38 87.50 87.59 91.28 91.06 92.32 90.14 90.71
48 89.13 88.80 89.58 89.13 88.91 92.32 91.51 91.40 90.48 90.94
64 89.57 89.51 89.68 89.69 82.61 91.28 91.17 91.74 90.14 91.28

Table 6: Subnetwork performance at different sparsity levels, on QNLI and SST-2.

Accuracy(MNLI) (%) Accuracy(QQP) (%)
K PASS PASSCONC DSP LAG Voita PASS PASSCONC DSP LAG Voita
16 79.38 78.38 80.69 78.19 80.14 89.18 88.50 89.25 86.87 85.53
32 80.73 79.63 82.64 81.33 80.30 89.94 89.36 90.09 88.99 89.99
48 82.59 82.51 82.92 82.80 82.03 90.57 90.40 90.16 89.67 90.20
64 83.23 83.06 83.55 83.74 75.70 90.80 90.74 90.28 90.02 87.21

Table 7: Subnetwork performance at different sparsity levels, on MNLI and QQP.
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