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Abstract

Time series analysis is crucial in real-world applications, yet traditional methods focus on
isolated tasks only, and recent studies on time series reasoning remain limited to either
single-step inference or are constrained to natural language answers. In this work, we in-
troduce TS-Reasoner, a domain-specialized agent designed agent designed for multi-step
time series inference. By integrating large language model (LLM) reasoning with domain-
specific computational tools and error feedback loop, TS-Reasoner enables domain-informed,
constraint-aware analytical workflows that combine symbolic reasoning with precise numer-
ical analysis. We assess the system’s capabilities along two axes: 1) fundamental time series
understanding assessed by TimeSeriesExam and 2) complex, multi-step inference, evaluated
by a newly proposed dataset designed to test both compositional reasoning and computa-
tional precision in time series analysis. Experiments show that our approach outperforms
standalone general-purpose LLMs in both basic time series concept understanding as well
as the multi-step time series inference task, highlighting the promise of domain-specialized
agents for automating real-world time series reasoning and analysis.

1 Introduction

Time series analysis lies at the heart of many high-impact real-world applications, powering decisions in
domains such as finance, healthcare, and energy systems (Cheng et al., 2021; Sharma et al., 2021; Zhang
et al., 2021). Over the past decades, research in time series modeling has seen significant advancements, not
only in canonical tasks such as forecasting, anomaly detection, and classification (Hamilton, 2020; Lim &
Zohren, 2021; Ismail Fawaz et al., 2019; Zamanzadeh Darban et al., 2024), but also in the development of
foundation models (Ansari et al., 2024; Liu et al., 2024b; Garza & Mergenthaler-Canseco, 2023; Goswami
et al., 2024). These models enable zero-shot inference and achieve strong performance on benchmarked tasks,
substantially expanding the scope of data-driven time series analysis.

Despite this progress, real-world time series analysis rarely conforms to a fixed input–output paradigm.
Practical inference often requires procedural reasoning: retrieving auxiliary covariates, invoking appropriate
forecasting or diagnostic tools, validating operational constraints, and iteratively refining intermediate re-
sults. For instance, electricity load prediction in power grid operations typically involves combining exogenous
data, applying forecasting models, checking system-level constraints, and adjusting predictions accordingly
(WANG et al., 2016). Such workflows are inherently multi-step and compositional, yet are not captured by
existing models or benchmarks.

This gap motivates a new task setting that we term multi-step time series inference, in which solving a single
query requires dynamically composing multiple analytical steps, numerical tools, and domain constraints.
While time series foundation models excel at individual subtasks, they lack mechanisms for instruction fol-
lowing, workflow assembly, and constraint-aware reasoning. Large language models (LLMs), on the other
hand, exhibit strong reasoning and instruction-following capabilities (Mondorf & Plank, 2024; Zeng et al.,
2023), but struggle with temporal pattern recognition and numerical computation due to discretization arti-
facts (Spathis & Kawsar, 2024) and their optimization for token prediction rather than numerical estimation
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(Li et al., 2024; Cvejoski et al., 2022; Selvam, 2025). Addressing these limitations through full retraining or
architectural redesign is costly and inefficient.

In this work, we advocate a domain-oriented specialization of LLMs for time series inference via program-
aided execution. We introduce TS-Reasoner, a time series domain-specialized agent that decomposes high-
level inference queries into structured workflows composed of well-defined time series operators, ensuring
numerical accuracy and reliable execution. Rather than embedding time series reasoning within the LLM
itself, TS-Reasonerleverages in-context learning (Brown et al., 2020) to learn how to orchestrate domain-
specific operators for multi-step inference. Standard execution feedback is used as an enabling mechanism
to iteratively refine generated workflows when errors occur, improving robustness without retraining.

Robust evaluation of multi-step time series inference requires benchmarks that go beyond single-step predic-
tion accuracy. We first assess TS-Reasoner’s foundational time series understanding using TimeSeriesExam
(Cai et al., 2024). We then introduce a new benchmark composed of curated tasks that reflect recurring
challenges in scientific and engineering practice, including constraint-aware forecasting in smart grid opera-
tions (Han et al., 2021; WANG et al., 2016; Greif et al., 1999), anomaly detection with threshold calibration
(Yan et al., 2021), and causal discovery guided by domain knowledge (Aoki & Ester, 2020). These tasks
serve as representative instances of multi-step time series inference, capturing the procedural and analytical
complexity absent from existing benchmarks.

We summarize our contributions as follows: (1) We formalize multi-step time series inference as a task
paradigm that captures procedural reasoning, constraint handling, and domain knowledge integration, which
are largely missing from existing models and benchmarks. (2) We propose TS-Reasoner, a domain-oriented
time series agent that performs multi-step inference by composing structured workflows over time series
operators, ensuring numerical reliability through programmatic execution. (3) We construct a realistic
benchmark grounded in scientific and engineering domains, and demonstrate that TS-Reasoneroutperforms
general-purpose LLM agents while revealing their limitations in time series settings.

2 Related Work

NORM_SCORE = AnomalDetOP(data=NORM_VAL) 
THRES = calibrateThreshOP(data=NORM_SCORE) 
TEST_SCORE = AnomalDetOP(data=VAL) 
FINAL_RESULT = thToBinaryOP(data=TEST_SCORE,threshold=THRES)
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Figure 1: The architecture of TS-Reasoner. The LLM work as task decomposer, which learn from operator
definitions and in-context examples to decompose task instances into sequence of operators. Then a program
executor is responsible for solution plan execution and forms a feedback loop with task decomposer.
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Traditional Time Series Tasks and Foundation Models Classical time series analysis encompasses
key tasks such as forecasting (Ekambaram et al., 2023), imputation (Tashiro et al., 2021), classification (Zhao
et al., 2017), and anomaly detection (Xu et al., 2021), each serving unique purposes across domains. Tra-
ditionally, these tasks were addressed by dedicated models optimized for specific objectives, resulting in a
fragmented modeling landscape. Inspired by advances in LLMs, recent work has proposed general-purpose
time series foundation models (Woo et al., 2024; Liu et al., 2024b). LLMTime (Gruver et al., 2024) encodes
time series as strings, while TimeLLM (Jin et al., 2023) and TimeMoE (Shi et al., 2025) align time series
with language representations. TEMPO (Cao et al., 2023) combines decomposition and prompt design to
enable generalization to unseen data, and Chronos (Ansari et al., 2024) leverages scaling and quantization for
efficient embedding. While these models handle multiple preset tasks within a unified architecture, they re-
main constrained by fixed task definitions and lack support for procedural, compositional inference involving
dynamic task composition and constraint reasoning.

LLM Reasoning & LLM-Based Agents Large Language Models (LLMs) exhibit strong reasoning
capabilities when aided by in-context learning and structured prompting (Huang & Chang, 2022; Qiao et al.,
2022; Ahn et al., 2024). Techniques such as Chain-of-Thought prompting and its extensions (Wei et al.,
2022; Yao et al., 2023a;b; Wang et al., 2022; Qu et al., 2024) encourage explicit intermediate reasoning,
while program-based reasoning frameworks (Khot et al., 2022; Creswell & Shanahan, 2022; Gao et al., 2023)
integrate external modules for precise execution, as exemplified by VisProg (Gupta & Kembhavi, 2023) in
the vision domain. To address domain-specific limitations, recent agent systems incorporate structured tool
interfaces and feedback mechanisms (Sun et al., 2023; Cai et al., 2025). Examples include SWE-agent (Yang
et al., 2024) for software engineering, HoneyComb (Zhang et al., 2024) for materials science, and CRISPR-
GPT (Huang et al., 2024) for biological sequence editing. Within the time series domain, recent works explore
LLM-based agents for incorporating external context or event information into forecasting (Wang et al.,
2024b; Lee et al., 2025). These approaches primarily target specific predictive tasks and model architectures.
In contrast, TS-Reasoner focuses on multi-step time series inference as a task paradigm, emphasizing a
domain-oriented operator toolkit and structured execution interface that supports heterogeneous tasks and
constraint-aware workflows. More broadly, our work aligns with the Agent-as-Data-Analyst paradigm (Tang
et al., 2025), and can be viewed as a time-series–specific instantiation with dedicated operators and evaluation
protocols.

3 TS-Reasoner

In this section, we formally introduce TS-Reasoner which addresses the limitations of standalone LLMs in
handling numerical precision and computational complexity in time series analysis by decomposing complex
time series inference tasks into structured operator execution pipelines. The core architecture of TS-Reasoner
can be expressed as:

Ri = TaskDecomposer(x, C, feedbacki−1) (1)

Exec(Ri) =
{

y, if successful and valid
feedbacki, if failed or poor quality

(2)

where x denotes the input task described in natural language, C represents the in-context examples containing
operator definitions and demonstrated operator usages in response to sample questions, Ri = [f1, f2, ..., fn]
is the reasoning trace consisting of specialized operators planned by the task decomposer at iteration i, y
represents TS-Reasoner’s final output obtained from successful execution of R. Figure 1 provides an overview
of TS-Reasoner. The framework follows a modular design philosophy, separating high-level reasoning from
computational execution. By delegating computationally intensive or mathematically precise operations to
specialized operators.

Task Decomposer The task decomposer is embodied by a LLM and is responsible for transforming
complex natural language instructions into structured operator execution plans. Given the definitions of
operators in the toolbox and a set of example task-solution pairs (x1, R1), (x2, R2), ..., (xn, Rn), TS-Reasoner
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Figure 2: The proposed pipeline for multi-step time series inference task generation and evaluation.

learns to map new tasks to appropriate decomposition sequences imitating human breaking down complex
problems into manageable subtasks. The in-context learning paradigm does not require expensive retraining
and allows LLM to recognize structural patterns in time series analysis workflows.

Specialized Operators TS-Reasoner relies on a suite of modular operators that wrap existing statistical
tools, machine learning and deep learning models, and numerical utilities. We adopt state-of-the-art or
widely used components and expose them through a unified interface. Each operator is given an informa-
tive name (e.g., ForecastOP, AnomalDetOP, calibrateThreshOP) and follows a consistent calling structure,
enabling seamless orchestration within the execution pipeline. This standardized abstraction allows the
task decomposer to compose complex workflows from heterogeneous tools in a model-agnostic and reusable
manner. The available operators can generally be categorized into four groups, each addressing distinct
aspects of time series analysis. 1) Time Series Model Operators These operators form the analytical
core of TS-Reasoner, applying machine learning and deep learning models to time series data. They handle
canonical time series analysis tasks such as forecasting, imputation, and anomaly detection using models like
ARIMA (Box & Jenkins, 1968), Chronos (Ansari et al., 2024), Lag-Llama (Rasul et al., 2023), and MOMENT
(Goswami et al., 2024). Depending on the task, the amount of input data, and time series model choice,
this family of operators can work in zero-shot mode or finetuning mode. 2) Numerical Operators These
provide standard statistical and mathematical functions used throughout the solution pipeline as well as
simple shape manipulation operators to ensure seamless passing of variables. For example, operators within
this family are equipped with functionalities like computing averages, performing decomposition, measuring
volatility, or evaluating distribution properties. 3) External Data Retrieval Operators These operators
fetch relevant contextual data from external sources. The implementation of these operators mainly involves
wrapping API calls to available services that supply time series based on queries. 4) LLM-Generated
Custom Operators To address the impracticality of predefining all necessary time series tools, we intro-
duce a LLM-generated custom operator. This is a single operator that accepts a natural language prompt
and returns executable code tailored to the specific analytical requirement, enabling a flexible and extensible
pipeline that adapts to diverse task demands. This operator is used during refinement when task-specific
post-processing logic is required beyond predefined operators (e.g., constraint-driven adjustment in electric-
ity forecasting).The current toolkit covers 57 operators, a complete list of operators within each category is
outlined in section C.

Feedback Mechanism for Self-Refinement Once the task decomposer generates a structured execution
plan R = [f1, f2, ..., fn] that specifies the sequence and order of operators, the program executor interprets
and executes each step accordingly. If an execution error is encountered, a feedback loop is initiated: the task
decomposer is re-invoked to produce a revised end-to-end execution plan using the original query, in-context
examples, the previously generated solution, and the error message from the current execution attempt (as
shown in Equation 2). This error correction process is allowed to retry up to k times, where k is a predefined
maximum number of retry attempts.
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With the abundant suite of available time series foundation models, using time series model operators often
necessitates model selection. In realistic settings, an intelligent agent may benefit from intermediate feedback
either from automated evaluators or human/external signals to refine its model choices. Conditioned on
such support from the evaluation benchmark, TS-Reasoner leverages feedback on prediction quality (e.g.,
MAPE) to experiment with different model choices and select the best-performing one. Feedback is obtained
via within-instance, temporally valid self-evaluation, where the last 10% of each time series is used as a
pseudo-holdout for intermediate feedback, while final evaluation is conducted exclusively on the unseen
future horizon. The program executor maintains a buffer memory of previously explored solution paths
to prevent redundant evaluations. If the task decomposer reverts to a previously attempted solution, the
program execution proceeds directly to completion. This architecture ensures error handling, and adaptive
refinement, enabling TS-Reasoner agent to dynamically optimize multi-step time series inference.

4 Multi-Step Time Series Inference Dataset

To study multi-step time series inference in realistic settings, we introduce a benchmark dataset centered
on a task formulation that goes beyond single-step prediction. The dataset is designed to evaluate whether
a system can decompose a natural-language instruction into multiple reasoning stages, perform time series
analysis, incorporate domain knowledge, and enforce explicit constraints during inference. Unlike traditional
time series benchmarks that focus on a single task such as forecasting accuracy, our benchmark comprises
diverse task types, including constraint-aware forecasting, diagnostic analysis, and causal reasoning. Each
instance is framed as a natural-language instruction paired with context-rich time series inputs and well-
defined evaluation criteria, enabling systematic assessment of both solution validity and inference quality.

We categorize the tasks into two broad classes: predictive tasks and diagnostic tasks. 1) Predictive tasks
focus on time series forecasting under realistic operational constraints. These include requirements such as
limiting the maximum allowable load in a grid, enforcing electricity load ramp rate restrictions, or bounding
variability within an acceptable range (Greif et al., 1999; Oreshkin et al., 2020). Such constraints are common
in engineering and energy systems, where violations may result in equipment damage, service disruption,
or regulatory penalties (Nti et al., 2020). Our dataset simulates scenarios where future values must not
only be predicted accurately but also satisfy operational constraints or leverage domain knowledge. To
reflect practical challenges, we include forecasting scenarios with and without covariates data supplied in
the question, and also scale to multi-grid settings where large volumes of data must be processed across
multiple regions. 2) Diagnostic tasks emphasize pattern recognition, calibration, and structural inference.
One subclass involves anomaly detection, where the model must identify abnormal patterns in a time series,
often using reference samples or contextual priors such as known anomaly rates or anomaly-free samples
to calibrate thresholds (Liu et al., 2016). These tasks simulate settings like extreme weather detection,
where defining anomaly boundaries is not straightforward and depends on prior data distributions. Another
subclass of diagnostic tasks centers on causal discovery. Here, the model is asked to infer causal relationships
among variables, given partial domain knowledge such as the expected proportion of causal links (Aoki &
Ester, 2020). These tasks require the integration of weak supervision with statistical reasoning (Huang et al.,
2020) and offer a rich testbed.

Figure 2 shows the pipeline used to generate proposed pipeline. Each task instance is generated via a
modular pipeline grounded in real-world multi-step time series analysis. We first survey existing literature
to identify three task definitions that demand multi-step inference: constraint-aware forecasting, extreme
weather detection with known prior and causal discovery with domain knowledge. These are annotated
with natural language templates reflecting their problem definition and objectives. To instantiate a task, we
source time series data from datasets from corresponding domains: ERA51 (climate), PSML (Zheng et al.,
2021) (electricity), and synthetic generators (causal graphs). Each specific task instance is parameterized by
selecting time ranges, target variable, and context-specific constraints/knowledge. The result is a dynamic
task specification with varying evaluation criteria across instances, distinguishing from traditional fixed-
protocol benchmarks. For more details on specific task instance compilation, please see Proposed Dataset
section in appendix.

1https://climatelearn.readthedocs.io/en/latest/user-guide/tasks_and_datasets.html#era5-dataset
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Evaluation is conducted through a unified but flexible protocol. Each task instance is paired with a dedicated
evaluator configured with access to ground truth data, contextual information, and task-specific constraints
or domain knowledge. The evaluator assesses the final model output along three dimensions: structural
correctness (e.g., output shape and format), constraint satisfaction (e.g., anomaly rates, causal priors, load
limits), and inference quality using appropriate metrics such as accuracy, F1 score, or MAPE. This framework
supports rigorous and interpretable assessment across diverse task types. Such dedicated evaluators also
support generating intermediate feedback quality signals like MAPE by comparing predictions to ground
truth, simulating expert or human feedback in realistic decision-making workflows.

4.1 Task Instance Templates

In this section, we provide an outline of templates used for each type of tasks. The exact template for each
sub question type may vary from each other to best reflect the available information: with and without
covariates data supplied, whether multiple time series is supplied to test larger-scale multi-step inference
cases, what known priors are provided (anomaly rate or reference free sample or known ratio of causal
links), and which constrains are selected (global electricity load variability limit, maximum alloable load,
e.t.c). The current scale of the proposed benchmark consists of around 500 specific task instances. Figure 3
demonstrates sample questions generated from the task instance generation pipeline. 2.

Predictive Tasks In predictive tasks, we primarily focus on load-related issues in the energy sector.
Specifically, each test sample provides the model with a natural language question, relevant time series
historical data, and operational constraint requirements. The questions are generated by the following
templates:

Question Template (Electricity Load Prediction) I have historical {influence variables} data
and the corresponding target variable data for the past {historical length} minutes. [1. I need to
ensure that the maximum allowable system load does not exceed {load value} MW. 2. I require that
the system load is maintained above a minimum of {load value} MW. 3. I must monitor the load ramp
rate to ensure it does not exceed {constraint value} MW for each time step. 4. I need to manage the
load variability so that it does not exceed {constraint value} MW over the given period.] Think about
how {influence variables} influence {target variable}. Please give me a forecast for the next {future
length} minutes for target variable. Your goal is to make the most accurate forecast as possible, refine
prediction result based on the constraint previously described. {output requirement: E.g. please return
a 1D numpy array}.{data variable name specification: E.g. The historical data is stored in variable
VAL.} .

Diagnostic Tasks In diagnostic tasks, we primarily used extreme weather detection scenarios in climate
science and synthetic causal discovery. Specifically, each task instance includes natural language description
of the question, time series, and domain knowledge description. The extreme weather detection questions
are generated by the following template:

Question Template (Extreme Weather Detection) I have 2m temperature data that spans
{sequence length} hours. Please tell me whether there are anomalies (extreme weather events) and
where are anomalies if present in this sequence. [1. I also have some anomaly-free 2m temperature
data from the same region. 2. I know that {anomaly ratio} percent of the times have anomalies. ]
{output requirement}.{data variable name specification} .

For causal analysis, we synthesize a set of multivariate time series grounded in domain knowledge from climate
science, finance, and economics. Specifically, we generate time series data according to predefined temporal
influence structures, where directed relationships are defined under a Granger-style predictive notion of
causality (Seth, 2007), consistent with common observational time series settings. Each test sample consists

2We also share a few sample questions here https://anonymous.4open.science/r/sample_dataset/sample.json
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Data:

Question: I have load_power data for the past 97 minutes. I need to 
manage the load variability so that it does not exceed 2172.70 MW 
over the complete time period (i.e the maximum change in load over 
the entire period). Please give me a forecast for the next 18 minutes 
for load_power. Think about what could be relevant covariates that 
can help forecast load_power. Your goal is to make the most accurate 
forecast as possible, refine prediction result based on the 
constraint previously described, and return the result as a 1D numpy 
array. The historical data for load_power is saved in variable VAL.
Program: 
CO_VAL = getEnvDataOP(location=geolocation, time_range=VAL.index, 
var='temperature', data_type='weather’) 
MULVAL = getEnvDataOP(location=geolocation, 
time_range=future_timestamp, var='temperature', data_type='weather’) 
VAL = ConcatOP(data1=VAL, data2=CO_VAL) 
X0 = MultiPreOP(data=VAL, future_data=MULVAL, future_length=N, 
model='TimeGPT’) 
REF_FUNC = RefGenOP(prompt={refine_requirement})
FINAL_RESULT = ApplyOP(func=REF_FUNC,data=X0)
Output
final_result= [0.38237579 0.38237579 0.38210159 ... 0.39812486] 
Evaluation
evaluation result: {'status': 1, 'message': The MAPE value is 0.0756, 
which exceeds the threshold 0.01.', 'mape': 0.0756}

Data:

Question: I have historical Product Development (A), 
Market Share (B), R&D Investment (C), Employee 
Satisfaction (D), Marketing Spend (E) data and want 
to get the causal relationship between each pair of 
the variables. I know that 40.0% of the variable 
pairs have relationship. Consider the potential 
influence of each variable on the others in this 
variable list: ['Product Development (A)', 'Market 
Share (B)', 'R&D Investment (C)', 'Employee 
Satisfaction (D)', 'Marketing Spend (E)’]. Please 
provide 2d numpy matrix with binary values to 
indicate whether each pair of variables has a 
causal relationship.
Program: 
X0 = CausalMatrixOP(data=VAL)
FINAL_RESULT = thToBinaryOP(data=X0, ratio= RATIO)
Output
final_result= [[0 1 0 1 1] [0 0 1 1 0] [1 0 0 0 0] 
[0 1 0 0 0] [1 0 0 0 0]]
Evaluation
evaluation result:  {'status': 1, 'accuracy’: 0.76, 
‘ground_truth’: [[0. 1. 0. 0. 1.] [1. 0. 0. 1. 0.] 
[1. 1. 0. 0. 0.] [0. 0. 0. 0. 0.] [1. 0. 1. 0. 0.]]}

Data:

Question: I have temperature data that spans 
282 hours. Please tell me whether there are 
anomalies (extreme weather events) and where 
are anomalies if present in this sequence. 
Please return a 1D numpy array with 1 
indicating an anomaly and 0 indicating no 
anomaly. The data is stored in variable VAL 
and some anomaly-free normal samples are 
stored in variable NORM_VAL.
Program: 
NORM_SCORE = AnomalDetOP(data=NORM_VAL) 
THRES = calibrateThreshOP(data=NORM_SCORE) 
TEST_SCORE = AnomalDetOP(data=VAL) 
FINAL_RESULT = thToBinaryOP(data=TEST_SCORE, 
threshold=THRES)
Output
final_result= [0 0 0 0 1 1 ... 0 1 0] 
Evaluation
evaluation result: {'status': 1, ‘accuracy’: 
0.9965, ‘precision’: 1.0, ‘recall’: 0.9965, 
‘F-score’: 0.9982}

Extreme Weather Identification
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Figure 3: Examples of End-to-End Tasks on Time Series. These tasks require the model to perform multi-
step reasoning on time series data. Each solution consists of a transparent sequence of steps, making the
reasoning process significantly more interpretable than end-to-end multimodal models.

of a multivariate time series dataset accompanied by a natural language instruction asking the model to infer
directed temporal dependencies among variables, along with expert-provided statistics on the proportion of
true relationships. The reasoning model is required to infer dependencies based on the observed data and
instructions, without access to the underlying generative process. The evaluation framework then measures
performance by comparing the inferred dependency structure against the synthetic ground truth, enabling
controlled and automatic assessment of causal reasoning within multi-step inference workflows. The questions
are generated by the following template:

Question Template (Causal Discovery) I have historical {variable names} data and want to
get the causal relationship between each pair of the variables. I know that {ratio}% of the variable
pairs have relationship. Consider the potential influence of each variable on the others in this variable
list: {variable names}. {output requirement}.{data variable name specification}

4.2 Dataset Statistics

Table 1 summarizes the dataset compiled for the multi-step time series inference task. The energy data with
covariates contained electricity load from 6 major electricity grids in the United States (MISO, ERCOT,
CAISO, NYISO, PJM, SPP) across 66 zones for 3 complete years (2018 -2020) with a minute level frequency 3.
The energy data without covariates contain both geolocation and load data for sub-regions within electricity
grids at an hourly frequency. The data is retrieved from official websites of ERCOT, MISO, NYISO456.
The climate data consisted of the ERA5 reanalysis dataset which is the most popular climate dataset. The
extreme weather detection dataset is obtained from running scripts in climatelearn scripts7.

5 Experiments

3https://github.com/tamu-engineering-research/Open-source-power-dataset
4https://www.nyiso.com/load-data
5https://www.ercot.com/gridinfo/load/load_hist
6https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports
7https://climatelearn.readthedocs.io/en/latest/user-guide/tasks_and_datasets.html#era5-dataset
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Dataset Number of CSVs Avg Total Timestamps Number of Variables
Climate Data 624 526 2048
Energy Data 22 8760 1-3
Energy Data w/ Covariates 66 872601 11
Causal Data 8 529 3–6

Table 1: Dataset Statistics of the constructed dataset. The exact number of time series are not calculated
because it depends on randomly sampled sequence length when generating task instances.
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Figure 4: Strict Accuracy of TS-Reasoner and gen-
eral purpose LLMs on the TimeSeriesExam.

In this section, we conduct a series of comparative
experiments to evaluate the performance of various
LLM agents on both fundamental and complex time
series understanding tasks. The evaluation includes
multiple-choice questions assessing basic time series
concepts, as well as more advanced inference tasks
supported by the proposed dataset. Our baseline mod-
els include proprietary LLMs: GPT-4o (Hurst et al.,
2024), DeepSeek model (Liu et al., 2024a), reasoning
model GPT-o1 (Jaech et al., 2024).Additionally, we
assess the ReAct agent based on GPT-4o (Yao et al.,
2022), which synergizes reasoning and acting by gen-
erating traces for each in an interleaving manner. TS-
Reasoner uses GPT-4o (Hurst et al., 2024) as the task
decomposer. For all experiments, we perform a single
run using the same hyperparameters for the most de-
terministic LLM output decoding: temperature=0.0
and top_p=1.0 for the most deterministic output. All
experiments are ran using a single NVIDIA A40 GPU
with 48G memory.

5.1 Basic Time Series Understanding

To evaluate the fundamental capabilities of these models, we utilize the publicly available TimeSeriesExam
benchmark (Cai et al., 2024) consisted of multiple choice questions. This benchmark assesses understand-
ing across five key time series concepts: Anomaly Detection, Pattern Recognition, Noise Understanding,
Causality Analysis, and Similarity Analysis. We use strict accuracy as evaluation metrics where only the
final answer within the response of LLM is checked against the ground truth answer instead of the complete
response 8. As illustrated in Figure 4, TS-Reasoner consistently outperforms all baseline models across all di-
mensions. Notably, general-purpose LLMs exhibit particularly weak performance in causality analysis, where
TS-Reasoner achieves an 87% improvement over the best-performing baseline. This significant advantage is
largely attributed to TS-Reasoner ’s integration with program-aided tools for statistical analysis, enabling it
to determine autocorrelation, lag relationships, and causal dependencies through numerical computations.
The results underscore the benefits of task decomposition and external program utilization in enhancing
time series understanding rather than plain text reasoning.

5.2 Multi-Step Time Series Inference

Given the novel paradigm of this task, there is a lack of suitable baselines models. For general purpose
LLM agents, we adopt a code-based approach due to two primary challenges: loss of precision of time series
data in textual and image form and the limitation of context length encountered for tasks involving large
amounts of time series data. To address these issues, we use the CodeAct agent implemented in agentscope

8It was agreed by the original authors upon communication on this alternative metric that it better reflects the capability
of LLMs.
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Table 2: Performance on Multi-Step Predictive Tasks. TSR denotes TS-Reasoner, TSR w/ PQ denotes
TS-Reasoner prompted with paraphrased questions. LLM models are equipped with a CodeAct agent to
receive execution feedback. The average MAPE values are calculated among all succeeded questions and the
corresponding standard deviation is calculated.

Constraint Type Max Load Min Load Load Ramp Rate Load Variability Average
Success Rate MAPE (Std) ↓ Success Rate MAPE (Std)↓ Success Rate MAPE (Std)↓ Success Rate MAPE (Std)↓ Success Rate MAPE ↓

Prediction w/ Covariates
TSR 1 0.0621 (0.10) 1 0.0564 (0.06) 1 0.0719 (0.20) 0.9444 0.0577 (0.06) 0.9861 0.0620
TSR w/ PQ 0.9474 0.0467 (0.08) 1 0.0564 (0.06) 0.9444 0.0659 (0.17) 0.9444 0.0577 (0.06) 0.9591 0.0567
4o 1 0.0685 (0.10) 1 0.1289 (0.19) 0.7778 0.0847 (0.19) 0.5 0.0443 (0.05) 0.8194 0.0816
o1 1 0.1289 (0.19) 0.9 0.0748 (0.07) 1 0.0861 (0.16) 0.6667 0.0556 (0.06) 0.8917 0.0864
Deepseek 1 0.1444 (0.22) 1 0.1387 (0.16) 0.8333 0.1180 (0.24) 0.6667 0.0835 (0.07) 0.8750 0.1212
ReAct 0.9474 0.0689 (0.10) 0.9 0.0845 (0.09) 0.8333 0.1021 (0.23) 0.9444 0.0630 (0.07) 0.9063 0.0796
Chattime 0.8421 0.1275(0.21) 0.9 0.1158(0.14) 0.6667 0.2522(0.34) 0.7222 0.1725(0.18) 0.7828 0.1670
Chronos 0.8947 0.1502(0.21) 0.85 0.1205(0.22) 0.4444 0.2153(0.31) 0.7778 0.1223(0.15) 0.7417 0.1521
ARIMA 0.7 0.2237(0.31) 0.8 0.1579(0.22) 0.85 0.1945(0.25) 0.85 0.2805(0.15) 0.8000 0.2142
Prediction w/o Covariates
TSR 1 0.0799 (0.11) 1 0.1366 (0.20) 0.85 0.1191 (0.17) 0.85 0.0767 (0.04) 0.9250 0.1031
TSR w/ PQ 1 0.0806 (0.11) 1 0.1366 (0.20) 0.85 0.0763 (0.03) 0.85 0.0812 (0.05) 0.9250 0.0937
4o 0.8 0.1607 (0.17) 0.9 0.2007 (0.20) 0.5 0.3430 (0.28) 0.75 0.1838 (0.12) 0.7375 0.2220
o1 0.85 0.1518 (0.06) 0.8 0.1439 (0.06) 0.65 0.1433 (0.05) 0.5 0.1672 (0.07) 0.7000 0.1268
Deepseek 1 0.1612 (0.14) 0.9 0.1978 (0.19) 0.85 0.2042 (0.09) 0.6 0.1655 (0.07) 0.8375 0.1822
ReAct 0.55 0.1838 (0.12) 0.65 0.2543 (0.17) 0.4 0.4262 (0.37) 0.75 0.2861 (0.22) 0.5875 0.2876
Chattime 0.95 0.1207(0.17) 0.75 0.1151(0.17) 0.7 0.1142(0.07) 0.8 0.0929(0.04) 0.8000 0.1107
Chronos 0.9 0.1579(0.15) 0.9 0.2142(0.24) 0.8 0.2169(0.16) 0.8 0.1543(0.05) 0.85 0.1858
ARIMA 1 0.1457(0.14) 0.95 0.1741(0.21) 0.9 0.1616(0.11) 1 0.1269(0.04) 0.9625 0.1521
Prediction across Multiple Grids
TSR 0.9 0.1491 (0.18) 1 0.1614 (0.18) 0.9 0.1285 (0.13) 1 0.1752 (0.25) 0.9500 0.1535
TSR w/ PQ 0.85 0.1468 (0.18) 0.95 0.1647 (0.18) 0.95 0.1301 (0.12) 0.9 0.1453 (0.19) 0.9125 0.1467
4o 0.8 0.2318 (0.30) 0.85 0.3071 (0.35) 0.6 0.3077 (0.36) 0.55 0.5538 (0.44) 0.7000 0.3501
o1 0.85 0.3095 (0.37) 0.85 0.2604 (0.26) 0.95 0.1877 (0.23) 0.7 0.3222 (0.34) 0.8375 0.2708
Deepseek 0.85 0.1889 (0.25) 1 0.1792 (0.23) 0.75 0.3830 (0.40) 0.55 0.9093 (0.29) 0.7875 0.3416
ReAct 0.75 0.2229 (0.22) 0.65 0.2110 (0.23) 0.85 0.2591 (0.29) 0.8 0.1790 (0.23) 0.7625 0.2175
Chattime 0.8 0.1309(0.13) 0.85 0.1411(0.14) 0.6 0.1687(0.08) 0.5 0.2039(0.25) 0.6875 0.1612
Chronos 0.85 0.1324(0.19) 0.8 0.1031(0.12) 0.65 0.1280(0.07) 0.65 0.1930(0.22) 0.7375 0.1391
ARIMA 0.55 0.3975(0.34) 0.6 0.4087(0.34) 0.75 0.5100(0.31) 0.85 0.3599(0.28) 0.6875 0.4190
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Figure 5: Performance on Multi-Step Diagnostic Tasks. A small jittering noise of 0.01 is added to success
rate to distinguish overlapping points. TSR w/ PQ denotes TS-Reasoner when prompted with paraphrased
questions.

(Gao et al., 2024; Wang et al., 2024a). The CodeAct agent is equipped with Jupyter Python interpreter
and error feedback mechanism. Baseline models are prompted to autonomously generate code pipelines to
solve the given tasks. Each agent has a maximum of k interaction turns to reach a solution. In addition, we
include ChatTime (Wang et al., 2025) and MATMCD (Shen et al., 2024) as representative multimodal time
series reasoning models. To provide further reference points, we also evaluate classical statistical baselines,
including ARIMA (Box & Pierce, 1970) for forecasting, Granger causality (Seth, 2007) for causal analysis,
and Z-score–based methods (Rousseeuw & Hubert, 2011) for anomaly detection.

Table 2 presents the performance of TS-Reasoner and baseline models on predictive tasks. Mean Absolute
Percentage Error (MAPE) is chosen as the primary inference quality metric to ensure scale-invariant eval-
uation. TS-Reasoner outperforms baseline models in success rates while simultaneously achieving superior
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Figure 6: Error distribution of different approaches on electricity prediction task without covariates.

inference quality as evidenced by lower MAPE values. MAPE values exceeding 1 are considered unreasonable
inference and counted towards failures. Among successful task completions, TS-Reasoner demonstrates the
most performance gain on prediction tasks without explicitly provided covariates tasks. This improvement
is largely attributed to its ability to retrieve relevant covariates deemed necessary by the task decomposer.

Figure 5 shows the performance of TS-Reasoner and baseline models for anomaly detection with threshold
calibration and causal discovery with domain knowledge tasks. Methods positioned toward the upper-right
direction which corresponds to higher success rates and higher inference quality among successful cases
are preferred. While some baselines attain higher inference-quality scores on a small subset of successful
executions, they exhibit substantially lower success rates. In contrast, TS-Reasoner achieves the strongest
overall tradeoff, consistently attaining high success rates together with competitive inference quality. This
highlights the effectiveness of TS-Reasoner in orchestrating structured, operator-based workflows for complex
multi-step time series inference, rather than relying on isolated model performance.

Error Analysis In this section, we examine the failure modes of TS-Reasoner and baseline models. By
systematically categorizing errors into execution failures, constraint violations, and insufficient/trivial predic-
tions, we can isolate the fundamental weaknesses in current approaches. Execution failures include runtime
errors or invalid outputs, while constraint violations refer to outputs that ignore task-specific requirements
such as anomaly rates or variability limits. Inadequate results are defined as those yielding poor utility, such
as MAPE > 1, forecasting accuracy = 0, or F1 score = 0. Figure 6 presents error distributions across differ-
ent models on the electricity load prediction task without covariates. TS-Reasoner achieves a stable success
rate under both the original and paraphrased-instruction settings, indicating robustness to instruction varia-
tion. The remaining failures are dominated by constraint violations (6.2–7.5%), with the paraphrased setting
exhibiting a slightly higher rate, which we attribute to increased ambiguity and diversity in how constraints
are expressed rather than execution instability. In contrast, baseline models display more frequent execution
failures and trivial predictions, leading to substantially lower overall reliability.

General-purpose LLMs struggle primarily with execution errors, indicating difficulties generating valid com-
putational pipelines for time series analysis. The ReAct agent, despite its explicit reasoning approach,
achieves only a 58.7% success rate with the highest proportion of execution errors (33.8%) due to the com-
plete lack of error feedback. The absence of execution errors in TS-Reasoner highlights the effectiveness of its
modular architecture with well-tested computational components. This analysis underscores the necessity of
domain-specialized agents like TS-Reasoner for complex time series tasks in real-world applications, as evi-
denced by its 19-34% higher success rates compared to baseline approaches. On the other hand, ReAct agent
with explicit thinking can significantly reduce the constraint violation rate but still suffers from execution
failures and generating trivial predictions.
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Table 3: Performance Comparison with key operators removed on constrained forecasting task.
Constraint Types TS-Reasoner No Custom Operator No Retrieval Operator

SR MAPE ↓ SR MAPE ↓ SR MAPE ↓
Max Load 1.00 0.0799 0.85 0.0557 1.00 0.1349
Min Load 1.00 0.1366 0.80 0.1559 1.00 0.1723
Load Ramp Rate 0.85 0.1191 0.15 0.1193 0.95 0.1707
Load Variability 0.85 0.0767 0.80 0.0843 1.00 0.1233
Average 0.925 0.1031 0.65 0.1038 0.9875 0.1503

Table 4: Causal Knowledge task: generalization to more ambiguous qualitative domain knowledge with a
single added in-context example. Stock Price Future Volatility task: generalization to unseen domain and
instruction.

Task Causal Known Prior Stock Future Volatility
SR Acc ↑ SR MAPE ↓

TSR 1 0.739 (0.13) 0.98 0.620 (0.23)
4o* 0.68 0.674 (0.16) 0.28 0.837 (0.19)
o1* 0.7 0.674 (0.14) 0.42 0.841 (0.18)
DS* 0.76 0.682 (0.15) 0.2 0.745 (0.30)
ReAct 0.66 0.659 (0.15) 0.16 0.970 (0.06)

Ablation Study Figure 7 presents an ablation study on the Electricity Prediction with Covariates task,
where we progressively remove key components of TS-Reasoner to assess their individual contributions. The
full agent achieves a 92.5% success rate with a MAPE of 0.1031. Removing intermediate feedback slightly
reduces the success rate to 91.3%, with inadequate results beginning to emerge. When both intermediate and
error feedback are removed, the success rate drops further to 90.0%, and execution errors begin to appear.
The most significant degradation occurs when special operators are removed, reverting to a general-purpose
LLM executor equipped with CodeAct. In this condition, the success rate falls sharply to 73.8%, and the
MAPE more than doubles to 0.2220. These results demonstrate that feedback mechanisms play a critical role
in securing a high success rate, while specialized time series operators are essential for maintaining strong
inference quality.

We further isolate the effects of key operator categories in Table 3. Removing the LLM-generated custom
operator substantially reduces the success rate (from 92.5% to 65.0% on average), as the agent loses the
ability to perform task-specific refinement under constraints. In contrast, removing external data retrieval
operators preserves a high success rate but leads to a pronounced degradation in inference quality, with
MAPE increasing by approximately 50% on average. This divergence highlights a clear functional separation:
custom operators are critical for ensuring successful task completion under constraints, whereas retrieval
operators play a key role in enriching contextual information and improving prediction accuracy.

6 Analysis

Generalizing to Qualitative Constraints and New Domains We further consider the practical util-
ity of TS-Reasoner to handle novel scenarios without extensive retraining or specialized adaptation. We
evaluate TS-Reasoner’s adaptability to novel constraint types and previously unseen domains through two
generalization tasks, with results presented in Table 4. First, we introduce a causal discovery task incor-
porating qualitative constraints that require reasoning about directional relationships rather than precise
numerical quantity. With just a single additional in-context example added to demonstrate the handling
of such qualitative constraints, TS-Reasoner achieves strong performance over baselines, demonstrating ef-
fective transfer learning capabilities. Secondly, we test adaptation to stock future volatility prediction task
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Figure 7: Ablation Study on Electricity Prediction w/ Covariates task. We first remove intermediate feedback
only, then we remove both intermediate and error feedback (denoted as No Feedback), and lastly we remove
the special operators and falling back to the general purpose LLM equipped with CodeAct.

featuring unseen domain and instruction from the in-context samples. TS-Reasoner requires no explicit
in-context examples for this task; instead, the task decomposer successfully generalizes by using its knowl-
edge of toolkit functionalities to autonomously construct valid solution paths. These results demonstrate
TS-Reasoner’s generalization capabilities across both new constraint and application domains.

7 Broader Impact and Limitation

Compared to traditional time series models, TS-Reasoner extends inference capabilities by supporting com-
positional reasoning and multi-step execution. However, it is intended as a decision-support and workflow
prototyping framework, rather than a fully autonomous time series modeling solution. TS-Reasoner only
represents an initial step toward multi-step time series inference and cannot fully understands temporal
signals. Unlike multimodal foundation models, which encode time series data, TS-Reasoner does not process
raw time series data directly. Instead, it relies on task decomposition and structured execution. Further
research effort is still needed to address challenges of semantic space alignment between time series and
natural language. One limitation of TS-Reasoneris that generalizing to new tasks that requires tools beyond
current toolbox may require additional toolbox engineering such as visualization tools. In addition, the suc-
cess of TS-Reasoner relies in part on manually annotated in-context examples that demonstrate proper task
decomposition and tool usage. A future direction of this work is to adaptively refine the in-context set by
learning from execution errors and feedback signals, enabling the model to iteratively improve its reasoning
workflows over time.

8 Conclusion

In this study, we introduced TS-Reasoner, a time series domain-specialized time series agent for multi-
step inference tasks. TS-Reasoner integrates compositional reasoning with structured execution of expert
tools. Through comprehensive benchmarking on TimeSeriesExam and a diverse set of real-world-inspired
tasks that demonstrate multi-step complexity in nature, we evaluated TS-Reasoner’s performance against
leading general-purpose LLM-based agents. Our experiments demonstrate that TS-Reasoner consistently
outperforms baseline models in both success rate and inference quality. The results reveal limitations of
current general-purpose LLMs in multi-step time series analysis tasks, including frequent execution errors
and suboptimal outputs. These findings suggest that LLMs alone are insufficient for such tasks, and that a
hybrid approach combining LLMs with domain-specific operators is essential. By bridging LLM reasoning
with time series analytical workflows, TS-Reasoner emerges as a simple yet effective solution, paving the
way for more intelligent time series agents.
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Hist Pred Dataset-Specific Forecast Dataset-Shared Forecast

DLinear GPT4TS TimeLLM TGForecaster Moirai TimesFM Chronos ChatTime TS-Reasoner

48 24 0.5204 0.4373 0.4211 0.4411 0.5981 0.4851 0.4813 0.4849 0.4194
72 24 0.5075 0.4253 0.4031 0.3943 0.5776 0.4258 0.4276 0.4307 0.3619
96 24 0.4965 0.3921 0.4392 0.3653 0.5179 0.4054 0.4336 0.3920 0.3538
120 24 0.4796 0.3713 0.3594 0.3594 0.5245 0.3807 0.3902 0.3480 0.3336

Avg. MAE 0.5010 0.4065 0.4057 0.3900 0.5545 0.4243 0.4332 0.4139 0.3672

Table 5: Evaluation results on the PTF context-guided time series forecasting task. Lower values indicate
better performance.

Feat Len GPT4 GPT3.5 GLM4 LLaMA3 ChatTime TS-Reasoner

Tr
en

d 64 0.6532 0.3507 0.7319 0.6799 0.9011 0.9967
128 0.7015 0.5846 0.7574 0.5855 0.9068 0.9927
256 0.7482 0.5028 0.6377 0.6143 0.8843 0.9687
512 0.6346 0.5903 0.6697 0.6753 0.8234 0.9343

Vo
la

til
ity 64 0.5585 0.5633 0.6797 0.6373 0.7874 0.8900

128 0.4979 0.3839 0.4770 0.4756 0.6954 0.9803
256 0.4624 0.4894 0.5418 0.5246 0.6228 0.9713
512 0.3169 0.3796 0.4549 0.5261 0.5736 0.6493

Se
as

on

64 0.3518 0.3428 0.3366 0.3484 0.6639 0.8627
128 0.3515 0.3952 0.3464 0.3958 0.6517 0.8767
256 0.5283 0.5089 0.3892 0.4120 0.6463 0.8810
512 0.4457 0.4889 0.3892 0.4127 0.6244 0.8890

O
ut

lie
r 64 0.7230 0.4325 0.5359 0.7051 0.8773 0.8787

128 0.6327 0.5940 0.5298 0.5694 0.9032 0.9827
256 0.6795 0.4579 0.5019 0.5073 0.8593 0.9913
512 0.6219 0.4996 0.2822 0.4085 0.7478 0.9910

Avg. Acc 0.5567 0.4728 0.5163 0.5299 0.7605 0.9210

Table 6: The evaluation result in the time series question answering task. Higher values mean better
performance for all metrics. The best results are highlighted in bold.

A Additional Evaluation

Table 6 presents results on the TSQA benchmark, which evaluates question answering accuracy across fea-
ture groups (trend, volatility, seasonality, and outliers) and increasing sequence lengths (64/128/256/512).
A notable difference between the two methods is their behavior as sequence length increases. ChatTime’s
performance generally degrades with longer sequences across most feature groups, whereas TS-Reasoner
maintains stable accuracy as sequence length grows with the exception of Volatility. This suggests that
TS-Reasoner is less constrained by sequence length due to its operator-based execution and decomposition
strategy, rather than relying on direct sequence encoding within the language model. We further evalu-
ate TS-Reasoner on established benchmarks from the ChatTime framework to assess performance beyond
our proposed multi-step inference tasks. Table 5 reports results on the PTF dataset for context-guided
forecasting. TS-Reasoner achieves lower MAE than ChatTime across all evaluated history lengths.

B Reliability of Base Model & Cost

Base Model Reliability To assess the robustness of TS-Reasoner with respect to the choice of base
language model, we substitute ChatGPT-4o (Hurst et al., 2024) with a smaller open-source backbone,
LLaMA 3.1 70B (Dubey et al., 2024), and evaluate performance across the same set of tasks (Table 2).
Despite the reduced model capacity, TS-Reasoner maintains comparable task success rates and inference
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quality across all evaluated settings. This result indicates that TS-Reasoner’s effectiveness does not rely
solely on the raw reasoning capacity of the underlying language model; instead, its structured execution
pipeline and modular operator design enable robust performance even with weaker decomposer models.
These findings suggest that TS-Reasoner can be deployed reliably across environments with varying LLM
resources.

Inference Cost Given this backbone-agnostic behavior, we next analyze the inference cost of TS-Reasoner
under a multi-turn execution setting. We estimate cost by explicitly separating new input tokens, cached
input tokens, and output tokens. On average, each turn produces 63 output tokens, priced at $10 per million
tokens. With a maximum of 5 interaction turns, this results in an output cost of

63 × 5 × 10/1,000,000 ≈ $0.003.

The initial input prompt contains 2,647 tokens and is billed at the new-token rate of $2.5 per million tokens.
In subsequent turns, previously seen inputs are reused and charged at the cached-token rate of $1.25 per
million tokens. Accounting for token reuse across turns, the cumulative cached-input cost is

2647 × (5 + 4 + 3 + 2) × 1.25/1,000,000 ≈ $0.49.

Overall, the total inference cost is approximately $0.5 per question. Consistent with the reliability
analysis above, reliance on proprietary models is not essential: when using an open-source backbone
(LLaMA 3.1 70B), TS-Reasonerachieves comparable task success rates (94.83% vs. 94.25%) and similar
inference quality, while avoiding proprietary API usage.

Table 7: Performance Comparison between TS-Reasoner (GPT-4o) and TS-Reasoner (LLaMA 3.1 70B)
across various tasks.

Task Decomposer GPT-4o LLaMA 3.1 70B
Task Success Rate MAPE Std Success Rate MAPE Std
Electricity w/ Covariates
Max Load 1 0.0799 0.1128 1 0.0990 0.1055
Min Load 1 0.1366 0.1951 1 0.1623 0.2169
Load Ramp Rate 0.85 0.1191 0.1663 0.85 0.0928 0.0363
Load Variability 0.85 0.0767 0.0422 0.95 0.1534 0.2028
Electricity w/ Covariates
Max Load 1 0.0621 0.1037 1 0.0677 0.1020
Min Load 1 0.0564 0.0605 1 0.0615 0.0539
Load Ramp Rate 1 0.0719 0.1991 1 0.0813 0.2032
Load Variability 0.9444 0.0577 0.0588 0.8889 0.0692 0.0928
Prediction Across Multiple Grids
Max Load 0.9 0.1491 0.1750 0.85 0.1503 0.1800
Min Load 1 0.1614 0.1773 1 0.1614 0.1773
Load Ramp Rate 0.9 0.1285 0.1269 0.9 0.1324 0.1257
Load Variability 1 0.1752 0.2455 0.9 0.1938 0.2520
Task Success Rate F1 Std Success Rate F1 Std
Extreme Weather Detection w/ Reference Data 0.78 0.9214 0.1082 0.8 0.9232 0.1074
Extreme Weather Detection w/ Anomaly Rate 1 0.7569 0.0556 1 0.7569 0.0556
Task Success Rate Accuracy Std Success Rate Accuracy Std
Causal Discovery 1 0.7915 0.1246 1 0.7909 0.1239

C Operator Description

Time Series Models operators
- UniPreOP: This operator is primarily used for univariate time series forecasting, leveraging advanced time
series models to accurately predict future sequences. It currently supports Lag-Llama, Chronos, TimeGPT,
TEMPO, Arima zero shot inference.
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Output
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Figure 8: Illustration of an example TS-Reasoner workflow

I have 2m_temperature data that spans 279 
hours.  Please tell me whether there are 
anomalies (extreme weather events) and where 
are anomalies if present in this sequence. 
Please return a 1D numpy array with 1 
indicating an anomaly and 0 indicating no 
anomaly.

Error Type Inadequate Result

User Instruction

Evaluation Result

Output

{'status':0, 'message’: ‘unreasonable 
prediction, f1 score is 0.0’}

Final_value: 
[0.87 0.89 ... 0.88]
Final_value.shape = (67,)

Constraint Violation

I have historical Wind Speed, Relative 
Humidity data and the corresponding wind_power 
data for the past 167 minutes. I need to 
manage the load variability so that it does 
not exceed 0.0305 MW over the given period. 
Think about how Wind Speed, Relative Humidity 
influence wind_power. Please give me a 
forecast for the next 65 minutes for 
wind_power. Your goal is to make the most 
accurate forecast as possible, refine 
prediction result based on the constraint 
previously described.

{'status': 0, 'message': 'Predicted load 
variability exceeds the maximum allowable 
limit of 0.0305 MW.

Final_value:
[ 0. ... 0.03612244 ...]

Others (Shape Misalignment)

Final_value:
[0,0,0,1,1,0,0,0,…]

{‘status’:0, ‘message’: ‘Prediction Shape 
Misalignment, Expecting output of length 
68', 'error':1}

I have historical Dew Point, Relative 
Humidity, Solar Zenith Angle data and the 
corresponding load_power data for the past 
108 minutes. I require that the system load 
is maintained above a minimum of 0.70 MW. 
Think about how Dew Point, Relative 
Humidity, Solar Zenith Angle influence 
load_power. Please give me a forecast for 
the next 68 minutes for load_power.

Figure 9: Example Result Errors

- MultiPreOP: This is a multivariate time series forecasting operator used to accurately predict the target
variable based on multiple exogenous variables. It currently support TimeGPT zero shot inference and linear
regression.

- AnomalDetOP: This is a time series anomaly detection operator used to generate anomaly scores based on
reconstruction errors. It current support MOMENT foundation model zero shot inference.

- trainForecastOP: This is a operator that supports training time series forecasting models given input
data. It currently supports iTransformer training. Model choice is based on current Time Series Library
Leaderboard and more models can be included.

- trainADOP: This is a operator that supports training time series anomaly detection models given input
data. It currently supports TimesNet training. Model choice is based on current Time Series Library
Leaderboard and more models can be included.
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Numerical operators
- CausalMatrixOP: This operator is used to calculate significance of Granger causality relationship between
each pair of variables in a time series dataset.

- ConcatOP: This operator concatenates the two given data horizontally.

- thToBinaryOP: This operator converts the input data into binary values based on threshold or percentile
value.

- calibrateThreshOP: This operator approximates the input data with a normal distribution and returns the
critical threshold value (3 standard deviations away from the mean) of this distribution.

- ApplyOP: This operator applies input function to the corresponding data. There are many more oper-
ators in this category that performs tasks as suggested by their names: checkStationaryOP (perform adf
test), checkTrendStationaryOP (perform kpss test), getChptOP (perform bayesian changepoint detection),
getTrendOP, compareDisOP (perform ks test), detectSpikesOP, getCyclePatternOP, getAmplitudeOP, get-
PeriodOP, testWhiteNoiseOP (perform box test), getNoiseCompOP, getAutoCorrOP, getMaxCorrLagOP,
decomposeOP, getSlidingVarOP, getCyclePatternOP, detectFlippedOP, detectSpeedUpDownOP, detectCut-
offOP, getTrendCoefOP, VolDetOP

Data retrieval operators
- getEnvDataOP: This operator can retrieve specified weather or air quality variables if available from open-
meteo API. The input must specify a time range, geolocation, as well as resolution (daily or hourly).

-getElectricityDataOP: This operator retrieves electricity data given zone code from the official EIA website.
The input must specify a grid zone name, time range, and variables to retrieve.

LLM generated custom operators
- RefGenOP: This operator is primarily used to generate a corresponding python function based on the
requirement described in the prompt.

D Error Examples and Additional Error Analysis

This section illustrates an example execution workflow of TS-Reasoner (figure 8) and representative failure
cases, including execution errors, shape mismatches, constraint violations, and inadequate predictions (fig-
ures 9 and 14). Examples are drawn from both TS-Reasoner and baseline models. Figures 15, 10, 11, 12,
and 13 show the distribution of error types across various task settings. Execution errors in TS-Reasoner
are minimal, reflecting the effectiveness of operator-based abstraction. However, introducing paraphrased
questions occasionally triggers execution failures, suggesting sensitivity to linguistic variation. In extreme
weather detection task (figure 11), inadequate result is the most dominant failure patterns, demonstrating an
inability of baseline models to fully leverage anomaly free reference samples to calibrate anomaly threshold
often producing a trivial all-zero labels.
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Figure 10: Error distribution of different approaches on electricity prediction task across multiple grids.
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Figure 11: Error distribution of different approaches on extreme weather detection with anomaly free refer-
ence data.
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Figure 12: Error distribution of different approaches on extreme weather detection task with known anomaly
rates.
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Figure 13: Error distribution of different approaches on causal discovery tasks.

I have historical Advertising Spend (A), Sales (B), 
Economic Factors (C), Customer Sentiment (D) data and 
want to get the causal relationship between each pair 
of the variables. I know that 41.66666666666667% of 
the variable pairs have relationship. Consider the 
potential influence of each variable on the others in 
this variable list: ['Advertising Spend (A)', 'Sales 
(B)', 'Economic Factors (C)', 'Customer Sentiment 
(D)']. Please provide 2d numpy matrix with binary 
values to indicate whether each pair of variables has 
a relationship.

Error Type Execution Error 

User Instruction

Evaluation Result

Execution

{'status':0, 'message’: "evaluator 
received input of NoneType"}

An error occurred: can't multiply sequence by 
non-int of type 'float' final value. 

Execution Error

An error occurred: name 'n_variables' is 
not defined

{'status':0, 'message':"An error occurred: 
'Index' object has no attribute 'minute'"}

I have load_power data for the past 135 
minutes. I require that the system load is 
maintained above a minimum of 
1490.6020757896545 MW.  Please give me a 
forecast for the next 17 minutes for 
load_power. Think about what could be relevant 
covariates that can help forecast load_power. 
Your goal is to make the most accurate 
forecast as possible, refine prediction result 
based on the constraint previously described, 
and return the result as a 1D numpy array. 

Figure 14: Example Execution Errors.
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Figure 15: Error distribution of different approaches on electricity prediction task with covariates.
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E Prompt for TS-Reasoner

"""
def UniPreOP (data , future_length , model):

Channel independent zero shot forecasting tool. For time series with
covariates , this tool can be used by simply providing the main time series
data.

Input:

- data: np.array ([T,C]),T= history data len , C= variable number , the main time
series

- future_length : int , the number of steps to forecast

- model: str , the model to use for prediction . available models : "TEMPO", "
ARIMA", " Chronos ", " Moirai ", " TabPFN ", " Lagllama "

Output :

- np.array ([N,C]), N= future \_length , C= variable number , the predicted future
values

(more definitions of operators )

Example :

Question :
I have 2 m_temperature data that spans 219 hours. Please tell me whether there are

anomalies ( extreme weather events ) and where are anomalies if present in this
sequence . Please return a 1D numpy array with 1 indicating an anomaly and 0
indicating no anomaly . The data is stored in variable VAL and some anomaly -free

normal samples are stored in variable NORM_VAL .
Program :
NORM_SCORE = AnomalDetOP (data= NORM_VAL )
THRES = calibrateThreshOP (data= NORM_SCORE )
TEST_SCORE = AnomalDetOP (data=VAL)
FINAL_RESULT = convertBinaryOP (data=TEST_SCORE , threshold =THRES)

(a few more examples )

Question :

I have 2m temperature data that spans 202 hours. Please tell me whether there are
anomalies ( extreme weather events ) and where are anomalies if present in this
sequence . Please return a 1D numpy array with 1 indicating an anomaly and 0
indicating no anomaly . The data is stored in variable VAL and some anomaly -free

normal samples are stored in variable NORM_VAL . Follow previous examples and
answer my last question in the same format as previous examples within markdown

format in ‘‘‘python ‘‘‘.

Given the question and the toolbox definition provided above , please give steps of
operations from the oprations availble listed above that can answer the

question . Return only toolbox operations and enclose your response in ‘‘‘python
‘‘‘ markdown . Do not include any other information in your response . For *PreOP

modules , you can recieve intermediate evaluation feedback to help you choose
the best model. You should revert to a previously best performing model if all
other models you tried fail to improve the performance (a lower MAPE value
indicates better performance ). You will be able to regenrate your response upon

24



Under review as submission to TMLR

recieving feedback . Your goal is to achieve a status of 1 in the evaluation
result when possible . For example , if model A gives lower MAPE value compared
to model B, you should choose model A.You should replace { PLACEHOLDER } with the

corresponding arguments you deem appropriate for the operation functions . DO
NOT use any other irrelevant operations or custom python code , follow my
examples where solutions should be in such format .

"""

Q. No. Question Ambiguity Level
(Reasons)

1 Detecting anomalies in a 2-meter temperature time series dataset that
spans 8.72 days (824 hours) and consists of 253 data points, I need to
identify extreme weather events and determine their locations within
the sequence. This requires labeling a binary numpy array where 1
indicates an anomaly and 0 indicates a normal value. The input data
is stored in the variable "VAL" and the expected anomaly rate is to be
stored in the variable "ANOMALY_RATE".

Low (Clear input and
output, well-defined
task, specific variable
names)

2 Indicate the presence of extreme weather events within a
2m_temperature dataset spanning 260 hours. Using the provided
VAL and NORM_VAL arrays, provide a one-dimensional numpy ar-
ray where each entry corresponds to one hour, tagged with 1 for an
identified anomaly and 0 for a typical observation.

Medium (Did not ex-
plain what data each
variable contains)

3 Given a 2D array of temperature data with a duration of 241 hours, I’d
like to determine and visualize the occurrence of anomalous events and
their corresponding positions within the sequence. To achieve this, I’d
appreciate it if you could provide an output array of the same length
as the original data, where each element indicates whether the corre-
sponding temperature reading is anomalous (1) or not (0), alongside
some sample normal data for reference.

Medium (Did not
define what is
anomalous event
but it should be
referring to extreme
weather events, no
clear input variables)

4 Given a dataset of system load power over the past 123 minutes, we
need to develop a 69-minute forecast that adheres to a maximum al-
lowable system load of 694.4796 MW. The goal is to leverage relevant
historical data and make an accurate load power prediction, consid-
ering constraints and return the forecast as a one-dimensional numpy
array.

Medium (Unclear
where data is stored
in, did not define
relevant historical
data when it refers to
historical load data)

5 Provide a 26-minute load power forecast for 17 distinct electric grid
zones, constrained by a maximum allowable system load of 0.9872 MW
per zone, based on historical data (1030 minutes) with 17 associated
load_power values.

High (No input vari-
able names, unclear
output format)

6 What historical wind power data for 19 electric grid zones over 882
minutes can be utilized to create a 56-minute wind power forecast while
ensuring each zone’s system load remains above a minimum threshold
of approximately 0.01 MW. The goal is to achieve the most accurate
forecast possible, taking into account the specified constraint.

High (Unclear input
variable names, the
constraint number is
approximated)

7 Given 70 minutes of historical load_power data in variable VAL, de-
rive a 37-minute forecast for future load_power while ensuring that
the predicted maximum system load does not exceed 1151.4102 MW.
What relevant covariates should be considered for this forecast, and
how can the accuracy of the prediction be refined given this constraint
to produce a 1D numpy array result?

High (Multiple tasks
mixed, formulated as
questions rather than
task instructions)

Table 8: Sample paraphrased questions classified based on ambiguity levels.
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