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ABSTRACT

Compositional generalization, the ability to recognize familiar parts in novel con-
texts, is a defining property of intelligent systems. Modern models are trained on
massive datasets, yet these are vanishingly small compared to the full combinatorial
space of possible data, raising the question of whether models can reliably gener-
alize to unseen combinations. To formalize what this requires, we propose a set
of practically motivated desiderata that any compositionally generalizing system
must satisfy, and analyze their implications under standard training with linear
classification heads. We show that these desiderata necessitate linear factorization,
where representations decompose additively into per-concept components, and
further imply near-orthogonality across factors. We establish dimension bounds
that link the number of concepts to the geometry of representations. Empirically,
we survey CLIP and SigLIP families, finding strong evidence for linear factor-
ization, approximate orthogonality, and a tight correlation between the quality of
factorization and compositional generalization. Together, our results identify the
structural conditions that embeddings must satisfy for compositional generaliza-
tion, and provide both theoretical clarity and empirical diagnostics for developing
foundation models that generalize compositionally.

1 INTRODUCTION

Training samples Testing samples

f

A person present?
A cat present?

f

Figure 1: What properties must vi-
sual embeddings possess to guar-
antee compositional generalization?
Large-scale systems are trained on
only a tiny subset of the combinato-
rial concept space, yet we expect them
to succeed on unseen combinations.

Modern vision systems are trained on tiny, biased samples of a
combinatorial space of visual concepts, like objects, attributes,
relations in different contexts. Despite this, we expect them to
perform well in the wild on novel recombinations of familiar
concepts, an expectation tied to the view that systematic gen-
eralization, the ability to recombine learned constituents, is a
hallmark of intelligence (Fodor & Pylyshyn, 1988). Yet a large
body of empirical work shows that even high-performing neural
models often struggle with systematicity when train/test combi-
nations mismatch (Lake & Baroni, 2018; Keysers et al., 2020;
Hupkes et al., 2022; Uselis et al., 2025). At the same time, large
vision–language models such as CLIP and its variants are trained
on web-scale yet still minuscule subsets of the full combination
space (e.g., LAION-400M) and evaluated in zero-shot settings
(Radford et al., 2021; Schuhmann et al., 2021; Zhai et al., 2022).
These systems demonstrate impressive task transfer without
task-specific finetuning, suggesting that their embeddings sup-
port some reuse of conceptual structure. Figure 1 illustrates this tension: although training data
cover only a small slice of the combinatorial space, we query models as if they should generalize
broadly (e.g., through queries like “Is there a person present in the image?”). This raises a critical
question: What properties must a representation have for such transfer to be reliable across unseen
combinations, given only small or biased samples during training?

We argue for non-negotiable, model-agnostic properties that any neural-network-based system claim-
ing compositional generalization must satisfy. We state three desiderata: divisibility, transferability,
and stability. These desiderata formalize practitioners’ expectations of compositionally generalizing
models that (i) all parts of an input should be accessible to a simple readout (e.g. through zero-shot
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evaluation); (ii) readouts trained on a tiny but diverse subset should transfer to unseen combinatinons
of known parts; and (iii) models trained on any valid subset of the data space should generalize
robustly.

We take these desiderata as necessary conditions for any practically useful, compositionally general-
izing system. Our scope is the widely used setting where predictions are linear in an embedding f(x):
this covers CLIP-style zero-shot classifiers, standard linear probing and re-alignment techniques over
frozen features, and cases where a fixed non-linear head is present (by folding it into the encoder).
We emphasize a practice-driven perspective: rather than assuming a perfect model under ideal data
generative process assumptions, we adopt a practical view where data is always limited—a minute
sample of the full combinatorial space. Given this constraint, what must the representation satisfy for
the model to transfer compositionally?

In this work we contribute: (1) Desiderata as conditions. We define three desiderata: divisibility,
transferability, stability, and formalize compositional generalization in their terms. (2) Structural ne-
cessity. Under GD with CE/BCE, these desiderata imply linear factorization: embeddings decompose
into per-concept sums with near-orthogonal difference directions. (3) Empirical grounding. Across
CLIP/SigLIP, PUG-Animal, dSprites, and MPI3D, we find strong evidence of factorization, near-
orthogonality, low-rank per-concept geometry, and correlation with zero-shot accuracy on held-out
compositions.

2 RELATED WORK

Compositional generalization. Research on compositional generalization investigates how models
can systematically combine concepts. For example, feature/objective shaping such as Compositional
Feature Alignment and Compositional Risk Minimization (Wang, 2025; Mahajan et al., 2025), kernel
analyses of when compositional structure yields generalization (Lippl & Stachenfeld, 2025), and
empirical analyses of when and how CLIP transfers across domains and recombinations (Kempf
et al., 2025). First-principles perspectives emphasize formal sufficient conditions (Wiedemer et al.,
2023) for generative systems. On the data side, recent work probes whether and how scaling and
coverage improve compositionality (Uselis et al., 2025; Schott et al., 2022).

Geometry of learned representations. A large literature studies the shape of learned features.
In VLMs, Trager et al. (2023) report compositional linear subspaces, while in LLMs the Linear
Representation Hypothesis (LRH) is examined mechanistically and statistically (Jiang et al., 2024;
Park et al., 2023). Extending LRH, Engels et al. (2025) show that features can be multi-dimensional
rather than rank-1, and Roeder et al. (2020) analyze identifiability constraints. Sparse-autoencoder
probes provide evidence for monosemantic or selectively remapped features in VLMs (Pach et al.,
2025; Zaigrajew et al., 2025; Lim et al., 2025). Beyond nominal labels, ordinal/ordered concepts
motivate the rankability of embeddings (Sonthalia et al., 2025). More broadly, capacity limits for
embedding-based retrieval emphasize geometric bottlenecks (Weller et al., 2025). In contrast to these
works, we show that linear structure is not just an empirical observation but a theoretical requirement:
under our axioms and standard linear head training, representations must be additive.

Data, objectives, and training effects on geometry. Data distribution strongly shapes zero-shot
behavior; concept frequency during pretraining predicts multimodal performance (Udandarao et al.,
2024). On the objective side, BCE vs. CE can induce different feature geometries (Li et al., 2025),
and contrastive/InfoNCE objectives exhibit characteristic similarity patterns (Lee et al., 2025). Con-
vergence perspectives argue that the objective drives canonical representational forms (Huh et al.,
2024), and objective choice has been tied to representational similarity across datasets (Ciernik et al.,
2025).

Binding, explicit structure injection, and concept identification. Work on binding asks whether
models maintain factored world states (Feng et al., 2025), and CLIP has been observed to show
uni-modal binding (Koishigarina et al., 2025). Surveys and empirical studies examine binding limits
and emergent symbolic mechanisms (Campbell et al., 2025; Assouel et al., 2025). Other approaches
inject structure directly, e.g., hyperbolic image–text embeddings and entailment learning (Pal et al.,
2024; Desai et al., 2024), or pursue concept identification at the causal/foundation interface and
object-centric pipelines (Rajendran et al., 2024; Mamaghan et al., 2024).
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3 SETUP: A FRAMEWORK FOR COMPOSITIONALITY

We begin by detailing key desiderata for embedding models that contend to be compositional. We
motivate them from a practical perspective: (1) models need to support distinguishing between any
combination of concepts, (2) practical data collection is limited to a subset of the concept space, so a
model needs to be able to transfer from a subset of the concept space to the full concept space, and
(3) in practise apriori it is not known which subset needs to be chosen, so a model should be able to
transfer robustly from any subset, matching in probability distribution to retraining over any other
dataset.

3.1 SETUP: CONCEPT SPACES AND DATA COLLECTION PROCESS

We interpret the world as a product of concepts: any input xc ∈ X (e.g., images) has an associated
tuple of concepts c ∈ C, describing its constituent parts and properties. This is a reasonable way to
describe a large portion of the world. For example, current large-scale datasets (e.g., image–caption
pairs) provide noisy natural-language descriptions that can be decomposed into discrete concept
values. Clearly, a single concept tuple cannot capture all aspects of the world, e.g. how attributes bind
to objects or how different objects relate spatially. Still, an intelligent system should at least be able to
tell apart basic concepts (such as objects and their attributes), even without modeling their relations.
In other words, concept spaces may not capture the full compositional structure of the world, but any
model of the world must involve them in some form. Importantly, we do not assume how the concept
values are distributed (e.g. being independent), only what they represent.

Definition 1 (Concept space). Suppose we have c concepts, and each concept can take n possible
values. For each concept Ci (i = 1, . . . , c), let its set of possible values be Ci = {1, . . . , n}. The
concept space is the Cartesian product

C = C1 × C2 × · · · × Cc = [n]c, (1)

that is, the set of all possible tuples c with |C| = nc. We index inputs by concept tuples: for each
c ∈ C we assume an associated xc ∈ X (e.g., a natural image) realizing c.

Data-related components for compositional generalization involves three notions: (1) the total varia-
tion of the data, (2) the concepts we aim to learn and expect the model to capture, and (3) the data that
is actually collectible. We capture (1) by the concept space C (Definition 1); (2), the targets that we
aim to capture can be described by a label function l : C → V ⊆ C that capture which concepts and
their values we want to learn. In this work we take the full target V = C, by noting that foundation
models attempt to align with all present concepts. For (3), we formalize collectability constraints
through a validity class that specfies which training supports are valid, indicating which concept
combinations may appear in training. We formalize this below.
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T ∈ {TCG-low, TCG-high}

Figure 2: Interpreting previous works’ sampling designs T and validity rules R. Training sets T specify
which concept combinations are observed. Validity rules R determine valid training configurations for general-
ization evaluation.

Considering data collection. We are interested in models that support efficient compositional
generalization from a subset of the concept space. To formalize this notion, we specify a validity
class T ⊆ 2C of valid training sets and a validity rule, a predicate R : T 7→ {0, 1} that specifies
whether a certain training set is valid. Such characterize the natural question of which training sets
we train the model on and expect generalization.
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Definition 2 (Training support, validity class, and training dataset). Let C be the concept space. A
training support is any subset T ⊆ C. Validity class is a collection T ⊆ 2C whose members are
called valid training sets. The class T specifies which training sets are observable. Validity class T is
specified by a validity rule R : 2C→{0, 1} through

T = {T ⊆ C : R(T ) = 1}. (2)

A training dataset for a training set T is DT = {(xc, c) : c ∈ T}.

We note that there are many validity rules used in practise. For example, if it were possible to collect
any subset of data with N < |C| points, then it would follow that R(T ) = 1 if |T | = N . We illustrate
some of the training sets commonly used with their validity rules in Figure 2. We also note that the
validity rules are over the supports of the concept space, not the actual datapoints.

3.2 COMPOSITIONAL REPRESENTATIONS AND MODELS

Given the concept space and the training supports, we now make precise how we expect models to
learn. We work with encoders f that map an input to a vector representation (embedding).

Scope of models. We study embedding models: these cover modern foundation models like CLIP
and SigLIP (Tschannen et al., 2025; Zhai et al., 2023), supervised-learning models, self-supervised
models like DINO (Caron et al., 2021). At inference the models we study are non-contextual: the
representation of an input depends only on that input (no dependence on other test examples, prompts,
or the batch). Formally, the encoder is a map f : X → Z , with z = f(x) (optionally ℓ2-normalized).

Readout class (linear vs. non-linear). Usually, encoders f are associated with either a downstream
or readout model h that takes z = f(x) and outputs per-concept logits h(z) ∈ Rc×n using argmax
classification rule (see Definition 3). This covers zero-shot use of text features as linear classifiers,
standard linear probing, and the affine last layer in most neural classifiers. If h is non-linear in a
neural network, we absorb the layers preceding the linear layer g into the encoder (f̃ = g ◦ f ) and
analyze the resulting affine layer.

Definition 3 ((Linearly) compositional model). An encoder f : X → Z is compositional w.r.t. C if
there exists h : Z → Rc×n such that, for all c ∈ C and all i ∈ [c],

ci = argmax
j∈[n]

h(f(xc))i,j . (3)

It is linearly compositional if h can be taken affine (h(z) = Wz + b). We refer to h as the readout.

3.3 COMPOSITIONAL GENERALIZATION AND ITS DESIDERATA

Given the ingredients (concept space C, encoder f , and training-support family T ), we now define a
learning rule A and state three desiderata for compositional generalization: divisibility, transferability,
and stability.

Considering training. We view a learning algorithm as a simple map

A : DT 7→ hT , hT ∈ H ⊆ {h : Z → Rc×n},
from a dataset supported on T ⊆ C to a readout in a chosen hypothesis class. In practice, A is
typically (stochastic) gradient descent on a cross-entropy or contrastive objective, covering contrastive
vision–language encoders (e.g., CLIP, SigLIP), standard supervised classifiers, and linear probes on
self-supervised vision encoders like DINO.

Desiderata for compositional generalization. Suppose we train a downstream readout hT = A(DT )
on some T ∈ T . What should hT satisfy? We argue for three practically-motivated properties.

First, every combination of concept values should be classifiable by the readout: for any c ∈ C, the
corresponding region of the representation space of f is nonempty: there exists at least one x′ that
hT assigns the concept values c. Otherwise, generalization to the full grid is impossible. We refer to
this property as Divisibility.
Desideratum 1 (Divisibility). For a readout h : Z → Rc×n, every concept tuple must be classifiable:

∀ c ∈ C :

c⋂
i=1

Ri,ci(h) ̸= ∅, where Rij(h) = {x′ ∈ X ′ : arg max
j′∈[n]

h(x′)i,j′ = j}. (4)
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Divisibility is necessary but not sufficient: it guarantees that the space is divisible, but does not imply
that the readout will be correct. We therefore ask that, for every training set, the learned readout
transfers to the full grid; we refer to this as Transferability.
Desideratum 2 (Transferability). For every T ∈ T , the trained readout hT = A(DT ) correctly
classifies all possible combinations of the concept space:

∀ c ∈ C, ∀ i ∈ [c] : argmax
j∈[n]

hT

(
f(xc)

)
i,j

= ci. (5)

Third, consider readouts learned from different valid supports T ∈ T . Divisibility and Transferability
ensure do not say anything about the behavior of the classification decisions. Intuitively: if an input
depicts a “cat”, retraining on another valid support should not flip the preference to “dog” or push the
prediction toward near-indifference. We refer to this as Stability.
Desideratum 3 (Stability). For any T, T ′ ∈ T , any grid point xc, and any i ∈ [c], the per-concept
posteriors agree across valid supports:

p
(T )
i (j | f(xc)) =

exp(hT (f(xc))i,j)∑n
k=1 exp(hT (f(xc))i,k)

, p
(T )
i (· | f(xc)) = p

(T ′)
i (· | f(xc)). (6)

Compositional models

∃h : h(f(xc)) correct ∀c ∈ C

Linearly
compositional

h(·) linear

Generalizing
compositional

∀T ∈ T , A(T )
transfersGeneralizing

linearly
compositional

h(·) linear; A(F) transfers.
Figure 3: Relationship between compo-
sitional models and their linear counter-
parts.

Defining compositional generalization. We now tie the
ingredients into a single tuple Π = (f,H, A, T ), which
we use as the object that specifies the entire compositional-
generalization setup: the encoder, the readout class, the learn-
ing rule, and the family of valid training supports. We spec-
ify compositional generalization as a process of learning
readouts that generalize over all T ∈ T and satisfy Desider-
ata 1–3.

Definition 4 (Compositional generalization). Π =
(f,H, A, T ) exhibits compositional generalization if, for
every T ∈ T with hT = A(DT ), Divisibility (Def. 1) and
Transferability (Def. 2) hold on the full grid, and the poste-
riors are Stable across valid retrainings (Def. 3) for all pairs
T, T ′ ∈ T . We say that Π exhibits linear compositional
generalization when the readout hypothesis class is linear.

We illustrate the relationship between (linear) models and their compositional counterparts in Figure 3.
In practice one could consider relaxed or average-case variants; however, we here are interested in
“ideal” representations that support compositional generalization under any data sample.

3.4 INSTANTIATING THE FRAMEWORK WITH CLIP

Sub. type

c11 = Cat

c1n = Person

x11

f

Color

c21 = Orange

c2n = Blue

g

fimg(x)

...
...

“A c1” “A subject in c2 color”

g

C1 C2

{w1j}nj=1 {w2j}nj=1

Figure 4: Instantiating the
framework with CLIP-like em-
bedding models.

We instantiate the framework in the dual-encoder, vision–language
setting in the style of CLIP models: images and texts are embedded
into a shared space and trained to align, with captions acting as noisy
descriptions of concept tuples.

Encoders. Let f : X → Z be the image encoder and g : Y → Z
the text encoder. At inference both are typically ℓ2-normalized so
that inner products are cosine similarities: ∥f(x)∥ = ∥g(y)∥ = 1.

Prompts as linear probes. Zero-shot classification uses text features
as linear classifiers. For each concept i ∈ [c] and value j ∈ [n],
choose a prompt pi,j (e.g., “a photo of a cat”) and define a probe
vector wi,j := g(pi,j) ∈ Z . Stacking these gives a readout

h(z) =
[
w⊤i,jz

]
i,j

∈ Rc×n,

Here f is the representation model, while h is a linear readout whose
weights come from the text encoder. Training in CLIP-like models can be viewed as learning a
readout model where the same set of text-derived probes serves across many images; prompts often
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mention only parts of an image, so the system is implicitly asked to recognize objects and attributes
regardless of which other concepts co-occur. We illustrate this process in Figure 4.

The question we study. Given a concept space C, what structure must z = f(xc) have so that a
single set of probes {wi,j} (whether fixed by g or learned as linear probes) satisfies our desiderata
(Desiderata 1–3) on the full C? In other words, what constraints does zero-shot, probe-based classi-
fication place on the geometry of image representations if we want compositional generalization?

4 IMPLICATIONS OF COMPOSITIONALITY ON REPRESENTATIONS

We now ask what our desiderata force on representations in common training regimes. Two questions
guide the section:
Q1 (§4.1) Geometry under GD with CE/BCE and stable transfer. If A is gradient descent under

binary cross-entropy, and Π exhibits compositional generalization (Def. 4) across a family of
supports T , what structure is necessary for f (and the linear readout h)? → We show additive
(linear) factorization with orthogonal concept directions under natural T .

Q2 (§4.2) Minimal dimension for linear readout. Assuming separability/divisibility and a linear
(affine) readout h, what is the smallest d so that correct per-concept predictions are possible over
all nc tuples? → With affine readouts, d ≥ c is necessary and tight; we also discuss the no-bias
(cosine) case.

4.1 GEOMETRY OF f UNDER COMMON TRAINING SETTINGS

Unstable
Does not transfer

Stable
Transfers

w1 w1

w1 w1

Figure 5: Stable and unstable
examples of feature represen-
tations. The top panel shows an
unstable configuration, where
depending on the sample, the
readout either does not trans-
fer or unstably. Bottom panel
shows a stable configuration.

We instantiate A as gradient descent on the binary cross-entropy (logis-
tic) loss. As in §3.4, the readout h is linear in the embedding z = f(x)
(text-derived probes or learned linear heads). We illustrate the stable
and unstable examples of feature representations in Figure 5.
Proposition 1 (Binary case: compositional generalization implies
linear factorization). Let Π = (f,H, A, T ) be the tuple instantiated
in Section 3.4, with linear heads H and A given by GD+CE. Suppose
that the training sets follow either random sampling with validity rule
R(T ) = 1 if |T | = 2n−1 + 1 datapoints. Then, under the binary grid
Ci = {0, 1} with X = {xc : c ∈ [2]c} ⊂ Rd, assume Desiderata 1–
3 hold. Then there exist {ui,0,ui,1 ∈ Rd}ci=1 such that for every
c ∈ [2]c the following holds:

1. (Linearity) xc =
∑c

i=1 ui,ci .

2. (Cross-concept orthogonality) (ui,1 − ui,0) ⊥ (uj,1 − uj,0)
for all i, j ∈ [c] with (i ̸= j).

Proof sketch. Note that GD+CE converges to a max-margin SVM in direction Soudry et al. (2024).
Under the degree of freedom of CE, stability implies weight differences are the same across different
retrainings. Then, due to the max-margin property and different training sets, each datapoint must be a
support vector for at least one of the datasets, which implies invariance of probability when predicting
a single concept value when other concepts vary. Finally, due to max-margin SVM of weight vectors
being parallel to the shortest segment between separable convex sets, and an appropriate pairing
of datasets, it follows that flipping any concept results in an additive shift, with shift vectors being
orthogonal across concepts.

The datapoint requirement can be interpreted as operating in either (i) a minimal-learning regime for
extrapolating to the whole grid (as in Compositional Risk Minimzation framework Mahajan et al.
(2025)), where |T | = 1 + c(n− 1) suffices to extrapolate to the whole grid, or (ii) a large-sample
regime in which random sampling yields near-complete coverage of the concept space.

Takeaway §4.1. Training under common GD+CE over embeddings to generalize compositionally and stably
requires linear factorization and orthogonal factors.

6
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4.2 PACKING AND MINIMUM DIMENSION

c = 2, n = 20 c = 3, n = 12

Figure 6: Example geometries under
linear compositionality. Left: 2 con-
cepts embedded on a hypersphere real-
izing 202 combinations. Right: 3 con-
cepts in Euclidean space realizing 123

combinations.

Motivated by the separability axiom, we ask a basic capacity
question: what is the minimum embedding dimension d needed
to support Divisibility (Desideratum 1), i.e. realize all possi-
ble nc combinations? The following result gives a tight lower
bound.
Proposition 2 (Minimum dimension for linear probes). For c
concepts, each with n values, suppose there exist linear probes
that correctly classify each concept value for all nc combina-
tions from embeddings f(x) ∈ Rd. Then necessarily d ≥ c.

Importantly, the bound is independent of the number of values
n per concept, depending only on the number of concepts c: we
illustrate two examples of divisibility in two scenarios: on a hypersphere and in Euclidean space in
Figure 6, though we note that our results establish minimal dimensionality only for Euclidean space.

Takeaway §4.2. Minimum dimensionality scales with the number of concepts c, not values n.

5 SURVEYING NECESSARY CONDITIONS IN PRETRAINED MODELS

Here, we empirically evaluate the necessary conditions for compositional generalization in pretrained
models. We aim to answer the following questions:
Q3 (Section 5.1) Is linear factorization present in pre-trained models? (1) Are the image embeddings

linearly factoried, and to which extent?
Q4 (Section 5.2) Does the degree of linear factorization correlate with compositional generaliza-

tion?
Q5 (Section 5.3) Are per-concept difference vectors approximately orthogonal across concepts, as

the theory predicts?
Q6 (Section 5.4) What geometric structure do factors exhibit?

Models and datasets. We evaluate across diverse model families and training regimes: OpenAI CLIP
(ViT-B/32, ViT-L/14), OpenCLIP (ViT-L/14), SigLIP (ViT-L/14 or L/16), and SigLIP 2
(ViT-L/14). These span different architectures (ViT variants), training objectives (contrastive vs.
sigmoid), and data scales to assess generality of our findings. We evaluate on three compositional
datasets: PUG-Animal, dSprites, and MPI3D, which provide controlled concept variations
across different visual domains.

Recovering the factors from representations. Given that a linear factorization exists in the rep-
resentations of a model f as detailed in Section 4.1, we can recover the factors {ui,j}ci∈[c],j∈[n]
by averaging over all the datapoints that share a particular concept value Trager et al. (2023). For
analysis purposes it is sufficient to recover the centered factors. That is, given all centered embeddings
{f(xc)}c∈[n]c , the factors can be recovered as ui,j =

1
|{c∈[n]c:ci=j}|

∑
c∈[n]c:ci=j f(xc).

5.1 LINEAR FACTORIZATION IN PRE-TRAINED MODELS

Measuring linearity. We evaluate whether embeddings exhibit linear factorization and report Pro-
jected R2 after isolating the concepts of each dataset. We defer the details to Appendix B.1.

Results. Figure 7 shows substantial projected scores across models and datasets (typically 0.4–0.6),
far above the random baseline. This indicates that, embeddings are well described by a sum of
per-concept components, as predicted by our theory. Additionally, we observe that R2 scores are
similar across models in scale.

Takeaway §5.1. Embeddings exhibit substantial projected linear factorization across datasets (typically
0.4–0.6), indicating that per-concept components add additive within the embeddings.
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Figure 7: Linear factorization is ubiquitous in pre-trained models. Bar plots of R2 on three datasets with
varying concept/value counts. Scores are computed within the probe span (PW x); the randomized encoder
serves as a control.

5.2 COMPOSITIONAL GENERALIAZTION AND LINEAR FACTORIZATION

We ask whether the degree of linear factorization predicts compositional generalization.

Metrics and setup. For each dataset/model, we train linear probes on 90% of all concept combinations
and evaluate on the held-out 10% unseen compositions (cf. sampling discussion in §4.1). This
corresponds to a validity rule R(T ) = 1 if |T | = 0.9nc. We compute Projected R2 on whitened
PW x (Sec. 5.1) and pair it with a compositional accuracy score on the held-out compositions. All
encoders from Sec. 5.1 are included; a randomized encoder provides a baseline.

Results. Across all datasaets higher Projected R2 coincides with higher compositional accuracy
(Fig. 8). Random encoders consistently occupy the low-R2/low-accuracy corner, indicating the effect
is not a dimensionality or scale artifact. This aligns with the linear factorization view: as per-concept
components explain more variance, linear probes have cleaner axes to recombine, yielding better
compositional transfer.
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Figure 8: Linearity in embeddings correlates with compositional generalization. We show the correlation
between projected R2 (linear factorization) and compositional generalization performance across three datasets
and multiple vision-language models.

Takeaway §5.2: Linear factorization in pre-trained models correlates with compositional generalization
performance.

5.3 ORTHOGONALITY OF FACTORS

Our theory (Proposition 1) predicts that per-concept difference vectors should be orthogonal across
concepts under linear factorization. We empirically test this prediction by testing these in two ways:
(1) within-concept and (2) across-concept orthogonality. We defer the details to Appendix B.2.
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Figure 9: Pre-trained models exhibit strong within-concept direction similarity and near-orthogonality
across concepts. (a) Aggregated within-concept direction similarity over datasets. (b) Pairwise average cosine
across concepts. Lower values indicate greater orthogonality between factor vectors.

Results. Pretrained encoders show strong within-concept direction similarity and near-orthogonality
across concepts (Fig. 12): bars in (a) are stable around ≈ 0.53– 0.55, while bars in (b) drop to
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≈ 0.12– 0.15. The random encoder is worse in both respects: same-concept cosine is lower (≈ 0.62
when plotted as residual to 1) and different-concept cosine is much higher (≈ 0.39), indicating poor
separation of concepts.

Takeaway §5.3: Per-concept difference vectors are nearly-orthogonal across concepts; within-concept the
concepts are not.

5.4 DIMENSIONALITY OF FACTORS

Our theory predicts that compositional models require linear factorization in the embeddings, and as
the number of concepts approach the dimensionality of embeddings in size, the factors must become
low-rank (see Section 5.1). Here, we test to which extent this is the case.

Metrics and setup. We study factor geometry after projection onto the probe span (see Section 5.1).
For each concept i ∈ [c] with value set Ci (ni = |Ci|), we aggregate the (per-concept, recentered)
factors ui,j for j ∈ Ci into a matrix Ui ∈ Rni×d. We then analyze (1) the dimensionality of each
concept and (2) how this dimensionality compares across models. To do so, we examine the spectrum
of Ui (PCA on its rows) and report the number of principal components required to explain 95% of
the variance across values j.
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Figure 10: Dimensionality of factors. (a) Normalized ranks across datasets, and concepts under OpenCLIP
L/14. (b) Variance explained in the recovered factors on PUG-Animal dataset over models exhibit high-similarity.
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Figure 11: Geometry of factors in
OpenCLIP ViT-L/14. We show the span
of the joint features of OpenCLIP ViT-
L/14.

Results. Figure 10 shows that most semantic factors lie in
low-dimensional subspaces relative to their cardinality (e.g.,
DSprites size 1/6, MPI3D vertical-axis 2/5). Across datasets
and models, ≥95% of variance is typically captured by one
or two PCs, indicating that spectra align closely by concept.
Discrete concepts show slightly higher rank, consistent with
being composed of more atomic attributes. Overall, semantic
factors are low-rank and geometrically similar across models.

We also visualize DSprites factors (orientation, size, y-
position) in Figure 11. Each subspace is effectively < 3D
(≥ 95% variance in ≤ 2 PCs). Size and y-position trace near-
1D monotone tracks, while orientation forms a smooth 2D
curve with small curvature, matching the effective dimensions
in Fig. 10.

Takeaway §5.4: In the probe span, concept geometry is often low-dimensional and stable across encoders.

6 CONCLUSION

We showed that compositional generalization imposes strong structural requirements on neural
representations. Under common training with linear heads, our desiderata of divisibility, transfer-
ability, and stability force embeddings to factorize additively into per-concept components with
near-orthogonality, and require dimension at least equal to the number of concepts. Empirically, CLIP
and SigLIP families exhibit this geometry, and the quality of factorization correlates with compo-
sitional generalization performance. These findings clarify when linear structure is not incidental
but necessary, providing both theoretical guidance and practical diagnostics for building models that
generalize compositionally.
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A NOTATION AND SYMBOLS

This section fixes notation and collects basic identities used throughout the appendix.

Table 1: Key notation used in the analysis.

Notation Description
Concepts and datasets
C = C1 × · · · × Cc Concept space with |Ci| = n
X = {xc | c ∈ C} Representation space
Dc Cross-dataset of size 1 + c(n− 1) (see Definition 5)
|S| Dataset size |S|

Counts
Ni,j(S) Marginal count of concept i taking value j in dataset S

Interventions
c(i → j) Concept index with the i-th value set to j
xc(i→j) Intervened representation with concept i set to j
c̄i Binary complement 1− ci (when Ci = {0, 1})

Probes and parameters
w

(Dc)
i,j Weight vector for concept i, class j

b
(Dc)
i,j Bias term for concept i, class j

Factorization objects
P ∈ Rd×d Projection matrix
ui,ci ∈ Rd Linear factor for concept i, value ci
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B EXPERIMENTAL DETAILS

B.1 TESTING LINEAR FACTORIZATION

Large pre-trained models may encode information beyond the specific concepts in our dataset. To
isolate the conceptual structure, we train per-concept linear probes. For each concept i ∈ [c] and
value j, we learn a linear probe wi,j , form the probe matrix W ∈ Rm×d, where m is the number
of values across all concepts, and project embeddings onto the joint probe span. We do this by first
computing the projection matrix PW and then projecting the embeddings onto the joint probe span.

We report Projected R2 after projecting embeddings onto the probe span. To prevent trivial high
scores from constant embeddings or dominant directions, we whiten the embeddings by applying
PCA and normalizing to unit covariance. Intuitively, without whitening a few high-variance factors
(e.g., color) can dominate the squared-error and yield deceptively high R2 even if low-variance
concepts are poorly captured. We therefore compute metrics on PWx after PCA-whitening (unit
covariance), applying the same transform to data and reconstructions; this equalizes per-direction
variance so Projected R2 reflects captured by each concept, not just the largest-variance ones.

B.2 ORTHOGONALITY OF FACTORS

Setup. For each dataset/model, we extract image embeddings xc and restrict analysis to the probe-
usable subspace by projecting as in Section 5.1, that is, for each dataset, we compute x̂c := PWxc.
For concept pair i, j ∈ [c] with value sets Ci, Cj , we estimate per-concept difference vectors by
averaging differences across concept factors. Concretely, for any pair (v, v′) ∈ Ci × Cj , we define

di,j,(v,v′) := ui,v − uj,v′ , d̃i,j,(v,v′) :=
di,j,(v,v′)

∥di,j,(v,v′)∥
. (7)

We measure orthogonality via absolute cosine between difference vectors (lower | cos | ⇒ greater
orthogonality). For any concepts i ̸= j, we define

Orth(i, j) :=
1

|Ci||Cj |
∑
a∈Ci

∑
b∈Cj

∣∣⟨d̃i,a, d̃j,b⟩
∣∣ and Orth(i, i) :=

1

|Ci|(|Ci| − 1)

∑
a,b∈Ci
a̸=b

∣∣⟨d̃i,a, d̃i,b⟩
∣∣

We report Orth(i, i) as within-concept direction similarity and Orth(i, j) for i ̸= j as across-concept
orthogonality.

We present the complete experimental results here.

In Figure 12, we show the orthogonality of the factors for four models, including a randomly-
initialized model, and three datasets.
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Figure 12: Orthogonality of factors. We shot the orthogonality of the factors for four models, including a
randomly-initialized model, and three datasets.

We show an aggregate view of this result when comparing orthogonality between values of the same
and different concepts in Figure 13.

B.3 DIMENSIONALITY OF FACTORS
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Size vs shape

Size                

Figure 14: Geometry of datapoints in OpenCLIP ViT-L/14. We show the span of the joint features of
OpenCLIP ViT-L/14.
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(d) SigLIP-L/16

Figure 15: Dimensionality results computed as the number of SVD factors required to reach 95%
explained variance, per dataset.
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C SUFFICIENCY OF LINEAR FACTORIZATION FOR COMPOSITIONALLY GEN-
ERALIZATION

A complementary analysis we provided is on the sufficient conditions for generalizing compositionally.
Here, we detail the key results for recovering the factors u from representations that already possess
linear factorization.

We first note the minimal dataset setting using the notion of a cross dataset, defined below.

Definition 5 (Cross dataset at c). Given a concept space C = C1 × · · · × Cc, we say that a dataset Dc

is a cross-dataset at c ∈ [n]c if:

1. It contains only samples that vary one concept at a time around the center c:

Dc =
{
(c′1, c2, . . . , cc) : c

′
1 ∈ [n]

}
∪ · · · ∪

{
(c1, c2, . . . , c

′
c) : c

′
c ∈ [n]

}
.

2. Its size is 1 + c(n− 1),

3. It satisfies the diversity condition: rank(AD
c

) = 1 + c(n− 1).
Proposition 3 (Uniqueness up to concept-wise shifts). Let the concept space be C = C1 × · · · × Cc
and assume linear factorisation holds, i.e. for every full combination (v1, . . . , vc) ∈ C we observe an
embedding

f(v1, . . . , vc) =

c∑
i=1

ui,vi ,

where ui,v ∈ Rd is the (unknown) vector for value v ∈ Ci.
Suppose {ai,v} and {bi,v} are any two families of vectors that satisfy the same equations:

c∑
i=1

ai,vi =

c∑
i=1

bi,vi , for every (v1, . . . , vc) ∈ C.

Then there exist vectors s1, . . . , sc ∈ Rd with the single constraint
∑c

i=1 si = 0 such that

bi,v = ai,v + si for all i ∈ {1, . . . , c}, v ∈ Ci.

Hence the solution space of the factorisation equations is (c− 1)d-dimensional: one free shift vector
si per concept, minus one global zero-sum constraint.

Proof. Let δi,v := bi,v − ai,v . Subtracting the two versions of the factorisation identity gives
c∑

i=1

δi,vi = 0 for every (v1, . . . , vc) ∈ C.

Fix any reference value v0i ∈ Ci for each concept and set si := δi,v0
i
. Evaluating the previous display

at the reference combination (v01 , . . . , v
0
c ) yields

c∑
i=1

si =

c∑
i=1

δi,v0
i

= 0.

Now fix an index j ∈ {1, . . . , c} and choose an arbitrary value v ∈ Cj . Evaluate the identity∑c
i=1 δi,vi = 0 at the combination (v01 , . . . , v

0
j−1, v, v

0
j+1, . . . , v

0
c ). Then

0 =

c∑
i=1

δi,vi = δj,v +
∑
i ̸=j

δi,v0
i
= δj,v +

∑
i ̸=j

si.

Using
∑c

i=1 si = 0, we obtain
δj,v = −

∑
i̸=j

si = sj .
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Since j and v ∈ Cj were arbitrary, we have shown that δi,v ≡ si for all i and all v ∈ Ci. Equivalently,
bi,v = ai,v + si with

∑
i si = 0.

Conversely, given any s1, . . . , sc ∈ Rd with
∑c

i=1 si = 0, define bi,v := ai,v + si. Then for every
(v1, . . . , vc) ∈ C,

c∑
i=1

bi,vi =

c∑
i=1

ai,vi +

c∑
i=1

si =

c∑
i=1

ai,vi ,

so {bi,v} also satisfies the factorisation equations. Therefore the set of all solutions is the affine
subspace {

ai,v

}
+
{
(s1, . . . , sc) ∈ (Rd)c :

c∑
i=1

si = 0
}
.

We illustrate this proposition graphically in Figure 16.

u1

u2
u3

v1

v2

v3

s1

Figure 16: Illustration of the shift ambiguity in the factorisation equations.

A neat consequence of this result is that the centered embeddings u′t are uniquely determined: any
factorization we acquire from the embeddings, when centered, will correspond exactly to the true
centered factorization.
Corollary 1 (Uniqueness of the centered factorization). Assume the setting of Proposition 3. For
each concept i, let

āi :=
1

|Ci|
∑
v∈Ci

ai,v, b̄i :=
1

|Ci|
∑
v∈Ci

bi,v,

and define the centered factors a′i,v := ai,v − āi and b′i,v := bi,v − b̄i. Then a′i,v = b′i,v for all i and
all v ∈ Ci. Equivalently, for every (v1, . . . , vc) ∈ C,

c∑
i=1

a′i,vi =

c∑
i=1

b′i,vi ,

so the centered embeddings are uniquely determined by the data. In particular, if {ui,v} is the
ground-truth factorization and u′i,v := ui,v − 1

|Ci|
∑

w∈Ci ui,w, then the centered version of any
recovered factorization coincides with {u′i,v}.

Proof. By Proposition 3, there exist s1, . . . , sc with
∑

i si = 0 such that bi,v = ai,v + si for all i, v.
Averaging over v ∈ Ci yields b̄i = āi + si. Thus,

b′i,v = bi,v − b̄i = (ai,v + si)− (āi + si) = ai,v − āi = a′i,v,

as claimed. Taking ai,v = ui,v gives the final statement.

First, we consider the general case where the concept values’ directions are not necessarily linearly
independent. However, suppose the inputs xc are linearly separable for any i ∈ [c], j ∈ [n]. In
that case, if we can recover all c · n factors, we can reconstruct any xc =

∑c
i=1 ui,ci as a linear

combination of the recovered factors. Due to linear separability, we can then train the linear probes to
classify the inputs into the correct concept values.

While such an approach is in principle possible, it is not practical. The reason is that the number of
factors to recover is c · n, which is exponential in the number of concepts.
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To uncover the factors we only need to establish the rank of the design matrix - this then indicates
how many datapoints need to be observed to recover the factors. Additionally, this dictates how the
samples need to be collected.
Proposition 4 (Rank of the full–factorial one–hot design). Let X ∈ {0, 1}nc×cn be the design
matrix whose cn columns are {xj,k : j = 1, . . . , c, k = 1, . . . , n}, arranged in c blocks of size n,
with all nc treatment combinations as rows and each row having exactly one 1 in each block. Then,

rank(X) = 1 + c(n− 1).

Proof. We show this for the column space of the design matrix X . We show that a set of 1+ c(n− 1)
columns span the column space.

Let u := 1 ∈ Rnc

and, for each block j and each k = 2, . . . , n, define vj,k := xj,k − xj,1. Let

B := {u} ∪ {vj,k : 1 ≤ j ≤ c, 2 ≤ k ≤ n}, so |B| = 1 + c(n− 1).

For every block j,
∑n

k=1 xj,k = u, hence
n∑

k=2

vj,k = u− nxj,1 ⇒ xj,1 = 1
n

(
u−

n∑
k=2

vj,k

)
, xj,k = xj,1 + vj,k (k ≥ 2).

Thus every original column xj,k lies in spanB, and since B ⊆ col(X) we have col(X) = spanB.

Independence of B can be shown by contradiction.

Clearly, when the design matrix has full rank rank(A) = 1 + c(n− 1), the linear system V = AU
becomes well-determined with a unique solution for the centred per-value vectors {u′v}. This ensures
that the linear factorization is uniquely identifiable, meaning there is exactly one way to decompose
the observed representations into their constituent concept factors. From that, one could recover the
full grid of representations over C and fit linear classifiers on top of them. As long as the original
space is linearly separable, a linearly compositional model follows (as defined in Definition 3).

We illustrate some configurations of this in Figure 17 over the case of three concepts with top two
rows indicating solvable systems, and the bottom row indicating unsolvable ones due to violating
rank constraint.
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Figure 17: Examples of one-hot design matrices for recovery of linear factors. We show sparse grid patterns
from the full space A ∈ {0, 1}n

c×
∏c

i=1 ni , where each row corresponds to a training tuple and each column to a
concept value. The matrices demonstrate how different sampling strategies affect rank and identifiability of the
linear factorization. Refer to Definition 5 for the definition of a cross-dataset.
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D PACKING AND MINIMUM DIMENSION

Hyperplanes, flats, and general position. For a dimension d ≥ 1. We specify two types of
hyperplanes:

• A central (or linear) hyperplane is the zero–set of a non-zero normal vector w ∈ Rd:

Hw =
{
x ∈ Rd : ⟨w, x⟩ = 0

}
,

so it always passes through the origin.
• Allowing an affine bias b ∈ R translates the supporting flat:

Hw,b =
{
x ∈ Rd : ⟨w, x⟩+ b = 0

}
.

Such hyperplanes need not contain the origin and are sometimes called offset or biased.

An arrangement H = {H1, . . . ,Hm} is a finite family of hyperplanes. It is said to be in general
position when no more than d hyperplanes meet at a single point. This condition prevents degeneracies
and maximises the number of connected regions that the arrangement carves out of Rd.

Theorem 1 (Székely–Zaslavsky region bounds in general position). Let H be an arrangement of m
hyperplanes in Rd that is in general position. Then, the number of connected regions R(H) is given
by:

(a) Affine (biased) case. If the hyperplanes may carry arbitrary offsets bi (so H is not required to be
central), then

R(H) = Raff(m, d) :=

d∑
k=0

(
m

k

)
.

(b) Central case. If every hyperplane passes through the origin,

R(H) = Rlin(m, d) := 2

d−1∑
k=0

(
m− 1

k

)
.

For d < c one has R(c, d) = 2c −
∑c

k=d+1

(
c
k

)
< 2c, which is the key inequality we will need.

We now exploit Theorem 1 to prove the lower bound on probe dimension; first for the binary case,
then for general n.

3 concepts, 2 values per concept, 2D space.

H1

H2

H3

1

2

3

4

5

6

7

Reduction to two values

R1

R3

R4

R2

Figure 18: Illustration of the probe dimension lower bound. Schematic showing the arrangement of probe
hyperplanes and the resulting partitioning of the embedding space.

Proposition 5 (Minimum dimension for linear probes). Fix integers c ≥ 1 (number of concepts) and
n ≥ 2 (values per concept). Suppose:

(a) The feature extractor is f : X → Rd, z := f(x)

(b) For each (i, j) ∈ [c]× [n] there exists a probe (pi,j , bi,j) with pi,j ∈ Rd and bi,j ∈ R used
to compute the logit

si,j(z) := ⟨pi,j , z⟩+ bi,j , (8)
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and there are label functions v1, . . . , vc : X → [n] such that for every x ∈ X ,

argmax
j∈[n]

si,j(f(x)) = vi(x), ∀i ∈ [c]. (9)

Assume also that every label combination occurs: for every v = (v1, . . . , vc) ∈ [n]c, there exists
xv ∈ X such that vi(xv) = vi for all i. Then necessarily

d ≥ c, (10)

and this bound is tight: one can construct probe and representation families that achieve perfect
prediction in dimension d = c.

Proof. Binary case (n = 2). We can take one affine binary classifier per concept:

hi(z) := si,1(z)− si,2(z) = ⟨pi,1 − pi,2, z⟩+ (bi,1 − bi,2). (11)

By letting wi := pi,1 − pi,2, bi := bi,1 − bi,2. Each hi defines an affine hyperplane

Hi := {z ∈ Rd | ⟨wi, z⟩+ bi = 0}. (12)

Since all 2c binary label configurations occur, the c affine hyperplanes H1, . . . ,Hc must jointly
separate Rd into at least 2c distinct regions.

But the number of regions formed by c affine hyperplanes in Rd is at most

d∑
k=0

(
c

k

)
< 2c whenever d < c (by Theorem 1). (13)

Thus, we must have d ≥ c.

Construction is simple: assume parallel planes in their own dimensions. Let d = c, and embed

f(xv) := (v1, . . . , vc) ∈ Rc. (14)

We define probe vectors as
pi,j := ei and bi,j := −j. (15)

Then
si,j(f(xv)) = ⟨ei,v⟩ − j = vi − j. (16)

Thus, the correct label is recovered for all i, and d = c suffices.

In general for n > 2, we can repeat the same computation for colinear weights per concepts and
values. This reduces the general n case to the binary case above, and the same lower bound d ≥ c
follows.
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E PROOFS

We write D for the full dataset of all nc combinations and Dc for a cross-dataset as in Definition 5.
Any learned quantity carries a superscript indicating the training set, e.g., {w(D)

i,j } or {w(Dc)
i,j } with

logits ℓ
(S)
i,j (x) := (w

(S)
i,j )

⊤x and probabilities p
(S)
i,j (x) := exp(ℓ

(S)
i,j (x))

/∑
k exp(ℓ

(S)
i,k (x)) for a

training set S.

Definition 6 (Dataset index set and marginal counts). For any dataset S ⊆ {(xc′) : c′ ∈ [n]c} (e.g.,
S = D or S = Dc), define the index set I(S) := {c′ : (xc′) ∈ S}. For concept i ∈ [c] and value
j ∈ [n], the marginal count of value j in S is

Ni,j(S) :=
∣∣{ c′ ∈ I(S) : c′i = j }

∣∣.
When S is clear, we abbreviate Ni,j := Ni,j(S).
Remark 1 (Marginal counts: full vs cross-datasets). For the full dataset D, the marginal counts are
balanced:

Ni,j(D) = nc−1 for all i ∈ [c], j ∈ [n].

For a cross-dataset Dc as in Definition 5, the marginal counts satisfy

Ni,ci(Dc) = 1 + (c− 1)(n− 1), Ni,j(Dc) = 1 for all j ̸= ci.

Proof. In D fixing vi = j leaves nc−1 free coordinates. In Dc: varying concept i contributes one
point for each j ̸= ci; the center contributes one more with vi = ci; varying any other concept k ̸= i
adds (n− 1) points with vi = ci, across (c− 1) such concepts, totaling (c− 1)(n− 1).

Definition 7 (Intervention on a concept value). For any concept index i ∈ [c], target value j ∈ [n],
and concept vector c ∈ [n]c, define the intervened index and representation

c(i → j) := (c1, . . . , ci−1, j, ci+1, . . . , cc), xc(i→j) := xc with concept i set to j.

We also write c(i→j) as an alias for c(i → j) when convenient. Multiple interventions compose
componentwise.

Definition 8 (Binary complement notation). In the binary case (Ci = {0, 1}), we write c̄i := 1− ci
for the complement value of concept i. As shorthand for an intervention to the complement, we write
c(c̄i) := c(i←c̄i).

Definition 9 (Per-concept differences). For each concept i ∈ [c], fix a reference class ri ∈ [n] and
define the per-concept difference parameters

w̃i,j := wi,j −wi,ri , b̃i,j := bi,j − bi,ri .

Softmax probabilities for concept i are invariant under adding a constant vector and bias shared across
classes. Thus only differences ∆wi,jℓ := wi,j −wi,ℓ and ∆bi,jℓ := bi,j − bi,ℓ are identifiable; w̃
and b̃ provide a concrete representative.

For making use of the stability condition we note the degree of freedom in (arg/soft)max.
Lemma 1 (Equal probabilities imply equal weights up to a shift per concept). For any concept index
i, and for each class j ∈ [n], let fi,j ∈ Rd and f ′i,j ∈ Rd. Assume that for every input x ∈ Rd,

exp(fi,j · x)∑n
k=1 exp(fi,k · x)

=
exp(f ′i,j · x)∑n
k=1 exp(f

′
i,k · x)

for all j ∈ [n].

Then there exists a vector ui ∈ Rd (independent of j) such that

fi,j = f ′i,j + ui for all j ∈ [n].

Proof. Fix i and an arbitrary x ∈ Rd. Define

Zi(x) = log
( n∑

k=1

e fi,k·x
)
, Z ′i(x) = log

( n∑
k=1

e f ′
i,k·x

)
.
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Let

pi,j(x) =
e fi,j ·x∑
k e

fi,k·x
, p′i,j(x) =

e f ′
i,j ·x∑

k e
f ′
i,k·x

.

By assumption pi,j(x) = p′i,j(x) for all j. Taking logs gives

log pi,j(x) = log p′i,j(x) =⇒ fi,j · x− Zi(x) = f ′i,j · x− Z ′i(x) ∀j.

Thus for this x there exists a scalar bi(x) := Zi(x)− Z ′i(x) with

fi,j · x = f ′i,j · x+ bi(x) ∀j.
For classes j and ℓ, by subtracting, gives:(

fi,j − fi,ℓ

)
· x =

(
f ′i,j − f ′i,ℓ

)
· x ∀x ∈ Rd.

Since this defines a hyperplane on which all x need to lie, the weight differences need to be equal:

fi,j − fi,ℓ = f ′i,j − f ′i,ℓ ∀j, ℓ.

Fixing any reference class ℓ and setting ui := fi,ℓ − f ′i,ℓ, yields:

fi,j = f ′i,j + ui.

D(1,1) D(2,1)

D(1,2) D(2,2)

+1 -1

+1+1 -1

xcxc(i→c̄i)
y1

xc xc(i→c̄i)

y2

(a) (b)

y1 ≡ xc
xc(i→c̄i)

xcy2 ≡ xc(i→c̄i)

x1 x1 x1 x1

x
2

x
2

x
2

x
2

Figure 19: Illustration of the invariance lemma (left) and the main proposition (right). (a) The
invariance lemma: we can always find a dataset for which a single point is a support vector, leading
to invariance. (b) The main proposition: any point is projected onto the other class’ convex hull by a
single concept value flip.

Lemma 2 (Bi-directional tight support vectors in binary concepts). For binary concepts Ci =

{0, 1}, consider any cross-dataset Dc and the corresponding SVM solution {w(Dc)
i,j , b

(Dc)
i,j }. Because

Ni,0(Dc) = Ni,1(Dc) = 1, there exist support vectors xc0 ,xc1 ∈ Dc with v0i = 0 and v1i = 1 such
that both are tight with respect to their class boundaries:

(w
(Dc)
i,0 )⊤xc0 + b

(Dc)
i,0 = (w

(Dc)
i,1 )⊤xc0 + b

(Dc)
i,1 + 1 (17)

(w
(Dc)
i,1 )⊤xc1 + b

(Dc)
i,1 = (w

(Dc)
i,0 )⊤xc1 + b

(Dc)
i,0 + 1 (18)

Proof. This follows from standard hard-margin SVM theory: each class has at least one support
vector achieving equality at the margin (Cortes & Vapnik, 1995).

Lemma 3 (Invariance to irrelevant concepts, binary case). Assume each concept is binary, Ci = {0, 1}
for all i ∈ [c], and write v̄ := 1− v. For any i ∈ [c] and any c, c′ ∈ [2]c with ci = c′i =: v,

P (Ci = v | xc) = P (Ci = v | xc′). (19)
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Proof. We encode the i-label by yi(x) ∈ {+1,−1} with yi(x) = +1 iff Ci(x) = 1 and −1
otherwise. Let

gi(x) := (wi,1 −wi,0)
⊤x + (bi,1 − bi,0) (20)

By Lemma 1, the pair (∆wi,∆bi) := (wi,1 − wi,0, bi,1 − bi,0) is the same no matter which
cross-dataset we train on.

Let I = [2]c−1 be assignments of all concepts except i. For each u ∈ I there are two cross-datasets:
D(u,0) and D(u,1). In the binary hard-margin setting, each such training has exactly one minority
(support) example w.r.t. concept i, and for that example the signed margin is tight:

yi(x) gi(x) = 1 (for the unique support example of that training). (21)

• In D(u,0), the unique minority is xu,1, so yi(xu,1) = +1 and tightness gives

gi(xu,1) = +1. (Au) (22)

• In D(u,1), the unique minority is xu,0, so yi(xu,0) = −1 and tightness gives

gi(xu,0) = −1. (Bu) (23)

The same gi (same ∆wi,∆bi) appears in (Au) and (Bu) for every u, by Desideratum 3.

As u ranges over I , the equations (Au) cover every point with Ci = 1, and the equations (Bu) cover
every point with Ci = 0. Therefore

gi(x) =

{
+1, if Ci(x) = 1,

−1, if Ci(x) = 0,
on the whole grid {xc : c ∈ [2]c}.

Hence gi(x) depends only on Ci(x) and not on the other concepts. Since in the binary model

P (Ci = 1 | x) = σ(gi(x)) =
1

1 + e−gi(x)
(and P (Ci = 0 | x) = 1 − P (Ci = 1 | x)), the

conditional probability P (Ci = v | xc) is constant over all c with ci = v. In particular, for any c, c′

with ci = c′i,
P (Ci = ci | xc) = P (Ci = ci | xc′).

Next, we establish an important property of SVMs on two separable sets, one of which is a singleton.
Lemma 4 (SVM geometry for separable sets). Given a set of points Y := {yi}Ni (yi ∈ Rd) and a
point x ∈ Rd with an optimal linearly separable hyperplane Hw,b = {x | w⊤x + b = 0} under
SVM, the following hold:

1. The weight vector w separates convex combinations such that they are support vectors, that
is, for some {λi}Ni=1 it holds:

w⊤

(∑
i

λiyi

)
+ b = −1 for λi ≥ 0,

∑
i

λi = 1 (24)

w⊤x+ b = +1 (25)

2. The weight vector w equals the shortest distance between the sets:

2

||w||2
w =

(
x−

∑
i

λiyi

)
(26)

Proof. These conditions are implied by a standard fact in SVMs: the weight vector w is parallel to
the shortest line connecting the two sets (Bennett & Bredensteiner, 2000). By noting that αw =
(x−

∑
i λiyi), we can derive the proportionality constant as α = 2

||w||2 .

We now establish the main result of the resulting geometry of linearly generalizable compositional
models.
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Proposition 1 (Binary case: compositional generalization implies linear factorization). Let Π =
(f,H, A, T ) be the tuple instantiated in Section 3.4, with linear heads H and A given by GD+CE.
Suppose that the training sets follow either random sampling with validity rule R(T ) = 1 if |T | =
2n−1 + 1 datapoints. Then, under the binary grid Ci = {0, 1} with X = {xc : c ∈ [2]c} ⊂ Rd,
assume Desiderata 1–3 hold. Then there exist {ui,0,ui,1 ∈ Rd}ci=1 such that for every c ∈ [2]c the
following holds:

1. (Linearity) xc =
∑c

i=1 ui,ci .

2. (Cross-concept orthogonality) (ui,1 − ui,0) ⊥ (uj,1 − uj,0) for all i, j ∈ [c] with (i ̸= j).

Proof. First, note that the fact that any training set T ∈ T has 2n−1 + 1 points implies that for
any concept and its value, we can always choose a dataset which has only a single point over that
concept’s value. Because of this, the proof reduces to the case of working with a “cross-like” datasets.
We thus work within this simplified setting to avoid technical clutter, but the key idea remains the
same.

Linearity.

The idea is to show that for a pair of cross-datasets that share the datapoints in negative class, the
shortest distance from a single point in the positive class to the convex set of the positive points is
achieved by considering a flip in one of the concepts. We make this concrete below.

Consider any datapoint xc and its corresponding cross dataset centered at this point D(c). Additionally,
for any concept i ∈ [c] consider a “counterfactual” datapoint xc(i→c̄i) that flips the value of concept
i to c̄i, and consider its corresponding cross-dataset D(c(i→c̄i)).

Note that for the concept i it holds that:

1. Under Dc = {xc} ∪ {xc(i→c̄i) : i ∈ [c]}. For each concept i, the marginal counts are

Ni,ci(Dc) = c, Ni,c̄i(Dc) = 1 (27)

(by Remark 1). Thus xc(i→c̄i) is the unique minority example for concept i (label c̄i), and

Y1 := Dc \ {xc(i→c̄i)} (28)

is the set of c majority examples (label ci).

2. Note Dc(i→c̄i) := {xc(i→c̄i)} ∪ {xc(k→c̄k) : k ∈ [c]}.

For k ̸= i the counts are unchanged: Nk,ck(Dc(i→c̄i)) = c and Nk,c̄k(Dc(i→c̄i)) = 1, but
for concept i they swap: Ni,c̄i(Dc(i→c̄i)) = c and Ni,ci(Dc(i→c̄i)) = 1. Thus xc is now the
unique minority example for concept i (label ci). Let Y2 = Dc(i→c̄i) \ {xc} be the majority
examples for concept i.

Let the majority support vectors for Dc and Dc(i→c̄i) be y1 and y2 respectively. By Lemma 4, we
can write

y1 = λixc +
∑

j∈[c]\{i}

λjxc(j→c̄j) and y2 = γixc(i→c̄i) +
∑

j∈[c]\{i}

γjxc(j→c̄j) (29)

for some convex combinations λj ≥ 0 with
∑c

i λj = 1 and γj ≥ 0 with
∑c

i γj = 1.

Additionally, note that by Lemma 3 it holds that for any point xc′ it holds that

w⊤j xc′ + bj = yi(c
′), (30)

where we use a shorthand yi(c
′) = 1 if j = ci and yi(c

′) = −1 otherwise.

Then, by Lemma 4 it holds that the support vectors are aligned with the shortest segment between the
convex sets (pairs of xc(i→c̄i) and y1, and xc and y2)

xc(i→c̄i) + yi(c)
2

||wi||2
wi = y1 and xc − yi(c)

2

||wi||2
wi = y2, (31)
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where clearly yi(c(i → c̄i)) = −yi(c). From this, it follows that

y1 − xc(i→c̄i) = xc − y2. (32)

Now, for any k ̸= i, evaluate:

w⊤k y1 + bk = w⊤k

λixc +
∑

j∈[c]\{i}

λjxc(j→c̄j)

+ bk

= λiw
⊤
k xc +

∑
j∈[c]\{i}

λjw
⊤
k xc(j→c̄j) +

c∑
i

λibk

= λi(w
⊤
k xc + bk) +

∑
j∈[c]\{i}

λj(w
⊤
k xc(j→c̄j) + bk)

= λiyk(c) +
∑

j∈[c]\{i,k}

λjyk(c(j → c̄j)) + λkyk(c(k → c̄k))

= λiyk(c) +

 ∑
j∈[c]\{i,k}

λj

 yk(c)− λkyk(c)

= (1− λk)yk(c)− λkyk(c) = (1− 2λk)yk(c),

(33)

where we used the fact that λ are convex combinations in the second equality, and the fact that in the
paired dataset k-concept values remain the same when flipping any other concept than k.

By repeating the same calculation as (33) for y2, we get:

w⊤k y2 + bk = (1− 2γk)yk(c). (34)

By (32) it follows that

w⊤k (y1 − xc(i→c̄i)) = w⊤k (xc − y2)

⇒ w⊤k y1 + bk −w⊤k xc(i→c̄i) − bk = w⊤k xc + bk −w⊤k y2 − bk

⇒ (1− 2λk)yk(c)− yk(c) = yk(c)− (1− 2γk)yk(c)

⇒ 1− 2λk − 1 = 1− 1 + 2γk

⇒ λk + γk = 0.

(35)

Clearly, since λk and γk are convex combinations and thus non-negative, (35) implies that λk =
γk = 0.

By repeating this process for all k ̸= i, we get that λk = γk = 0 for all k ̸= i, and therefore
λi = γi = 1. From this, it follows that y1 = xc and y2 = xc(i→c̄i). This means that

xc(i→c̄i) + yi(c)
2

||wi||2
wi = xc and xc − yi(c)

2

||wi||2
wi = xc(i→c̄i), (36)

and therefore the differences between xc − xc(i→c̄i) are independent of other concept variations.
Because of that, we can write any datapoint xc as a sum of concept-specific values ui,ci(ci ∈ [2]).
For insstance, if we fix c0 = (0, . . . , 0) ∈ [2]c, and let ck = (0, . . . , 0, 1, 0, . . . , 0) ∈ [2]c be a vector
with 1 in the k-th position, we can express xc as, for example (up to a global linear shift per concept)

ui,0 = xc0/c, ui,1 = xc0/c+
2

||wi||2
wi,

xc =

c∑
i=1

ui,ci ,

(37)

which establishes linearity.

Orthogonality. First, note that by invariance (Lemma 3) it holds that for any concept i, changes in
concept values other than i do not affect the prediction of concept i. Therefore, it holds that for any
concept j ̸= i, it holds that

w⊤i xc + bi = w⊤i xc(j→c̄j) + bi (38)
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But by linear factorization (37) it follows that

w⊤i xc + bi = w⊤i xc(j→c̄j) + bi

⇒ w⊤i (xc − xc(j→c̄j)) = 0

⇒ w⊤i
(
uj,cj − uj,c̄j

)
= 0

⇒ w⊤i

(
2

||wj ||2
wj

)
= 0

⇒ w⊤i wj = 0.

(39)

Then,
(ui,ci − ui,c̄i)

⊤(uj,cj − uj,c̄j ) ∝ w⊤i wj = 0. (40)

More generally, orthogonality of one concept holds against the span of other concepts as well. For
{αj ∈ R}j ̸=i it follows that

(ui,ci − ui,c̄i)
⊤

∑
j ̸=i

αj(uj,cj − uj,c̄j )

 ∝ w⊤i

∑
j ̸=i

αjwj

 = 0, (41)

and therefore orthogonality holds against the span of other concepts differences.
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F EXAMPLES OF COMPOSITIONALLY GENERALIZABLE REPRESENTATIONS

We give a few instantiations of the linearly-factored representation families: one, where the rep-
resentations follow a “tight” LRH, and one, in a sense opposite case: where they follow linear
independence.

F.1 CASE 1: MINIMAL DIMENSIONALITY PROBING

To gain intuition into the geometry of the linear probes, let’s analyze a more constrained and idealized
version of the problem. Instead of a complex joint optimization, we assume the representations
are already given and possess a highly regular structure according to the Linear Representation
Hypothesis (LRH).

Specifically, we make the following assumptions:

(1) The representation for any input xv corresponding to a concept value combination v =
(v1, . . . , vc) is given by

f(xv) =

c∑
i=1

αi(vi)bi (42)

(2) The concept direction vectors {bi}ci=1 ⊂ Rd are known, fixed, and linearly independent (implying
d ≥ c). They can be thought of as forming an orthonormal basis for a c-dimensional subspace.

(3) For each concept i, its n values correspond to a known, ordered set of scalar coefficients. For
instance, the values for concept i are mapped to n equally spaced coefficients in an interval, such as
αi(vi,j) = 0.1 + (j − 1) 0.9

n−1 for j = 1, . . . , n.

Under these assumptions, the set of all nc representation points {f(xv)} is fixed and forms a regular
grid or lattice within the subspace spanned by {bi}. The optimization problem is no longer a search
for representations, but simplifies to finding the optimal set of linear probes {pi,j} that can correctly
classify these points.

The problem becomes:

min
{pi,j}

∑
v

c∑
i=1

Li

(
{p⊤i,jf(xv)}nj=1, vi

)
(43)

where the representations f(xv) are fixed as defined above. This is a much simpler problem; for
standard losses like cross-entropy or hinge loss, this is a convex optimization problem for each set of
probes {pi,j}nj=1 and can be solved efficiently. The key question then becomes understanding the
geometric structure of the resulting optimal probes.

Suppose the concept direction vectors {bi}ci=1 are linearly independent. In this case, we can write
down an explicit analytical solution for the optimal probes. Let V = span({bi}ci=1) be the subspace
spanned by the concept vectors. For each k ∈ [c], there exists a unique vector wk ∈ V such that

w⊤k bi = δki (44)

for all i ∈ [c]. In other words, wk is the unique linear functional that extracts the coefficient of
bk from any vector in V expressed as a linear combination of the bi. This property allows us to
construct probes that are perfectly "decoupled" or "disentangled": the classification of one concept is
completely unaffected by the values of any other concepts. The vector wk is the natural choice for
isolating the k-th concept from the representation.

The optimal affine probes that achieve perfect classification on the given grid of points are,
for each concept k and each of its possible values vk,j (for j = 1, . . . , n): (1) Linear part:
pk,j = 2αk(vk,j)bk, (2) Bias term: bk,j = −(αk(vk,j))

2 If the original concept vectors {bi}
are orthonormal, then bk = bk, and this solution reduces to the orthonormal case discussed in the
next section.

This construction is optimal because it achieves perfect classification and does so by maximizing the
classification margin, making it the solution for max-margin losses (such as those used in SVMs) and
for simpler error-counting losses.
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Let us verify the score function. The score for the j-th probe of concept k on an input xv (where the
true value for concept k is vk) is:

Sk,j(v) = p⊤k,jf(xv) + bk,j = (2αk(vk,j)bk)
⊤

(
c∑

i=1

αi(vi)bi

)
− (αk(vk,j))

2

= 2αk(vk,j)αk(vk)− (αk(vk,j))
2 (since only the i = k term survives)

= −(αk(vk)− αk(vk,j))
2

This score is maximized when vk = vk,j , so the classifier chooses argmaxj Sk,j(v) =
argminj(αk(vk) − αk(vk,j))

2. This is a nearest-neighbor rule that is guaranteed to be correct,
thus minimizing the zero-one loss.

The region where class m is predicted is where its coefficient αk(vk,m) is the closest prototype. The
decision boundary between any two adjacent classes, m and m + 1, is the set of points in the 1D
space where a point is equidistant to both prototypes:

|αk − αk(vk,m)| = |αk − αk(vk,m+1)| (45)

Given the ordering, this simplifies to αk − αk(vk,m) = −(αk − αk(vk,m+1)), which yields the
decision boundary at their exact midpoint:

αDB
k =

αk(vk,m) + αk(vk,m+1)

2
(46)

The margin for separating this pair of classes is the distance from either class’s coefficient to
this decision boundary, which is 1

2 (αk(vk,m+1)− αk(vk,m)). Since our solution places the decision
boundary at the midpoint for every adjacent pair, it maximizes the margin for each pair-wise separation.
Therefore, it is the optimal max-margin classifier for this 1D problem. The overall margin for concept
k is determined by the smallest gap between any two adjacent alpha values.

F.2 CASE 2: MAXIMUM DIMENSIONALITY PROBING OF CLIP-LIKE MODELS

We now consider the setting where representations are normalized to lie on the unit sphere, as in
CLIP-style models that use cosine similarity for classification. Here, both the representation vectors
x and the probe vectors pi,j are constrained to have unit ℓ2 norm, i.e., ∥x∥2 = 1 and ∥pi,j∥2 = 1.
The geometry of the decision regions is determined by spherical caps rather than half-spaces. For a
cosine similarity classifier, the decision region for class (i, j) is given by

Ci,j :=
{
x ∈ Sd−1 : p⊤i,jx > p⊤i,kx ∀k ̸= j

}
. (47)

Figure 20: Illustration of the “on-off concept classifier” mechanism. (a) A vision input is processed by
a neural network to produce an embedding. (b) Each concept (e.g., shape, object color, background color) is
probed independently using a set of language model probes, one per possible value. (c) The probe for a given
concept yields a high score α if the concept matches and a lower score β otherwise, as formalized in the logit
equation at bottom.
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That is, for each concept i and classes j, k, the cosine similarity satisfies

⟨xc,pi,k⟩ =
{
1 if j = ci
β if j ̸= ci

(48)

for some constant β ∈ [−1, 1).

Under such strict condition, the dimensionality of the representation space must satisfy “all indepen-
dent” condition. We show this below.

For a probe index (i, j) ∈ [c]× [n] we write

ei,j ∈ Rcn for the (i− 1)n+ j standard basis vector, i.e. (ei,j)(k,ℓ) =

{
1, k = i, ℓ = j,

0, otherwise.

In words, ei,j has a single 1 in the row corresponding to probe (i, j) and 0 elsewhere.
Proposition 6 (Minimal dimensionality from fixed dot-products). Fix integers c ≥ 1 (number of
concepts) and n ≥ 2 (values per concept). For each concept i ∈ [c] and value j ∈ [n] let

pi,j ∈ Rd, ∥pi,j∥2 = 1,

be unit probe vectors, and for each complete concept tuple v = (v1, . . . , vc) ∈ [n]c let

xv ∈ Rd, ∥xv∥2 = 1,

be unit representations. Assume there exist constants α, β ∈ [−1, 1] with α ̸= β such that the fixed
logit pattern

p⊤i,jxv =

{
α, j = vi,

β, j ̸= vi,
for all i, j,v, (49)

holds.

Then the ambient dimension d must satisfy

d ≥ 1 + c (n− 1). (50)

Moreover, this bound is tight: for any valid (α, β) with |α| ≤ 1, |β| ≤ 1 there exist explicit
probe/representation families that realise (49) in dimension d = 1 + c(n− 1).

Proof. We stack the probes as rows of the matrix

P =

p
⊤
1,1
...

p⊤c,n

 ∈ Rcn×d, (row (i− 1)n+ j = p⊤i,j). (51)

Stack the representations as columns of

X =
[
xv1 · · · xvnc

]
∈ Rd×nc

. (52)

The logit constraints (49) read as
Y = P X ∈ Rcn×nc

, (53)
where Y ∈ Rcn×nc

has entries

Y(i−1)n+j, v =

{
α, j = vi,

β, j ̸= vi.
(54)

For one concept c = 1, (when Y ∈ Rn×n), the single block is

(α− β)In + β1n1
⊤
n (55)

which has full rank n because α ̸= β. Its row–space is therefore spanned by{
1nc

}︸ ︷︷ ︸
global offset

∪
{
1{vi = j} − 1{vi = 1}

∣∣ i ∈ [c], j = 2, . . . , n
}︸ ︷︷ ︸

c(n− 1) zero–sum contrast vectors

.
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The contrast vectors all have coordinate-sum 0, whereas 1nc has sum nc; hence 1nc /∈
span

{
contrasts

}
. The total of 1 + c(n− 1) vectors is therefore linearly independent, giving

rank(Y ) = 1 + c (n− 1). (56)

Because Y = P X ,
1 + c(n− 1) = rank(Y ) ≤ rank(P ) ≤ d. (57)

This proves (50).

Construction follows by placing the probes and representations on the unit sphere in independent
directions.

Below, we provide a numerical example to illustrate the form of the logit matrix Y for the case of
two concepts, three values each.
Example 1 (Two concepts, three values each: c = 2, n = 3). Set (α, β) = (1, 0.2). The row indices
are (i, j) ∈ {1, 2} × {1, 2, 3}, the column indices are the 32 = 9 tuples (v1, v2) ∈ {1, 2, 3}2:

Y =

11 12 13 21 22 23 31 32 33



(1, 1) 1 1 1 0.2 0.2 0.2 0.2 0.2 0.2

(1, 2) 0.2 0.2 0.2 1 1 1 0.2 0.2 0.2

(1, 3) 0.2 0.2 0.2 0.2 0.2 0.2 1 1 1

(2, 1) 1 0.2 0.2 1 0.2 0.2 1 0.2 0.2

(2, 2) 0.2 1 0.2 0.2 1 0.2 0.2 1 0.2

(2, 3) 0.2 0.2 1 0.2 0.2 1 0.2 0.2 1

(58)

Row-space decomposition. Each row has the form

β19 + (α− β)1{vi = j}, (59)

so every row is in the span of

19, 1{v1 = 2} − 1{v1 = 1}, 1{v1 = 3} − 1{v1 = 1}︸ ︷︷ ︸
n− 1 contrasts for concept 1

, 1{v2 = 2} − 1{v2 = 1}, 1{v2 = 3} − 1{v2 = 1}︸ ︷︷ ︸
n− 1 contrasts for concept 2

.

(60)

That is a set of 1 + 2(3− 1) = 5 linearly independent vectors, hence rank(Y ) = 5 = 1 + c(n− 1).

Under such a design, linear factorization holds immediately.
Proposition 7 (Additive factorisation from the on–off pattern). Let c ≥ 1 (concepts) and n ≥ 2
(values per concept). Assume there are unit vectors

pi,j ∈ Rd, i ∈ [c], j ∈ [n], xv ∈ Rd, v = (v1, . . . , vc) ∈ [n]c,

and two real numbers α ̸= β in (−1, 1) such that

⟨pi,j ,xv⟩ =
{
α if j = vi,

β if j ̸= vi,
∀ i, j,v. (61)

Define the global mean, conditional means, and shift vectors from {xv} as:

g :=
1

nc

∑
w∈[n]c

xw, Ai,j :=
1

n c−1

∑
w:wi=j

xw, ui,j := Ai,j − g.

Now, for each class v = (v1, . . . , vc), define the reconstructed vector

x̃v := g +

c∑
k=1

uk,vk
. (62)

Then:

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

1. This reconstructed vector x̃v satisfies the original on–off pattern. That is, for every probe
pi,j and every class v,

⟨pi,j , x̃v⟩ = ⟨pi,j ,xv⟩ =
{
α if j = vi,

β if j ̸= vi.
(63)

This means x̃v is indistinguishable from xv by the probes and is sufficient for any classifi-
cation task based on these dot products.

2. Moreover, the set of vectors {x̃v} lies in an affine subspace of dimension exactly 1+c(n−1).
So:

dim(span{x̃v}) = 1 + c(n− 1). (64)

Proof. Fix (i, j). Averaging (61) over all nc classes w gives

⟨pi,j , g⟩ =
1

nc

(
nc−1α+ (nc − nc−1)β

)
=

α+ (n− 1)β

n
=: d. (65)

independent of (i, j).

Then, compute ⟨pi′,k, Ai,j⟩ by expanding the definition of Ai,j :

⟨pi′,k, Ai,j⟩ =
1

nc−1

∑
w:wi=j

⟨pi′,k,xw⟩. (66)

We consider two cases for the probe index i′.

Case 1: i′ = i (probe and condition on the same concept). The sum is over w where wi = j.

• If k = j, the probe is pi,j . For every term in the sum, wi = j, so ⟨pi,j ,xw⟩ = α. There are
nc−1 such terms, so the sum is nc−1α. The average is α.

• If k ̸= j, the probe is pi,k. For every term, wi = j ̸= k, so ⟨pi,k,xw⟩ = β. The sum is
nc−1β. The average is β.

Case 2: i′ ̸= i (probe and condition on different concepts). The sum is still over all nc−1 vectors
w where wi = j. For a given probe pi′,k, the value of ⟨pi′,k,xw⟩ depends on whether wi′ = k or
wi′ ̸= k. Since i′ ̸= i, the condition wi = j does not fix the value of wi′ .

• The number of vectors w with wi = j and wi′ = k is nc−2 (since two components are
fixed, and c− 2 are free). For these terms, ⟨pi′,k,xw⟩ = α.

• The number of vectors w with wi = j and wi′ ̸= k is (n− 1)nc−2 (one component fixed,
one has n− 1 choices, c− 2 are free). For these terms, ⟨pi′,k,xw⟩ = β.

The sum (66) is therefore (when i′ ̸= i)

nc−2α+ (n− 1)nc−2β. (67)

The average is:

⟨pi′,k, Ai,j⟩ =
nc−2α+ (n− 1)nc−2β

nc−1 =
α+ (n− 1)β

n
= d. (68)

Combining these cases, we have:

⟨pi′,k, Ai,j⟩ =


α, i′ = i, k = j,

β, i′ = i, k ̸= j,

d, i′ ̸= i.
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By linearity, ⟨pi′,k, ui,j⟩ = ⟨pi′,k, Ai,j⟩ − ⟨pi′,k, g⟩. The results from steps 1 and 2 give:

⟨pi′,k, ui,j⟩ =


α− d, i′ = i, k = j,

β − d, i′ = i, k ̸= k,

0, i′ ̸= i.

(69)

Finally, by evaluation, it follows that x̃v = g +
∑c

k=1 uk,vk
satisfies the on-off pattern:

⟨pi,j , x̃v⟩ = ⟨pi,j , g⟩+
c∑

k=1

⟨pi,j , uk,vk
⟩

= d+ ⟨pi,j , ui,vi⟩+
∑
k ̸=i

⟨pi,j , uk,vk
⟩︸ ︷︷ ︸

=0 from (69)

= d+ (⟨pi,j , Ai,vi⟩ − d) = ⟨pi,j , Ai,vi⟩

=

{
α, j = vi,

β, j ̸= vi.

This confirms that ⟨pi,j , x̃v⟩ = ⟨pi,j ,xv⟩ for all probes, and establishes (63).

The reconstructed vectors {x̃v} are all affine combinations of {g} ∪ {ui,j}. A basis for this affine
space can be formed by {g} and the differences {ui,j − ui,1 | i ∈ [c], j = 2, . . . , n}, a set of
1 + c(n− 1) vectors. These are linearly independent because contrasts from different concepts are
orthogonal (with respect to probes), and within a concept, independence follows from α ̸= β. Thus,
the set {x̃v} lies in an affine subspace of dimension exactly 1 + c(n− 1). This establishes (64).
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G WHAT IF STABILITY IS NOT REQUIRED?

We detail and discuss the stability axiom in the main text. Suppose it was not true, what other structure
does the representation need to have?

G.1 COUNTEREXAMPLES TO LINEAR FACTORIZATION EVEN AS n → ∞

Suppose that instead of assuming a transferable compositional model, we only assume the model
supports linear separation. That is, given nc datapoints in total, let’s suppose there exist n · c linear
probes that can be used to classify each concept value for any datapoint. (Formally: there are c
concepts indexed by j ∈ {1, . . . , c}, each with n values indexed by k ∈ {1, . . . , n}; a datapoint is
t = (k1, . . . , kc) ∈ {1, . . . , n}c; a representation map f : X → Rd yields zt := f(xt); and for each
concept j there are weights and biases {(wj,k, bj,k)}nk=1 with argmaxk (w

⊤
j,kzt + bj,k) = kj .)

Does such a construct imply a certain representational structure? Perhaps—but it is not, in general,
linearly factorizable. Concretely, suppose we restrict ourselves to a two-dimensional representation
space. Assume it’s Euclidean and the linear probes are weight vectors with biases. Additionally,
assume there are only two concepts that the data is distributed over. Now, given that there are n values,
is there some structure that the representations need to converge to as n → ∞? Not necessarily:
even in this d = 2, c = 2 setting, one can satisfy all the linear separability probes with point clouds
{zk1,k2

} ⊂ R2 that do not admit an additive decomposition of the form zk1,k2
= u0+u1,k1

+u2,k2
.

This is the sense in which linear separability does not imply linear factorizability.

n = 8 =⇒ 64 regions n = 14 =⇒ 196 regions Impossible factorization
C1 = 1

C1 = 2

C1 = 3

C1 = 4
C1 = 5

C1 = 6
C1 = 7

(a) (b) (c)

x1 x1 x1

x
2

Figure 21: Linear separability without linear factorization. Two families of affine decision boundaries in R2

(black for concept 1, gray for concept 2) divide the plane into regions, one per pair of concept values. Panels
(a,b): with n = 8 and n = 14 levels per concept the arrangement yields n2 regions (64 and 196). By inserting
additional nearly-parallel boundaries, existing regions can be split into smaller and smaller pieces, creating
arbitrarily tiny regions while maintaining perfect linear separability. Panel (c): No linear factorization can be
achieved: whichever factors we pick, the separability of some datapoints are violated.

From Figure 21: panels (a) and (b) show two interleaved line families whose intersections produce a
grid of n2 convex cells, one for each (k1, k2). Nothing forces these cells to align with an additive
basis; in fact, we can keep adding lines that are ε-perturbations of existing ones to subdivide cells,
driving some cell areas to zero as n grows, yet all multiclass linear probes remain valid.
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