

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE NECESSARY CONDITIONS OF COMPOSITIONAL MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Compositional generalization, the ability to recognize familiar parts in novel contexts, is a defining property of intelligent systems. Modern models are trained on massive datasets, yet these are vanishingly small compared to the full combinatorial space of possible data, raising the question of whether models can reliably generalize to unseen combinations. To formalize what this requires, we propose a set of practically motivated desiderata that any compositionally generalizing system must satisfy, and analyze their implications under standard training with linear classification heads. We show that these desiderata necessitate *linear factorization*, where representations decompose additively into per-concept components, and further imply near-orthogonality across factors. We establish dimension bounds that link the number of concepts to the geometry of representations. Empirically, we survey CLIP and SigLIP families, finding strong evidence for linear factorization, approximate orthogonality, and a tight correlation between the quality of factorization and compositional generalization. Together, our results identify the structural conditions that embeddings must satisfy for compositional generalization, and provide both theoretical clarity and empirical diagnostics for developing foundation models that generalize compositionally.

1 INTRODUCTION

Modern vision systems are trained on tiny, biased samples of a combinatorial space of visual concepts, like objects, attributes, relations in different contexts. Despite this, we expect them to perform well in the wild on novel recombinations of familiar concepts, an expectation tied to the view that systematic generalization, the ability to recombine learned constituents, is a hallmark of intelligence (Fodor & Pylyshyn, 1988). Yet a large body of empirical work shows that even high-performing neural models often struggle with systematicity when train/test combinations mismatch (Lake & Baroni, 2018; Keysers et al., 2020; Hupkes et al., 2022; Uselis et al., 2025). At the same time, large vision–language models such as CLIP (Radford et al., 2021) and its variants are trained on web-scale datasets (e.g., LAION-400M (Schuhmann et al., 2021a)) and achieve impressive zero-shot transfer on many tasks (Radford et al., 2021; Zhai et al., 2022).

However, they often fail when test images contain unusual combinations of familiar concepts (Xu et al., 2022; Bao et al., 2024; Thrush et al., 2022; Abbasi et al., 2024; Yuksekgonul et al., 2023; Ma et al., 2023). Figure 1 illustrates this tension for CLIP-like architectures: an image encoder f produces embeddings on which linear classifiers predict concepts, but training data $\mathcal{X}_{\text{train}}$ cover only common compositions (such as a cat on a person) from the full data space \mathcal{X} , while models must answer queries like “Is there a person present?” correctly even on rare compositions (such as a cartoon of a person on a cat) from $\mathcal{X} \setminus \mathcal{X}_{\text{train}}$. Given how rarely, if at all, such compositions appear in training, we aim to identify which properties could enable generalization. To study this, we ask: *assuming that compositional generalization succeeds, what properties must the representations have to accommodate it?*

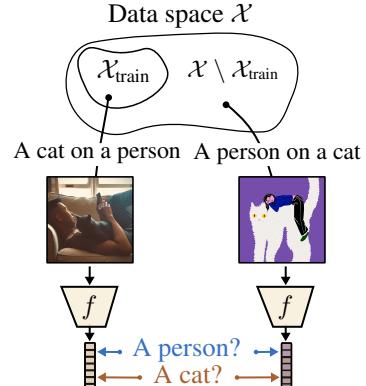


Figure 1: **What enables compositional generalization in CLIP?**
 Training distributions contain common configurations (left: a cat on a person) but lack rare ones (right: a person on a cat). Yet the same text-based queries, e.g. “A photo of a person”, must work on both, even when the latter was never seen during training. We investigate what properties encoder f must satisfy for such transfer to succeed.

We argue for *non-negotiable, model-agnostic* properties that any neural-network-based system claiming compositional generalization must satisfy. We state three desiderata: *divisibility*, *transferability*, and *stability*. These desiderata formalize that (i) all parts of an input should be accessible to a simple readout; (ii) readouts trained on a tiny but diverse subset should transfer to unseen combinations; and (iii) training on any valid subset should yield robust generalization. Our scope is the common setting where predictions are linear in the embedding f : CLIP-style zero-shot classifiers, linear probing, and cases where a fixed non-linear head is folded into the encoder.

Our key finding is that these desiderata *necessitate* a specific geometry: *linear factorization* with *near-orthogonal* concept directions. This establishes what any model *must* achieve to compositionally generalize under standard training, providing a concrete target for future design. Moreover, it offers theoretical grounding for the *Linear Representation Hypothesis* – the linear structure widely observed in neural representations is a *necessary consequence* of compositional generalization.

Our contributions are: (1) **Defining desiderata.** We define three desiderata: *divisibility*, *transferability*, *stability*, and formalize compositional generalization in their terms. (2) **Structural necessity.** Under GD with CE/BCE, these desiderata imply *linear factorization*: embeddings decompose into per-concept sums with orthogonal difference directions. (3) **Empirical grounding.** Across CLIP and SigLIP families, we find strong evidence of factorization, near-orthogonality, low-rank per-concept geometry, and correlation with compositional generalization accuracy.

2 RELATED WORK

Compositional generalization. Research on compositional generalization investigates how models can systematically combine concepts. On the objective side, approaches such as Compositional Feature Alignment (Wang, 2025) and Compositional Risk Minimization (Mahajan et al., 2025) study how model training objectives, and model architecture Jarvis et al. (2024) affect compositional generalization. On the representational side, kernel analyses characterize when certain compositional structures in embeddings yield generalization theoretically (Lippl & Stachenfeld, 2025), and empirical work investigates the role of disentangled representations for compositional generalization (Montero et al., 2021; Dittadi et al., 2021; Liang et al., 2025). On the data side, recent work probes whether and how scaling and data coverage improve compositional behavior (Uselis et al., 2025; Schott et al., 2022; Kempf et al., 2025). Abbasi et al. (2024) investigate CLIP’s ability to recognize unlikely attribute-object combinations, finding that CLIP models still fall short on such tasks.

Other works establish formal sufficient conditions for when particular model classes can achieve compositional generalization, e.g., generative models whose data are produced by a differentiable rendering process and whose training distribution provides compositional support over latent factors (Wiedemer et al., 2023), discriminative models whose inputs are drawn from an additive energy distribution (Mahajan et al., 2025), or linearly factorized representations (Uselis et al., 2025). In contrast, we do not impose specific structure on the data-generating process or on the learned representations. Instead, we ask what properties are implied *if* a model transfers from a restricted subset of the data space to the full space under our desiderata. Within this setting, our results can be interpreted as providing *necessary* conditions for compositional generalization for models that satisfy these desiderata.

Geometry of learned representations. A large literature studies the shape of learned features. In VLMs, Trager et al. (2023) report compositional linear subspaces, while in LLMs the *Linear Representation Hypothesis* (LRH) is examined mechanistically and statistically (Jiang et al., 2024; Park et al., 2023). Extending LRH, Engels et al. (2025) show that features can be multi-dimensional rather than rank-1, and Roeder et al. (2020) analyze identifiability constraints. Sparse-autoencoder probes provide evidence for monosemantic or selectively remapped features in VLMs (Pach et al., 2025; Zaigrajew et al., 2025; Lim et al., 2025). Beyond nominal labels, ordinal/ordered concepts motivate the rankability of embeddings (Sonthalia et al., 2025). More broadly, capacity limits for embedding-based retrieval emphasize geometric bottlenecks (Weller et al., 2025). Elhage et al. (2022) investigated empirically how neural networks can represent more features than there are dimensions in two-layer auto-encoder models. They found a tendency to encode features near-orthogonally with respect to neurons. Abbasi et al. (2024) find evidence of disentanglement in CLIP models. In contrast to these works, which document linear or near-orthogonal structure empirically, we show that under practice-driven desiderata and standard training, linearity and orthogonality are *necessary*.

108 **Data, objectives, and training effects on geometry.** Data distribution strongly shapes zero-shot
 109 behavior; concept frequency during pretraining predicts multimodal performance (Udandarao et al.,
 110 2024). On the objective side, BCE vs. CE can induce different feature geometries (Li et al., 2025),
 111 and contrastive/InfoNCE objectives exhibit characteristic similarity patterns (Lee et al., 2025). Con-
 112 vergence perspectives argue that the *objective* drives canonical representational forms (Huh et al.,
 113 2024), and objective choice has been tied to representational similarity across datasets (Ciernik et al.,
 114 2025).

115 **Binding, explicit structure injection, and concept identification.** Work on *binding* asks whether
 116 models maintain factored world states (Feng et al., 2025), and CLIP has been observed to show
 117 uni-modal binding (Koishigara et al., 2025). Surveys and empirical studies examine binding limits
 118 and emergent symbolic mechanisms (Campbell et al., 2025; Assouel et al., 2025). Other approaches
 119 inject structure directly, e.g., hyperbolic image–text embeddings and entailment learning (Pal et al.,
 120 2024; Desai et al., 2024), or pursue concept identification at the causal/foundation interface and
 121 object-centric pipelines (Rajendran et al., 2024; Mamaghan et al., 2024).

122 **Relation to disentangled representation learning.** Work on disentangled representations largely
 123 focuses on specifying desiderata for internal codes (e.g., disentanglement, completeness, informative-
 124 ness) and proposing metrics or training schemes to satisfy them, often with the informal motivation
 125 that such structure should help downstream generalization (Bengio et al., 2014; Eastwood & Williams,
 126 2018; Higgins et al., 2018). Few recent studies directly probe how these properties relate to out-of-
 127 distribution or compositional generalization, with mixed or limited evidence (Watters et al., 2019;
 128 Dittadi et al., 2021; Montero et al., 2021; 2024). We instead ask a complementary question: if a
 129 discriminative model *does* exhibit compositional generalization when learned from a subset of
 130 the data space, what must necessarily be true of its embeddings?

131 We provide a more detailed discussion in Appendix B

132 3 SETUP: A FRAMEWORK FOR COMPOSITIONALITY

134 We begin by detailing key desiderata for embedding models that contend to be compositional. We
 135 motivate them from a practical perspective: (1) models need to support distinguishing between any
 136 combination of concepts, (2) practical data collection is limited to a subset of the concept space, so a
 137 model needs to be able to transfer from a subset of the concept space to the full concept space, and
 138 (3) in practice apriori it is not known which subset needs to be chosen, so a model should be able to
 139 transfer robustly from any subset, matching in probability distribution to retraining over any other
 140 dataset.

141 3.1 SETUP: CONCEPT SPACES AND DATA COLLECTION PROCESS

142 We interpret the world as a product of concepts: any input $\mathbf{x}_c \in \mathcal{X}$ (e.g., images) has an associated
 143 tuple of concepts $\mathbf{c} \in \mathcal{C}$, describing its constituent parts and properties. This is a reasonable way to
 144 describe a large portion of the world. For example, current large-scale datasets (e.g., image–caption
 145 pairs) provide noisy natural-language descriptions that can be decomposed into *discrete* concept
 146 values. Clearly, a single concept tuple cannot capture all aspects of the world, e.g. how attributes bind
 147 to objects or how different objects relate spatially. Still, an intelligent system should at least be able to
 148 tell apart basic concepts (such as objects and their attributes), even without modeling their relations.
 149 In other words, concept spaces may not capture the full compositional structure of the world, but any
 150 model of the world must involve them in some form. Importantly, we do not assume *how* the concept
 151 values are distributed (e.g. being independent), only *what* they represent.

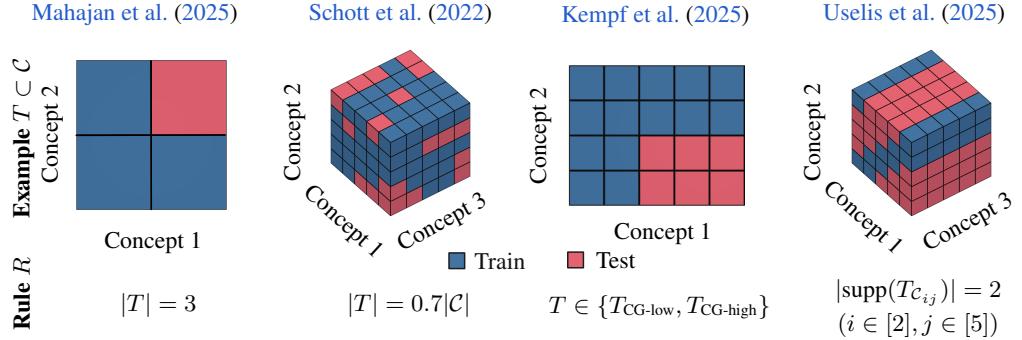
152 **Definition 1** (Concept space). Suppose we have k concepts, and each concept can take n possible
 153 values. For each concept \mathcal{C}_i ($i = 1, \dots, k$), let its set of possible values be $\mathcal{C}_i = \{1, \dots, n\}$. The
 154 *concept space* is the Cartesian product

$$155 \quad \mathcal{C} = \mathcal{C}_1 \times \mathcal{C}_2 \times \dots \times \mathcal{C}_k = [n]^k, \quad (1)$$

156 that is, the set of all possible tuples \mathbf{c} with $|\mathcal{C}| = n^k$. We index inputs by concept tuples: for each
 157 $\mathbf{c} \in \mathcal{C}$ we assume an associated $\mathbf{x}_c \in \mathcal{X}$ (e.g., a natural image) realizing \mathbf{c} .

159 Data-related components for compositional generalization involves three notions: (1) the total varia-
 160 tion of the data, (2) the concepts we aim to learn and expect the model to capture, and (3) the data that
 161 is actually collectible. We capture (1) by the concept space \mathcal{C} (Definition 1); (2), the targets that we
 aim to capture can be described by a label function $l : \mathcal{C} \rightarrow \mathcal{V} \subseteq \mathcal{C}$ that capture which concepts and

162 their values we want to learn. In this work we take the full target $\mathcal{V} = \mathcal{C}$, by noting that foundation
 163 models attempt to align with all present concepts. For (3), we formalize collectability constraints
 164 through a validity class that specifies which training supports are valid, indicating which concept
 165 combinations may appear in training. We formalize this below.
 166



178 **Figure 2: Interpreting previous works’ sampling designs T and validity rules R .** Training sets T specify
 179 which concept combinations are observed. Validity rules R determine valid training configurations for generalization
 180 evaluation.

181 **Considering data collection.** We are interested in models that support efficient compositional
 182 generalization from a subset of the concept space. To formalize this notion, we specify a validity
 183 class $\mathcal{T} \subseteq 2^{\mathcal{C}}$ of valid training sets, where $2^{\mathcal{C}}$ denotes the power set of \mathcal{C} , and a validity rule
 184 $R : 2^{\mathcal{C}} \rightarrow \{0, 1\}$ that specifies whether a given training set is valid. This setup captures the natural
 185 question of which training sets we use and for which we expect generalization.

186 **Definition 2** (Training support, validity class, and training dataset). Let \mathcal{C} be the concept space. A
 187 *training support* is any subset $T \subseteq \mathcal{C}$. *Validity class* is a collection $\mathcal{T} \subseteq 2^{\mathcal{C}}$ whose members are
 188 called *valid training sets*. The class \mathcal{T} specifies which training sets are observable. Validity class \mathcal{T} is
 189 specified by a *validity rule* $R : 2^{\mathcal{C}} \rightarrow \{0, 1\}$ through $\mathcal{T} = \{T \subseteq \mathcal{C} : R(T) = 1\}$. A *training dataset*
 190 for a training set T is $D_T = \{(\mathbf{x}_c, \mathbf{c}) : \mathbf{c} \in T\}$.

191 We note that there are many validity rules used in practice. For example, if we can collect any
 192 subset of size $N < |\mathcal{C}|$, then $R(T) = 1$ whenever $|T| = N$. Figure 2 illustrates common choices:
 193 [Mahajan et al. \(2025\)](#) use training supports that cover every concept value; [Schott et al. \(2022\)](#) use
 194 random samples covering 70% of all combinations; [Kempf et al. \(2025\)](#) specify a small set of allowed
 195 supports; and [Uselis et al. \(2025\)](#) use supports whose joint marginals cover at least two values per
 196 concept. Note that these validity rules apply to concept supports rather than individual datapoints.

197 3.2 COMPOSITIONAL REPRESENTATIONS AND MODELS

198 Given the concept space and the training supports, we now make precise how we expect models to
 199 learn. We work with encoders f that map an input to a vector representation (embedding).

200 **Scope of models.** We study embedding models: these cover modern foundation models like CLIP
 201 and SigLIP ([Tschannen et al., 2025](#); [Zhai et al., 2023](#)), supervised-learning models, self-supervised
 202 models like DINO ([Caron et al., 2021](#)). At inference the models we study are *non-contextual*: the
 203 representation of an input depends only on that input (no dependence on other test examples, prompts,
 204 or the batch). Formally, the encoder is a map $f : \mathcal{X} \rightarrow \mathcal{Z}$, with $\mathbf{z} = f(\mathbf{x})$ (optionally ℓ_2 -normalized).

205 **Readout class (linear vs. non-linear).** Usually, encoders f are associated with either a downstream
 206 or readout model h that takes $\mathbf{z} = f(\mathbf{x})$ and outputs per-concept logits $h(\mathbf{z}) \in \mathbb{R}^{k \times n}$ using argmax
 207 classification rule (see Definition 3). This covers zero-shot use of text features as linear classifiers,
 208 standard linear probing, and the affine last layer in most neural classifiers. If h is non-linear in a neural
 209 network, we absorb the layers preceding the linear layer g into the encoder ($\tilde{f} = g \circ f$) and analyze
 210 the resulting affine layer. [The definition below keeps the readout \$h\$ general to allow future extensions](#)
 211 [beyond linear heads, but all results in this paper consider the linear case, without such restrictions a](#)
 212 [high-capacity readout could make any injective encoder appear compositional by memorization.](#)

216
217 **Definition 3** ((Linearly) compositional model). An encoder $f : \mathcal{X} \rightarrow \mathcal{Z}$ is *compositional* w.r.t. \mathcal{C} if
218 there exists $h : \mathcal{Z} \rightarrow \mathbb{R}^{k \times n}$ such that, for all $\mathbf{c} \in \mathcal{C}$ and all $i \in [k]$,

$$c_i = \arg \max_{j \in [n]} h(f(\mathbf{x}_c))_{i,j}. \quad (2)$$

220 It is *linearly compositional* if h can be taken affine $h(z) = Wz + b$. We refer to h as the *readout*.
221

222 3.3 COMPOSITIONAL GENERALIZATION AND DESIDERATA

223 Given the ingredients (concept space \mathcal{C} , encoder f , and
224 training-support family \mathcal{T}), we now define a learning rule A
225 and state three desiderata for compositional generalization:
226 *divisibility*, *transferability*, and *stability*. We emphasize that
227 this desiderata is on the NN-based models that exhibit generalization,
228 as defined below, not on the representations, as
229 studied in disentangled representation learning.

230 **Considering training.** We view a learning algorithm as a
231 simple map

232 $A : D_T \mapsto h_T, \quad h_T \in \mathcal{H} \subseteq \{h : \mathcal{Z} \rightarrow \mathbb{R}^{k \times n}\},$
233 from a dataset supported on $T \subseteq \mathcal{C}$ to a readout in a cho-
234 sen hypothesis class. In practice, A is typically (stochastic)
235 gradient descent on a cross-entropy or contrastive objective,
236 covering contrastive vision–language encoders (e.g., CLIP, SigLIP),
237 standard supervised classifiers, and linear probes on self-supervised vision encoders like DINO.
238

239 **Desiderata for compositional generalization.** Suppose we train a downstream readout $h_T = A(D_T)$
240 on some $T \in \mathcal{T}$. What should h_T satisfy? We argue for three practically-motivated properties.

241 First, every combination of concept values should be *classifiable* by the readout: for any $\mathbf{c} \in \mathcal{C}$, the
242 corresponding region of the representation space of f is nonempty: there exists at least one \mathbf{z} that h_T
243 assigns the concept values \mathbf{c} . Otherwise, generalization to the full grid is impossible. We refer to this
244 property as *Divisibility*.

245 **Desideratum 1** (Divisibility). For a readout $h : \mathcal{Z} \rightarrow \mathbb{R}^{k \times n}$, every concept tuple must be classifiable:

$$\forall \mathbf{c} \in \mathcal{C} : \bigcap_{i=1}^k \mathcal{R}_{i,c_i}(h) \neq \emptyset, \quad \text{where } \mathcal{R}_{ij}(h) = \{\mathbf{z} \in \mathcal{Z} : \arg \max_{j' \in [n]} h(\mathbf{x}')_{i,j'} = j\}. \quad (3)$$

246 Divisibility is necessary but not sufficient: it guarantees that the space is divisible, but does not imply
247 that the readout will be correct. We therefore ask that, for every training set, the learned readout
248 transfers to the full grid; we refer to this as *Transferability*.

249 **Desideratum 2** (Transferability). For every $T \in \mathcal{T}$, the trained readout $h_T = A(D_T)$ correctly
250 classifies all possible combinations of the concept space:

$$\forall \mathbf{c} \in \mathcal{C}, \forall i \in [k] : \arg \max_{j \in [n]} h_T(f(\mathbf{x}_c))_{i,j} = c_i. \quad (4)$$

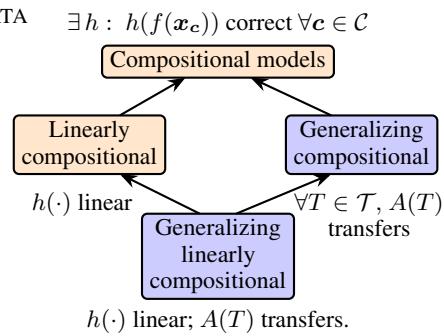
251 Note that Transferability implies Divisibility. We state Divisibility explicitly because it highlights a
252 capacity requirement: the embedding space must be able to represent all concept combinations.

253 Third, consider readouts learned from different valid supports $T \in \mathcal{T}$. Divisibility and Transferability
254 ensure do not say anything about the behavior of the classification decisions. Intuitively: if an input
255 depicts a “cat”, retraining on another valid support should not flip the preference to “dog” or push the
256 prediction toward near-indifference. We refer to this as *Stability*.

257 **Desideratum 3** (Stability). For any $T, T' \in \mathcal{T}$, any grid point \mathbf{x}_c , and any $i \in [k]$, the per-concept
258 posteriors agree across supports:

$$p_i^{(T)}(j | f(\mathbf{x}_c)) = \frac{\exp(h_T(f(\mathbf{x}_c))_{i,j})}{\sum_{k=1}^n \exp(h_T(f(\mathbf{x}_c))_{i,k})}, \quad p_i^{(T')}(\cdot | f(\mathbf{x}_c)) = p_i^{(T')}(\cdot | f(\mathbf{x}_c)). \quad (5)$$

259 **Defining compositional generalization.** We now tie the ingredients into a single tuple $\Pi =$
260 $(f, \mathcal{H}, A, \mathcal{T})$, which we use as the object that specifies the entire compositional-generalization setup:
261 the encoder, the readout class, the learning rule, and the family of valid training supports. We specify
262 compositional generalization as a process of learning readouts that generalize over *all* $T \in \mathcal{T}$ and
263 satisfy Desiderata 1–3.



264 **Figure 3: Relationship between (generalizing)
265 compositional models.** The plot
266 illustrates what requirements each
267 definition imposes on classifiability
268 (orange nodes), and transfer (purple nodes).

269

270
 271 **Definition 4** (Compositional generalization). $\Pi = (f, \mathcal{H}, A, \mathcal{T})$ exhibits *compositional generalization*
 272 if, for every $T \in \mathcal{T}$ with $h_T = A(D_T)$, Divisibility (Def. 1) and Transferability (Def. 2) hold on
 273 the full grid, and the posteriors are Stable across valid retrainings (Def. 3) for all pairs $T, T' \in \mathcal{T}$. We
 274 say that Π exhibits *linear compositional generalization* when the readout hypothesis class is linear.

275 We illustrate the relationship between (linear) models and their compositional counterparts in Figure 3.
 276 In practice one could consider relaxed or average-case variants; however, we here are interested in
 277 “ideal” representations that support compositional generalization under any data sample.

278 3.4 INSTANTIATING THE FRAMEWORK WITH CLIP

279 We instantiate the framework in the dual-encoder, vision–language
 280 setting in the style of CLIP models: images and texts are embedded
 281 into a shared space and trained to align, with captions acting as noisy
 282 descriptions of concept tuples.

283 **Encoders.** Let $f : \mathcal{X} \rightarrow \mathcal{Z}$ be the image encoder and $g : \mathcal{Y} \rightarrow \mathcal{Z}$
 284 the text encoder. At inference both are typically ℓ_2 -normalized so
 285 that inner products are cosine similarities: $\|f(\mathbf{x})\| = \|g(\mathbf{y})\| = 1$.

286 **Prompts as linear probes.** Zero-shot classification uses text features
 287 as linear classifiers. For each concept $i \in [k]$ and value $j \in [n]$, we
 288 can choose a prompt $p_{i,j}$ (e.g., “a photo of a cat”) and define a probe
 289 vector $\mathbf{w}_{i,j} := g(p_{i,j}) \in \mathcal{Z}$. Stacking these gives a readout

$$290 h(\mathbf{z}) = [\mathbf{w}_{i,j}^\top \mathbf{z}]_{i,j} \in \mathbb{R}^{k \times n}.$$

291 Here f is the representation model, while h is a linear readout whose
 292 weights come from the text encoder. Training in CLIP-like models
 293 can be viewed as learning a readout model where the *same* set of
 294 text-derived probes serves across many images; prompts often mention only parts of an image, so
 295 the system is implicitly asked to recognize objects and attributes regardless of which other concepts
 296 co-occur. We illustrate this process in Figure 4.

297 **The question we study.** Given a concept space \mathcal{C} , what structure must $\mathbf{z} = f(\mathbf{x}_c)$ have so that a
 298 single set of probes $\{\mathbf{w}_{i,j}\}$ (whether fixed by g or learned as linear probes) satisfies our desiderata
 299 (Desiderata 1–3) on the full \mathcal{C} ? In other words, what constraints does zero-shot, probe-based classi-
 300 fication place on the geometry of image representations if we want compositional generalization?

301 4 IMPLICATIONS OF COMPOSITIONALITY ON REPRESENTATIONS

302 We now ask what our desiderata *force* on representations in common training regimes. Two questions
 303 guide the section:

304 **Q1** (§4.1) *Geometry under GD with CE/BCE and stable transfer.* If A is gradient descent under
 305 binary cross-entropy, and Π exhibits compositional generalization (Def. 4) across a family of
 306 supports \mathcal{T} , what structure is *necessary* for f (and the linear readout h)? → We show additive
 307 (linear) factorization with orthogonal concept directions under natural \mathcal{T} .

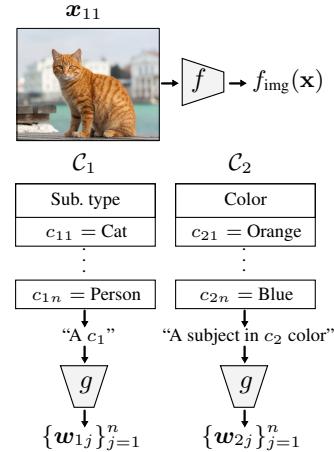
308 **Q2** (§4.2) *Minimal dimension for linear readout.* Assuming separability/divisibility and a linear
 309 (affine) readout h , what is the smallest d so that correct per-concept predictions are possible over
 310 all n^k tuples? → With affine readouts, $d \geq k$ is necessary and tight.

311 4.1 GEOMETRY OF f UNDER COMMON TRAINING SETTINGS

312 We instantiate A as gradient descent on the binary cross-entropy (logistic) loss. As in §3.4, the readout
 313 h is linear in the embedding $\mathbf{z} = f(\mathbf{x})$ (text-derived probes or learned linear heads). We illustrate the
 314 stable and unstable examples of feature representations in Figure 5.

315 **Proposition 1** (Binary case: compositional generalization implies linear factorization). Let $\Pi =$
 316 $(f, \mathcal{H}, A, \mathcal{T})$ be the tuple instantiated in Section 3.4, with linear heads \mathcal{H} and A given by GD+CE.
 317 Suppose that the training sets follow random sampling with validity rule $R(T) = 1$ if $|T| = 2^{k-1} + 1$.
 318 Assume Desiderata 1–3 are satisfied. Then under the binary grid $\mathcal{C}_i = \{0, 1\}$ with $\mathcal{X} = \{\mathbf{x}_c : c \in$
 319 $[2]^k\} \subset \mathbb{R}^d$, there exist $\{\mathbf{u}_{i,0}, \mathbf{u}_{i,1} \in \mathbb{R}^d\}_{i=1}^k$ such that for every $c \in [2]^k$ the following holds:

$$320 1. \text{ (Linearity)} \quad \mathbf{x}_c = \sum_{i=1}^k \mathbf{u}_{i,c_i}.$$



321 **Figure 4: Instantiating the
 322 framework with CLIP-like em-
 323 bedding models for analysis.**

324 2. (Cross-concept orthogonality) $(\mathbf{u}_{i,1} - \mathbf{u}_{i,0}) \perp (\mathbf{u}_{j,1} - \mathbf{u}_{j,0})$ for all $i, j \in [k]$ with $(i \neq j)$.
 325

326 *Proof sketch.* GD+CE converges to a max-margin SVM in direction Soudry et al. (2024). Under
 327 the degree of freedom of CE, stability implies consistent weight differences across retrainings. The
 328 max-margin property with different training sets ensures each datapoint is a support vector for at
 329 least one dataset, implying prediction invariance when other concepts vary. Finally, since max-margin
 330 SVM weight vectors are parallel to the shortest segment between separable convex sets, appropriate
 331 pairing of datasets yields that flipping any concept results in an additive shift, with shift vectors
 332 orthogonal across concepts.

333 Intuitively, linear factorization means that a combination space of n^k
 334 elements can be explained using only $n \cdot k$ factors. The orthogonality
 335 condition says that factors of concept values belonging to different
 336 concepts (e.g., “red” and “square”) are orthogonal to each other, but
 337 no requirement is placed on the factors of concept values belonging to
 338 the same concept (e.g., “red” and “blue”). Additionally, we note that
 339 linear factorization in itself is not trivial - the fact that n^k datapoints
 340 can be explained using $n \cdot k$ factors does not have to hold for any
 341 linearly compositional model. We illustrate this with examples in
 342 Appendix C.4.

343 The datapoint requirement can be interpreted as operating in either (i)
 344 a minimal-learning regime for extrapolating to the whole grid (as in
 345 Compositional Risk Minimization framework Mahajan et al. (2025)),
 346 where $|T| = 1 + k(n - 1)$ suffices to extrapolate to the whole grid,
 347 or (ii) a large-sample regime in which random sampling yields near-
 348 complete coverage of the concept space. That is, the conclusions of
 349 Proposition 1 hold for $1 + c \leq |T| \leq 1 + 2^{c-1}$ for $c \geq 2$.

350 **Takeaway §4.1.** Training under common GD+CE over embeddings to
 351 generalize compositionally and stably requires linear factorization and
 352 orthogonal of unrelated concept factors.

353 4.2 PACKING AND MINIMUM DIMENSION

355 Motivated by the separability axiom, we ask a basic capacity
 356 question: what is the minimum embedding dimension d needed
 357 to support Divisibility (Desideratum 1), i.e. realize all possible
 358 n^k combinations? The following result gives a tight lower
 359 bound. Proof and its sketch in Appendix F.

360 **Proposition 2** (Minimum dimension for linear probes). For k
 361 concepts, each with n values, suppose there exist linear probes
 362 that correctly classify each concept value for all n^k combinations
 363 from embeddings $f(\mathbf{x}) \in \mathbb{R}^d$. Then necessarily $d \geq k$.

364 Importantly, the bound is independent of the number of values
 365 n per concept, depending only on the number of concepts k .
 366 This holds whether each factor is discrete or continuous: the
 367 proof requires only that we can distinguish any two values
 368 per factor, which continuous factors can allow. We illustrate
 369 two examples of divisibility in Figure 6: on a sphere and in
 370 Euclidean space, though our formal results establish minimal
 371 dimensionality only for Euclidean space. Additional visualizations in Figure 14.

372 **Takeaway §4.2.** Minimum dimensionality scales with the number of concepts k , not values n .
 373

375 5 SURVEYING NECESSARY CONDITIONS IN PRETRAINED MODELS

376 Here, we empirically evaluate the necessary conditions for compositional generalization in pretrained
 377 models. We aim to answer the following questions:

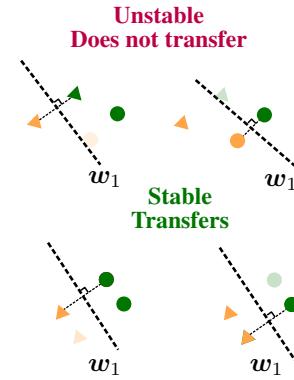


Figure 5: **Stable and unstable examples of feature representations.** The top panel shows an unstable configuration, where depending on the sample, the readout either does not transfer or unstably. Bottom panel shows a stable configuration.

$k = 2, n = 20 \quad k = 3, n = 12$

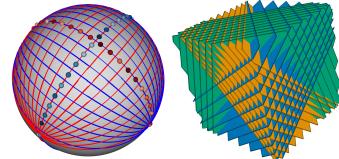


Figure 6: **Example geometries under linear compositionality.** **Left:** 2 concepts ($n = 20$ each) on a 2D sphere. Each colored stripe is the argmax boundary for one concept value; their intersections yield 20^2 combination cells. **Right:** 3 concepts ($n = 12$ each) in 3D. Colored planes show argmax boundaries; their intersections carve out 12^3 combination cells. Each boundary is colored according to the concept it belongs to.

378 **Q3** (Section 5.1) *Is linear factorization present in pre-trained models?*
 379 **Q4** (Section 5.2) *Does the degree of linear factorization correlate with compositional generaliza-
 380 tion?*
 381 **Q5** (Section 5.3) *Are per-concept difference vectors approximately orthogonal across concepts, as
 382 the theory predicts?*
 383 **Q6** (Section 5.4) *What geometric structure do factors exhibit?*

385 **Models and datasets.** We evaluate across diverse model families and training regimes: OpenAI CLIP
 386 (ViT-B/32, ViT-L/14), OpenCLIP (ViT-L/14), SigLIP (ViT-L/14 or L/16), and SigLIP 2
 387 (ViT-L/14). These span different architectures (ViT variants), training objectives (softmax vs.
 388 sigmoid), and data scales to assess generality of our findings. We evaluate on three compositional
 389 datasets: PUG-Animal (Bordes et al., 2023), dSprites (Matthey et al., 2017), and MPI3D
 390 (Gondal et al., 2019), which provide controlled concept variations across different visual domains.
 391 Additionally, we also evaluate on a compositional dataset with unnatural noun-adjective pairs (Abbasi
 392 et al., 2024) in Appendix D.3.2.

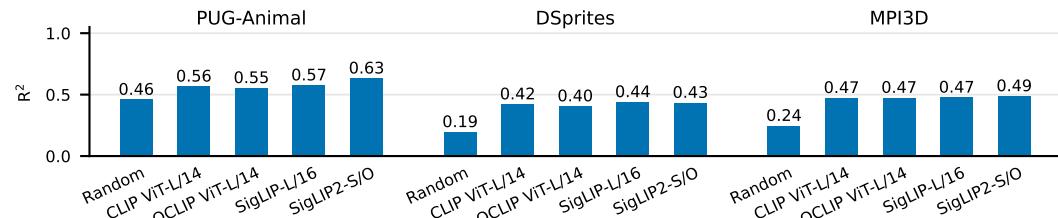
393 **Recovering the factors from representations.** Given that a linear factorization exists in the rep-
 394 resentations of a model f as detailed in Section 4.1, we can recover the factors $\{\mathbf{u}_{i,j}\}_{i \in [k], j \in [n]}$
 395 by averaging over all the datapoints that share a particular concept value (Trager et al., 2023). For
 396 analysis purposes it is sufficient to recover the centered factors. That is, given all centered embeddings
 397 $\{f(\mathbf{x}_c)\}_{c \in [n]^k}$, the factors can be recovered as $\mathbf{u}_{i,j} = \frac{1}{|\{c \in [n]^k : c_i = j\}|} \sum_{c \in [n]^k : c_i = j} f(\mathbf{x}_c)$.

398 5.1 LINEAR FACTORIZATION IN PRE-TRAINED MODELS

400 **Measuring linearity in pre-trained models.** To assess the extent of linearity present in the embed-
 401 dings, we measure whitened R^2 score on the probe span. We (1) project on the probe span to remove
 402 information of additional information the embeddings may posess beyond the concepts each dataset
 403 exposes, and (2) whiten the embedding space to ensure that the R^2 score is not inflated by a few
 404 dominant directions. Concretely, given the recovered approximate factors $\{\mathbf{u}_{i,j}\}_{i \in [k], j \in [n]}$, the R^2
 405 score is computed as

$$406 R^2 = 1 - \frac{\sum_{\mathbf{x}_c \in \mathcal{D}} \|f(\mathbf{x}_c) - \sum_{i=1}^k \mathbf{u}_{i,c_i}\|_2^2}{\sum_{\mathbf{x}_c \in \mathcal{D}} \|f(\mathbf{x}_c) - \bar{f}\|_2^2}, \quad (6)$$

408 where \mathcal{D} is the dataset, and \bar{f} is the mean embedding. Note that a score of 1.0 indicates perfect
 409 linearity. We provide intuition of linear factorization and its relation to the R^2 in Appendix C.3,
 410 additional justification of whitening in Appendix C.2, and defer the details to Appendix C.1.

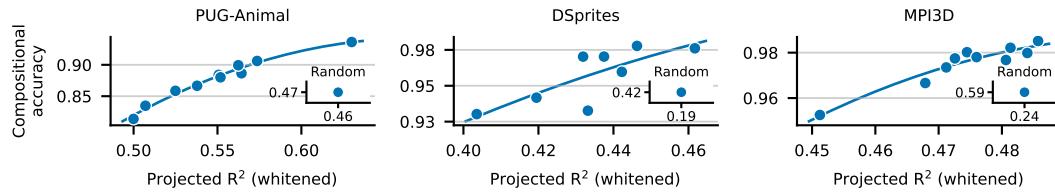
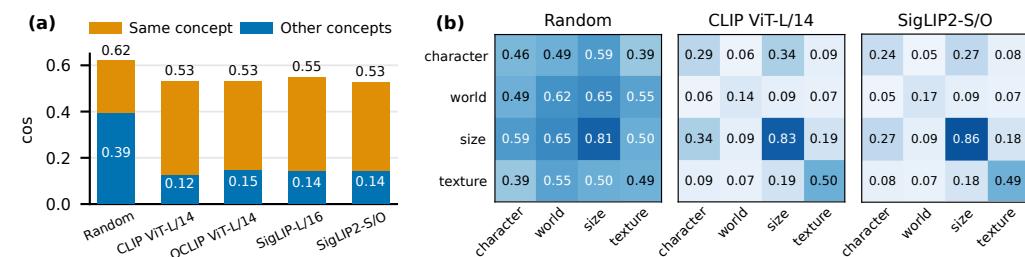


418 **Figure 7: Linear factorization partly explained current models’ embedding spaces.** Bar plots of whitened
 419 R^2 on three datasets with varying concept/value counts.

420 **Results.** Figure 7 shows projected R^2 scores across models and datasets. Among all the datasets, each
 421 model’s R^2 score is consistently above the random baseline (about 0.4–0.6 vs. 0.19–0.46, respec-
 422 tively). This suggests that embeddings are partially captured by a sum of per-concept components,
 423 while still leaving amount of information unexplained. Additionally, we observe that R^2 scores are
 424 similar across models in scale.

426 Importantly, we note that the R^2 scores, while consistently above random, are far from perfect,
 427 indicating that current models only partially satisfy the linear factorization predicted by our theory.

428 **Takeaway §5.1.** Embeddings exhibit partial linear factorization (R^2 typically 0.4–0.6), explaining a moderate
 429 fraction of the variance via per-concept components. The gap from perfect scores highlights a divergence
 430 from the ideal compositional structure theory predicts.

432 5.2 COMPOSITIONAL GENERALIZATION AND LINEAR FACTORIZATION
433434 We ask whether the *degree* of linear factorization predicts compositional generalization.
435436 **Metrics and setup.** For each dataset/model, we train linear probes on 90% of all concept combinations
437 and evaluate on the held-out 10% unseen compositions (cf. sampling discussion in Section 4.1). This
438 corresponds to a validity rule $R(T) = 1$ if $|T| = 0.9 n^k$. We compute *Projected R*² on *whitened*
439 P_{Wx} (Section 5.1) and pair it with a *compositional accuracy* score on the held-out compositions. All
440 encoders from Section 5.1 are included; we use a randomly-initialized OpenCLIP ViT-L/14 model as
441 a baseline by training linear probes on the embeddings. We use linear probing rather than zero-shot
442 classification to avoid prompt-specification issues; nonetheless, the same conclusions hold in the
443 zero-shot setting (discussion and results in Appendix D.3).444 Compositional accuracy is computed by training one linear classifier per concept, then averaging
445 each classifier’s accuracy on the held-out combinations. For example, DSprites has 6 concepts (shape,
446 orientation, x position, y position, size, and color); we train 6 classifiers and report their mean
447 accuracy on unseen combinations.448 **Results.** Across all datasets *higher Projected R*² *coincides with higher compositional accuracy*
449 (Fig. 8). Random encoders consistently occupy the low- R^2 /low-accuracy corner, indicating the effect
450 is not a dimensionality or scale artifact. This aligns with the linear factorization view: as per-concept
451 components explain more variance, linear probes have cleaner axes to recombine, yielding better
452 compositional transfer.453
454 **Figure 8: Linearity in embeddings correlates with compositional generalization.** We show the correlation
455 between projected R^2 (linear factorization) and compositional generalization performance across three datasets
456 and multiple vision-language models.
457458 **Takeaway §5.2:** Linear factorization in pre-trained models correlates positively with compositional generalization performance.
459460 5.3 ORTHOGONALITY OF FACTORS
461462 Our theory (Proposition 1) predicts that per-concept difference vectors should be orthogonal *across*
463 concepts under linear factorization, **but not necessarily within-concept** in generalizing linearly
464 compositional models. We empirically test this prediction by testing orthogonality in two ways: (1)
465 within-concept and (2) across-concept. We defer the details to Appendix D.1.
466467 **Figure 9: Pre-trained models exhibit strong within-concept direction similarity and partial orthogonality
468 across concepts.** (a) Aggregated within-concept direction similarity over datasets. (b) Pairwise average cosine
469 across concepts. Lower values indicate greater orthogonality between factor vectors.
470471 **Results.** Pretrained encoders exhibit consistently higher direction similarity within concepts than
472 across concepts (Fig. 15): within-concept similarity (a) is around ≈ 0.53 – 0.55 , whereas cross-concept
473 similarity (b) is ≈ 0.12 – 0.15 . The randomly-initialized encoder also exhibits this pattern; however,
474 the across-concept similarity is higher (0.39 on average) compared to pre-trained models.
475

486
487
488
489

Takeaway §5.3: Pre-trained models exhibit higher direction similarity within concepts than across concepts, with difference vectors across concepts only partially orthogonal and thus deviating from the ideal of perfect cross-concept orthogonality.

490
491

5.4 DIMENSIONALITY OF FACTORS

492
493
494
495

Our theory predicts that generalizing linear compositional models require linear factorization of embeddings into per-concept components. When many concepts must coexist in a fixed embedding dimension, each concept’s subspace should be low-rank to enable efficient packing (see Section 5.1). Here, we investigate to which extent concept factors in pretrained models are low-dimensional.

496
497
498
499
500
501

Metrics and setup. We study factor geometry after projection onto the probe span (as described in Section 5.1). For each concept $i \in [k]$ with value set \mathcal{C}_i ($n_i = |\mathcal{C}_i|$), we aggregate the per-concept factors $\mathbf{u}_{i,j}$ for $j \in \mathcal{C}_i$ into a matrix $\mathbf{U}_i \in \mathbb{R}^{n_i \times d}$. We then analyze (1) the dimensionality of each concept and (2) how this dimensionality compares across models. To do so, we examine the spectrum of \mathbf{U}_i (PCA on its rows) and report the number of principal components required to explain 95% of the variance across values j .

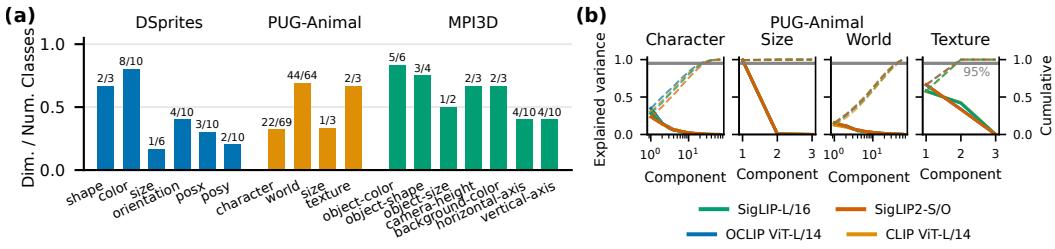
502
503
504
505
506
507
508
509510
511
512

Figure 10: Dimensionality of factors. (a) Normalized ranks across datasets, and concepts under OpenCLIP L/14 (text above bars shows the effective dimension of the factor and the total number of values for that concept). (b) Variance explained in the recovered factors on PUG-Animal dataset over models exhibit high-similarity.

513
514
515
516
517
518
519
520
521

Results. Figure 10 shows that most semantic factors lie in low-dimensional subspaces relative to their cardinality (e.g., DSprites size 1/6, MPI3D vertical-axis 2/5). Across datasets and models, $\geq 95\%$ of variance is typically captured by one or two PCs, indicating that spectra align closely by concept. Discrete concepts show higher rank, potentially due to being composed of more atomic attributes. Overall, semantic factors are low-rank and geometrically similar across models, while discrete concepts are not strictly low-rank.

522
523
524
525
526

We also visualize DSprites factors (orientation, size, y -position) in Figure 11. Each subspace is effectively $< 3D$ ($\geq 95\%$ variance in ≤ 2 PCs). Size and y -position trace near-1D path, while orientation forms a smooth 2D curve with small curvature, matching the effective dimensions in Fig. 10.

527
528
529
530
531
532

Takeaway §5.4: Ordinal and continuous factors are typically low-dimensional (typically $\leq 4D$), while discrete factors show higher rank, potentially because they encode multiple underlying attributes. All models exhibit similar factor geometry across encoders.

6 CONCLUSION

533
534
535
536
537
538
539

We showed that compositional generalization imposes strong structural requirements on neural representations. Under common training with linear heads, our desiderata of divisibility, transferability, and stability force embeddings to factorize additively into per-concept components with orthogonality across concepts, and require dimension at least equal to the number of concepts. Empirically, CLIP and SigLIP families partially exhibit this geometry, and the quality of factorization correlates with compositional generalization performance. These findings clarify when linear structure is not incidental but necessary, providing both theoretical guidance and practical diagnostics for building models that generalize compositionally.

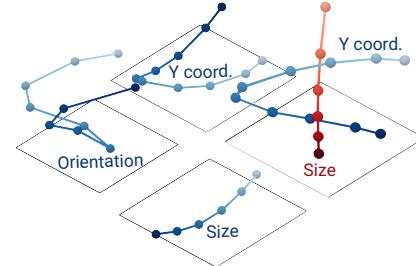


Figure 11: Geometry of factors $\{u_{i,j}\}$ in OpenCLIP ViT-L/14. The factors are often low dimensional and near co-linear within a concept. Across concepts, the factors are near-orthogonal.

540 REFERENCES
541

542 Reza Abbasi, Mohammad Hossein Rohban, and Mahdieh Soleymani Baghshah. Deciphering the role of
543 representation disentanglement: Investigating compositional generalization in clip models, 2024. URL
544 <https://arxiv.org/abs/2407.05897>.

545 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. In *ICLR*
546 2017 Workshop, 2017.

547 Rim Assouel, Declan Campbell, and Taylor Webb. Visual symbolic mechanisms: Emergent symbol processing
548 in vision language models, 2025. URL <https://arxiv.org/abs/2506.15871>.

549 Wentao Bao, Lichang Chen, Heng Huang, and Yu Kong. Prompting language-informed distribution for
550 compositional zero-shot learning, 2024. URL <https://arxiv.org/abs/2305.14428>.

551 552 Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel Machines*.
553 MIT Press, 2007.

554 555 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives,
556 2014. URL <https://arxiv.org/abs/1206.5538>.

557 558 Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in svm classifiers. In *Proceedings of the*
559 *Seventeenth International Conference on Machine Learning*, ICML '00, pp. 57–64, San Francisco, CA, USA,
560 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

561 562 Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent, and Ari S. Morcos.
563 Pug: Photorealistic and semantically controllable synthetic data for representation learning, 2023. URL
564 <https://arxiv.org/abs/2308.03977>.

565 566 Declan Campbell, Sunayana Rane, Tyler Giallanza, et al. Understanding the limits of vision language models
567 through the lens of the binding problem, 2025.

568 569 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin.
570 Emerging properties in self-supervised vision transformers, 2021. URL <https://arxiv.org/abs/2104.14294>.

571 Laure Ciernik, Lorenz Linhardt, Marco Morik, Jonas Dippel, Simon Kornblith, and Lukas Muttenthaler. Objective
572 drives the consistency of representational similarity across datasets, 2025. URL <https://arxiv.org/abs/2411.05561>.

573 C. Cortes and V. Vapnik. Support vector networks. *Machine Learning*, 20:273–297, 1995.

574 Hristos S. Courellis, Juri Minxha, Araceli R. Cardenas, et al. Abstract representations emerge in human
575 hippocampal neurons during inference. *Nature*, 632(8026):841–849, 2024. doi: 10.1038/s41586-024-07799-x.

576 Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Ramakrishna Vedantam. Hyperbolic
577 image-text representations, 2024. URL <https://arxiv.org/abs/2304.09172>.

578 Andrea Dittadi, Frederik Träuble, Francesco Locatello, Manuel Wüthrich, Vaibhav Agrawal, Ole Winther, Stefan
579 Bauer, and Bernhard Schölkopf. On the transfer of disentangled representations in realistic settings, 2021.
580 URL <https://arxiv.org/abs/2010.14407>.

581 Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of disentangled
582 representations. In *International Conference on Learning Representations*, 2018. URL <https://openreview.net/forum?id=By-7dz-AZ>.

583 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-
584 Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario
585 Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposition. *Transformer Circuits*
586 *Thread*, 2022. https://transformer-circuits.pub/2022/toy_model/index.html.

587 Joshua Engels, Eric J. Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model features
588 are one-dimensionally linear. In *International Conference on Learning Representations (ICLR)*, 2025. URL
589 <https://openreview.net/forum?id=d63a4AM4hb>.

590 Jiahai Feng, Stuart Russell, and Jacob Steinhardt. Monitoring latent world states in language models with
591 propositional probes. In *International Conference on Learning Representations (ICLR)*, 2025. URL
592 <https://openreview.net/forum?id=0yvZm2AjUr>.

594 Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis. *Cognition*,
 595 28(1–2):3–71, 1988.

596

597 Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello, Martin Breidt,
 598 Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, and Stefan Bauer. On the transfer of
 599 inductive bias from simulation to the real world: a new disentanglement dataset. In H. Wallach, H. Larochelle,
 600 A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing
 Systems*, volume 32. Curran Associates, Inc., 2019. URL <https://proceedings.neurips.cc/paper/2019/file/d97d404b6119214e4a7018391195240a-Paper.pdf>.

601

602 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1. MIT Press,
 603 2016.

604

605 Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial neural
 606 networks, 2020. URL <https://arxiv.org/abs/2012.05208>.

607

608 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed,
 609 and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational framework.
 610 In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=Sy2fzU9g1>.

611

612 Irina Higgins, David Amos, David Pfau, Sébastien Racanière, Loic Matthey, Danilo Rezende, and Alexander
 613 Lerchner. Towards a definition of disentangled representations, 2018. URL <https://arxiv.org/abs/1812.02230>.

614

615 Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. *Neural
 616 Computation*, 18:1527–1554, 2006.

617

618 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation hypothesis, 2024.
 619 URL <https://arxiv.org/abs/2405.07987>.

620

621 Diederik Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality in neural networks: A survey
 622 and taxonomy. *Journal of Artificial Intelligence Research*, 73:673–728, 2022.

623

624 Devon Jarvis, Richard Klein, Benjamin Rosman, and Andrew M. Saxe. On the specialization of neural modules,
 625 2024. URL <https://arxiv.org/abs/2409.14981>.

626

627 Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, and Victor Veitch. On the origins of linear
 628 representations in large language models, 2024. URL <https://arxiv.org/abs/2403.03867>.

629

630 Elias Kempf, Simon Schrödi, Max Argus, and Thomas Brox. When and how does clip enable domain and
 631 compositional generalization?, 2025. URL <https://arxiv.org/abs/2502.09507>.

632

633 Daniel Keysers, Nathanael Sch"arli, Nicolas Scales, Hylke Buisman, Daniel Furrer, Sergey Kashubin, Gregor
 634 Staniszewski, Terra Blevins, Luke Zettlemoyer, and Slav Petrov. Measuring compositional generalization:
 635 A comprehensive method on natural language semantics. In *International Conference on Learning
 636 Representations (ICLR)*, 2020.

637

638 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Jennifer Dy and Andreas Krause (eds.),
 639 *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of
 640 Machine Learning Research*, pp. 2649–2658. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/kim18b.html>.

641

642 Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014. URL <https://arxiv.org/abs/1312.6114>.

643

644 Darina Koishigarina, Arnas Uselis, and Seong Joon Oh. Clip behaves like a bag-of-words model cross-modally
 645 but not uni-modally, 2025. URL <https://arxiv.org/abs/2502.03566>.

646

647 Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of
 648 sequence-to-sequence recurrent networks. In *Proceedings of the 35th International Conference on Machine
 649 Learning (ICML)*, 2018.

650

651 Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building machines that
 652 learn and think like people. *Behavioral and brain sciences*, 40:e253, 2017.

653

654 Chungpa Lee, Sehee Lim, Kibok Lee, and Jy yong Sohn. On the similarities of embeddings in contrastive
 655 learning, 2025. URL <https://arxiv.org/abs/2506.09781>.

648 Qiufu Li, Huibin Xiao, and Linlin Shen. Bce vs. ce in deep feature learning, 2025. URL <https://arxiv.org/abs/2505.05813>.

649

650

651 Qiyao Liang, Daoyuan Qian, Liu Ziyin, and Ila Fiete. Compositional generalization via forced rendering of

652 disentangled latents, 2025. URL <https://arxiv.org/abs/2501.18797>.

653

654 Hyesu Lim, Jinho Choi, Jaegul Choo, and Steffen Schneider. Sparse autoencoders reveal selective remapping of

655 visual concepts during adaptation, 2025. URL <https://arxiv.org/abs/2412.05276>.

656

657 Samuel Lipp and Kim Stachenfeld. When does compositional structure yield compositional generalization? a

658 kernel theory, 2025. URL <https://arxiv.org/abs/2405.16391>.

659

660 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier

661 Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations,

662 2019. URL <https://arxiv.org/abs/1811.12359>.

663

664 Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael Tschannen.

665 Weakly-supervised disentanglement without compromises, 2020. URL <https://arxiv.org/abs/2002.02886>.

666

667 Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe: Can vision-

668 language foundation models reason compositionally?, 2023. URL <https://arxiv.org/abs/2212.07796>.

669

670 Divyat Mahajan, Mohammad Pezeshki, Charles Arnal, Ioannis Mitliagkas, Kartik Ahuja, and Pascal Vincent.

671 Compositional risk minimization, 2025. URL <https://arxiv.org/abs/2410.06303>.

672

673 Amir Mohammad Karimi Mamaghan, Samuele Papa, Karl Henrik Johansson, Stefan Bauer, and Andrea Dittadi.

674 Exploring the effectiveness of object-centric representations in visual question answering: Comparative

675 insights with foundation models, 2024. URL <https://arxiv.org/abs/2407.15589>.

676

677 Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement testing sprites

678 dataset. <https://github.com/deepmind/dsprites-dataset/>, 2017.

679

680 Milton L. Montero, Jeffrey S. Bowers, Rui Ponte Costa, Casimir J. H. Ludwig, and Gaurav Malhotra. Lost in

681 latent space: Disentangled models and the challenge of combinatorial generalisation, 2024. URL <https://arxiv.org/abs/2204.02283>.

682

683 Milton Llera Montero, Casimir JH Ludwig, Rui Ponte Costa, Gaurav Malhotra, and Jeffrey Bowers. The role of

684 disentanglement in generalisation. In *International Conference on Learning Representations*, 2021. URL

685 <https://openreview.net/forum?id=qbH974jKUVy>.

686

687 Mateusz Pach, Shyamgopal Karthik, Quentin Bouliot, Serge Belongie, and Zeynep Akata. Sparse autoencoders

688 learn monosemantic features in vision-language models, 2025. URL <https://arxiv.org/abs/2504.02821>.

689

690 Avik Pal, Max van Spengler, Guido Maria D'Amely di Melendugno, Alessandro Flaborea, Fabio Galasso,

691 and Pascal Mettes. Compositional entailment learning for hyperbolic vision-language models, 2024. URL

692 <https://arxiv.org/abs/2410.06912>.

693

694 Kihoo Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry of large

695 language models, 2023. URL <https://arxiv.org/abs/2311.03658>.

696

697 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Learning

698 transferable visual models from natural language supervision. In *Proceedings of the 38th International*

699 *Conference on Machine Learning (ICML)*, 2021.

700

701 Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Schölkopf, and Pradeep Ravikumar. Learning

702 interpretable concepts: Unifying causal representation learning and foundation models, 2024. URL <https://arxiv.org/abs/2402.09236>.

702

703 Geoffrey Roeder, Luke Metz, and Diederik P. Kingma. On linear identifiability of learned representations, 2020.

704 URL <https://arxiv.org/abs/2007.00810>.

705

706 Lukas Schott, Julius von Kügelgen, Frederik Träuble, et al. Visual representation learning does not generalize

707 strongly within the same domain, 2022. URL <https://arxiv.org/abs/2107.08221>.

708

709 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo

710 Coombes, Aarush Mullis, Ramith Katta, Romain Kaczmarczyk, and Jenia Jitsev. Laion-400m: Open dataset

711 of clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021a.

702 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta,
 703 Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400 million
 704 image-text pairs, 2021b. URL <https://arxiv.org/abs/2111.02114>.

705 Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised disentanglement
 706 with guarantees, 2020. URL <https://arxiv.org/abs/1910.09772>.

707 Ankit Sonthalia, Arnas Uselis, and Seong Joon Oh. On the rankability of visual embeddings, 2025. URL
 708 <https://arxiv.org/abs/2507.03683>.

709 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of
 710 gradient descent on separable data, 2024. URL <https://arxiv.org/abs/1710.10345>.

711 Zoltán Gendler Szabó. The case for compositionality. In Markus Werning, Wolfram Hinzen, and Edouard
 712 Machery (eds.), *The Oxford Handbook of Compositionality*. Oxford University Press, 2012.

713 Harrish Thasarathan, Julian Forsyth, Thomas Fel, Matthew Kowal, and Konstantinos Derpanis. Universal sparse
 714 autoencoders: Interpretable cross-model concept alignment, 2025. URL <https://arxiv.org/abs/2502.03714>.

715 Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
 716 Ross. Winoground: Probing vision and language models for visio-linguistic compositionality, 2022. URL
 717 <https://arxiv.org/abs/2204.03162>.

718 Matthew Trager, Pramuditha Perera, Luca Zancato, Alessandro Achille, Parminder Bhatia, and Stefano Soatto.
 719 Linear spaces of meanings: Compositional structures in vision-language models, 2023. URL <https://arxiv.org/abs/2302.14383>.

720 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil
 721 Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff, Jeremiah Harmsen, An-
 722 dreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language encoders with improved semantic
 723 understanding, localization, and dense features, 2025. URL <https://arxiv.org/abs/2502.14786>.

724 Vishaal Uandarao, Ameya Prabhu, Adhiraj Ghosh, et al. No ‘zero-shot’ without exponential data: Pretraining
 725 concept frequency determines multimodal model performance, 2024. URL <http://arxiv.org/abs/2404.04125>.

726 Vishaal Uandarao, Mehdi Cherti, Shyamgopal Karthik, Jenia Jitsev, Samuel Albanie, and Matthias Bethge. A
 727 good crepe needs more than just sugar: Investigating biases in compositional vision-language benchmarks,
 728 2025. URL <https://arxiv.org/abs/2506.08227>.

729 Arnas Uselis, Andrea Dittadi, and Seong Joon Oh. Does data scaling lead to visual compositional generalization?,
 730 2025. URL <https://arxiv.org/>.

731 Haoxiang Wang. Enhancing compositional generalization via compositional feature alignment, 2025. URL
 732 <https://arxiv.org/>.

733 Nicholas Watters, Loic Matthey, Christopher P. Burgess, and Alexander Lerchner. Spatial broadcast decoder: A
 734 simple architecture for learning disentangled representations in vaes, 2019. URL <https://arxiv.org/abs/1901.07017>.

735 Orion Weller, Michael Boratko, Iftekhar Naim, and Jinyuk Lee. On the theoretical limitations of embedding-
 736 based retrieval, 2025. URL <https://arxiv.org/abs/2508.21038>.

737 Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Compositional general-
 738 ization from first principles, 2023. URL <http://arxiv.org/abs/2307.05596>.

739 Guangyue Xu, Parisa Kordjamshidi, and Joyce Chai. Prompting large pre-trained vision-language models for
 740 compositional concept learning, 2022. URL <https://arxiv.org/abs/2211.05077>.

741 Yutaro Yamada, Yingtian Tang, Yoyo Zhang, and Ilker Yildirim. When are lemons purple? the concept association
 742 bias of vision-language models, 2024. URL <https://arxiv.org/abs/2212.12043>.

743 Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why vision-
 744 language models behave like bags-of-words, and what to do about it?, 2023. URL <https://arxiv.org/abs/2210.01936>.

745 Vladimir Zaigrajew, Hubert Baniecki, and Przemyslaw Biecek. Interpreting clip with hierarchical sparse
 746 autoencoders, 2025. URL <https://arxiv.org/abs/2502.20578>.

756 Xiaohua Zhai, Alexander Zhang, Alexander Kolesnikov, Lucas Beyer, Thomas Kipf, Jakob Kuhn, Matthias
757 Minderer, Gabriel Ilharco, Dustin Tran, and Andreas Steiner. Lit: Zero-shot transfer with locked-image text
758 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
759 2022.

760 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
761 pre-training, 2023. URL <https://arxiv.org/abs/2303.15343>.

762 Günter M. Ziegler. *Lectures on polytopes*. Springer-Verlag, New York, 1995. URL http://www.worldcat.org/search?qt=worldcat_org_all&q=9780387943657.

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Appendix

CONTENTS

A Notation and Symbols	17
B Extended discussion of related work	18
C Additional information	19
C.1 Testing linear factorization	19
C.2 Whitening in measuring linear factorization	19
C.3 Intuition of linear factorization	20
C.4 Non-triviality of linear factorization of linearly compositional models	20
D Additional experimental results	23
D.1 Orthogonality of factors	23
D.2 Dimensionality of factors	24
D.3 Experiments using text encoders as probes	25
D.3.1 Experiments on PUG-Animal	25
D.3.2 Experiments on Imagenet-AO	28
E Sufficiency of linear factorization for compositionally generalization	32
F Packing and minimum dimension	36
G Proofs	38
H Examples of compositionally generalizable representations	44
H.1 Case 1: Minimal dimensionality probing	44
H.2 Case 2: Maximum dimensionality probing of CLIP-like models	45
I What if stability is not required?	50
I.1 Counterexamples to linear factorization even as $n \rightarrow \infty$	50

864 **A NOTATION AND SYMBOLS**
865866 This section fixes notation and collects basic identities used throughout the appendix.
867868 Table 1: Key notation used in the analysis.
869

870 Notation	871 Description
872 <i>Concepts and datasets</i>	
873 $\mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_k$	Concept space with $ \mathcal{C}_i = n$
874 $\mathcal{X} = \{\mathbf{x}_c \mid c \in \mathcal{C}\}$	Representation space
875 \mathcal{D}^c	Cross-dataset of size $1 + k(n - 1)$ (see Definition 5)
876 $ S $	Dataset size $ S $
877 <i>Counts</i>	
878 $N_{i,j}(S)$	Marginal count of concept i taking value j in dataset S
879 <i>Interventions</i>	
880 $c(i \rightarrow j)$	Concept index with the i -th value set to j
881 $\mathbf{x}_{c(i \rightarrow j)}$	Intervened representation with concept i set to j
882 \bar{c}_i	Binary complement $1 - c_i$ (when $\mathcal{C}_i = \{0, 1\}$)
883 <i>Probes and parameters</i>	
884 $\mathbf{w}_{i,j}^{(\mathcal{D}^c)}$	Weight vector for concept i , class j
885 $b_{i,j}^{(\mathcal{D}^c)}$	Bias term for concept i , class j
886 <i>Factorization objects</i>	
887 $\mathbf{P} \in \mathbb{R}^{d \times d}$	Projection matrix
888 $\mathbf{u}_{i,c_i} \in \mathbb{R}^d$	Linear factor for concept i , value c_i

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **B EXTENDED DISCUSSION OF RELATED WORK**
919

920 A large body of literature has studied the usefulness and implications of learning disentangled
921 representations in an unsupervised way (Bengio et al., 2014; Lake et al., 2017). Most commonly,
922 the goal is to learn a generative model, usually through a VAE (Kingma & Welling, 2014), that can
923 compress the data in a disentangled manner, in a way that allows to reconstruct these representations.
924 While shown to be impossible without additional assumptions (Locatello et al., 2019), under weak
925 supervision learning is possible (Shu et al., 2020; Locatello et al., 2020). Measuring the degree of
926 disentanglement in these models is in itself non-trivial and various metrics have been proposed, e.g.
927 by measuring disentanglement by performing interventions on the representations (Higgins et al.,
928 2017; Kim & Mnih, 2018). The DCI framework (Eastwood & Williams, 2018) proposes desiderata
929 of properties disentangled representations should satisfy, namely disentanglement, completeness, and
930 informativeness, and proposes a metric to measure them. Some works also consider what constitutes
931 a good disentanglement (Higgins et al., 2018) and propose a conceptual framing of meaning behind
932 disentangled representations with respect to the data generative process in terms of group actions of
933 transformations.
934

935 Abbasi et al. (2024) investigate the role of representation disentanglement in compositional gen-
936 eralization in CLIP models. Using metrics such as DCI, they find that CLIP models with more
937 disentangled text and image representations exhibit higher compositional OOD accuracy on their
938 attribute-object dataset (ImageNet-AO). This work is complementary to ours. Their study explores
939 correlations between disentanglement and compositional generalization by probing CLIP embeddings
940 with respect to the adjective and noun components present in the inputs. For instance, they estimate
941 “attribute” and “object” subspaces by feeding isolated adjectives or nouns into the text encoder, or
942 by generating isolated attributes/objects via a text-to-image model and embedding them with CLIP.
943 However, this approach assumes that CLIP’s embedding space is additively decomposed with respect
944 to individual words, an assumption that is not guaranteed to hold. Indeed, Yamada et al. (2024)
945 show that word embeddings in language models are often highly entangled with associated con-
946 cepts. In contrast, our necessary condition does not rely on word-level decomposition. We posit that
947 models achieving perfect downstream compositional performance must possess linearly factorized
948 representations that separate per-concept components, independent of how an encoder processes
949 individual words. In short, our work provides principled motivation for analyses of representational
950 decomposition, whereas Abbasi et al. (2024) offer an empirical correlation study based on CLIP’s
951 emergent disentanglement.
952

953 Lipll & Stachenfeld (2025) investigate when a particular form of compositionally structured rep-
954 resentations, specifically representations whose similarity depends only on how many underlying
955 components two inputs share, supports downstream compositional generalization. Using kernel
956 theory, they characterize exactly which tasks linear readouts on top of such representations can solve,
957 showing that these models are fundamentally restricted to conjunction-wise additive functions. In
958 contrast, we focus on a specific subclass of compositional tasks: identifying factors of inputs that never
959 co-occur during training. While Lipll & Stachenfeld (2025) characterize what kinds of generalization
960 are possible under a compositional representational structure, we ask the complementary question:
961 given perfect downstream performance on such a task, what representational structure must the model
962 necessarily possess under the desiderata we specify?
963

964
965
966
967
968
969
970
971

972 C ADDITIONAL INFORMATION
973974 In this section we expand on linear factorization, make a note on the non-triviality of linear fac-
975 torization, and expand on the reasoning of using whitening in measuring linear factorization. In
976 Appendix C.1 we summary the overall procedure of measuring linear factorization. In Appendix C.3
977 we provide an intuition of linear factorization through a simple example. In Appendix C.4 we show
978 that linear factorization is not a trivial property of linearly compositional models, and illustrate a few
979 cases where the representation cannot be decomposed into a sum of per-concept components even
980 under perfect classification.981 In contrast to these works, our work is motivated by the same goal of developing systems that exhibit
982 transfer. However, we differ in two key aspects: (1) we do not assume any potential useful structure
983 of the representations for the downstream tasks; instead, our desiderata are strictly based on the
984 downstream performance of the models when learning under a subset of the data space, and (2) we
985 study general NN-based models, which most often include a linear layer, like CLIP and SigLIP, and
986 ask what properties *must* arise if transfer under a subset of the data is possible.987
988 C.1 TESTING LINEAR FACTORIZATION989 Large pre-trained models may encode information beyond the specific concepts in our dataset. To
990 isolate the conceptual structure, we train per-concept linear probes. For each concept $i \in [k]$ and
991 value j , we learn a linear probe $\mathbf{w}_{i,j}$, form the probe matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, where m is the number
992 of values across all concepts, and project embeddings onto the joint probe span. We do this by first
993 computing the projection matrix $P_{\mathbf{W}}$ and then projecting the embeddings onto the joint probe span.
994995 We report *Projected R*² after projecting embeddings onto the probe span. To prevent trivial high
996 scores from dominant directions, we whiten the embeddings by applying PCA and normalizing to
997 unit covariance. We compute metrics on $P_{\mathbf{W}}\mathbf{x}$ after PCA-whitening, applying the same transform to
998 data and reconstructions. We elaborate on this below.999
1000 C.2 WHITENING IN MEASURING LINEAR FACTORIZATION1001 We need to be cautious when assessing the degree of linearity in the representations, otherwise, we
1002 may mistake high R^2 scores for linear factorization when in fact the representation is not linearly
1003 factored. For example, if certain concept values dominate the variance in the representation, the R^2
1004 may be inflated. To address this, in the main experiments in Section 5.1 we whiten the representations
1005 by applying PCA and normalizing to unit covariance. This ensures that a few dominant directions do
1006 not dominate the variance in the representation. If the representations are already linearly factored,
1007 this will not affect the R^2 score.1008 We illustrate this through three examples in a hypothetical two-dimensional representation space with
1009 two concepts in Figure 12. In the first case ((a)) the representation is already linearly factored: each
1010 embedding is written as a sum of two concept components without noise. This yields an R^2 score of
1011 1; whitening does not change the score.1012 In the second case ((b)) the representation is partly linear, but the noise ϵ_{ij} , independent of the
1013 concept values, dominates the overall variance. Since the scale of the noise is generally lower than
1014 the scale of the first concept component, the R^2 score is high at 0.813. Whitening, however, removes
1015 the dominant direction, and the R^2 score drops to 0.509.1016 Lastly, in the third case ((k)) the representation does not express any information about the second
1017 concept, yet the R^2 score is still high at 0.991. Again, whitening reveals the underlying issue and
1018 changes the score to 0.564 due to the noise in the embeddings.1019
1020
1021
1022
1023
1024
1025

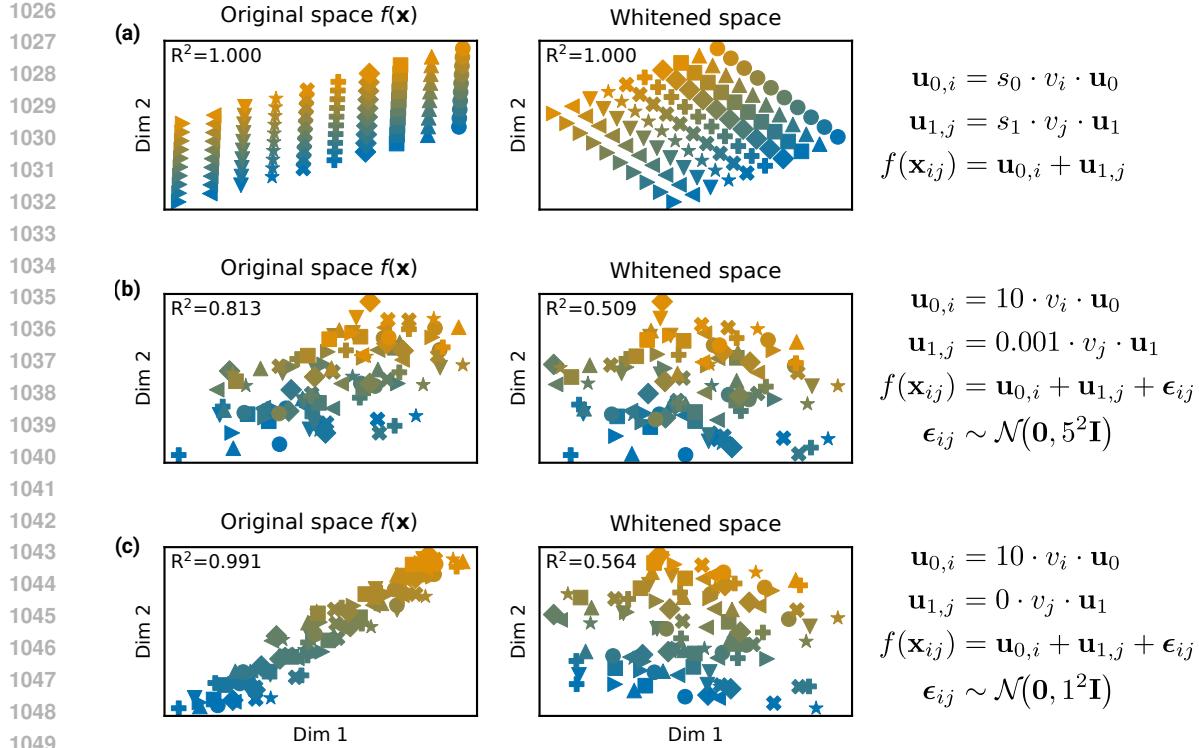


Figure 12: **Whitening in measuring linear factorization.** The representation is not linearly factored, but the R^2 score is high due to the dominance of the dominant direction.

C.3 INTUITION OF LINEAR FACTORIZATION

We measure the extent of linearity present in the embeddings through the R^2 score. Intuitively, the score quantifies how well the representation can be decomposed into a sum of per-concept components. Recall from Definition 1 that we assume a presence of k concepts, each of which can take any of the n values. A value of $R^2 = 1$ indicates that the representation can be perfectly decomposed into a sum of per-concept components.

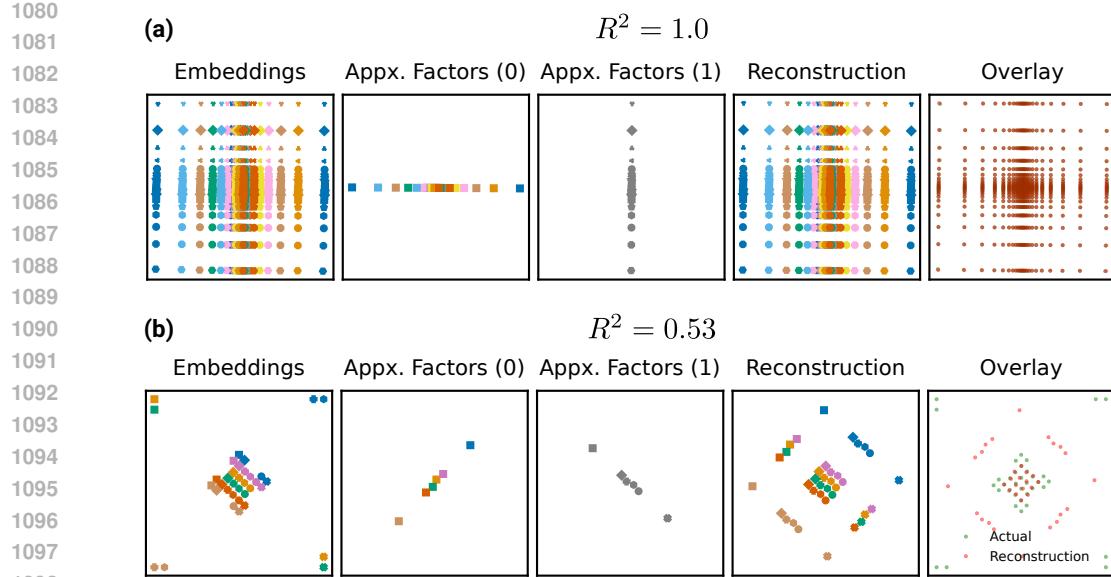
We illustrate a few examples to give intuition. We consider a two-dimensional representation space with two concepts ($k = 2$). In the first case, we consider a case of 24 values per concept ($n = 24$). In the second case, we consider a case of 6 values per concept ($n = 6$). In both cases the reported R^2 are w.r.t. the whitened space.

The first case (Figure 13, (a)) exhibits perfect linearity in the embeddings with $R^2 = 1$. In this case, the $n^2 = 24^2 = 576$ can be perfectly generated using only $2 \cdot 24 = 48$ vectors in \mathbb{R}^2 . The second and third columns of the plot show the approximations of the underlying factors $\mathbf{u}_{0,i}, \mathbf{u}_{1,j}, i, j \in [n]$. As expected, using these approximate factors allow us to perfectly reconstruct the representation, shown in the fourth column.

The second case (Figure 13, (b)) exhibits lower degree of linearity with $R^2 = 0.53$. As such, we cannot perfectly reconstruct the representation using only the approximate factors, as shown in the last column of the plot.

C.4 NON-TRIVIALITY OF LINEAR FACTORIZATION OF LINEARLY COMPOSITIONAL MODELS

Recall that linearly compositional models (though not necessarily generalizable ones), as defined in Definition 3, admit a set of probes that can perfectly classify all inputs in the grid \mathcal{C} . Proposition 1 shows that linearly compositional models must exhibit linear factorization. This naturally raises the converse question: does the mere existence of a set of perfect linear classifiers imply linear factorization? We answer in the negative.



1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 13: Intuition of linear factorization. In (a) the representations can be perfectly reconstructed by a set of per-concept components, while in (b) they are insufficient to reconstruct the representation. Refer to the text for more details.

The intuition is as follows. As per Desideratum 1, linearly compositional models need to divide the representation space into all possible combinations of concept values, n^k of them. Each region within the n^k partitions must contain the corresponding combination of concept values. Under linear factorization, the degrees of freedom of the embeddings within each cell are low, yielding an R^2 score of 1. However, even if linear factorization initially holds, the embeddings can generally be perturbed to violate the linear factorization constraint while still being contained within the correct cell.

To illustrate this point, we consider two general cases: (i) the number of concepts is equal to the dimension of the embeddings ($k = d$), and (ii) the number of concepts is less than the dimension of the embeddings ($k < d$). As detailed in Section 4.2, case (i) is tight (the dimension cannot be further reduced), while case (ii) is not. In both cases we assume two concepts and an embedding space that admits two linear probes, one for each concept. Additionally, in both cases we illustrate separately the argmax regions where a certain concept value is predicted ($\mathcal{R}_{i,j}$, $i \in [2]$, $j \in [n]$), and the region where a certain combination of concept values is predicted ($\mathcal{R}_{0,j} \cap \mathcal{R}_{1,k}$, $j, k \in [n]$, as per Desideratum 1).

The first concept values' regions in the embedding space are shown in blue, while the second concept values' regions are shown in orange.

Case (i): $k = d$. In Figure 14, (a), (b) we show two cases that exhibit perfect linear classification. In (a) a few outliers violate the linearity of the representation, which is also reflected in the $R^2 = 0.53 < 1$. In (b) the argmax regions are highly irregular, and the majority of the embeddings are almost intersecting the decision boundaries, resembling an extremely brittle embedding space susceptible to adversarial attacks, though the classification accuracy is still 100%.

Case (ii): $k < d$. In Figure 14, (k), (d), (e) we show three cases that exhibit perfect linear classification, but with linearity scores ranging from $R^2 = 0.32$ to $R^2 = 0.83$. Because of the higher degrees of freedom, the embeddings enjoy even more space to be perturbed while still exhibiting perfect linear classification.

Overall, these points illustrate that linear factorization is not a trivial property of linearly compositional models, even when perfect classification holds.

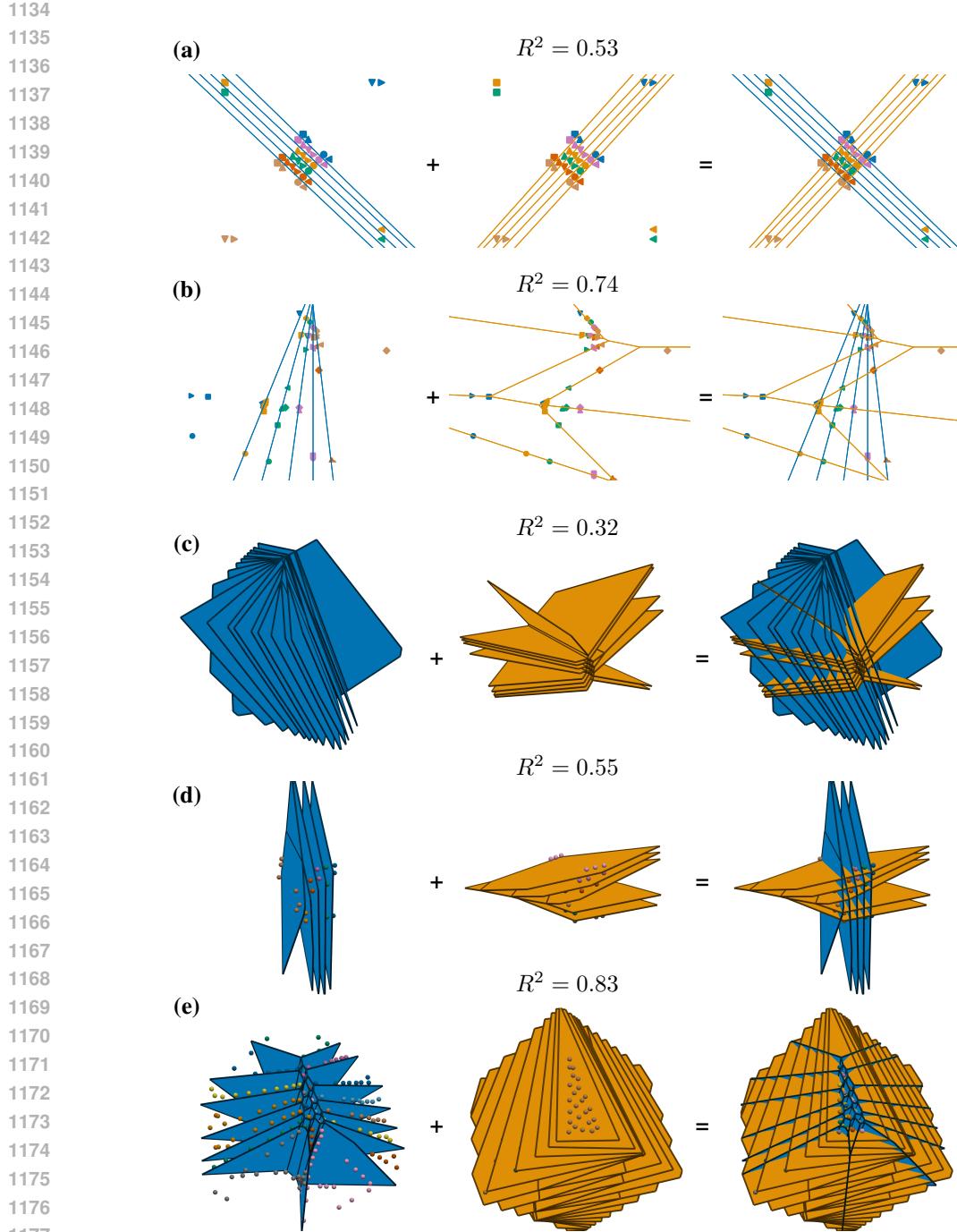


Figure 14: **Counterexamples of linear factorization under perfect classification.** The two concepts are linearly separable, but the representation cannot be decomposed into a sum of two concept components. Each subfigure shows the embedding space overlaid with three columns of argmax regions: the first column shows $\mathcal{R}_{0,i}, i \in [n]$ (shown in blue), the regions where the first concept values are predicted; the second column shows $\mathcal{R}_{1,j}, j \in [n]$ (shown in orange), the regions where the second concept values are predicted; and the third column shows $\mathcal{R}_{0,i} \cap \mathcal{R}_{1,j}, i, j \in [n]$, the joint argmax regions where specific combinations of concept values are predicted. (a), (b) show embeddings for two concepts (color and shape) in \mathbb{R}^2 ($k = d = 2$). (d), (e) show embedding points colored by the first concept value, all for two concepts in \mathbb{R}^3 ($k = 2, d = 3$). See text for details.

1188 **D ADDITIONAL EXPERIMENTAL RESULTS**
11891190 In this section we provide additional experimental results discussed in the main text.
11911192 **D.1 ORTHOGONALITY OF FACTORS**
11931194 **Setup.** For each dataset/model, we extract image embeddings x_c and restrict analysis to the probe-
1195 usable subspace by projecting as in Section 5.1, that is, for each dataset, we compute $\hat{x}_c := P_W x_c$.
1196 For concept pair $i, j \in [k]$ with value sets $\mathcal{C}_i, \mathcal{C}_j$, we estimate per-concept difference vectors by
1197 averaging differences across concept factors. Concretely, for any pair $(v, v') \in \mathcal{C}_i \times \mathcal{C}_j$, we define
1198

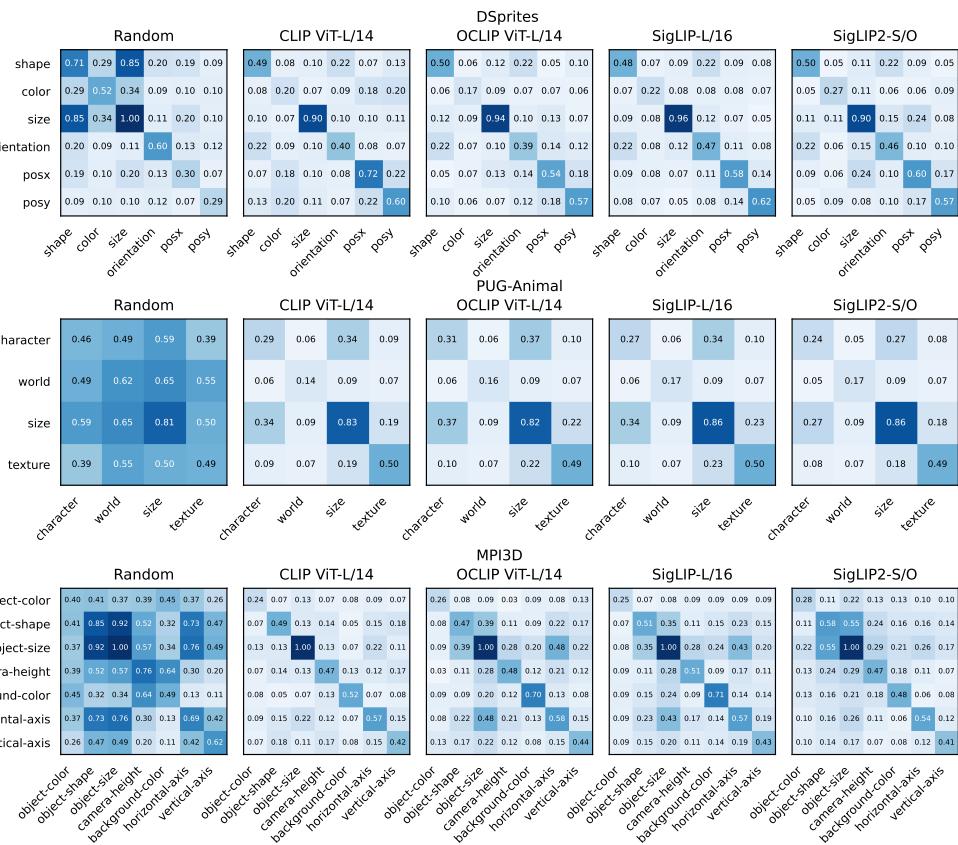
1199
$$\mathbf{d}_{i,j,(v,v')} := \mathbf{u}_{i,v} - \mathbf{u}_{i,v'}, \quad \tilde{\mathbf{d}}_{i,j,(v,v')} := \frac{\mathbf{d}_{i,j,(v,v')}}{\|\mathbf{d}_{i,j,(v,v')}\|}. \quad (7)$$

1200

1201 We measure orthogonality via absolute cosine between difference vectors (lower $|\cos| \Rightarrow$ greater
1202 orthogonality). For any concepts $i \neq j$, we define
1203

1204
$$\text{Orth}(i, j) := \frac{1}{|\mathcal{C}_i||\mathcal{C}_j|} \sum_{a \in \mathcal{C}_i} \sum_{b \in \mathcal{C}_j} |\langle \tilde{\mathbf{d}}_{i,a}, \tilde{\mathbf{d}}_{j,b} \rangle| \quad \text{and} \quad \text{Orth}(i, i) := \frac{1}{|\mathcal{C}_i|(|\mathcal{C}_i| - 1)} \sum_{\substack{a,b \in \mathcal{C}_i \\ a \neq b}} |\langle \tilde{\mathbf{d}}_{i,a}, \tilde{\mathbf{d}}_{i,b} \rangle|$$

1205

1206 We report $\text{Orth}(i, i)$ as *within-concept direction similarity* and $\text{Orth}(i, j)$ for $i \neq j$ as *across-concept*
1207 *orthogonality*.
12081209 We present the complete experimental results here.
12101211 In Figure 15, we show the orthogonality of the factors for four models, including a randomly-
1212 initialized model, and three datasets.
12131240 **Figure 15: Orthogonality of factors.** We shot the orthogonality of the factors for four models, including a
1241 randomly-initialized model, and three datasets.

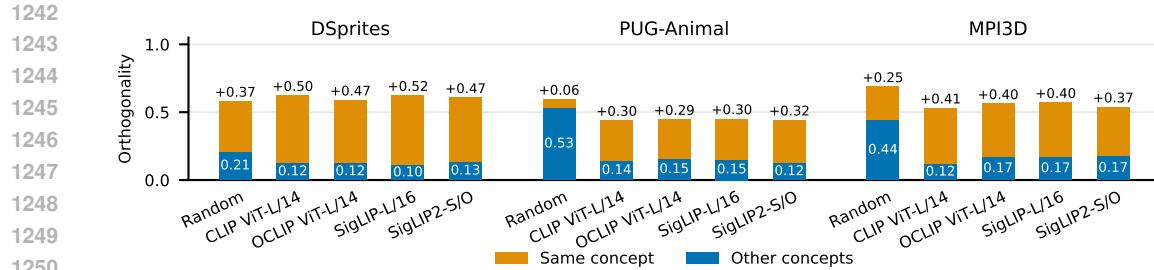


Figure 16: Orthogonality between factors.

We show an aggregate view of this result when comparing orthogonality between values of the same and different concepts in Figure 16.

D.2 DIMENSIONALITY OF FACTORS

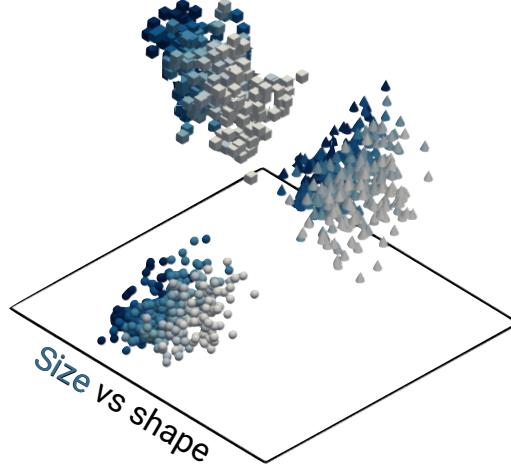


Figure 17: Geometry of *datapoints* in OpenCLIP ViT-L/14. We show the span of the joint features of OpenCLIP ViT-L/14.

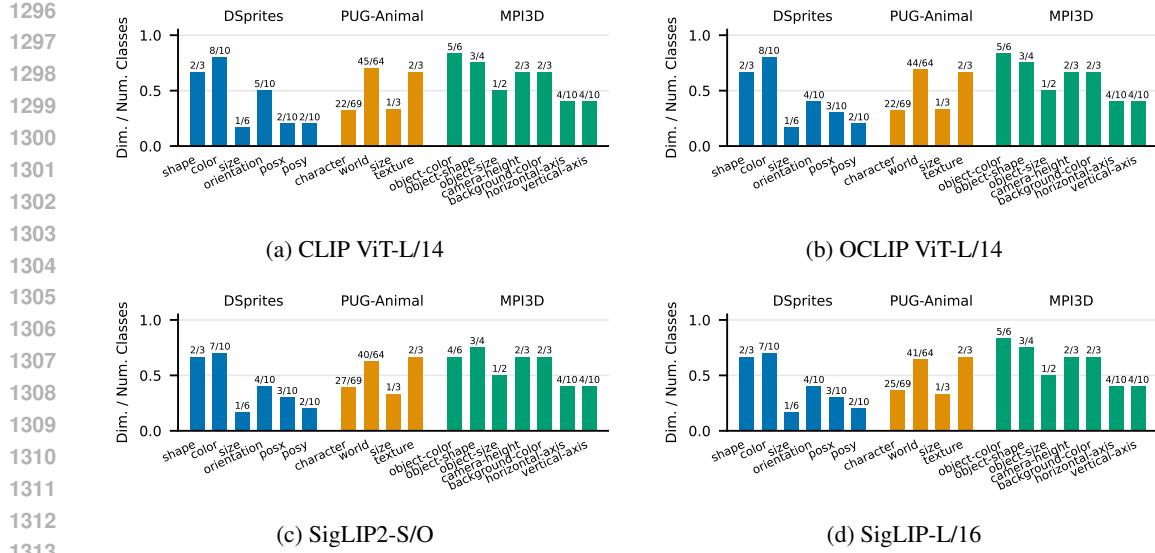


Figure 18: Dimensionality results computed as the number of SVD factors required to reach 95% explained variance, per dataset.

D.3 EXPERIMENTS USING TEXT ENCODERS AS PROBES

In the main text (Section 5.1), we analyzed the factors of the models by training linear probes on the image embeddings using gradient descent with cross-entropy. This was done for two reasons: (1) to handle concepts that are difficult to express as text prompts (e.g., visually complex backgrounds or continuous attributes like size or orientation), and (2) to avoid potential misalignment between the text and vision modalities, where the text encoder must accommodate many visual categories, potentially leading to suboptimal performance for certain domains. Here, we ask what happens when we do not take into account these problems and instead rely on the linear probes that the text encoder already produces.

In this section, we provide analogous analyses to those in the main text, but using the text encoder as probes instead of external linear probes for two datasets: PUG-Animal and ImageNet-AO. We use these datasets for two reasons: (1) their concepts and values map naturally to text prompts, and (2) the datasets were released after the CLIP models and exhibit many unnatural concept combinations unlikely to have appeared in text captions during pre-training, and not present in the visual training data.

D.3.1 EXPERIMENTS ON PUG-ANIMAL

Setup. Four concepts are exposed: character, background, scale, and texture. For each character we parse the character name into a set of words and use prompts of the form “A picture of a <character>”. For each background, we use prompts of the form “A picture of a <background>” (detailed in Table 2).

We map numeric scale values and texture labels to descriptive prompt templates for evaluating the models. Specifically, for scale, we use:

- 0.7 → “A picture of a small object”
- 1.0 → “A picture of a medium-sized object”
- 1.3 → “A picture of a large object”

For textures, we use the following mappings:

- “Sky” → “A picture of an object in sky texture”
- “Grass” → “A picture of an object in grass texture”
- “Asphalt” → “A picture of an object in asphalt texture”

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

Table 2: Mapping from class names to clean prompt names for PUG-Animal experiments.

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Original Name	Prompt Name
Desert	a desert
Tableland	a tableland
EuropeanStreet	a European street
OceanFloor	the ocean floor
Racetrack	a racetrack
Ruins	ancient ruins
TrainStation	a train station
BusStationInterior	the interior of a bus station
BusStationExterior	the exterior of a bus station
IndoorStairs	indoor stairs
Circus	a circus
BoxingRing	a boxing ring
Mansion	a mansion
ShoppingMall	a shopping mall
ConferenceRoom	a conference room
VillageOutskirt	a village outskirt
VillageSquare	a village square
Courtyard	a courtyard
Forge	a forge
Library	a library
Museum	a museum
Gallery	an art gallery
Opera	an opera house
Restaurant	a restaurant
RuralAustralia	rural Australia
AustraliaRoad	a road in Australia
ShadyRoad	a shady road
SaltFlats	salt flats
Castle	a castle
Temple	a temple
Snow	a snowy landscape
Grass	a grassy field
DryGrass	a dry grassland
Forest	a forest

1404 These prompt templates are used to generate the corresponding text embeddings for each concept,
 1405 matching exactly with the setup of the experiments in the main text.
 1406

1407 Concretely, for each concept value $j \in [n]$, we pass the prompt template through the text encoder g
 1408 to obtain a (ℓ_2 -normalized) probe vector $\mathbf{w}_{i,j} = g(p_{i,j}) \in \mathcal{Z}$, as detailed in Section 3.4.

1409 **Linearity of factors and generalization.** We
 1410 show the projected R^2 and average accuracy
 1411 on all concept combinations on PUG-Animal
 1412 across models in Figure 19 when using the text
 1413 encoder as probes. Models exhibiting higher lin-
 1414 earity of representations generally exhibit higher
 1415 accuracy on the full dataset. This coincides with
 1416 the observations in the main text (Section 5.1);
 1417 random baseline achieves low projected R^2 and
 1418 accuracy.

1419 **Orthogonality of the factors.** For each of the
 1420 concepts, we compute the linear factors as de-
 1421 tailed in the main text (Section 5.1) with the
 1422 text encoder as probes. We compute the within-
 1423 and across-concept orthogonality as detailed in
 1424 Appendix D.1 and illustrate the results in Figure
 1425 20 for each of the models.

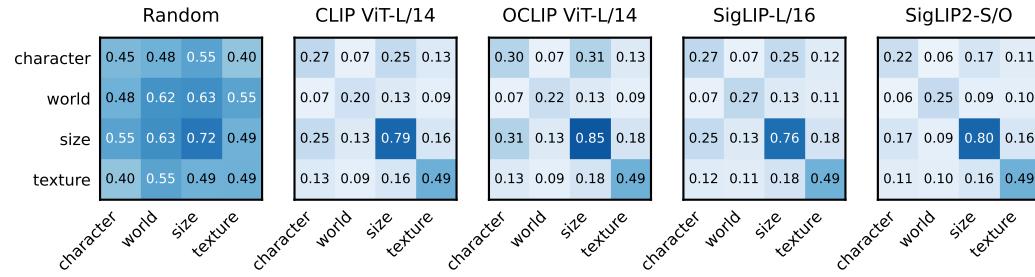


Figure 19: **Projected R^2 vs accuracy on PUG-Animal across models.** Higher projected R^2 coincides with higher accuracy on the full dataset. The probes are extracted from the text encoder.

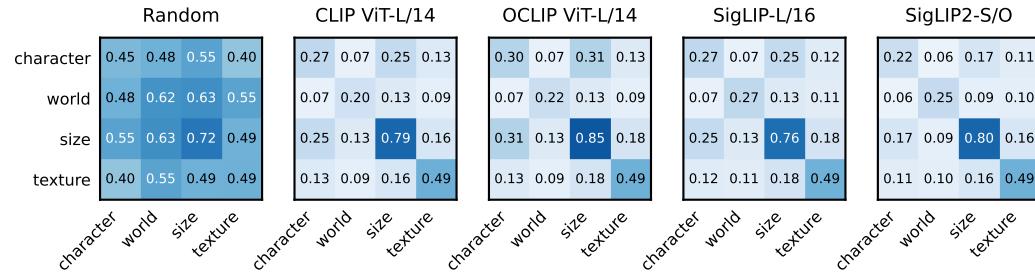


Figure 20: **Orthogonality of the factors on PUG-Animal.** Heatmaps show pairwise cosine similarity between factors for the four PUG-Animal concepts (character, world, size, texture) across multiple models. The factors are more orthogonal across concepts (off-diagonal) than within concepts (diagonal). The random baseline does not generally show this pattern.

1434 For all evaluated models, we observe the same orthogonality pattern: the factors are more orthogonal
 1435 across concepts (off-diagonal) than within concepts (diagonal). The average cosine similarity for the
 1436 random baseline is higher (around 0.5) both within and across concepts.
 1437

1438 We also note the qualitative similarity between the factors to the case when probes were trained on
 1439 90% of the concept combinations (Figure 15, second row).

1440 **Qualitative examples.** We illustrate some of the highest- and lowest-scoring samples in terms of
 1441 R^2 for the SigLIP2 model in Figure 21. We note that high-scoring samples generally depict clean
 1442 scenes where the character and its size and texture are easier to discern compared to the lower-scoring
 1443 samples.
 1444

1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

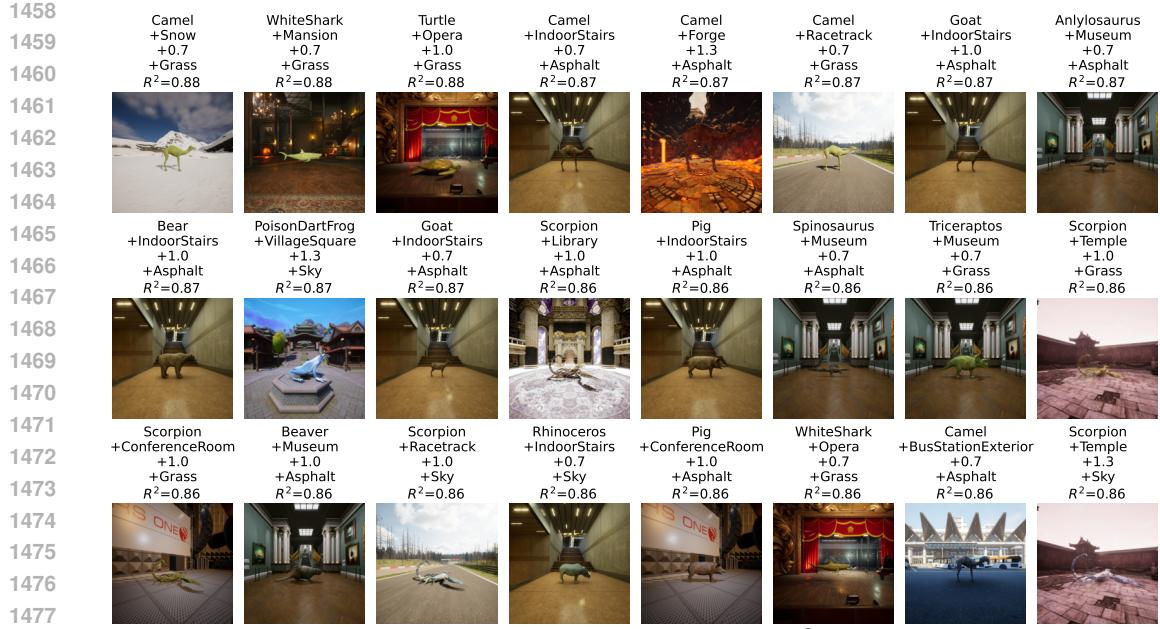
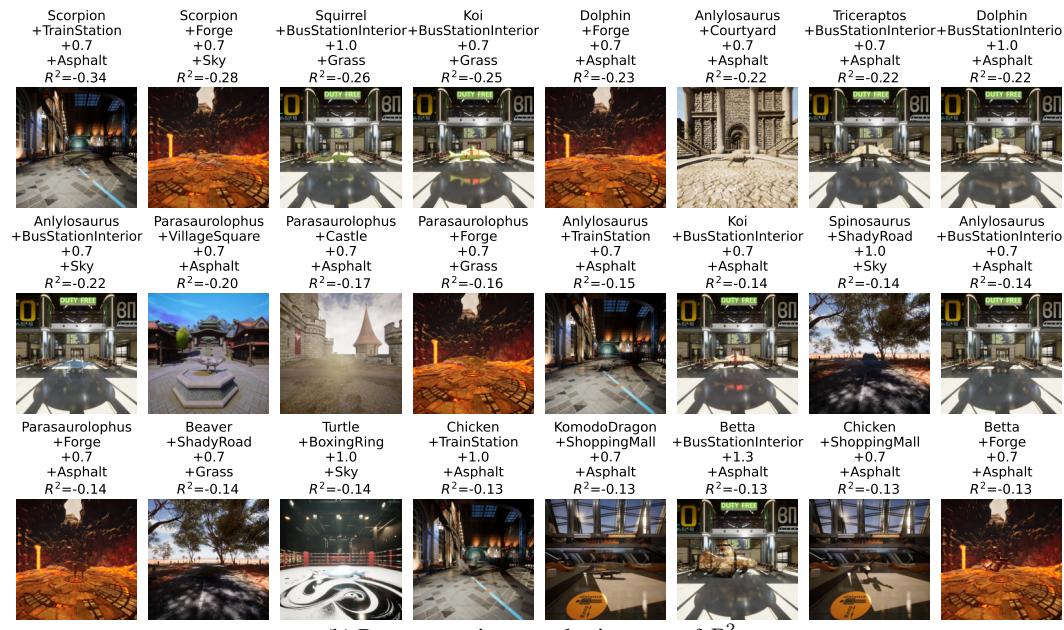
(a) Top-scoring samples in terms of R^2 .(b) Bottom-scoring samples in terms of R^2 .

Figure 21: Qualitative examples of the top- and lowest-scoring samples in PUG-Animal for the SigLIP2 model. Each sample shows its character name, world name, size value (0.7 corresponds to “small”, 1.0 corresponds to “medium”, 1.3 corresponds to “large”), texture name, and its R^2 score.

D.3.2 EXPERIMENTS ON IMAGENET-AO

We additionally perform experiments on a coarse-captioned dataset ImageNet-AO [Abbasi et al. \(2024\)](#), where each image sample has an associated caption composed of an adjective and a noun.

The experiments here are slightly dissimilar from the main experiments in Section 5.1, for a few reasons: (1) scarcity of per-combination data, (2) inability to train linear probes, (3) noisy/ambiguous data, and (4) coarse categories. Regardless, our framework still applies.

Dataset description. The dataset contains images described by an adjective and a noun. There are around 80 unique adjectives and over 600 unique nouns. To make the analysis balanced, we work with the dataset restricted to the most common 80 nouns and adjectives. Each potential combination of adjective and noun may have between 0 and 6 images. The dataset is thus sparse, and many of the potential combinations are not observed in the dataset. This results in a total of 3243 datapoints. We illustrate the sparsity and the pairs we work with in Figure 22.

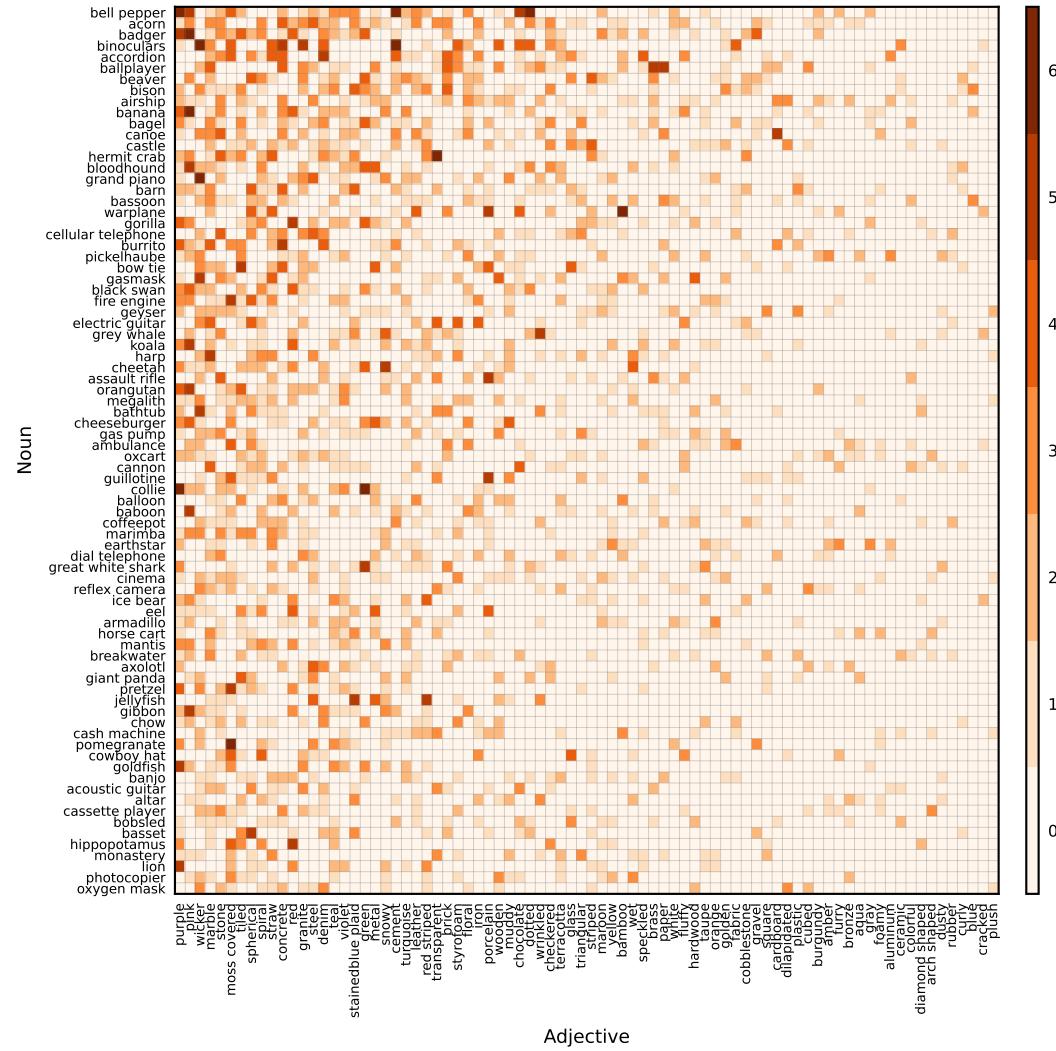


Figure 22: **Adjective-noun count matrix for ImageNet-AO (Abbasi et al., 2024) of the top 80 adjectives and nouns.** The adjective-noun pairs are sparse, and many of them are not observed in the dataset.

General setup. Due to limited availability of the data samples, we *do not* train linear probes. Because each sample is associated with a (noun, adjective) combination, we instead use the probes from the text encoder to assess the performance of the models (as detailed in the main text in Section 3.4). Concretely, we pass captions in the style of “A picture of <noun>” in the case of noun, and “A picture showing <adjective>” in the case of adjective, through the text encoder.

Because of imbalance and sparsity, we cannot rely on averaging to extract the factors as done in Section 5.1. Instead, we follow [Uselis et al. \(2025\)](#) and solve a linear system of equations to recover the factors. Concretely, we construct a design matrix $A \in \{0, 1\}^{3243 \times 80 \cdot 2}$ where each row corresponds to a sample, and each column corresponds to either the presence of a noun (if the column index < 80) or the presence of an adjective (if the column index ≥ 80). The matrix was of full rank

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

2 · 80 – 1. Then, we solve the linear system $\mathbf{A} \begin{bmatrix} \mathbf{u}_{\text{noun}} \\ \mathbf{u}_{\text{adj}} \end{bmatrix} = \mathbf{X}$ to recover the factors $\mathbf{u}_{\text{noun}} \in \mathbb{R}^{80 \times d}$ and $\mathbf{u}_{\text{adj}} \in \mathbb{R}^{80 \times d}$, where d is the dimension of the representation space, and $\mathbf{X} \in \mathbb{R}^{3243 \times d}$ is the centered image embeddings. We show the whitened R^2 scores. The remaining procedure in the analysis follows Section 5.1.

Linearity of factors and generalization. We show the projected R^2 vs accuracy on ImageNet-AO across models in Figure 23. As seen in the main text (Section 5.1), higher projected R^2 coincides with higher accuracy on the full dataset. Importantly, the random baseline achieves substantially lower projected R^2 (less than 0.1) compared to the other models.

Orthogonality of the factors. To substantiate the claims of orthogonality of factors across concepts, we extract the factors for all the models as detailed in the setup above. Concretely, for each of the attribute factor $\mathbf{u}_i, i \in [80]$ and noun factor $\mathbf{u}_j, j \in [80]$, within- and across-concept orthogonality as detailed in Section 5.1.

We illustrate the results in Figure 24. For all of the evaluated models the same pattern of orthogonality is observed: the factors are more orthogonal across concepts than they are within concepts. For example, for the CLIP ViT-L/14 model, the within-concept similarity on average is 0.10 between nouns, and 0.14 between adjectives, while the average cosine similarity across concepts is 0.07. The random baseline on average yields 0.49 cosine similarity both across and within concepts.

Interestingly, all of the non-random models exhibit surprising degree of similarity in terms of the cosine similarities. For example, CLIP ViT-L/14 and OpenCLIP ViT-L/14 on average exhibit almost the same cosine similarity within and across concepts, differing only in the noun-noun cosine similarity (0.10 vs 0.11, respectively). These results support the notions of universality between models as argued by the Platonic Representation Hypothesis (Huh et al., 2024), and empirically observed in Universal Sparse Autoencoders (Thasarathan et al., 2025).

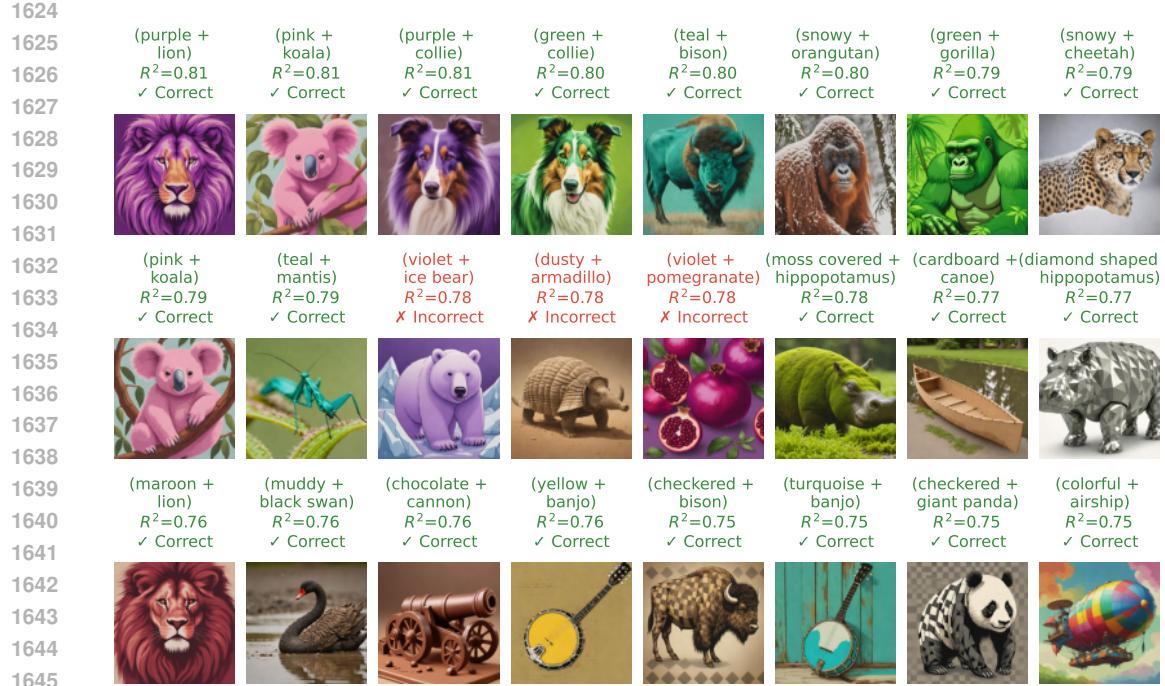
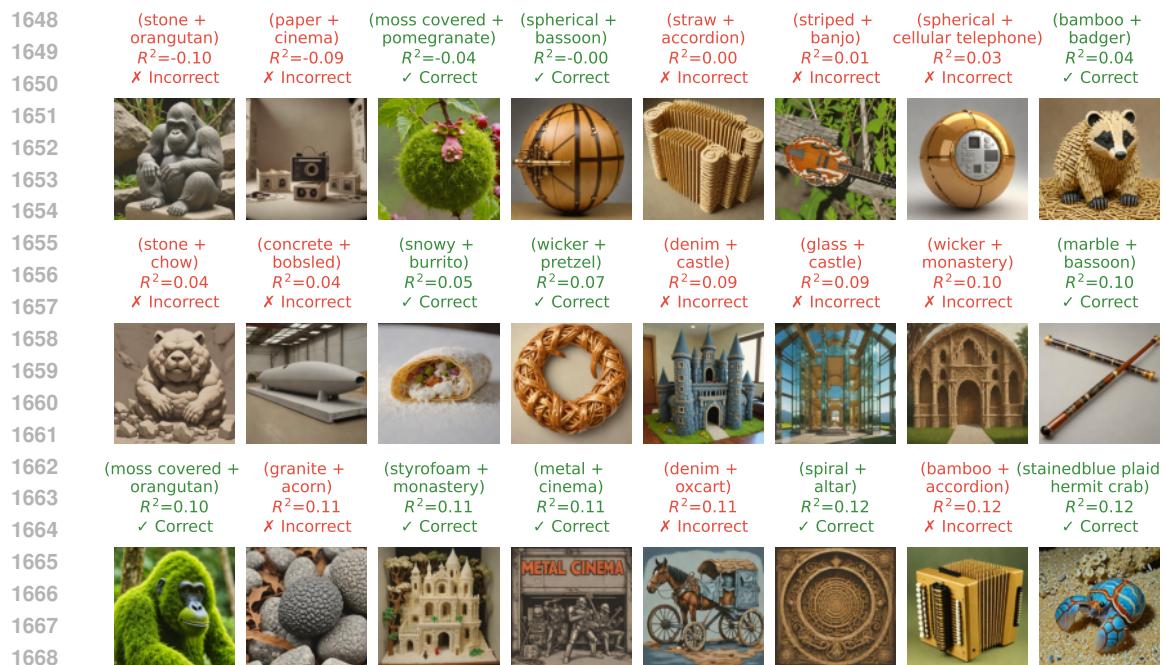
		Random		CLIP ViT-L/14		OCLIP ViT-L/14		SigLIP-L/16		SigLIP2-S/O	
		Nouns	Adjectives	Nouns	Adjectives	Nouns	Adjectives	Nouns	Adjectives	Nouns	Adjectives
Nouns	Nouns	0.49	0.49	0.10	0.07	0.11	0.07	0.11	0.07	0.11	0.07
	Adjectives	0.49	0.49	0.07	0.14	0.07	0.14	0.07	0.14	0.07	0.14
Adjectives	Nouns	0.49	0.49	0.10	0.07	0.11	0.07	0.11	0.07	0.11	0.07
	Adjectives	0.49	0.49	0.07	0.14	0.07	0.14	0.07	0.14	0.07	0.14

Figure 24: **Orthogonality of the factors on ImageNet-AO.** We show the cosine similarity of the factors for the SigLIP2 model on ImageNet-AO; we separate the first concept (nouns) from the second concept (adjectives) and show average similarity across each 2×2 block. The factors are more orthogonal across concepts than they are within concepts. The random baseline does not show this pattern.

Qualitative examples. To understand the results deeper, we show the qualitative examples of the top- and lowest-scoring samples in ImageNet-AO for the SigLIP2 model in Figure 25. The top-scoring samples show high degree of projected R^2 scores (generally > 0.75), and correctly depict the adjective and noun of the sample. Even there, however, some samples are incorrectly predicted by the model, suggesting a potential lack of alignment between the image and text encoders¹.

¹This was less of an issue in the main experiments because the image embeddings were analysed using linear probes.

1620 The lowest-scoring samples show low degree of projected R^2 scores (generally < 0.10), and are
 1621 often incorrectly predicted by the model. Few of the samples appear to be incorrectly labeled (e.g.
 1622 first image depicting a orangutan as a gorilla), while some are correctly classified by the model but
 1623 show a lack of factorization.

(a) Top-scoring samples in terms of R^2 .(b) Bottom-scoring samples in terms of R^2 .

1671 Figure 25: **Qualitative examples of the top- and lowest-scoring samples in ImageNet-AO for the SigLIP2**
 1672 **model.** Each sample shows its adjective and noun, its R^2 score, and whether it was correctly classified by the
 1673 model. Note that both top- and lowest-scoring samples may be either correctly or incorrectly classified by the
 model.

1674 **E SUFFICIENCY OF LINEAR FACTORIZATION FOR COMPOSITIONALLY GENER-
1675 ALIZATION**

1677 A complementary analysis we provided is on the sufficient conditions for generalizing compositionally.
1678 Here, we detail the key results for recovering the factors \mathbf{u} from representations that already possess
1679 linear factorization.

1680 We first note the minimal dataset setting using the notion of a cross dataset, defined below.

1682 **Definition 5** (Cross dataset at \mathbf{c}). Given a concept space $\mathcal{C} = \mathcal{C}_1 \times \dots \times \mathcal{C}_k$, we say that a dataset
1683 $\mathcal{D}^{\mathbf{c}}$ is a cross-dataset at $\mathbf{c} \in [n]^k$ if:

1684 1. It contains only samples that vary one concept at a time around the center \mathbf{c} :

$$1686 \mathcal{D}^{\mathbf{c}} = \{(c'_1, c_2, \dots, c_c) : c'_1 \in [n]\} \cup \dots \cup \{(c_1, c_2, \dots, c'_c) : c'_c \in [n]\}.$$

1688 2. Its size is $1 + k(n - 1)$,

1690 3. It satisfies the diversity condition: $\text{rank}(A^{\mathcal{D}^{\mathbf{c}}}) = 1 + k(n - 1)$.

1691 **Proposition 3** (Uniqueness up to concept-wise shifts). Let the concept space be $\mathcal{C} = \mathcal{C}_1 \times \dots \times \mathcal{C}_c$
1692 and assume *linear factorisation* holds, i.e. for every full combination $(v_1, \dots, v_c) \in \mathcal{C}$ we observe an
1693 embedding

$$1694 f(v_1, \dots, v_c) = \sum_{i=1}^k \mathbf{u}_{i,v_i},$$

1696 where $\mathbf{u}_{i,v} \in \mathbb{R}^d$ is the (unknown) vector for value $v \in \mathcal{C}_i$.

1698 Suppose $\{\mathbf{a}_{i,v}\}$ and $\{\mathbf{b}_{i,v}\}$ are *any two* families of vectors that satisfy the same equations:

$$1700 \sum_{i=1}^k \mathbf{a}_{i,v_i} = \sum_{i=1}^k \mathbf{b}_{i,v_i}, \quad \text{for every } (v_1, \dots, v_c) \in \mathcal{C}.$$

1703 Then there exist vectors $\mathbf{s}_1, \dots, \mathbf{s}_c \in \mathbb{R}^d$ with the single constraint $\sum_{i=1}^k \mathbf{s}_i = \mathbf{0}$ such that

$$1705 \mathbf{b}_{i,v} = \mathbf{a}_{i,v} + \mathbf{s}_i \quad \text{for all } i \in \{1, \dots, k\}, v \in \mathcal{C}_i.$$

1706 Hence the solution space of the factorisation equations is $(k - 1)d$ -dimensional: one free shift vector
1707 \mathbf{s}_i per concept, minus one global zero-sum constraint.

1708 *Proof.* Let $\delta_{i,v} := \mathbf{b}_{i,v} - \mathbf{a}_{i,v}$. Subtracting the two versions of the factorisation identity gives

$$1710 \sum_{i=1}^k \delta_{i,v_i} = \mathbf{0} \quad \text{for every } (v_1, \dots, v_c) \in \mathcal{C}.$$

1713 Fix any reference value $v_i^0 \in \mathcal{C}_i$ for each concept and set $\mathbf{s}_i := \delta_{i,v_i^0}$. Evaluating the previous display
1714 at the reference combination (v_1^0, \dots, v_c^0) yields

$$1716 \sum_{i=1}^k \mathbf{s}_i = \sum_{i=1}^k \delta_{i,v_i^0} = \mathbf{0}.$$

1719 Now fix an index $j \in \{1, \dots, k\}$ and choose an arbitrary value $v \in \mathcal{C}_j$. Evaluate the identity
1720 $\sum_{i=1}^k \delta_{i,v_i} = \mathbf{0}$ at the combination $(v_1^0, \dots, v_{j-1}^0, v, v_{j+1}^0, \dots, v_c^0)$. Then

$$1723 \mathbf{0} = \sum_{i=1}^k \delta_{i,v_i} = \delta_{j,v} + \sum_{i \neq j} \delta_{i,v_i^0} = \delta_{j,v} + \sum_{i \neq j} \mathbf{s}_i.$$

1725 Using $\sum_{i=1}^k \mathbf{s}_i = \mathbf{0}$, we obtain

$$1727 \delta_{j,v} = - \sum_{i \neq j} \mathbf{s}_i = \mathbf{s}_j.$$

1728 Since j and $v \in \mathcal{C}_j$ were arbitrary, we have shown that $\delta_{i,v} \equiv s_i$ for all i and all $v \in \mathcal{C}_i$. Equivalently,
 1729 $\mathbf{b}_{i,v} = \mathbf{a}_{i,v} + \mathbf{s}_i$ with $\sum_i s_i = 0$.
 1730

1731 Conversely, given any $s_1, \dots, s_c \in \mathbb{R}^d$ with $\sum_{i=1}^k s_i = \mathbf{0}$, define $\mathbf{b}_{i,v} := \mathbf{a}_{i,v} + \mathbf{s}_i$. Then for every
 1732 $(v_1, \dots, v_c) \in \mathcal{C}$,

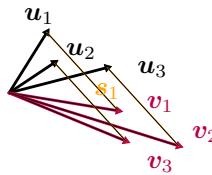
$$1733 \sum_{i=1}^k \mathbf{b}_{i,v_i} = \sum_{i=1}^k \mathbf{a}_{i,v_i} + \sum_{i=1}^k \mathbf{s}_i = \sum_{i=1}^k \mathbf{a}_{i,v_i},$$

1736 so $\{\mathbf{b}_{i,v}\}$ also satisfies the factorisation equations. Therefore the set of all solutions is the affine
 1737 subspace

$$1738 \{\mathbf{a}_{i,v}\} + \{(\mathbf{s}_1, \dots, \mathbf{s}_c) \in (\mathbb{R}^d)^k : \sum_{i=1}^k \mathbf{s}_i = \mathbf{0}\}.$$

□

1741
 1742 We illustrate this proposition graphically in Figure 26.
 1743



1751 Figure 26: **Illustration of the shift ambiguity in the factorisation equations.**

1754 A neat consequence of this result is that the centered embeddings \mathbf{u}'_i are uniquely determined: any
 1755 factorization we acquire from the embeddings, when centered, will correspond exactly to the true
 1756 centered factorization.

1757 **Corollary 1** (Uniqueness of the centered factorization). Assume the setting of Proposition 3. For
 1758 each concept i , let

$$1759 \bar{\mathbf{a}}_i := \frac{1}{|\mathcal{C}_i|} \sum_{v \in \mathcal{C}_i} \mathbf{a}_{i,v}, \quad \bar{\mathbf{b}}_i := \frac{1}{|\mathcal{C}_i|} \sum_{v \in \mathcal{C}_i} \mathbf{b}_{i,v},$$

1762 and define the centered factors $\mathbf{a}'_{i,v} := \mathbf{a}_{i,v} - \bar{\mathbf{a}}_i$ and $\mathbf{b}'_{i,v} := \mathbf{b}_{i,v} - \bar{\mathbf{b}}_i$. Then $\mathbf{a}'_{i,v} = \mathbf{b}'_{i,v}$ for all i and
 1763 all $v \in \mathcal{C}_i$. Equivalently, for every $(v_1, \dots, v_c) \in \mathcal{C}$,

$$1764 \sum_{i=1}^k \mathbf{a}'_{i,v_i} = \sum_{i=1}^k \mathbf{b}'_{i,v_i},$$

1767 so the centered embeddings are uniquely determined by the data. In particular, if $\{\mathbf{u}_{i,v}\}$ is the
 1768 ground-truth factorization and $\mathbf{u}'_{i,v} := \mathbf{u}_{i,v} - \frac{1}{|\mathcal{C}_i|} \sum_{w \in \mathcal{C}_i} \mathbf{u}_{i,w}$, then the centered version of any
 1769 recovered factorization coincides with $\{\mathbf{u}'_{i,v}\}$.

1771 *Proof.* By Proposition 3, there exist s_1, \dots, s_c with $\sum_i s_i = \mathbf{0}$ such that $\mathbf{b}_{i,v} = \mathbf{a}_{i,v} + \mathbf{s}_i$ for all i, v .
 1772 Averaging over $v \in \mathcal{C}_i$ yields $\bar{\mathbf{b}}_i = \bar{\mathbf{a}}_i + \mathbf{s}_i$. Thus,

$$1774 \mathbf{b}'_{i,v} = \mathbf{b}_{i,v} - \bar{\mathbf{b}}_i = (\mathbf{a}_{i,v} + \mathbf{s}_i) - (\bar{\mathbf{a}}_i + \mathbf{s}_i) = \mathbf{a}_{i,v} - \bar{\mathbf{a}}_i = \mathbf{a}'_{i,v},$$

1776 as claimed. Taking $\mathbf{a}_{i,v} = \mathbf{u}_{i,v}$ gives the final statement. □

1777 First, we consider the general case where the concept values' directions are not necessarily linearly
 1779 independent. However, suppose the inputs \mathbf{x}_c are linearly separable for any $i \in [k], j \in [n]$. In
 1780 that case, if we can recover all $k \cdot n$ factors, we can reconstruct any $\mathbf{x}_c = \sum_{i=1}^k \mathbf{u}_{i,c_i}$ as a linear
 1781 combination of the recovered factors. Due to linear separability, we can then train the linear probes to
 classify the inputs into the correct concept values.

1782 While such an approach is in principle possible, it is not practical. The reason is that the number of
 1783 factors to recover is $k \cdot n$, which is exponential in the number of concepts.

1784 To uncover the factors we only need to establish the rank of the design matrix - this then indicates
 1785 how many datapoints need to be observed to recover the factors. Additionally, this dictates how the
 1786 samples need to be collected.

1787 **Proposition 4** (Rank of the full-factorial one-hot design). Let $\mathbf{X} \in \{0, 1\}^{n^k \times cn}$ be the design
 1788 matrix whose cn columns are $\{x_{j,k} : j = 1, \dots, k, k = 1, \dots, n\}$, arranged in k blocks of size n ,
 1789 with all n^k treatment combinations as rows and each row having exactly one 1 in each block. Then,

$$1791 \quad \text{rank}(\mathbf{X}) = 1 + k(n - 1).$$

1793 *Proof.* We show this for the column space of the design matrix \mathbf{X} . We show that a set of $1 + k(n - 1)$
 1794 columns span the column space.

1795 Let $\mathbf{u} := \mathbf{1} \in \mathbb{R}^{n^k}$ and, for each block j and each $k = 2, \dots, n$, define $\mathbf{v}_{j,k} := x_{j,k} - x_{j,1}$. Let

$$1797 \quad \mathcal{B} := \{\mathbf{u}\} \cup \{\mathbf{v}_{j,k} : 1 \leq j \leq k, 2 \leq k \leq n\}, \quad \text{so} \quad |\mathcal{B}| = 1 + k(n - 1).$$

1799 For every block j , $\sum_{k=1}^n x_{j,k} = u$, hence

$$1801 \quad \sum_{k=2}^n \mathbf{v}_{j,k} = \mathbf{u} - nx_{j,1} \Rightarrow x_{j,1} = \frac{1}{n} \left(\mathbf{u} - \sum_{k=2}^n \mathbf{v}_{j,k} \right), \quad x_{j,k} = x_{j,1} + v_{j,k} \quad (k \geq 2).$$

1804 Thus every original column $x_{j,k}$ lies in $\text{span } \mathcal{B}$, and since $\mathcal{B} \subseteq \text{col}(\mathbf{X})$ we have $\text{col}(\mathbf{X}) = \text{span } \mathcal{B}$.

1805 Independence of \mathcal{B} can be shown by contradiction. \square

1807 Clearly, when the design matrix has full rank $\text{rank}(\mathbf{A}) = 1 + k(n - 1)$, the linear system $\mathbf{V} = \mathbf{A}\mathbf{U}$
 1808 becomes well-determined with a unique solution for the centred per-value vectors $\{\mathbf{u}'_v\}$. This ensures
 1809 that the linear factorization is uniquely identifiable, meaning there is exactly one way to decompose
 1810 the observed representations into their constituent concept factors. From that, one could recover the
 1811 full grid of representations over \mathcal{C} and fit linear classifiers on top of them. As long as the original
 1812 space is linearly separable, a linearly compositional model follows (as defined in Definition 3).

1813 We illustrate some configurations of this in Figure 27 over the case of three concepts with top two
 1814 rows indicating solvable systems, and the bottom row indicating unsolvable ones due to violating
 1815 rank constraint.

1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

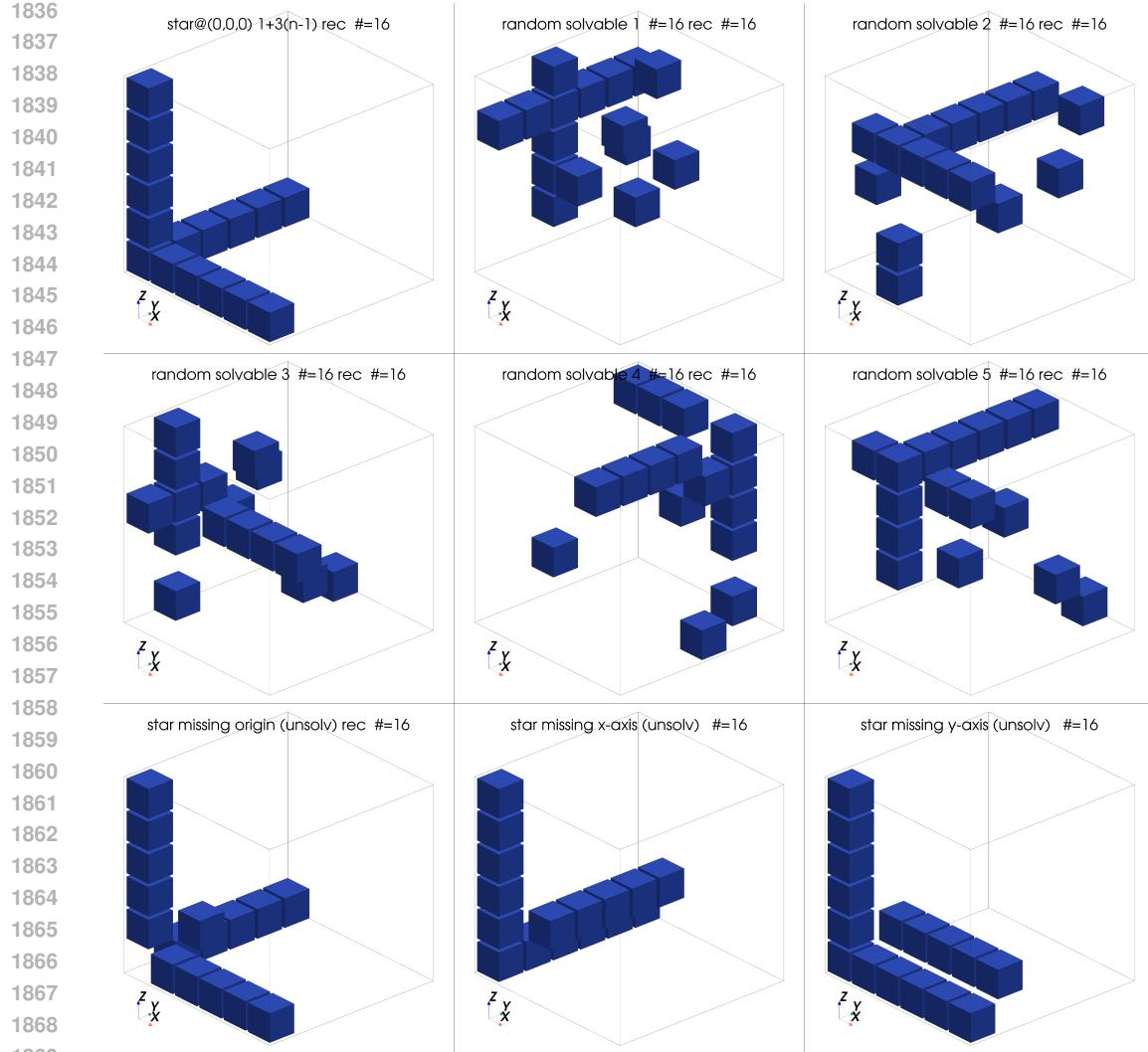


Figure 27: **Examples of one-hot design matrices for recovery of linear factors.** We show sparse grid patterns from the full space $A \in \{0, 1\}^{n^k \times \prod_{i=1}^k n_i}$, where each row corresponds to a training tuple and each column to a concept value. The matrices demonstrate how different sampling strategies affect rank and identifiability of the linear factorization. Refer to Definition 5 for the definition of a cross-dataset.

1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890 **F PACKING AND MINIMUM DIMENSION**
 1891

1892 For a dimension $d \geq 1$. We specify two types of hyperplanes (Ziegler, 1995)
 1893

- 1894 • A central (or *linear*) hyperplane is the zero-set of a non-zero normal vector $w \in \mathbb{R}^d$:
 1895

$$1896 \quad H_w = \{x \in \mathbb{R}^d : \langle w, x \rangle = 0\},$$

1897 so it always passes through the origin.
 1898

- 1899 • Allowing an affine bias $b \in \mathbb{R}$ translates the supporting flat:
 1900

$$1900 \quad H_{w,b} = \{x \in \mathbb{R}^d : \langle w, x \rangle + b = 0\}.$$

1901 Such hyperplanes need not contain the origin and are sometimes called *offset* or *biased*.
 1902

1903 An *arrangement* $\mathcal{H} = \{H_1, \dots, H_m\}$ is a finite family of hyperplanes. It is said to be in general
 1904 position when no more than d hyperplanes meet at a single point. This condition prevents degeneracies
 1905 and maximises the number of connected regions that the arrangement carves out of \mathbb{R}^d .
 1906

1907 **Theorem 1** (Zaslavsky’s region bounds in general position Ziegler (1995)). Let \mathcal{H} be an arrangement
 1908 of m hyperplanes in \mathbb{R}^d that is in general position. Then, the number of connected regions $R(\mathcal{H})$ is
 1909 given by:
 1910

1911 (a) **Affine (biased) case.** If the hyperplanes may carry arbitrary offsets b_i (so \mathcal{H} is not required to be
 1912 central), then
 1913

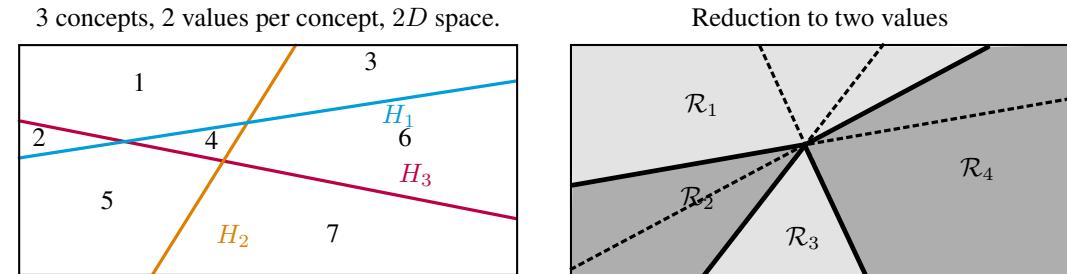
$$1914 \quad R(\mathcal{H}) = R_{\text{aff}}(m, d) := \sum_{k=0}^d \binom{m}{k}.$$

1915 (b) **Central case.** If every hyperplane passes through the origin,
 1916

$$1917 \quad R(\mathcal{H}) = R_{\text{lin}}(m, d) := 2 \sum_{k=0}^{d-1} \binom{m-1}{k}.$$

1919 For $d < k$ one has $R(k, d) = 2^k - \sum_{k=d+1}^k \binom{k}{k} < 2^k$, which is the key inequality we will need.
 1920

1922 We now exploit Theorem 1 to prove the lower bound on probe dimension; first for the binary case,
 1923 then for general n .
 1924



1935 **Figure 28: Illustration of the probe dimension lower bound.** Schematic showing the arrangement of probe
 1936 hyperplanes and the resulting partitioning of the embedding space.
 1937

1938 **Proposition 5** (Minimum dimension for linear probes). Fix integers $k \geq 1$ (number of concepts) and
 1939 $n \geq 2$ (values per concept). Suppose:
 1940

- 1941 (a) The feature extractor is $f : \mathcal{X} \rightarrow \mathbb{R}^d, \mathbf{z} := f(x)$
 1942 (b) For each $(i, j) \in [k] \times [n]$ there exists a probe $(\mathbf{p}_{i,j}, b_{i,j})$ with $\mathbf{p}_{i,j} \in \mathbb{R}^d$ and $b_{i,j} \in \mathbb{R}$ used
 1943 to compute the logit

$$s_{i,j}(\mathbf{z}) := \langle \mathbf{p}_{i,j}, \mathbf{z} \rangle + b_{i,j}, \quad (8)$$

1944 and there are label functions $v_1, \dots, v_c : \mathcal{X} \rightarrow [n]$ such that for every $\mathbf{x} \in \mathcal{X}$,

$$1946 \quad \arg \max_{j \in [n]} s_{i,j}(f(\mathbf{x})) = v_i(\mathbf{x}), \quad \forall i \in [k]. \quad (9)$$

1948 Assume also that every label combination occurs: for every $\mathbf{v} = (v_1, \dots, v_c) \in [n]^k$, there exists
1949 $\mathbf{x}_\mathbf{v} \in \mathcal{X}$ such that $v_i(\mathbf{x}_\mathbf{v}) = v_i$ for all i . Then necessarily

$$1950 \quad d \geq k, \quad (10)$$

1952 and this bound is tight: one can construct probe and representation families that achieve perfect
1953 prediction in dimension $d = k$.

1954 *Proof sketch.* Reduce to the binary case by fixing two values per concept and restricting to the
1955 resulting 2^c combinations. Each concept induces one affine separating hyperplane. To realize all
1956 binary labelings, the arrangement must carve at least 2^c regions. By Theorem 1, when $d < c$ we
1957 have $\sum_{k=0}^d \binom{c}{k} < 2^c$, so 2^c regions are impossible. Hence $d \geq c$. Tightness follows by a $d = c$
1958 construction (coordinates per concept with suitable affine offsets). See Figure 6.

1959
1960 *Proof. Binary case ($n = 2$).* We can take one affine binary classifier per concept:

$$1962 \quad h_i(\mathbf{z}) := s_{i,1}(\mathbf{z}) - s_{i,2}(\mathbf{z}) = \langle \mathbf{p}_{i,1} - \mathbf{p}_{i,2}, \mathbf{z} \rangle + (b_{i,1} - b_{i,2}). \quad (11)$$

1963 By letting $\mathbf{w}_i := \mathbf{p}_{i,1} - \mathbf{p}_{i,2}$, $b_i := b_{i,1} - b_{i,2}$. Each h_i defines an affine hyperplane

$$1965 \quad H_i := \{\mathbf{z} \in \mathbb{R}^d \mid \langle \mathbf{w}_i, \mathbf{z} \rangle + b_i = 0\}. \quad (12)$$

1966 Since all 2^k binary label configurations occur, the k affine hyperplanes H_1, \dots, H_c must jointly
1967 separate \mathbb{R}^d into at least 2^k distinct regions.

1968 But the number of regions formed by k affine hyperplanes in \mathbb{R}^d is at most

$$1971 \quad \sum_{k=0}^d \binom{k}{k} < 2^k \quad \text{whenever } d < k \quad (\text{by Theorem 1}). \quad (13)$$

1973 Thus, we must have $d \geq k$.

1975 Construction is simple: assume parallel planes in their own dimensions. Let $d = k$, and embed

$$1977 \quad f(x_\mathbf{v}) := (v_1, \dots, v_c) \in \mathbb{R}^k. \quad (14)$$

1979 We define probe vectors as

$$1980 \quad \mathbf{p}_{i,j} := \mathbf{e}_i \quad \text{and} \quad b_{i,j} := -j. \quad (15)$$

1981 Then

$$1982 \quad s_{i,j}(f(x_\mathbf{v})) = \langle \mathbf{e}_i, \mathbf{v} \rangle - j = v_i - j. \quad (16)$$

1983 Thus, the correct label is recovered for all i , and $d = k$ suffices.

1984 In general for $n > 2$, we can repeat the same computation for colinear weights per concepts and
1985 values. This reduces the general n case to the binary case above, and the same lower bound $d \geq k$
1986 follows. \square

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998 **G PROOFS**

1999
 2000 We write \mathcal{D} for the full dataset of all n^k combinations and \mathcal{D}^c for a cross-dataset as in Definition 5.
 2001 Any learned quantity carries a superscript indicating the training set, e.g., $\{\mathbf{w}_{i,j}^{(\mathcal{D})}\}$ or $\{\mathbf{w}_{i,j}^{(\mathcal{D}^c)}\}$ with
 2002 logits $\ell_{i,j}^{(S)}(\mathbf{x}) := (\mathbf{w}_{i,j}^{(S)})^\top \mathbf{x}$ and probabilities $p_{i,j}^{(S)}(\mathbf{x}) := \exp(\ell_{i,j}^{(S)}(\mathbf{x})) / \sum_k \exp(\ell_{i,k}^{(S)}(\mathbf{x}))$ for a
 2003 training set S .
 2004

2005 **Definition 6** (Dataset index set and marginal counts). For any dataset $S \subseteq \{(\mathbf{x}_{c'}) : c' \in [n]^k\}$ (e.g.,
 2006 $S = \mathcal{D}$ or $S = \mathcal{D}^c$), define the index set $I(S) := \{c' : (\mathbf{x}_{c'}) \in S\}$. For concept $i \in [k]$ and value
 2007 $j \in [n]$, the marginal count of value j in S is

$$2008 N_{i,j}(S) := |\{c' \in I(S) : k'_i = j\}|.$$

2009 When S is clear, we abbreviate $N_{i,j} := N_{i,j}(S)$.

2010 **Remark 1** (Marginal counts: full vs cross-datasets). For the full dataset \mathcal{D} , the marginal counts are
 2011 balanced:
 2012

$$2013 N_{i,j}(\mathcal{D}) = n^{k-1} \quad \text{for all } i \in [k], j \in [n].$$

2014 For a cross-dataset \mathcal{D}^c as in Definition 5, the marginal counts satisfy
 2015

$$2016 N_{i,c_i}(\mathcal{D}^c) = 1 + (k-1)(n-1), \quad N_{i,j}(\mathcal{D}^c) = 1 \text{ for all } j \neq c_i.$$

2017 *Proof.* In \mathcal{D} fixing $v_i = j$ leaves n^{k-1} free coordinates. In \mathcal{D}^c : varying concept i contributes one
 2018 point for each $j \neq c_i$; the center contributes one more with $v_i = c_i$; varying any other concept $k \neq i$
 2019 adds $(n-1)$ points with $v_i = c_i$, across $(k-1)$ such concepts, totaling $(k-1)(n-1)$. \square
 2020

2021 **Definition 7** (Intervention on a concept value). For any concept index $i \in [k]$, target value $j \in [n]$,
 2022 and concept vector $\mathbf{c} \in [n]^k$, define the intervened index and representation
 2023

$$2024 \mathbf{c}(i \rightarrow j) := (c_1, \dots, c_{i-1}, j, c_{i+1}, \dots, c_k), \quad \mathbf{x}_{\mathbf{c}(i \rightarrow j)} := \mathbf{x}_{\mathbf{c}} \text{ with concept } i \text{ set to } j.$$

2025 We also write $\mathbf{c}^{(i \rightarrow j)}$ as an alias for $\mathbf{c}(i \rightarrow j)$ when convenient. Multiple interventions compose
 2026 componentwise.

2027 **Definition 8** (Binary complement notation). In the binary case ($\mathcal{C}_i = \{0, 1\}$), we write $\bar{c}_i := 1 - c_i$
 2028 for the complement value of concept i . As shorthand for an intervention to the complement, we write
 2029 $\mathbf{c}^{(\bar{c}_i)} := \mathbf{c}^{(i \leftarrow \bar{c}_i)}$.
 2030

2031 **Definition 9** (Per-concept differences). For each concept $i \in [k]$, fix a reference class $r_i \in [n]$ and
 2032 define the per-concept difference parameters

$$2033 \tilde{\mathbf{w}}_{i,j} := \mathbf{w}_{i,j} - \mathbf{w}_{i,r_i}, \quad \tilde{b}_{i,j} := b_{i,j} - b_{i,r_i}.$$

2035 Softmax probabilities for concept i are invariant under adding a constant vector and bias shared across
 2036 classes. Thus only differences $\Delta \mathbf{w}_{i,j\ell} := \mathbf{w}_{i,j} - \mathbf{w}_{i,\ell}$ and $\Delta b_{i,j\ell} := b_{i,j} - b_{i,\ell}$ are identifiable; $\tilde{\mathbf{w}}$
 2037 and \tilde{b} provide a concrete representative.

2038 For making use of the stability condition we note the degree of freedom in (arg/soft)max.
 2039

2040 **Lemma 1** (Equal probabilities imply equal weights up to a shift per concept). For any concept index
 2041 i , and for each class $j \in [n]$, let $\mathbf{f}_{i,j} \in \mathbb{R}^d$ and $\mathbf{f}'_{i,j} \in \mathbb{R}^d$. Assume that for every input $\mathbf{x} \in \mathbb{R}^d$,

$$2042 \frac{\exp(\mathbf{f}_{i,j} \cdot \mathbf{x})}{\sum_{k=1}^n \exp(\mathbf{f}_{i,k} \cdot \mathbf{x})} = \frac{\exp(\mathbf{f}'_{i,j} \cdot \mathbf{x})}{\sum_{k=1}^n \exp(\mathbf{f}'_{i,k} \cdot \mathbf{x})} \quad \text{for all } j \in [n].$$

2045 Then there exists a vector $\mathbf{u}_i \in \mathbb{R}^d$ (independent of j) such that
 2046

$$2047 \mathbf{f}_{i,j} = \mathbf{f}'_{i,j} + \mathbf{u}_i \quad \text{for all } j \in [n].$$

2048 *Proof.* Fix i and an arbitrary $\mathbf{x} \in \mathbb{R}^d$. Define
 2049

$$2050 Z_i(\mathbf{x}) = \log \left(\sum_{k=1}^n e^{\mathbf{f}_{i,k} \cdot \mathbf{x}} \right), \quad Z'_i(\mathbf{x}) = \log \left(\sum_{k=1}^n e^{\mathbf{f}'_{i,k} \cdot \mathbf{x}} \right).$$

2052 Let

2053
$$p_{i,j}(\mathbf{x}) = \frac{e^{\mathbf{f}_{i,j} \cdot \mathbf{x}}}{\sum_k e^{\mathbf{f}_{i,k} \cdot \mathbf{x}}}, \quad p'_{i,j}(\mathbf{x}) = \frac{e^{\mathbf{f}'_{i,j} \cdot \mathbf{x}}}{\sum_k e^{\mathbf{f}'_{i,k} \cdot \mathbf{x}}}.$$
 2054

2055 By assumption $p_{i,j}(\mathbf{x}) = p'_{i,j}(\mathbf{x})$ for all j . Taking logs gives

2056
$$\log p_{i,j}(\mathbf{x}) = \log p'_{i,j}(\mathbf{x}) \implies \mathbf{f}_{i,j} \cdot \mathbf{x} - Z_i(\mathbf{x}) = \mathbf{f}'_{i,j} \cdot \mathbf{x} - Z'_i(\mathbf{x}) \quad \forall j.$$
 2057

2058 Thus for this \mathbf{x} there exists a scalar $b_i(\mathbf{x}) := Z_i(\mathbf{x}) - Z'_i(\mathbf{x})$ with

2059
$$\mathbf{f}_{i,j} \cdot \mathbf{x} = \mathbf{f}'_{i,j} \cdot \mathbf{x} + b_i(\mathbf{x}) \quad \forall j.$$
 2060

2061 For classes j and ℓ , by subtracting, gives:

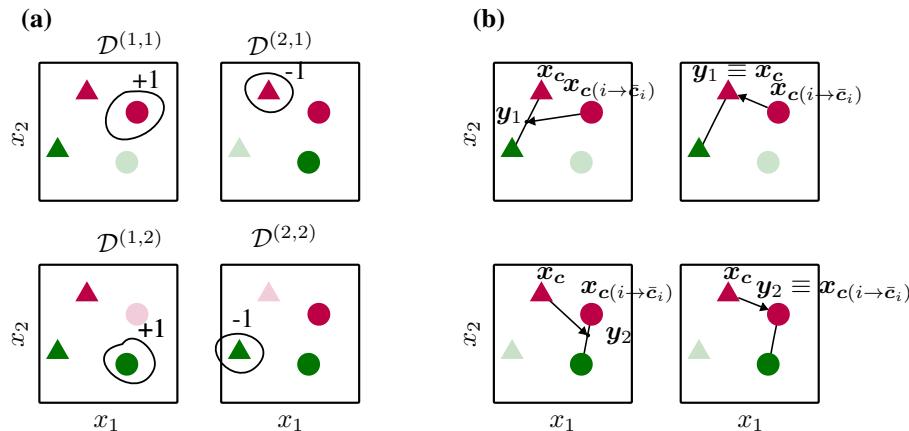
2062
$$(\mathbf{f}_{i,j} - \mathbf{f}_{i,\ell}) \cdot \mathbf{x} = (\mathbf{f}'_{i,j} - \mathbf{f}'_{i,\ell}) \cdot \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^d.$$
 2063

2064 Since this defines a hyperplane on which all \mathbf{x} need to lie, the weight differences need to be equal:

2065
$$\mathbf{f}_{i,j} - \mathbf{f}_{i,\ell} = \mathbf{f}'_{i,j} - \mathbf{f}'_{i,\ell} \quad \forall j, \ell.$$
 2066

2067 Fixing any reference class ℓ and setting $\mathbf{u}_i := \mathbf{f}_{i,\ell} - \mathbf{f}'_{i,\ell}$, yields:

2068
$$\mathbf{f}_{i,j} = \mathbf{f}'_{i,j} + \mathbf{u}_i.$$
 2069

2070 \square 2073 **Figure 29: Illustration of the invariance lemma (left) and the main proposition (right).** (a) The
2074 invariance lemma: we can always find a dataset for which a single point is a support vector, leading
2075 to invariance. (b) The main proposition: any point is projected onto the other class' convex hull by a
2076 single concept value flip.2077 **Lemma 2** (Bi-directional tight support vectors in binary concepts). For binary concepts $\mathcal{C}_i =$
2078 $\{0, 1\}$, consider any cross-dataset \mathcal{D}^c and the corresponding SVM solution $\{\mathbf{w}_{i,j}^{(\mathcal{D}^c)}, b_{i,j}^{(\mathcal{D}^c)}\}$. Because
2079 $N_{i,0}(\mathcal{D}^c) = N_{i,1}(\mathcal{D}^c) = 1$, there exist support vectors $\mathbf{x}_{c^0}, \mathbf{x}_{c^1} \in \mathcal{D}^c$ with $v_i^0 = 0$ and $v_i^1 = 1$ such
2080 that both are tight with respect to their class boundaries:

2081
$$(\mathbf{w}_{i,0}^{(\mathcal{D}^c)})^\top \mathbf{x}_{c^0} + b_{i,0}^{(\mathcal{D}^c)} = (\mathbf{w}_{i,1}^{(\mathcal{D}^c)})^\top \mathbf{x}_{c^0} + b_{i,1}^{(\mathcal{D}^c)} + 1 \quad (17)$$
 2082

2083
$$(\mathbf{w}_{i,1}^{(\mathcal{D}^c)})^\top \mathbf{x}_{c^1} + b_{i,1}^{(\mathcal{D}^c)} = (\mathbf{w}_{i,0}^{(\mathcal{D}^c)})^\top \mathbf{x}_{c^1} + b_{i,0}^{(\mathcal{D}^c)} + 1 \quad (18)$$
 2084

2085 *Proof.* This follows from standard hard-margin SVM theory: each class has at least one support
2086 vector achieving equality at the margin (Cortes & Vapnik, 1995). \square 2087 **Lemma 3** (Invariance to irrelevant concepts, binary case). Assume each concept is binary, $\mathcal{C}_i = \{0, 1\}$
2088 for all $i \in [k]$, and write $\bar{v} := 1 - v$. For any $i \in [k]$ and any $\mathbf{c}, \mathbf{c}' \in [2]^k$ with $c_i = c'_i =: v$,

2089
$$P(C_i = v \mid \mathbf{x}_{\mathbf{c}}) = P(C_i = v \mid \mathbf{x}_{\mathbf{c}'}). \quad (19)$$
 2090

2106 *Proof.* We encode the i -label by $y_i(\mathbf{x}) \in \{+1, -1\}$ with $y_i(\mathbf{x}) = +1$ iff $C_i(\mathbf{x}) = 1$ and -1 otherwise. Let

$$2108 \quad g_i(\mathbf{x}) := (\mathbf{w}_{i,1} - \mathbf{w}_{i,0})^\top \mathbf{x} + (b_{i,1} - b_{i,0}) \quad (20)$$

2109 By Lemma 1, the pair $(\Delta\mathbf{w}_i, \Delta b_i) := (\mathbf{w}_{i,1} - \mathbf{w}_{i,0}, b_{i,1} - b_{i,0})$ is the same no matter which
2110 cross-dataset we train on.

2111 Let $\mathcal{I} = [2]^{k-1}$ be assignments of all concepts except i . For each $\mathbf{u} \in \mathcal{I}$ there are two cross-datasets:
2112 $\mathcal{D}^{(\mathbf{u},0)}$ and $\mathcal{D}^{(\mathbf{u},1)}$. In the binary hard-margin setting, each such training has exactly one minority
2113 (support) example w.r.t. concept i , and for that example the signed margin is tight:

$$2115 \quad y_i(\mathbf{x}) g_i(\mathbf{x}) = 1 \quad (\text{for the unique support example of that training}). \quad (21)$$

2117 • In $\mathcal{D}^{(\mathbf{u},0)}$, the unique minority is $\mathbf{x}_{\mathbf{u},1}$, so $y_i(\mathbf{x}_{\mathbf{u},1}) = +1$ and tightness gives

$$2118 \quad g_i(\mathbf{x}_{\mathbf{u},1}) = +1. \quad (A_{\mathbf{u}}) \quad (22)$$

2120 • In $\mathcal{D}^{(\mathbf{u},1)}$, the unique minority is $\mathbf{x}_{\mathbf{u},0}$, so $y_i(\mathbf{x}_{\mathbf{u},0}) = -1$ and tightness gives

$$2122 \quad g_i(\mathbf{x}_{\mathbf{u},0}) = -1. \quad (B_{\mathbf{u}}) \quad (23)$$

2123 The same g_i (same $\Delta\mathbf{w}_i, \Delta b_i$) appears in $(A_{\mathbf{u}})$ and $(B_{\mathbf{u}})$ for every \mathbf{u} , by Desideratum 3.

2125 As \mathbf{u} ranges over \mathcal{I} , the equations $(A_{\mathbf{u}})$ cover every point with $C_i = 1$, and the equations $(B_{\mathbf{u}})$ cover
2126 every point with $C_i = 0$. Therefore

$$2128 \quad g_i(\mathbf{x}) = \begin{cases} +1, & \text{if } C_i(\mathbf{x}) = 1, \\ -1, & \text{if } C_i(\mathbf{x}) = 0, \end{cases} \quad \text{on the whole grid } \{\mathbf{x}_c : c \in [2]^k\}.$$

2130 Hence $g_i(\mathbf{x})$ depends only on $C_i(\mathbf{x})$ and not on the other concepts. Since in the binary model
2131 $P(C_i = 1 \mid \mathbf{x}) = \sigma(g_i(\mathbf{x})) = \frac{1}{1 + e^{-g_i(\mathbf{x})}}$ (and $P(C_i = 0 \mid \mathbf{x}) = 1 - P(C_i = 1 \mid \mathbf{x})$), the
2133 conditional probability $P(C_i = v \mid \mathbf{x}_c)$ is constant over all c with $c_i = v$. In particular, for any c, c'
2134 with $c_i = c'_i$,

$$2135 \quad P(C_i = c_i \mid \mathbf{x}_c) = P(C_i = c_i \mid \mathbf{x}_{c'}).$$

2136 \square

2138 Next, we establish an important property of SVMs on two separable sets, one of which is a singleton.

2139 **Lemma 4** (SVM geometry for separable sets). Given a set of points $\mathcal{Y} := \{\mathbf{y}_i\}_i^N$ ($\mathbf{y}_i \in \mathbb{R}^d$) and a
2140 point $\mathbf{x} \in \mathbb{R}^d$ with an optimal linearly separable hyperplane $\mathcal{H}_{\mathbf{w},b} = \{\mathbf{x} \mid \mathbf{w}^\top \mathbf{x} + b = 0\}$ under
2141 SVM, the following hold:

2142 1. The weight vector \mathbf{w} separates convex combinations such that they are support vectors, that
2143 is, for some $\{\lambda_i\}_{i=1}^N$ it holds:

$$2145 \quad \mathbf{w}^\top \left(\sum_i \lambda_i \mathbf{y}_i \right) + b = -1 \quad \text{for } \lambda_i \geq 0, \sum_i \lambda_i = 1 \quad (24)$$

$$2148 \quad \mathbf{w}^\top \mathbf{x} + b = +1 \quad (25)$$

2149 2. The weight vector \mathbf{w} equals the shortest distance between the sets:

$$2152 \quad \frac{2}{\|\mathbf{w}\|^2} \mathbf{w} = \left(\mathbf{x} - \sum_i \lambda_i \mathbf{y}_i \right) \quad (26)$$

2155 *Proof.* These conditions are implied by a standard fact in SVMs: the weight vector \mathbf{w} is parallel to
2156 the shortest line connecting the two sets (Bennett & Bredensteiner, 2000). By noting that $\alpha \mathbf{w} =$
2157 $(\mathbf{x} - \sum_i \lambda_i \mathbf{y}_i)$, we can derive the proportionality constant as $\alpha = \frac{2}{\|\mathbf{w}\|^2}$. \square

2158 We now establish the main result of the resulting geometry of linearly generalizable compositional
2159 models.

2160
2161 **Proposition 1** (Binary case: compositional generalization implies linear factorization). Let $\Pi =$
2162 $(f, \mathcal{H}, A, \mathcal{T})$ be the tuple instantiated in Section 3.4, with linear heads \mathcal{H} and A given by GD+CE.
2163 Suppose that the training sets follow random sampling with validity rule $R(T) = 1$ if $|T| = 2^{k-1} + 1$.
2164 Assume Desiderata 1–3 are satisfied. Then under the binary grid $\mathcal{C}_i = \{0, 1\}$ with $\mathcal{X} = \{\mathbf{x}_c : c \in$
2165 $[2]^k\} \subset \mathbb{R}^d$, there exist $\{\mathbf{u}_{i,0}, \mathbf{u}_{i,1} \in \mathbb{R}^d\}_{i=1}^k$ such that for every $c \in [2]^k$ the following holds:

2166 1. (Linearity) $\mathbf{x}_c = \sum_{i=1}^k \mathbf{u}_{i,c_i}$.
2167 2. (Cross-concept orthogonality) $(\mathbf{u}_{i,1} - \mathbf{u}_{i,0}) \perp (\mathbf{u}_{j,1} - \mathbf{u}_{j,0})$ for all $i, j \in [k]$ with $(i \neq j)$.

2169 *Proof.* First, note that the fact that any training set $T \in \mathcal{T}$ has $2^{n-1} + 1$ points implies that for
2170 any concept and its value, we can always choose a dataset which has only a single point over that
2171 concept's value. Because of this, the proof reduces to the case of working with a “cross-like” datasets.
2172 We thus work within this simplified setting to avoid technical clutter, but the key idea remains the
2173 same.

2174 Linearity.

2176 The idea is to show that for a pair of cross-datasets that share the datapoints in negative class, the
2177 shortest distance from a single point in the positive class to the convex set of the positive points is
2178 achieved by considering a flip in one of the concepts. We make this concrete below.

2179 Consider any datapoint \mathbf{x}_c and its corresponding cross dataset centered at this point $\mathcal{D}^{(c)}$. Additionally,
2180 for any concept $i \in [k]$ consider a “counterfactual” datapoint $\mathbf{x}_{c(i \rightarrow \bar{c}_i)}$ that flips the value of concept
2181 i to \bar{c}_i , and consider its corresponding cross-dataset $\mathcal{D}^{(c(i \rightarrow \bar{c}_i))}$.

2183 Note that for the concept i it holds that:

2185 1. Under $\mathcal{D}_c = \{\mathbf{x}_c\} \cup \{\mathbf{x}_{c(i \rightarrow \bar{c}_i)} : i \in [k]\}$. For each concept i , the marginal counts are

$$N_{i,c_i}(\mathcal{D}_c) = k, \quad N_{i,\bar{c}_i}(\mathcal{D}_c) = 1 \quad (27)$$

2188 (by Remark 1). Thus $\mathbf{x}_{c(i \rightarrow \bar{c}_i)}$ is the unique minority example for concept i (label \bar{c}_i), and

$$\mathcal{Y}_1 := \mathcal{D}^c \setminus \{\mathbf{x}_{c(i \rightarrow \bar{c}_i)}\} \quad (28)$$

2191 is the set of k majority examples (label c_i).

2192 2. Note $\mathcal{D}^{c(i \rightarrow \bar{c}_i)} := \{\mathbf{x}_{c(i \rightarrow \bar{c}_i)}\} \cup \{\mathbf{x}_{c(k \rightarrow \bar{c}_k)} : k \in [k]\}$.

2194 For $k \neq i$ the counts are unchanged: $N_{k,c_k}(\mathcal{D}^{c(i \rightarrow \bar{c}_i)}) = k$ and $N_{k,\bar{c}_k}(\mathcal{D}^{c(i \rightarrow \bar{c}_i)}) = 1$, but
2195 for concept i they swap: $N_{i,\bar{c}_i}(\mathcal{D}^{c(i \rightarrow \bar{c}_i)}) = k$ and $N_{i,c_i}(\mathcal{D}^{c(i \rightarrow \bar{c}_i)}) = 1$. Thus \mathbf{x}_c is now the
2196 unique minority example for concept i (label c_i). Let $\mathcal{Y}_2 = \mathcal{D}^{c(i \rightarrow \bar{c}_i)} \setminus \{\mathbf{x}_c\}$ be the majority
2197 examples for concept i .

2199 Let the majority support vectors for \mathcal{D}^c and $\mathcal{D}^{c(i \rightarrow \bar{c}_i)}$ be \mathbf{y}_1 and \mathbf{y}_2 respectively. By Lemma 4, we
2200 can write

$$\mathbf{y}_1 = \lambda_i \mathbf{x}_c + \sum_{j \in [k] \setminus \{i\}} \lambda_j \mathbf{x}_{c(j \rightarrow \bar{c}_j)} \quad \text{and} \quad \mathbf{y}_2 = \gamma_i \mathbf{x}_{c(i \rightarrow \bar{c}_i)} + \sum_{j \in [k] \setminus \{i\}} \gamma_j \mathbf{x}_{c(j \rightarrow \bar{c}_j)} \quad (29)$$

2204 for some convex combinations $\lambda_j \geq 0$ with $\sum_i \lambda_j = 1$ and $\gamma_j \geq 0$ with $\sum_i \gamma_j = 1$.

2206 Additionally, note that by Lemma 3 it holds that for any point $\mathbf{x}_{c'}$ it holds that

$$\mathbf{w}_j^\top \mathbf{x}_{c'} + b_j = y_i(c'), \quad (30)$$

2209 where we use a shorthand $y_i(c') = 1$ if $j = c_i$ and $y_i(c') = -1$ otherwise.

2210 Then, by Lemma 4 it holds that the support vectors are aligned with the shortest segment between the
2211 convex sets (pairs of $\mathbf{x}_{c(i \rightarrow \bar{c}_i)}$ and \mathbf{y}_1 , and \mathbf{x}_c and \mathbf{y}_2)

$$\mathbf{x}_{c(i \rightarrow \bar{c}_i)} + y_i(c) \frac{2}{\|\mathbf{w}_i\|^2} \mathbf{w}_i = \mathbf{y}_1 \quad \text{and} \quad \mathbf{x}_c - y_i(c) \frac{2}{\|\mathbf{w}_i\|^2} \mathbf{w}_i = \mathbf{y}_2, \quad (31)$$

2214 where clearly $y_i(\mathbf{c}(i \rightarrow \bar{c}_i)) = -y_i(\mathbf{c})$. From this, it follows that
 2215

$$2216 \quad \mathbf{y}_1 - \mathbf{x}_{\mathbf{c}(i \rightarrow \bar{c}_i)} = \mathbf{x}_{\mathbf{c}} - \mathbf{y}_2. \quad (32)$$

2217 Now, for any $k \neq i$, evaluate:
 2218

$$\begin{aligned} 2219 \quad \mathbf{w}_k^\top \mathbf{y}_1 + b_k &= \mathbf{w}_k^\top \left(\lambda_i \mathbf{x}_{\mathbf{c}} + \sum_{j \in [k] \setminus \{i\}} \lambda_j \mathbf{x}_{\mathbf{c}(j \rightarrow \bar{c}_j)} \right) + b_k \\ 2220 \quad &= \lambda_i \mathbf{w}_k^\top \mathbf{x}_{\mathbf{c}} + \sum_{j \in [k] \setminus \{i\}} \lambda_j \mathbf{w}_k^\top \mathbf{x}_{\mathbf{c}(j \rightarrow \bar{c}_j)} + \sum_i^k \lambda_i b_k \\ 2221 \quad &= \lambda_i (\mathbf{w}_k^\top \mathbf{x}_{\mathbf{c}} + b_k) + \sum_{j \in [k] \setminus \{i\}} \lambda_j (\mathbf{w}_k^\top \mathbf{x}_{\mathbf{c}(j \rightarrow \bar{c}_j)} + b_k) \\ 2222 \quad &= \lambda_i y_k(\mathbf{c}) + \sum_{j \in [k] \setminus \{i, k\}} \lambda_j y_k(\mathbf{c}(j \rightarrow \bar{c}_j)) + \lambda_k y_k(\mathbf{c}(k \rightarrow \bar{c}_k)) \\ 2223 \quad &= \lambda_i y_k(\mathbf{c}) + \left(\sum_{j \in [k] \setminus \{i, k\}} \lambda_j \right) y_k(\mathbf{c}) - \lambda_k y_k(\mathbf{c}) \\ 2224 \quad &= (1 - \lambda_k) y_k(\mathbf{c}) - \lambda_k y_k(\mathbf{c}) = (1 - 2\lambda_k) y_k(\mathbf{c}), \end{aligned} \quad (33)$$

2225 where we used the fact that λ are convex combinations in the second equality, and the fact that in the
 2226 paired dataset k -concept values remain the same when flipping any other concept than k .
 2227

2228 By repeating the same calculation as (33) for \mathbf{y}_2 , we get:
 2229

$$2230 \quad \mathbf{w}_k^\top \mathbf{y}_2 + b_k = (1 - 2\gamma_k) y_k(\mathbf{c}). \quad (34)$$

2231 By (32) it follows that
 2232

$$\begin{aligned} 2233 \quad \mathbf{w}_k^\top (\mathbf{y}_1 - \mathbf{x}_{\mathbf{c}(i \rightarrow \bar{c}_i)}) &= \mathbf{w}_k^\top (\mathbf{x}_{\mathbf{c}} - \mathbf{y}_2) \\ 2234 \quad \Rightarrow \quad \mathbf{w}_k^\top \mathbf{y}_1 + b_k - \mathbf{w}_k^\top \mathbf{x}_{\mathbf{c}(i \rightarrow \bar{c}_i)} - b_k &= \mathbf{w}_k^\top \mathbf{x}_{\mathbf{c}} + b_k - \mathbf{w}_k^\top \mathbf{y}_2 - b_k \\ 2235 \quad \Rightarrow \quad (1 - 2\lambda_k) y_k(\mathbf{c}) - y_k(\mathbf{c}) &= y_k(\mathbf{c}) - (1 - 2\gamma_k) y_k(\mathbf{c}) \\ 2236 \quad \Rightarrow \quad 1 - 2\lambda_k - 1 &= 1 - 1 + 2\gamma_k \\ 2237 \quad \Rightarrow \quad \lambda_k + \gamma_k &= 0. \end{aligned} \quad (35)$$

2238 Clearly, since λ_k and γ_k are convex combinations and thus non-negative, (35) implies that $\lambda_k = \gamma_k = 0$.
 2239

2240 By repeating this process for all $k \neq i$, we get that $\lambda_k = \gamma_k = 0$ for all $k \neq i$, and therefore
 2241 $\lambda_i = \gamma_i = 1$. From this, it follows that $\mathbf{y}_1 = \mathbf{x}_{\mathbf{c}}$ and $\mathbf{y}_2 = \mathbf{x}_{\mathbf{c}(i \rightarrow \bar{c}_i)}$. This means that
 2242

$$2243 \quad \mathbf{x}_{\mathbf{c}(i \rightarrow \bar{c}_i)} + y_i(\mathbf{c}) \frac{2}{\|\mathbf{w}_i\|^2} \mathbf{w}_i = \mathbf{x}_{\mathbf{c}} \quad \text{and} \quad \mathbf{x}_{\mathbf{c}} - y_i(\mathbf{c}) \frac{2}{\|\mathbf{w}_i\|^2} \mathbf{w}_i = \mathbf{x}_{\mathbf{c}(i \rightarrow \bar{c}_i)}, \quad (36)$$

2244 and therefore the differences between $\mathbf{x}_{\mathbf{c}} - \mathbf{x}_{\mathbf{c}(i \rightarrow \bar{c}_i)}$ are independent of other concept variations.
 2245 Because of that, we can write any datapoint $\mathbf{x}_{\mathbf{c}}$ as a sum of concept-specific values \mathbf{u}_{i,c_i} ($c_i \in [2]$).
 2246 For instance, if we fix $\mathbf{c}_0 = (0, \dots, 0) \in [2]^k$, and let $\mathbf{c}_k = (0, \dots, 0, 1, 0, \dots, 0) \in [2]^k$ be a vector
 2247 with 1 in the k -th position, we can express $\mathbf{x}_{\mathbf{c}}$ as, for example (up to a global linear shift per concept)
 2248

$$\begin{aligned} 2249 \quad \mathbf{u}_{i,0} &= \mathbf{x}_{\mathbf{c}_0}/k, \quad \mathbf{u}_{i,1} = \mathbf{x}_{\mathbf{c}_0}/k + \frac{2}{\|\mathbf{w}_i\|^2} \mathbf{w}_i, \\ 2250 \quad \mathbf{x}_{\mathbf{c}} &= \sum_{i=1}^k \mathbf{u}_{i,c_i}, \end{aligned} \quad (37)$$

2251 which establishes linearity.
 2252

2268
 2269 **Orthogonality.** First, note that by invariance (Lemma 3) it holds that for any concept i , changes in
 2270 concept values other than i do not affect the prediction of concept i . Therefore, it holds that for any
 2271 concept $j \neq i$, it holds that

$$2271 \quad \mathbf{w}_i^\top \mathbf{x}_c + b_i = \mathbf{w}_i^\top \mathbf{x}_{c(j \rightarrow \bar{c}_j)} + b_i \quad (38)$$

2272 But by linear factorization (37) it follows that

$$\begin{aligned} 2274 \quad & \mathbf{w}_i^\top \mathbf{x}_c + b_i = \mathbf{w}_i^\top \mathbf{x}_{c(j \rightarrow \bar{c}_j)} + b_i \\ 2275 \quad & \Rightarrow \mathbf{w}_i^\top (\mathbf{x}_c - \mathbf{x}_{c(j \rightarrow \bar{c}_j)}) = 0 \\ 2276 \quad & \Rightarrow \mathbf{w}_i^\top (\mathbf{u}_{j,c_j} - \mathbf{u}_{j,\bar{c}_j}) = 0 \\ 2277 \quad & \Rightarrow \mathbf{w}_i^\top \left(\frac{2}{\|\mathbf{w}_j\|^2} \mathbf{w}_j \right) = 0 \\ 2279 \quad & \Rightarrow \mathbf{w}_i^\top \mathbf{w}_j = 0. \\ 2280 \end{aligned} \quad (39)$$

2282 Then,

$$2283 \quad (\mathbf{u}_{i,c_i} - \mathbf{u}_{i,\bar{c}_i})^\top (\mathbf{u}_{j,c_j} - \mathbf{u}_{j,\bar{c}_j}) \propto \mathbf{w}_i^\top \mathbf{w}_j = 0. \quad (40)$$

2285 More generally, orthogonality of one concept holds against the span of other concepts as well. For
 2286 $\{\alpha_j \in \mathbb{R}\}_{j \neq i}$ it follows that

$$2288 \quad (\mathbf{u}_{i,c_i} - \mathbf{u}_{i,\bar{c}_i})^\top \left(\sum_{j \neq i} \alpha_j (\mathbf{u}_{j,c_j} - \mathbf{u}_{j,\bar{c}_j}) \right) \propto \mathbf{w}_i^\top \left(\sum_{j \neq i} \alpha_j \mathbf{w}_j \right) = 0, \quad (41)$$

2291 and therefore orthogonality holds against the span of other concepts differences. \square

2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

2322 H EXAMPLES OF COMPOSITIONALLY GENERALIZABLE REPRESENTATIONS

2324 We give a few instantiations of the linearly-factored representation families: one, where the rep-
 2325 resentations follow a “tight” LRH, and one, in a sense opposite case: where they follow linear
 2326 independence.

2328 H.1 CASE 1: MINIMAL DIMENSIONALITY PROBING

2330 To gain intuition into the geometry of the linear probes, let’s analyze a more constrained and idealized
 2331 version of the problem. Instead of a complex joint optimization, we assume the representations
 2332 are already given and possess a highly regular structure according to the Linear Representation
 2333 Hypothesis (LRH).

2334 Specifically, we make the following assumptions:

2335 (1) The representation for any input \mathbf{x}_v corresponding to a concept value combination $v =$
 2336 (v_1, \dots, v_c) is given by

$$2338 \quad f(\mathbf{x}_v) = \sum_{i=1}^k \alpha_i(v_i) \mathbf{b}_i \quad (42)$$

2340 (2) The concept direction vectors $\{\mathbf{b}_i\}_{i=1}^k \subset \mathbb{R}^d$ are known, fixed, and linearly independent (implying
 2341 $d \geq k$). They can be thought of as forming an orthonormal basis for a k -dimensional subspace.

2343 (3) For each concept i , its n values correspond to a known, ordered set of scalar coefficients. For
 2344 instance, the values for concept i are mapped to n equally spaced coefficients in an interval, such as
 2345 $\alpha_i(v_{i,j}) = 0.1 + (j - 1) \frac{0.9}{n-1}$ for $j = 1, \dots, n$.

2346 Under these assumptions, the set of all n^k representation points $\{f(\mathbf{x}_v)\}$ is fixed and forms a regular
 2347 grid or lattice within the subspace spanned by $\{\mathbf{b}_i\}$. The optimization problem is no longer a search
 2348 for representations, but simplifies to finding the optimal set of linear probes $\{\mathbf{p}_{i,j}\}$ that can correctly
 2349 classify these points.

2350 The problem becomes:

$$2352 \quad \min_{\{\mathbf{p}_{i,j}\}} \sum_{\mathbf{v}} \sum_{i=1}^k \mathcal{L}_i (\{\mathbf{p}_{i,j}^\top f(\mathbf{x}_v)\}_{j=1}^n, v_i) \quad (43)$$

2355 where the representations $f(\mathbf{x}_v)$ are fixed as defined above. This is a much simpler problem; for
 2356 standard losses like cross-entropy or hinge loss, this is a convex optimization problem for each set of
 2357 probes $\{\mathbf{p}_{i,j}\}_{j=1}^n$ and can be solved efficiently. The key question then becomes understanding the
 2358 geometric structure of the resulting optimal probes.

2359 Suppose the concept direction vectors $\{\mathbf{b}_i\}_{i=1}^k$ are linearly independent. In this case, we can write
 2360 down an explicit analytical solution for the optimal probes. Let $V = \text{span}(\{\mathbf{b}_i\}_{i=1}^k)$ be the subspace
 2361 spanned by the concept vectors. For each $k \in [k]$, there exists a unique vector $\mathbf{w}_k \in V$ such that

$$2362 \quad \mathbf{w}_k^\top \mathbf{b}_i = \delta_{ki} \quad (44)$$

2364 for all $i \in [k]$. In other words, \mathbf{w}_k is the unique linear functional that extracts the coefficient of
 2365 \mathbf{b}_k from any vector in V expressed as a linear combination of the \mathbf{b}_i . This property allows us to
 2366 construct probes that are perfectly “decoupled” or “disentangled”: the classification of one concept is
 2367 completely unaffected by the values of any other concepts. The vector \mathbf{w}_k is the natural choice for
 2368 isolating the k -th concept from the representation.

2369 The optimal affine probes that achieve perfect classification on the given grid of points are,
 2370 for each concept k and each of its possible values $v_{k,j}$ (for $j = 1, \dots, n$): (1) **Linear part:**
 2371 $\mathbf{p}_{k,j} = 2\alpha_k(v_{k,j})\mathbf{b}_k$, (2) **Bias term:** $b_{k,j} = -(\alpha_k(v_{k,j}))^2$ If the original concept vectors $\{\mathbf{b}_i\}$
 2372 are orthonormal, then $\mathbf{b}_k = \mathbf{b}_k$, and this solution reduces to the orthonormal case discussed in the
 2373 next section.

2374 This construction is optimal because it achieves perfect classification and does so by maximizing the
 2375 classification margin, making it the solution for max-margin losses (such as those used in SVMs) and
 for simpler error-counting losses.

Let us verify the score function. The score for the j -th probe of concept k on an input \mathbf{x}_v (where the true value for concept k is v_k) is:

$$\begin{aligned} S_{k,j}(\mathbf{v}) &= \mathbf{p}_{k,j}^\top f(\mathbf{x}_v) + b_{k,j} = (2\alpha_k(v_{k,j})\mathbf{b}_k)^\top \left(\sum_{i=1}^k \alpha_i(v_i)\mathbf{b}_i \right) - (\alpha_k(v_{k,j}))^2 \\ &= 2\alpha_k(v_{k,j})\alpha_k(v_k) - (\alpha_k(v_{k,j}))^2 \quad (\text{since only the } i = k \text{ term survives}) \\ &= -(\alpha_k(v_k) - \alpha_k(v_{k,j}))^2 \end{aligned}$$

This score is maximized when $v_k = v_{k,j}$, so the classifier chooses $\arg \max_j S_{k,j}(\mathbf{v}) = \arg \min_j (\alpha_k(v_k) - \alpha_k(v_{k,j}))^2$. This is a nearest-neighbor rule that is guaranteed to be correct, thus minimizing the zero-one loss.

The region where class m is predicted is where its coefficient $\alpha_k(v_{k,m})$ is the closest prototype. The decision boundary between any two adjacent classes, m and $m+1$, is the set of points in the 1D space where a point is equidistant to both prototypes:

$$|\alpha_k - \alpha_k(v_{k,m})| = |\alpha_k - \alpha_k(v_{k,m+1})| \quad (45)$$

Given the ordering, this simplifies to $\alpha_k - \alpha_k(v_{k,m}) = -(\alpha_k - \alpha_k(v_{k,m+1}))$, which yields the decision boundary at their exact midpoint:

$$\alpha_k^{DB} = \frac{\alpha_k(v_{k,m}) + \alpha_k(v_{k,m+1})}{2} \quad (46)$$

The margin for separating this pair of classes is the distance from either class's coefficient to this decision boundary, which is $\frac{1}{2}(\alpha_k(v_{k,m+1}) - \alpha_k(v_{k,m}))$. Since our solution places the decision boundary at the midpoint for every adjacent pair, it maximizes the margin for each pair-wise separation. Therefore, it is the optimal max-margin classifier for this 1D problem. The overall margin for concept k is determined by the smallest gap between any two adjacent alpha values.

H.2 CASE 2: MAXIMUM DIMENSIONALITY PROBING OF CLIP-LIKE MODELS

We now consider the setting where representations are normalized to lie on the unit sphere, as in CLIP-style models that use cosine similarity for classification. Here, both the representation vectors \mathbf{x} and the probe vectors $\mathbf{p}_{i,j}$ are constrained to have unit ℓ_2 norm, i.e., $\|\mathbf{x}\|_2 = 1$ and $\|\mathbf{p}_{i,j}\|_2 = 1$. The geometry of the decision regions is determined by spherical caps rather than half-spaces. For a cosine similarity classifier, the decision region for class (i, j) is given by

$$\mathcal{C}_{i,j} := \{\mathbf{x} \in \mathbb{S}^{d-1} : \mathbf{p}_{i,j}^\top \mathbf{x} > \mathbf{p}_{i,k}^\top \mathbf{x} \ \forall k \neq j\}. \quad (47)$$

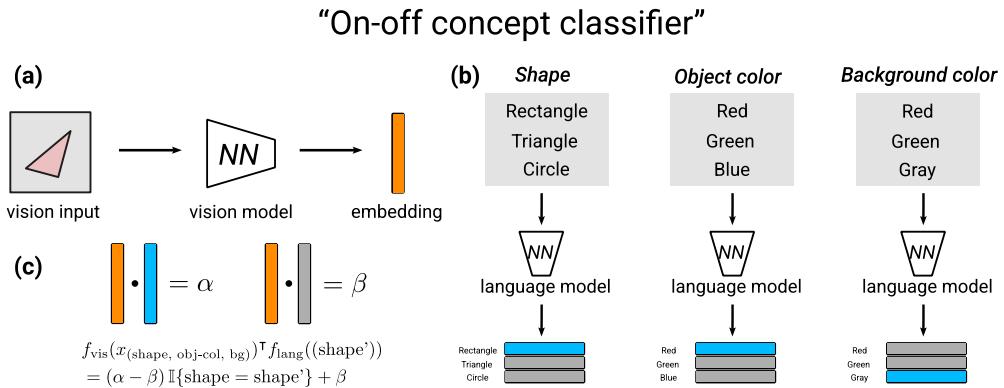


Figure 30: **Illustration of the “on-off concept classifier” mechanism.** (a) A vision input is processed by a neural network to produce an embedding. (b) Each concept (e.g., shape, object color, background color) is probed independently using a set of language model probes, one per possible value. (c) The probe for a given concept yields a high score α if the concept matches and a lower score β otherwise, as formalized in the logit equation at bottom.

That is, for each concept i and classes j, k , the cosine similarity satisfies

$$\langle \mathbf{x}_c, \mathbf{p}_{i,k} \rangle = \begin{cases} 1 & \text{if } j = c_i \\ \beta & \text{if } j \neq c_i \end{cases} \quad (48)$$

for some constant $\beta \in [-1, 1)$.

Under such strict condition, the dimensionality of the representation space must satisfy “all independent” condition. We show this below.

For a probe index $(i, j) \in [k] \times [n]$ we write

$$\mathbf{e}_{i,j} \in \mathbb{R}^{cn} \quad \text{for the } (i-1)n + j \text{ standard basis vector, i.e. } (\mathbf{e}_{i,j})_{(k,\ell)} = \begin{cases} 1, & k = i, \ell = j, \\ 0, & \text{otherwise.} \end{cases}$$

In words, $\mathbf{e}_{i,j}$ has a single 1 in the row corresponding to probe (i, j) and 0 elsewhere.

Proposition 6 (Minimal dimensionality from fixed dot-products). Fix integers $k \geq 1$ (number of concepts) and $n \geq 2$ (values per concept). For each concept $i \in [k]$ and value $j \in [n]$ let

$$\mathbf{p}_{i,j} \in \mathbb{R}^d, \quad \|\mathbf{p}_{i,j}\|_2 = 1,$$

be unit *probe* vectors, and for each complete concept tuple $\mathbf{v} = (v_1, \dots, v_c) \in [n]^k$ let

$$\mathbf{x}_{\mathbf{v}} \in \mathbb{R}^d, \quad \|\mathbf{x}_{\mathbf{v}}\|_2 = 1,$$

be unit *representations*. Assume there exist constants $\alpha, \beta \in [-1, 1]$ with $\alpha \neq \beta$ such that the fixed logit pattern

$$\mathbf{p}_{i,j}^\top \mathbf{x}_{\mathbf{v}} = \begin{cases} \alpha, & j = v_i, \\ \beta, & j \neq v_i, \end{cases} \quad \text{for all } i, j, \mathbf{v}, \quad (49)$$

holds.

Then the ambient dimension d must satisfy

$$d \geq 1 + k(n-1). \quad (50)$$

Moreover, this bound is tight: for any valid (α, β) with $|\alpha| \leq 1, |\beta| \leq 1$ there exist explicit probe/representation families that realise (49) in dimension $d = 1 + k(n-1)$.

Proof. We stack the probes as rows of the matrix

$$P = \begin{bmatrix} \mathbf{p}_{1,1}^\top \\ \vdots \\ \mathbf{p}_{k,n}^\top \end{bmatrix} \in \mathbb{R}^{cn \times d}, \quad (\text{row } (i-1)n + j = \mathbf{p}_{i,j}^\top). \quad (51)$$

Stack the representations as columns of

$$X = [\mathbf{x}_{\mathbf{v}_1} \ \cdots \ \mathbf{x}_{\mathbf{v}_{n^k}}] \in \mathbb{R}^{d \times n^k}. \quad (52)$$

The logit constraints (49) read as

$$Y = P X \in \mathbb{R}^{cn \times n^k}, \quad (53)$$

where $Y \in \mathbb{R}^{cn \times n^k}$ has entries

$$Y_{(i-1)n+j, \mathbf{v}} = \begin{cases} \alpha, & j = v_i, \\ \beta, & j \neq v_i. \end{cases} \quad (54)$$

For one concept $k = 1$, (when $Y \in \mathbb{R}^{n \times n}$), the single block is

$$(\alpha - \beta)I_n + \beta \mathbf{1}_n \mathbf{1}_n^\top \quad (55)$$

which has full rank n because $\alpha \neq \beta$. Its row-space is therefore spanned by

$$\underbrace{\{\mathbf{1}_{n^k}\}}_{\text{global offset}} \cup \underbrace{\{\mathbf{1}\{v_i = j\} - \mathbf{1}\{v_i = 1\} \mid i \in [k], j = 2, \dots, n\}}_{k(n-1) \text{ zero-sum contrast vectors}}.$$

The contrast vectors all have coordinate-sum 0, whereas $\mathbf{1}_{n^k}$ has sum n^k ; hence $\mathbf{1}_{n^k} \notin \text{span}\{\text{contrasts}\}$. The total of $1 + k(n - 1)$ vectors is therefore linearly independent, giving

$$\text{rank}(Y) = 1 + k(n - 1). \quad (56)$$

Because $Y = P X$,

$$1 + k(n - 1) = \text{rank}(Y) \leq \text{rank}(P) \leq d. \quad (57)$$

This proves (50).

Construction follows by placing the probes and representations on the unit sphere in independent directions. \square

Below, we provide a numerical example to illustrate the form of the logit matrix Y for the case of two concepts, three values each.

Example 1 (Two concepts, three values each: $k = 2$, $n = 3$). Set $(\alpha, \beta) = (1, 0.2)$. The row indices are $(i, j) \in \{1, 2\} \times \{1, 2, 3\}$, the column indices are the $3^2 = 9$ tuples $(v_1, v_2) \in \{1, 2, 3\}^2$:

$$Y = \begin{pmatrix} 11 & 12 & 13 & 21 & 22 & 23 & 31 & 32 & 33 \\ (1, 1) & 1 & 1 & 1 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ (1, 2) & 0.2 & 0.2 & 0.2 & 1 & 1 & 1 & 0.2 & 0.2 \\ (1, 3) & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 1 & 1 \\ (2, 1) & 1 & 0.2 & 0.2 & 1 & 0.2 & 0.2 & 1 & 0.2 \\ (2, 2) & 0.2 & 1 & 0.2 & 0.2 & 1 & 0.2 & 0.2 & 1 \\ (2, 3) & 0.2 & 0.2 & 1 & 0.2 & 0.2 & 1 & 0.2 & 0.2 \end{pmatrix} \quad (58)$$

Row-space decomposition. Each row has the form

$$\beta \mathbf{1}_9 + (\alpha - \beta) \mathbf{1}\{v_i = j\}, \quad (59)$$

so every row is in the span of

$$1_9, \quad \underbrace{\mathbf{1}\{v_1 = 2\} - \mathbf{1}\{v_1 = 1\}, \mathbf{1}\{v_1 = 3\} - \mathbf{1}\{v_1 = 1\}}_{n - 1 \text{ contrasts for concept 1}}, \quad \underbrace{\mathbf{1}\{v_2 = 2\} - \mathbf{1}\{v_2 = 1\}, \mathbf{1}\{v_2 = 3\} - \mathbf{1}\{v_2 = 1\}}_{n - 1 \text{ contrasts for concept 2}}. \quad (60)$$

That is a set of $1 + 2(3 - 1) = 5$ linearly independent vectors, hence $\text{rank}(Y) = 5 = 1 + k(n - 1)$.

Under such a design, linear factorization holds immediately.

Proposition 7 (Additive factorisation from the on-off pattern). Let $k \geq 1$ (concepts) and $n \geq 2$ (values per concept). Assume there are unit vectors

$$\mathbf{p}_{i,j} \in \mathbb{R}^d, \quad i \in [k], \quad j \in [n], \quad \mathbf{x}_v \in \mathbb{R}^d, \quad v = (v_1, \dots, v_c) \in [n]^k,$$

and two real numbers $\alpha \neq \beta$ in $(-1, 1)$ such that

$$\langle \mathbf{p}_{i,j}, \mathbf{x}_v \rangle = \begin{cases} \alpha & \text{if } j = v_i, \\ \beta & \text{if } j \neq v_i, \end{cases} \quad \forall i, j, v. \quad (61)$$

Define the global mean, conditional means, and shift vectors from $\{\mathbf{x}_v\}$ as:

$$g := \frac{1}{n^k} \sum_{w \in [n]^k} \mathbf{x}_w, \quad A_{i,j} := \frac{1}{n^{k-1}} \sum_{w: w_i=j} \mathbf{x}_w, \quad u_{i,j} := A_{i,j} - g.$$

Now, for each class $v = (v_1, \dots, v_c)$, define the reconstructed vector

$$\tilde{\mathbf{x}}_v := g + \sum_{k=1}^k u_{k,v_k}. \quad (62)$$

Then:

2538 1. This reconstructed vector $\tilde{\mathbf{x}}_v$ satisfies the original on-off pattern. That is, for every probe
 2539 $\mathbf{p}_{i,j}$ and every class v ,

2540

$$\langle \mathbf{p}_{i,j}, \tilde{\mathbf{x}}_v \rangle = \langle \mathbf{p}_{i,j}, \mathbf{x}_v \rangle = \begin{cases} \alpha & \text{if } j = v_i, \\ \beta & \text{if } j \neq v_i. \end{cases} \quad (63)$$

2541 This means $\tilde{\mathbf{x}}_v$ is indistinguishable from \mathbf{x}_v by the probes and is sufficient for any classifi-
 2542 cation task based on these dot products.

2543 2. Moreover, the set of vectors $\{\tilde{\mathbf{x}}_v\}$ lies in an affine subspace of dimension exactly $1+k(n-1)$.
 2544 So:

2545

$$\dim(\text{span}\{\tilde{\mathbf{x}}_v\}) = 1 + k(n - 1). \quad (64)$$

2546 *Proof.* Fix (i, j) . Averaging (61) over all n^k classes w gives

2547

$$\langle \mathbf{p}_{i,j}, \mathbf{g} \rangle = \frac{1}{n^k} \left(n^{k-1} \alpha + (n^k - n^{k-1}) \beta \right) = \frac{\alpha + (n-1)\beta}{n} =: d. \quad (65)$$

2548 independent of (i, j) .

2549 Then, compute $\langle \mathbf{p}_{i',k}, A_{i,j} \rangle$ by expanding the definition of $A_{i,j}$:

2550

$$\langle \mathbf{p}_{i',k}, A_{i,j} \rangle = \frac{1}{n^{k-1}} \sum_{w:w_i=j} \langle \mathbf{p}_{i',k}, \mathbf{x}_w \rangle. \quad (66)$$

2551 We consider two cases for the probe index i' .

2552 **Case 1: $i' = i$ (probe and condition on the same concept).** The sum is over w where $w_i = j$.

2553

- If $k = j$, the probe is $\mathbf{p}_{i,j}$. For every term in the sum, $w_i = j$, so $\langle \mathbf{p}_{i,j}, \mathbf{x}_w \rangle = \alpha$. There are n^{k-1} such terms, so the sum is $n^{k-1}\alpha$. The average is α .
- If $k \neq j$, the probe is $\mathbf{p}_{i,k}$. For every term, $w_i = j \neq k$, so $\langle \mathbf{p}_{i,k}, \mathbf{x}_w \rangle = \beta$. The sum is $n^{k-1}\beta$. The average is β .

2554 **Case 2: $i' \neq i$ (probe and condition on different concepts).** The sum is still over all n^{k-1} vectors
 2555 w where $w_i = j$. For a given probe $\mathbf{p}_{i',k}$, the value of $\langle \mathbf{p}_{i',k}, \mathbf{x}_w \rangle$ depends on whether $w_{i'} = k$ or
 2556 $w_{i'} \neq k$. Since $i' \neq i$, the condition $w_i = j$ does not fix the value of $w_{i'}$.

2557

- The number of vectors w with $w_i = j$ and $w_{i'} = k$ is n^{k-2} (since two components are
 2558 fixed, and $k-2$ are free). For these terms, $\langle \mathbf{p}_{i',k}, \mathbf{x}_w \rangle = \alpha$.
- The number of vectors w with $w_i = j$ and $w_{i'} \neq k$ is $(n-1)n^{k-2}$ (one component fixed,
 2559 one has $n-1$ choices, $k-2$ are free). For these terms, $\langle \mathbf{p}_{i',k}, \mathbf{x}_w \rangle = \beta$.

2560 The sum (66) is therefore (when $i' \neq i$)

2561

$$n^{k-2}\alpha + (n-1)n^{k-2}\beta. \quad (67)$$

2562 The average is:

2563

$$\langle \mathbf{p}_{i',k}, A_{i,j} \rangle = \frac{n^{k-2}\alpha + (n-1)n^{k-2}\beta}{n^{k-1}} = \frac{\alpha + (n-1)\beta}{n} = d. \quad (68)$$

2564 Combining these cases, we have:

2565

$$\langle \mathbf{p}_{i',k}, A_{i,j} \rangle = \begin{cases} \alpha, & i' = i, k = j, \\ \beta, & i' = i, k \neq j, \\ d, & i' \neq i. \end{cases}$$

2592 By linearity, $\langle \mathbf{p}_{i',k}, u_{i,j} \rangle = \langle \mathbf{p}_{i',k}, A_{i,j} \rangle - \langle \mathbf{p}_{i',k}, g \rangle$. The results from steps 1 and 2 give:
 2593

$$\langle \mathbf{p}_{i',k}, u_{i,j} \rangle = \begin{cases} \alpha - d, & i' = i, k = j, \\ \beta - d, & i' = i, k \neq j, \\ 0, & i' \neq i. \end{cases} \quad (69)$$

2597

2598

2599 Finally, by evaluation, it follows that $\tilde{\mathbf{x}}_v = g + \sum_{k=1}^k u_{k,v_k}$ satisfies the on-off pattern:
 2600

$$\begin{aligned} \langle \mathbf{p}_{i,j}, \tilde{\mathbf{x}}_v \rangle &= \langle \mathbf{p}_{i,j}, g \rangle + \sum_{k=1}^k \langle \mathbf{p}_{i,j}, u_{k,v_k} \rangle \\ &= d + \langle \mathbf{p}_{i,j}, u_{i,v_i} \rangle + \sum_{k \neq i} \underbrace{\langle \mathbf{p}_{i,j}, u_{k,v_k} \rangle}_{=0 \text{ from (69)}} \\ &= d + (\langle \mathbf{p}_{i,j}, A_{i,v_i} \rangle - d) = \langle \mathbf{p}_{i,j}, A_{i,v_i} \rangle \\ &= \begin{cases} \alpha, & j = v_i, \\ \beta, & j \neq v_i. \end{cases} \end{aligned}$$

2610 This confirms that $\langle \mathbf{p}_{i,j}, \tilde{\mathbf{x}}_v \rangle = \langle \mathbf{p}_{i,j}, \mathbf{x}_v \rangle$ for all probes, and establishes (63).
 2611

2612

2613 The reconstructed vectors $\{\tilde{\mathbf{x}}_v\}$ are all affine combinations of $\{g\} \cup \{u_{i,j}\}$. A basis for this affine
 2614 space can be formed by $\{g\}$ and the differences $\{u_{i,j} - u_{i,1} \mid i \in [k], j = 2, \dots, n\}$, a set of
 2615 $1 + k(n - 1)$ vectors. These are linearly independent because contrasts from different concepts are
 2616 orthogonal (with respect to probes), and within a concept, independence follows from $\alpha \neq \beta$. Thus,
 2617 the set $\{\tilde{\mathbf{x}}_v\}$ lies in an affine subspace of dimension exactly $1 + k(n - 1)$. This establishes (64). \square
 2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

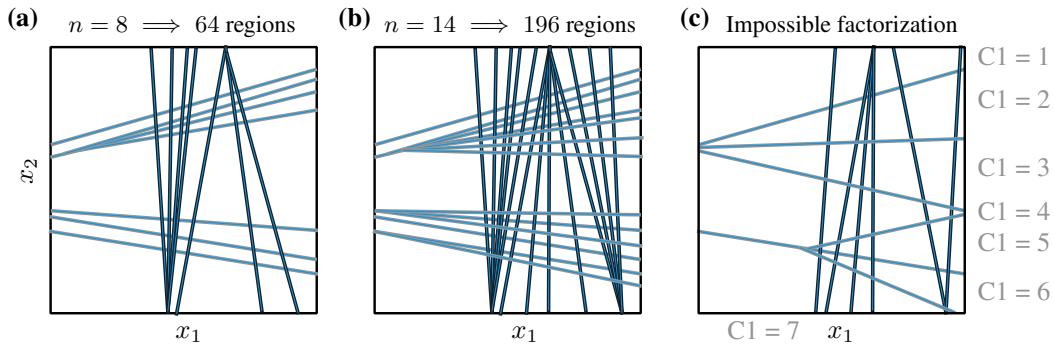
2646 I WHAT IF STABILITY IS NOT REQUIRED?

2648 We detail and discuss the stability axiom in the main text. Suppose it was not true, what other structure
 2649 does the representation need to have?

2651 I.1 COUNTEREXAMPLES TO LINEAR FACTORIZATION EVEN AS $n \rightarrow \infty$

2653 Suppose that instead of assuming a transferable compositional model, we *only* assume the model
 2654 supports linear separation. That is, given n^k datapoints in total, let's suppose there exist $n \cdot k$ linear
 2655 probes that can be used to classify each concept value for any datapoint. (Formally: there are k
 2656 concepts indexed by $j \in \{1, \dots, k\}$, each with n values indexed by $k \in \{1, \dots, n\}$; a datapoint is
 2657 $t = (k_1, \dots, k_c) \in \{1, \dots, n\}^k$; a representation map $f: \mathcal{X} \rightarrow \mathbb{R}^d$ yields $\mathbf{z}_t := f(\mathbf{x}_t)$; and for each
 2658 concept j there are weights and biases $\{(\mathbf{w}_{j,k}, b_{j,k})\}_{k=1}^n$ with $\text{argmax}_k (\mathbf{w}_{j,k}^\top \mathbf{z}_t + b_{j,k}) = k_j$.)

2659 Does such a construct imply a certain representational structure? Perhaps—but it is not, in general,
 2660 linearly factorizable. Concretely, suppose we restrict ourselves to a two-dimensional representation
 2661 space. Assume it's Euclidean and the linear probes are weight vectors with biases. Additionally,
 2662 assume there are only two concepts that the data is distributed over. Now, given that there are n values,
 2663 is there some structure that the representations need to converge to as $n \rightarrow \infty$? Not necessarily:
 2664 even in this $d = 2, k = 2$ setting, one can satisfy all the linear separability probes with point clouds
 2665 $\{\mathbf{z}_{k_1, k_2}\} \subset \mathbb{R}^2$ that do *not* admit an additive decomposition of the form $\mathbf{z}_{k_1, k_2} = \mathbf{u}_0 + \mathbf{u}_{1, k_1} + \mathbf{u}_{2, k_2}$.
 2666 This is the sense in which linear separability does not imply linear factorizability.



2679 **Figure 31: Linear separability without linear factorization.** Two families of affine decision boundaries in \mathbb{R}^2
 2680 (black for concept 1, gray for concept 2) divide the plane into regions, one per pair of concept values. Panels
 2681 (a,b): with $n = 8$ and $n = 14$ levels per concept the arrangement yields n^2 regions (64 and 196). By inserting
 2682 additional nearly-parallel boundaries, existing regions can be split into smaller and smaller pieces, creating
 2683 arbitrarily tiny regions while maintaining perfect linear separability. Panel (c): No linear factorization can be
 2684 achieved: whichever factors we pick, the separability of some datapoints are violated.

2685 From Figure 31: panels (a) and (b) show two interleaved line families whose intersections produce a
 2686 grid of n^2 convex cells, one for each (k_1, k_2) . Nothing forces these cells to align with an additive
 2687 basis; in fact, we can keep adding lines that are ε -perturbations of existing ones to subdivide cells,
 2688 driving some cell areas to zero as n grows, yet all multiclass linear probes remain valid.

2700 THE USAGE OF LLMs
2701

2702 In accordance with ICLR 2026 policy, we disclose that large language models were used to assist in
2703 text editing and polishing of writing. All research ideas, experiments, and analyses were conducted
2704 by the authors.

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753