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ABSTRACT

Compositional generalization, the ability to recognize familiar parts in novel con-
texts, is a defining property of intelligent systems. Modern models are trained on
massive datasets, yet these are vanishingly small compared to the full combinatorial
space of possible data, raising the question of whether models can reliably gener-
alize to unseen combinations. To formalize what this requires, we propose a set
of practically motivated desiderata that any compositionally generalizing system
must satisfy, and analyze their implications under standard training with linear
classification heads. We show that these desiderata necessitate linear factorization,
where representations decompose additively into per-concept components, and
further imply near-orthogonality across factors. We establish dimension bounds
that link the number of concepts to the geometry of representations. Empirically,
we survey CLIP and SigLIP families, finding strong evidence for linear factor-
ization, approximate orthogonality, and a tight correlation between the quality of
factorization and compositional generalization. Together, our results identify the
structural conditions that embeddings must satisfy for compositional generaliza-
tion, and provide both theoretical clarity and empirical diagnostics for developing
foundation models that generalize compositionally.

1 INTRODUCTION

f

A person?
A cat?

f

Xtrain

Data space X

X \ Xtrain

A cat on a person A person on a cat

Figure 1: What enables compo-
sitional generalization in CLIP?
Training distributions contain com-
mon configurations (left: a cat on a
person) but lack rare ones (right: a
person on a cat). Yet the same text-
based queries, e.g. “A photo of a
person”,must work on both, even
when the latter was never seen dur-
ing training. We investigate what
properties encoder f must satisfy
for such transfer to succeed.

Modern vision systems are trained on tiny, biased samples of a com-
binatorial space of visual concepts, like objects, attributes, relations
in different contexts. Despite this, we expect them to perform well
in the wild on novel recombinations of familiar concepts, an expec-
tation tied to the view that systematic generalization, the ability to
recombine learned constituents, is a hallmark of intelligence (Fodor
& Pylyshyn, 1988). Yet a large body of empirical work shows that
even high-performing neural models often struggle with systematic-
ity when train/test combinations mismatch (Lake & Baroni, 2018;
Keysers et al., 2020; Hupkes et al., 2022; Uselis et al., 2025). At the
same time, large vision–language models such as CLIP (Radford
et al., 2021) and its variants are trained on web-scale datasets (e.g.,
LAION-400M (Schuhmann et al., 2021a)) and achieve impressive
zero-shot transfer on many tasks (Radford et al., 2021; Zhai et al.,
2022).

However, they often fail when test images contain unusual combina-
tions of familiar concepts (Xu et al., 2022; Bao et al., 2024; Thrush
et al., 2022; Abbasi et al., 2024; Yuksekgonul et al., 2023; Ma et al.,
2023). Figure 1 illustrates this tension for CLIP-like architectures:
an image encoder f produces embeddings on which linear classi-
fiers predict concepts, but training data Xtrain cover only common compositions (such as a cat on a
person) from the full data space X , while models must answer queries like “Is there a person present?”
correctly even on rare compositions (such as a cartoon of a person on a cat) from X \ Xtrain. Given
how rarely, if at all, such compositions appear in training, we aim to identify which properties could
enable generalization. To study this, we ask: assuming that compositional generalization succeeds,
what properties must the representations have to accommodate it?
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We argue for non-negotiable, model-agnostic properties that any neural-network-based system claim-
ing compositional generalization must satisfy. We state three desiderata: divisibility, transferability,
and stability. These desiderata formalize that (i) all parts of an input should be accessible to a simple
readout; (ii) readouts trained on a tiny but diverse subset should transfer to unseen combinations; and
(iii) training on any valid subset should yield robust generalization. Our scope is the common setting
where predictions are linear in the embedding f : CLIP-style zero-shot classifiers, linear probing, and
cases where a fixed non-linear head is folded into the encoder.

Our key finding is that these desiderata necessitate a specific geometry: linear factorization with
near-orthogonal concept directions. This establishes what any model must achieve to compositionally
generalize under standard training, providing a concrete target for future design. Moreover, it offers
theoretical grounding for the Linear Representation Hypothesis – the linear structure widely observed
in neural representations is a necessary consequence of compositional generalization.

Our contributions are: (1) Defining desiderata. We define three desiderata: divisibility, transferability,
stability, and formalize compositional generalization in their terms. (2) Structural necessity. Under
GD with CE/BCE, these desiderata imply linear factorization: embeddings decompose into per-
concept sums with orthogonal difference directions. (3) Empirical grounding. Across CLIP and
SigLIP families, we find strong evidence of factorization, near-orthogonality, low-rank per-concept
geometry, and correlation with compositional generalization accuracy.

2 RELATED WORK

Compositional generalization. Research on compositional generalization investigates how models
can systematically combine concepts. On the objective side, approaches such as Compositional
Feature Alignment (Wang, 2025) and Compositional Risk Minimization (Mahajan et al., 2025) study
how model training objectives, and model architecture Jarvis et al. (2024) affect compositional
generalization. On the representational side, kernel analyses characterize when certain compositional
structures in embeddings yield generalization theoretically (Lippl & Stachenfeld, 2025), and empirical
work investigates the role of disentangled representations for compositional generalization (Montero
et al., 2021; Dittadi et al., 2021; Liang et al., 2025). On the data side, recent work probes whether
and how scaling and data coverage improve compositional behavior (Uselis et al., 2025; Schott
et al., 2022; Kempf et al., 2025). Abbasi et al. (2024) investigate CLIP’s ability to recognize unlikely
attribute-object combinations, finding that CLIP models still fall short on such tasks.

Other works establish formal sufficient conditions for when particular model classes can achieve
compositional generalization, e.g., generative models whose data are produced by a differentiable
rendering process and whose training distribution provides compositional support over latent factors
(Wiedemer et al., 2023), discriminative models whose inputs are drawn from an additive energy
distribution (Mahajan et al., 2025), or linearly factorized representations (Uselis et al., 2025). In
contrast, we do not impose specific structure on the data-generating process or on the learned
representations. Instead, we ask what properties are implied if a model transfers from a restricted
subset of the data space to the full space under our desiderata. Within this setting, our results can be
interpreted as providing necessary conditions for compositional generalization for models that satisfy
these desiderata.

Geometry of learned representations. A large literature studies the shape of learned features.
In VLMs, Trager et al. (2023) report compositional linear subspaces, while in LLMs the Linear
Representation Hypothesis (LRH) is examined mechanistically and statistically (Jiang et al., 2024;
Park et al., 2023). Extending LRH, Engels et al. (2025) show that features can be multi-dimensional
rather than rank-1, and Roeder et al. (2020) analyze identifiability constraints. Sparse-autoencoder
probes provide evidence for monosemantic or selectively remapped features in VLMs (Pach et al.,
2025; Zaigrajew et al., 2025; Lim et al., 2025). Beyond nominal labels, ordinal/ordered concepts
motivate the rankability of embeddings (Sonthalia et al., 2025). More broadly, capacity limits for
embedding-based retrieval emphasize geometric bottlenecks (Weller et al., 2025). Elhage et al. (2022)
investigated empirically how neural networks can represent more features than there are dimensions
in two-layer auto-encoder models. They found a tendency to encode features near-orthogonally with
respect to neurons. Abbasi et al. (2024) find evidence of disentanglement in CLIP models. In contrast
to these works, which document linear or near-orthogonal structure empirically, we show that under
practice-driven desiderata and standard training, linearity and orthogonality are necessary.
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Data, objectives, and training effects on geometry. Data distribution strongly shapes zero-shot
behavior; concept frequency during pretraining predicts multimodal performance (Udandarao et al.,
2024). On the objective side, BCE vs. CE can induce different feature geometries (Li et al., 2025),
and contrastive/InfoNCE objectives exhibit characteristic similarity patterns (Lee et al., 2025). Con-
vergence perspectives argue that the objective drives canonical representational forms (Huh et al.,
2024), and objective choice has been tied to representational similarity across datasets (Ciernik et al.,
2025).

Binding, explicit structure injection, and concept identification. Work on binding asks whether
models maintain factored world states (Feng et al., 2025), and CLIP has been observed to show
uni-modal binding (Koishigarina et al., 2025). Surveys and empirical studies examine binding limits
and emergent symbolic mechanisms (Campbell et al., 2025; Assouel et al., 2025). Other approaches
inject structure directly, e.g., hyperbolic image–text embeddings and entailment learning (Pal et al.,
2024; Desai et al., 2024), or pursue concept identification at the causal/foundation interface and
object-centric pipelines (Rajendran et al., 2024; Mamaghan et al., 2024).

Relation to disentangled representation learning. Work on disentangled representations largely
focuses on specifying desiderata for internal codes (e.g., disentanglement, completeness, informative-
ness) and proposing metrics or training schemes to satisfy them, often with the informal motivation
that such structure should help downstream generalization (Bengio et al., 2014; Eastwood & Williams,
2018; Higgins et al., 2018). Few recent studies directly probe how these properties relate to out-of-
distribution or compositional generalization, with mixed or limited evidence (Watters et al., 2019;
Dittadi et al., 2021; Montero et al., 2021; 2024). We instead ask a complementary question: if a
discriminative model model does exhibit compositional generalization when learned from a subset of
the data space, what must necessarily be true of its embeddings?

We provide a more detailed discussion in Appendix B

3 SETUP: A FRAMEWORK FOR COMPOSITIONALITY

We begin by detailing key desiderata for embedding models that contend to be compositional. We
motivate them from a practical perspective: (1) models need to support distinguishing between any
combination of concepts, (2) practical data collection is limited to a subset of the concept space, so a
model needs to be able to transfer from a subset of the concept space to the full concept space, and
(3) in practice apriori it is not known which subset needs to be chosen, so a model should be able to
transfer robustly from any subset, matching in probability distribution to retraining over any other
dataset.
3.1 SETUP: CONCEPT SPACES AND DATA COLLECTION PROCESS

We interpret the world as a product of concepts: any input xc ∈ X (e.g., images) has an associated
tuple of concepts c ∈ C, describing its constituent parts and properties. This is a reasonable way to
describe a large portion of the world. For example, current large-scale datasets (e.g., image–caption
pairs) provide noisy natural-language descriptions that can be decomposed into discrete concept
values. Clearly, a single concept tuple cannot capture all aspects of the world, e.g. how attributes bind
to objects or how different objects relate spatially. Still, an intelligent system should at least be able to
tell apart basic concepts (such as objects and their attributes), even without modeling their relations.
In other words, concept spaces may not capture the full compositional structure of the world, but any
model of the world must involve them in some form. Importantly, we do not assume how the concept
values are distributed (e.g. being independent), only what they represent.

Definition 1 (Concept space). Suppose we have k concepts, and each concept can take n possible
values. For each concept Ci (i = 1, . . . , k), let its set of possible values be Ci = {1, . . . , n}. The
concept space is the Cartesian product

C = C1 × C2 × · · · × Ck = [n]k, (1)

that is, the set of all possible tuples c with |C| = nk. We index inputs by concept tuples: for each
c ∈ C we assume an associated xc ∈ X (e.g., a natural image) realizing c.

Data-related components for compositional generalization involves three notions: (1) the total varia-
tion of the data, (2) the concepts we aim to learn and expect the model to capture, and (3) the data that
is actually collectible. We capture (1) by the concept space C (Definition 1); (2), the targets that we
aim to capture can be described by a label function l : C → V ⊆ C that capture which concepts and
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their values we want to learn. In this work we take the full target V = C, by noting that foundation
models attempt to align with all present concepts. For (3), we formalize collectability constraints
through a validity class that specfies which training supports are valid, indicating which concept
combinations may appear in training. We formalize this below.
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Figure 2: Interpreting previous works’ sampling designs T and validity rules R. Training sets T specify
which concept combinations are observed. Validity rules R determine valid training configurations for general-
ization evaluation.

Considering data collection. We are interested in models that support efficient compositional
generalization from a subset of the concept space. To formalize this notion, we specify a validity
class T ⊆ 2C of valid training sets, where 2C denotes the power set of C, and a validity rule
R : 2C → {0, 1} that specifies whether a given training set is valid. This setup captures the natural
question of which training sets we use and for which we expect generalization.

Definition 2 (Training support, validity class, and training dataset). Let C be the concept space. A
training support is any subset T ⊆ C. Validity class is a collection T ⊆ 2C whose members are
called valid training sets. The class T specifies which training sets are observable. Validity class T is
specified by a validity rule R : 2C→{0, 1} through T = {T ⊆ C : R(T ) = 1}. A training dataset
for a training set T is DT = {(xc, c) : c ∈ T}.

We note that there are many validity rules used in practice. For example, if we can collect any
subset of size N < |C|, then R(T ) = 1 whenever |T | = N . Figure 2 illustrates common choices:
Mahajan et al. (2025) use training supports that cover every concept value; Schott et al. (2022) use
random samples covering 70% of all combinations; Kempf et al. (2025) specify a small set of allowed
supports; and Uselis et al. (2025) use supports whose joint marginals cover at least two values per
concept. Note that these validity rules apply to concept supports rather than individual datapoints.

3.2 COMPOSITIONAL REPRESENTATIONS AND MODELS

Given the concept space and the training supports, we now make precise how we expect models to
learn. We work with encoders f that map an input to a vector representation (embedding).

Scope of models. We study embedding models: these cover modern foundation models like CLIP
and SigLIP (Tschannen et al., 2025; Zhai et al., 2023), supervised-learning models, self-supervised
models like DINO (Caron et al., 2021). At inference the models we study are non-contextual: the
representation of an input depends only on that input (no dependence on other test examples, prompts,
or the batch). Formally, the encoder is a map f : X → Z , with z = f(x) (optionally ℓ2-normalized).

Readout class (linear vs. non-linear). Usually, encoders f are associated with either a downstream
or readout model h that takes z = f(x) and outputs per-concept logits h(z) ∈ Rk×n using argmax
classification rule (see Definition 3). This covers zero-shot use of text features as linear classifiers,
standard linear probing, and the affine last layer in most neural classifiers. If h is non-linear in a neural
network, we absorb the layers preceding the linear layer g into the encoder (f̃ = g ◦ f ) and analyze
the resulting affine layer. The definition below keeps the readout h general to allow future extensions
beyond linear heads, but all results in this paper consider the linear case, without such restrictions a
high-capacity readout could make any injective encoder appear compositional by memorization.
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Definition 3 ((Linearly) compositional model). An encoder f : X → Z is compositional w.r.t. C if
there exists h : Z → Rk×n such that, for all c ∈ C and all i ∈ [k],

ci = argmax
j∈[n]

h(f(xc))i,j . (2)

It is linearly compositional if h can be taken affine h(z) = Wz + b. We refer to h as the readout.

3.3 COMPOSITIONAL GENERALIZATION AND DESIDERATA

Compositional models

∃h : h(f(xc)) correct ∀c ∈ C

Linearly
compositional

h(·) linear

Generalizing
compositional

∀T ∈ T , A(T )
transfersGeneralizing

linearly
compositional

h(·) linear; A(T ) transfers.
Figure 3: Relationship between (gener-
alizing) compositional models. The plot
illustrates what requirements each defi-
nition imposes on classifiability (orange
nodes), and transfer (purple nodes).

Given the ingredients (concept space C, encoder f , and
training-support family T ), we now define a learning rule A
and state three desiderata for compositional generalization:
divisibility, transferability, and stability. We emphasize that
this desiderata is on the NN-based models that exhibit gen-
eralization, as defined below, not on the representations, as
studied in disentangled representation learning.

Considering training. We view a learning algorithm as a
simple map

A : DT 7→ hT , hT ∈ H ⊆ {h : Z → Rk×n},
from a dataset supported on T ⊆ C to a readout in a cho-
sen hypothesis class. In practice, A is typically (stochastic)
gradient descent on a cross-entropy or contrastive objective,
covering contrastive vision–language encoders (e.g., CLIP, SigLIP), standard supervised classifiers,
and linear probes on self-supervised vision encoders like DINO.

Desiderata for compositional generalization. Suppose we train a downstream readout hT = A(DT )
on some T ∈ T . What should hT satisfy? We argue for three practically-motivated properties.

First, every combination of concept values should be classifiable by the readout: for any c ∈ C, the
corresponding region of the representation space of f is nonempty: there exists at least one z that hT

assigns the concept values c. Otherwise, generalization to the full grid is impossible. We refer to this
property as Divisibility.
Desideratum 1 (Divisibility). For a readout h : Z → Rk×n, every concept tuple must be classifiable:

∀ c ∈ C :

k⋂
i=1

Ri,ci(h) ̸= ∅, where Rij(h) = {z ∈ Z : arg max
j′∈[n]

h(x′)i,j′ = j}. (3)

Divisibility is necessary but not sufficient: it guarantees that the space is divisible, but does not imply
that the readout will be correct. We therefore ask that, for every training set, the learned readout
transfers to the full grid; we refer to this as Transferability.
Desideratum 2 (Transferability). For every T ∈ T , the trained readout hT = A(DT ) correctly
classifies all possible combinations of the concept space:

∀ c ∈ C, ∀ i ∈ [k] : argmax
j∈[n]

hT

(
f(xc)

)
i,j

= ci. (4)

Note that Transferability implies Divisibility. We state Divisibility explicitly because it highlights a
capacity requirement: the embedding space must be able to represent all concept combinations.

Third, consider readouts learned from different valid supports T ∈ T . Divisibility and Transferability
ensure do not say anything about the behavior of the classification decisions. Intuitively: if an input
depicts a “cat”, retraining on another valid support should not flip the preference to “dog” or push the
prediction toward near-indifference. We refer to this as Stability.
Desideratum 3 (Stability). For any T, T ′ ∈ T , any grid point xc, and any i ∈ [k], the per-concept
posteriors agree across supports:

p
(T )
i (j | f(xc)) =

exp(hT (f(xc))i,j)∑n
k=1 exp(hT (f(xc))i,k)

, p
(T )
i (· | f(xc)) = p

(T ′)
i (· | f(xc)). (5)

Defining compositional generalization. We now tie the ingredients into a single tuple Π =
(f,H, A, T ), which we use as the object that specifies the entire compositional-generalization setup:
the encoder, the readout class, the learning rule, and the family of valid training supports. We specify
compositional generalization as a process of learning readouts that generalize over all T ∈ T and
satisfy Desiderata 1–3.
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Definition 4 (Compositional generalization). Π = (f,H, A, T ) exhibits compositional generaliza-
tion if, for every T ∈ T with hT = A(DT ), Divisibility (Def. 1) and Transferability (Def. 2) hold on
the full grid, and the posteriors are Stable across valid retrainings (Def. 3) for all pairs T, T ′ ∈ T . We
say that Π exhibits linear compositional generalization when the readout hypothesis class is linear.

We illustrate the relationship between (linear) models and their compositional counterparts in Figure 3.
In practice one could consider relaxed or average-case variants; however, we here are interested in
“ideal” representations that support compositional generalization under any data sample.

3.4 INSTANTIATING THE FRAMEWORK WITH CLIP

Sub. type

c11 = Cat

c1n = Person

x11

f

Color

c21 = Orange

c2n = Blue

g

fimg(x)

...
...

“A c1” “A subject in c2 color”

g

C1 C2

{w1j}nj=1 {w2j}nj=1

Figure 4: Instantiating the
framework with CLIP-like em-
bedding models for analysis.

We instantiate the framework in the dual-encoder, vision–language
setting in the style of CLIP models: images and texts are embedded
into a shared space and trained to align, with captions acting as noisy
descriptions of concept tuples.

Encoders. Let f : X → Z be the image encoder and g : Y → Z
the text encoder. At inference both are typically ℓ2-normalized so
that inner products are cosine similarities: ∥f(x)∥ = ∥g(y)∥ = 1.

Prompts as linear probes. Zero-shot classification uses text features
as linear classifiers. For each concept i ∈ [k] and value j ∈ [n], we
can choose a prompt pi,j (e.g., “a photo of a cat”) and define a probe
vector wi,j := g(pi,j) ∈ Z . Stacking these gives a readout

h(z) =
[
w⊤i,jz

]
i,j

∈ Rk×n.

Here f is the representation model, while h is a linear readout whose
weights come from the text encoder. Training in CLIP-like models
can be viewed as learning a readout model where the same set of
text-derived probes serves across many images; prompts often mention only parts of an image, so
the system is implicitly asked to recognize objects and attributes regardless of which other concepts
co-occur. We illustrate this process in Figure 4.

The question we study. Given a concept space C, what structure must z = f(xc) have so that a
single set of probes {wi,j} (whether fixed by g or learned as linear probes) satisfies our desiderata
(Desiderata 1–3) on the full C? In other words, what constraints does zero-shot, probe-based classi-
fication place on the geometry of image representations if we want compositional generalization?

4 IMPLICATIONS OF COMPOSITIONALITY ON REPRESENTATIONS

We now ask what our desiderata force on representations in common training regimes. Two questions
guide the section:
Q1 (§4.1) Geometry under GD with CE/BCE and stable transfer. If A is gradient descent under

binary cross-entropy, and Π exhibits compositional generalization (Def. 4) across a family of
supports T , what structure is necessary for f (and the linear readout h)? → We show additive
(linear) factorization with orthogonal concept directions under natural T .

Q2 (§4.2) Minimal dimension for linear readout. Assuming separability/divisibility and a linear
(affine) readout h, what is the smallest d so that correct per-concept predictions are possible over
all nk tuples? → With affine readouts, d ≥ k is necessary and tight.

4.1 GEOMETRY OF f UNDER COMMON TRAINING SETTINGS

We instantiate A as gradient descent on the binary cross-entropy (logistic) loss. As in §3.4, the readout
h is linear in the embedding z = f(x) (text-derived probes or learned linear heads). We illustrate the
stable and unstable examples of feature representations in Figure 5.
Proposition 1 (Binary case: compositional generalization implies linear factorization). Let Π =
(f,H, A, T ) be the tuple instantiated in Section 3.4, with linear heads H and A given by GD+CE.
Suppose that the training sets follow random sampling with validity rule R(T ) = 1 if |T | = 2k−1+1.
Assume Desiderata 1–3 are satisfied. Then under the binary grid Ci = {0, 1} with X = {xc : c ∈
[2]k} ⊂ Rd, there exist {ui,0,ui,1 ∈ Rd}ki=1 such that for every c ∈ [2]k the following holds:

1. (Linearity) xc =
∑k

i=1 ui,ci .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2. (Cross-concept orthogonality) (ui,1 − ui,0) ⊥ (uj,1 − uj,0) for all i, j ∈ [k] with (i ̸= j).

Proof sketch. GD+CE converges to a max-margin SVM in direction Soudry et al. (2024). Under
the degree of freedom of CE, stability implies consistent weight differences across retrainings. The
max-margin property with different training sets ensures each datapoint is a support vector for at
least one dataset, implying prediction invariance when other concepts vary. Finally, since max-margin
SVM weight vectors are parallel to the shortest segment between separable convex sets, appropriate
pairing of datasets yields that flipping any concept results in an additive shift, with shift vectors
orthogonal across concepts.

Unstable
Does not transfer

Stable
Transfers

w1 w1

w1 w1

Figure 5: Stable and unstable
examples of feature represen-
tations. The top panel shows an
unstable configuration, where
depending on the sample, the
readout either does not trans-
fer or unstably. Bottom panel
shows a stable configuration.

Intuitively, linear factorization means that a combination space of nk

elements can be explained using only n · k factors. The orthogonality
condition says that factors of concept values belonging to different
concepts (e.g., “red” and “square”) are orthogonal to each other, but
no requirement is placed on the factors of concept values belonging to
the same concept (e.g., “red” and “blue”). Additionally, we note that
linear factorization in itself is not trivial - the fact that nk datapoints
can be explained using n · k factors does not have to hold for any
linearly compositional model. We illustrate this with examples in
Appendix C.4.

The datapoint requirement can be interpreted as operating in either (i)
a minimal-learning regime for extrapolating to the whole grid (as in
Compositional Risk Minimzation framework Mahajan et al. (2025)),
where |T | = 1 + k(n − 1) suffices to extrapolate to the whole grid,
or (ii) a large-sample regime in which random sampling yields near-
complete coverage of the concept space. That is, the conclusions of
Proposition 1 hold for 1 + c ≤ |T | ≤ 1 + 2c−1 for c ≥ 2.

Takeaway §4.1. Training under common GD+CE over embeddings to
generalize compositionally and stably requires linear factorization and
orthogonal of unrelated concept factors.

4.2 PACKING AND MINIMUM DIMENSION k = 2, n = 20 k = 3, n = 12

Figure 6: Example geometries under
linear compositionality. Left: 2 con-
cepts (n = 20 each) on a 2D sphere.
Each colored stripe is the argmax
boundary for one concept value; their
intersections yield 202 combination
cells. Right: 3 concepts (n = 12 each)
in 3D. Colored planes show argmax
boundaries; their intersections carve out
123 combination cells. Each boundary
is colored according to the concept it
belongs to.

Motivated by the separability axiom, we ask a basic capacity
question: what is the minimum embedding dimension d needed
to support Divisibility (Desideratum 1), i.e. realize all possi-
ble nk combinations? The following result gives a tight lower
bound. Proof and its sketch in Appendix F.
Proposition 2 (Minimum dimension for linear probes). For k
concepts, each with n values, suppose there exist linear probes
that correctly classify each concept value for all nk combina-
tions from embeddings f(x) ∈ Rd. Then necessarily d ≥ k.

Importantly, the bound is independent of the number of values
n per concept, depending only on the number of concepts k.
This holds whether each factor is discrete or continuous: the
proof requires only that we can distinguish any two values
per factor, which continuous factors can allow. We illustrate
two examples of divisibility in Figure 6: on a sphere and in
Euclidean space, though our formal results establish minimal
dimensionality only for Euclidean space. Additional visualizations in Figure 14.

Takeaway §4.2. Minimum dimensionality scales with the number of concepts k, not values n.

5 SURVEYING NECESSARY CONDITIONS IN PRETRAINED MODELS

Here, we empirically evaluate the necessary conditions for compositional generalization in pretrained
models. We aim to answer the following questions:
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Q3 (Section 5.1) Is linear factorization present in pre-trained models?
Q4 (Section 5.2) Does the degree of linear factorization correlate with compositional generaliza-

tion?
Q5 (Section 5.3) Are per-concept difference vectors approximately orthogonal across concepts, as

the theory predicts?
Q6 (Section 5.4) What geometric structure do factors exhibit?

Models and datasets. We evaluate across diverse model families and training regimes: OpenAI CLIP
(ViT-B/32, ViT-L/14), OpenCLIP (ViT-L/14), SigLIP (ViT-L/14 or L/16), and SigLIP 2
(ViT-L/14). These span different architectures (ViT variants), training objectives (softmax vs.
sigmoid), and data scales to assess generality of our findings. We evaluate on three compositional
datasets: PUG-Animal (Bordes et al., 2023), dSprites (Matthey et al., 2017), and MPI3D
(Gondal et al., 2019), which provide controlled concept variations across different visual domains.
Additionally, we also evaluate on a compositional dataset with unnatural noun-adjective pairs (Abbasi
et al., 2024) in Appendix D.3.2.

Recovering the factors from representations. Given that a linear factorization exists in the rep-
resentations of a model f as detailed in Section 4.1, we can recover the factors {ui,j}i∈[k],j∈[n]
by averaging over all the datapoints that share a particular concept value (Trager et al., 2023). For
analysis purposes it is sufficient to recover the centered factors. That is, given all centered embeddings
{f(xc)}c∈[n]k , the factors can be recovered as ui,j =

1
|{c∈[n]k:ci=j}|

∑
c∈[n]k:ci=j f(xc).

5.1 LINEAR FACTORIZATION IN PRE-TRAINED MODELS

Measuring linearity in pre-trained models. To assess the extent of linearity present in the embed-
dings, we measure whitened R2 score on the probe span. We (i) project on the probe span to remove
information of additional information the embeddings may posess beyond the concepts each dataset
exposes, and (2) whiten the embedding space to ensure that the R2 score is not inflated by a few
dominant directions. Concretely, given the recovered approximate factors {ui,j}i∈[k],j∈[n], the R2

score is computed as

R2 = 1−
∑

xc∈D

∥∥f(xc)−
∑k

i=1 ui,ci

∥∥2

2∑
xc∈D ∥f(xc)− f̄∥22

, (6)

where D is the dataset, and f̄ is the mean embedding. Note that a score of 1.0 indicates perfect
linearity. We provide intuition of linear factorization and its relation to the R2 in Appendix C.3,
additional justification of whitening in Appendix C.2, and defer the details to Appendix C.1.

Random

CLIP ViT-L/14

OCLIP ViT-L/14
SigLIP-L/16

SigLIP2-S/O
Random

CLIP ViT-L/14

OCLIP ViT-L/14
SigLIP-L/16

SigLIP2-S/O
Random

CLIP ViT-L/14

OCLIP ViT-L/14
SigLIP-L/16

SigLIP2-S/O
0.0

0.5

1.0

R2 0.46 0.56 0.55 0.57 0.63

PUG-Animal

0.19
0.42 0.40 0.44 0.43

DSprites

0.24
0.47 0.47 0.47 0.49

MPI3D

Figure 7: Linear factorization partly explained current models’ embedding spaces. Bar plots of whitened
R2 on three datasets with varying concept/value counts.

Results. Figure 7 shows projected R2 scores across models and datasets. Among all the datasets, each
model’s R2 score is consistently above the random baseline (about 0.4–0.6 vs. 0.19–0.46, respec-
tively). This suggests that embeddings are partially captured by a sum of per-concept components,
while still leaving amount of information unexplained. Additionally, we observe that R2 scores are
similar across models in scale.

Importantly, we note that the R2 scores, while consistently above random, are far from perfect,
indicating that current models only partially satisfy the linear factorization predicted by our theory.

Takeaway §5.1. Embeddings exhibit partial linear factorization (R2 typically 0.4–0.6), explaining a moderate
fraction of the variance via per-concept components. The gap from perfect scores highlights a divergence
from the ideal compositional structure theory predicts.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 COMPOSITIONAL GENERALIZATION AND LINEAR FACTORIZATION

We ask whether the degree of linear factorization predicts compositional generalization.

Metrics and setup. For each dataset/model, we train linear probes on 90% of all concept combinations
and evaluate on the held-out 10% unseen compositions (cf. sampling discussion in Section 4.1). This
corresponds to a validity rule R(T ) = 1 if |T | = 0.9nk. We compute Projected R2 on whitened
PW x (Section 5.1) and pair it with a compositional accuracy score on the held-out compositions. All
encoders from Section 5.1 are included; we use a randomly-initialized OpenCLIP ViT-L/14 model as
a baseline by training linear probes on the embeddings. We use linear probing rather than zero-shot
classification to avoid prompt-specification issues; nonetheless, the same conclusions hold in the
zero-shot setting (discussion and results in Appendix D.3).

Compositional accuracy is computed by training one linear classifier per concept, then averaging
each classifier’s accuracy on the held-out combinations. For example, DSprites has 6 concepts (shape,
orientation, x position, y position, size, and color); we train 6 classifiers and report their mean
accuracy on unseen combinations.

Results. Across all datasaets higher Projected R2 coincides with higher compositional accuracy
(Fig. 8). Random encoders consistently occupy the low-R2/low-accuracy corner, indicating the effect
is not a dimensionality or scale artifact. This aligns with the linear factorization view: as per-concept
components explain more variance, linear probes have cleaner axes to recombine, yielding better
compositional transfer.
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0.47
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0.24
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Figure 8: Linearity in embeddings correlates with compositional generalization. We show the correlation
between projected R2 (linear factorization) and compositional generalization performance across three datasets
and multiple vision-language models.

Takeaway §5.2: Linear factorization in pre-trained models correlates positively with compositional general-
ization performance.

5.3 ORTHOGONALITY OF FACTORS

Our theory (Proposition 1) predicts that per-concept difference vectors should be orthogonal across
concepts under linear factorization, but not necessarily within-concept in generalizing linearly
compositional models. We empirically test this prediction by testing orthogonality in two ways: (1)
within-concept and (2) across-concept. We defer the details to Appendix D.1.
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Figure 9: Pre-trained models exhibit strong within-concept direction similarity and partial orthogonality
across concepts. (a) Aggregated within-concept direction similarity over datasets. (b) Pairwise average cosine
across concepts. Lower values indicate greater orthogonality between factor vectors.

Results. Pretrained encoders exhibit consistently higher direction similarity within concepts than
across concepts (Fig. 15): within-concept similarity (a) is around ≈ 0.53– 0.55, whereas cross-concept
similarity (b) is ≈ 0.12– 0.15. The randomly-initialized encoder also exhibits this pattern; however,
the across-concept similarity is higher (0.39 on average) compared to pre-trained models.
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Takeaway §5.3: Pre-trained models exhibit higher direction similarity within concepts than across concepts,
with difference vectors across concepts only partially orthogonal and thus deviating from the ideal of perfect
cross-concept orthogonality.

5.4 DIMENSIONALITY OF FACTORS

Our theory predicts that generalizing liear compositional models require linear factorization of
embeddings into per-concept components. When many concepts must coexist in a fixed embedding
dimension, each concept’s subspace should be low-rank to enable efficient packing (see Section 5.1).
Here, we investigate to which extent concept factors in pretrained models are low-dimensional.

Metrics and setup. We study factor geometry after projection onto the probe span (as described in
Section 5.1). For each concept i ∈ [k] with value set Ci (ni = |Ci|), we aggregate the per-concept
factors ui,j for j ∈ Ci into a matrix Ui ∈ Rni×d. We then analyze (1) the dimensionality of each
concept and (2) how this dimensionality compares across models. To do so, we examine the spectrum
of Ui (PCA on its rows) and report the number of principal components required to explain 95% of
the variance across values j.
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Figure 10: Dimensionality of factors. (a) Normalized ranks across datasets, and concepts under OpenCLIP
L/14 (text above bars shows the effective dimension of the factor and the total number of values for that concept).
(b) Variance explained in the recovered factors on PUG-Animal dataset over models exhibit high-similarity.
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Figure 11: Geometry of factors {ui,j}
in OpenCLIP ViT-L/14. The factors are
often low dimensional and near co-linear
within a concept. Across concepts, the
factors are near-orthogonal.

Results. Figure 10 shows that most semantic factors lie in
low-dimensional subspaces relative to their cardinality (e.g.,
DSprites size 1/6, MPI3D vertical-axis 2/5). Across datasets
and models, ≥95% of variance is typically captured by one
or two PCs, indicating that spectra align closely by concept.
Discrete concepts show higher rank, potentially due to being
composed of more atomic attributes. Overall, semantic factors
are low-rank and geometrically similar across models, while
discrete concepts are not strictly low-rank.

We also visualize DSprites factors (orientation, size, y-
position) in Figure 11. Each subspace is effectively < 3D
(≥ 95% variance in ≤ 2 PCs). Size and y-position trace near-
1D path, while orientation forms a smooth 2D curve with
small curvature, matching the effective dimensions in Fig. 10.

Takeaway §5.4: Ordinal and continuous factors are typically low-dimensional (typically ≤ 4D), while
discrete factors show higher rank, potentially because they encode multiple underlying attributes. All models
exhibit similar factor geometry across encoders.

6 CONCLUSION

We showed that compositional generalization imposes strong structural requirements on neural repre-
sentations. Under common training with linear heads, our desiderata of divisibility, transferability,
and stability force embeddings to factorize additively into per-concept components with orthogo-
nality across concepts, and require dimension at least equal to the number of concepts. Empirically,
CLIP and SigLIP families partially exhibit this geometry, and the quality of factorization correlates
with compositional generalization performance. These findings clarify when linear structure is not
incidental but necessary, providing both theoretical guidance and practical diagnostics for building
models that generalize compositionally.
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A NOTATION AND SYMBOLS

This section fixes notation and collects basic identities used throughout the appendix.

Table 1: Key notation used in the analysis.

Notation Description
Concepts and datasets
C = C1 × · · · × Ck Concept space with |Ci| = n
X = {xc | c ∈ C} Representation space
Dc Cross-dataset of size 1 + k(n− 1) (see Definition 5)
|S| Dataset size |S|

Counts
Ni,j(S) Marginal count of concept i taking value j in dataset S

Interventions
c(i → j) Concept index with the i-th value set to j
xc(i→j) Intervened representation with concept i set to j
c̄i Binary complement 1− ci (when Ci = {0, 1})

Probes and parameters
w

(Dc)
i,j Weight vector for concept i, class j

b
(Dc)
i,j Bias term for concept i, class j

Factorization objects
P ∈ Rd×d Projection matrix
ui,ci ∈ Rd Linear factor for concept i, value ci
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B EXTENDED DISCUSSION OF RELATED WORK

A large body of literature has studied the usefulness and implications of learning disentangled
representations in an unsupervised way (Bengio et al., 2014; Lake et al., 2017). Most commonly,
the goal is to learn a generative model, usually through a VAE (Kingma & Welling, 2014), that can
compress the data in a disentangled manner, in a way that allows to reconstruct these representations.
While shown to be impossible without additional assumptions (Locatello et al., 2019), under weak
supervision learning is possible (Shu et al., 2020; Locatello et al., 2020). Measuring the degree of
disentanglement in these models is in itself non-trivial and various metrics have been proposed, e.g.
by measuring disentanglement by performing interventions on the representations (Higgins et al.,
2017; Kim & Mnih, 2018). The DCI framework (Eastwood & Williams, 2018) proposes desiderata
of properties disentangled representations should satisfy, namely disentanglement, completeness, and
informativeness, and proposes a metric to measure them. Some works also consider what constitutes
a good disentanglement (Higgins et al., 2018) and propose a conceptual framing of meaning behind
disentangled representations with respect to the data generative process in terms of group actions of
transformations.

Abbasi et al. (2024) investigate the role of representation disentanglement in compositional gen-
eralization in CLIP models. Using metrics such as DCI, they find that CLIP models with more
disentangled text and image representations exhibit higher compositional OOD accuracy on their
attribute-object dataset (ImageNet-AO). This work is complementary to ours. Their study explores
correlations between disentanglement and compositional generalization by probing CLIP embeddings
with respect to the adjective and noun components present in the inputs. For instance, they estimate
“attribute” and “object” subspaces by feeding isolated adjectives or nouns into the text encoder, or
by generating isolated attributes/objects via a text-to-image model and embedding them with CLIP.
However, this approach assumes that CLIP’s embedding space is additively decomposed with respect
to individual words, an assumption that is not guaranteed to hold. Indeed, Yamada et al. (2024)
show that word embeddings in language models are often highly entangled with associated con-
cepts. In contrast, our necessary condition does not rely on word-level decomposition. We posit that
models achieving perfect downstream compositional performance must possess linearly factorized
representations that separate per-concept components, independent of how an encoder processes
individual words. In short, our work provides principled motivation for analyses of representational
decomposition, whereas Abbasi et al. (2024) offer an empirical correlation study based on CLIP’s
emergent disentanglement.

Lippl & Stachenfeld (2025) investigate when a particular form of compositionally structured rep-
resentations, specifically representations whose similarity depends only on how many underlying
components two inputs share, supports downstream compositional generalization. Using kernel
theory, they characterize exactly which tasks linear readouts on top of such representations can solve,
showing that these models are fundamentally restricted to conjunction-wise additive functions. In
contrast, we focus on a specific subclass of compositional tasks: identifying factors of inputs that never
co-occur during training. While Lippl & Stachenfeld (2025) characterize what kinds of generalization
are possible under a compositional representational structure, we ask the complementary question:
given perfect downstream performance on such a task, what representational structure must the model
necessarily possess under the desiderata we specify?
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C ADDITIONAL INFORMATION

In this section we expand on linear factorization, make a note on the non-triviality of linear fac-
torization, and expand on the reasoning of using whitening in measuring linear factorization. In
Appendix C.1 we summary the overall procedure of measuring linear factorization. In Appendix C.3
we provide an intuition of linear factorization through a simple example. In Appendix C.4 we show
that linear factorization is not a trivial property of linearly compositional models, and illustrate a few
cases where the representation cannot be decomposed into a sum of per-concept components even
under perfect classification.

In contrast to these works, our work is motivated by the same goal of developing systems that exhibit
transfer. However, we differ in two key aspects: (1) we do not assume any potential useful structure
of the representations for the downstream tasks; instead, our desiderata are strictly based on the
downstream performance of the models when learning under a subset of the data space, and (2) we
study general NN-based models, which most often include a linear layer, like CLIP and SigLIP, and
ask what properties must arise if transfer under a subset of the data is possible.

C.1 TESTING LINEAR FACTORIZATION

Large pre-trained models may encode information beyond the specific concepts in our dataset. To
isolate the conceptual structure, we train per-concept linear probes. For each concept i ∈ [k] and
value j, we learn a linear probe wi,j , form the probe matrix W ∈ Rm×d, where m is the number
of values across all concepts, and project embeddings onto the joint probe span. We do this by first
computing the projection matrix PW and then projecting the embeddings onto the joint probe span.

We report Projected R2 after projecting embeddings onto the probe span. To prevent trivial high
scores from dominant directions, we whiten the embeddings by applying PCA and normalizing to
unit covariance. We compute metrics on PWx after PCA-whitening, applying the same transform to
data and reconstructions. We elaborate on this below.

C.2 WHITENING IN MEASURING LINEAR FACTORIZATION

We need to be cautious when assessing the degree of linearity in the representations, otherwise, we
may mistake high R2 scores for linear factorization when in fact the representation is not linearly
factored. For example, if certain concept values dominate the variance in the representation, the R2

may be inflated. To address this, in the main experiments in Section 5.1 we whiten the representations
by applying PCA and normalizing to unit covariance. This ensures that a few dominant directions do
not dominate the variance in the representation. If the representations are already linearly factored,
this will not affect the R2 score.

We illustrate this through three examples in a hypothetical two-dimensional representation space with
two concepts in Figure 12. In the first case ((a)) the representation is already linearly factored: each
embedding is written as a sum of two concept components without noise. This yields an R2 score of
1; whitening does not change the score.

In the second case ((b)) the representation is partly linear, but the noise ϵij , independent of the
concept values, dominates the overall variance. Since the scale of the noise is generally lower than
the scale of the first concept component, the R2 score is high at 0.813. Whitening, however, removes
the dominant direction, and the R2 score drops to 0.509.

Lastly, in the third case ((k)) the representation does not express any information about the second
concept, yet the R2 score is still high at 0.991. Again, whitening reveals the underlying issue and
changes the score to 0.564 due to the noise in the embeddings.
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Figure 12: Whitening in measuring linear factorization. The representation is not linearly factored, but the
R2 score is high due to the dominance of the dominant direction.

C.3 INTUITION OF LINEAR FACTORIZATION

We measure the extent of linearity present in the embeddings through the R2 score. Intuitively,
the score quantifies how well the representation can be decomposed into a sum of per-concept
components. Recall from Definition 1 that we assume a presence of k concepts, each of which
can take any of the n values. A value of R2 = 1 indicates that the representation can be perfectly
decomposed into a sum of per-concept components.

We illustrate a few examples to give intuition. We consider a two-dimensional representation space
with two concepts (k = 2). In the first case, we consider a case of 24 values per concept (n = 24). In
the second case, we consider a case of 6 values per concept (n = 6). In both cases the reported R2

are w.r.t. the whitened space.

The first case (Figure 13, (a)) exhbits perfect linearity in the embeddings with R2 = 1. In this case,
the n2 = 242 = 576 can be perfectly generated using only 2 · 24 = 48 vectors in R2. The second and
third columns of the plot show the approximations of the underlying factors u0,i,u1,j , i, j ∈ [n]. As
expected, using these approximate factors allow us to perfectly reconstruct the representation, shown
in the fourth column.

The second case (Figure 13, (b)) exhibits lower degree of linearity with R2 = 0.53. As such, we
cannot perfectly reconstruct the representation using only the approximate factors, as shown in the
last column of the plot.

C.4 NON-TRIVIALITY OF LINEAR FACTORIZATION OF LINEARLY COMPOSITIONAL MODELS

Recall that linearly compositional models (though not necessarily generalizable ones), as defined in
Definition 3, admit a set of probes that can perfectly classify all inputs in the grid C. Proposition 1
shows that linearly compositional models must exhibit linear factorization. This naturally raises
the converse question: does the mere existence of a set of perfect linear classifiers imply linear
factorization? We answer in the negative.
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(a)

(b)

Figure 13: Intuition of linear factorization. In (a) the representations can be perfectly reconstructed by a set
of per-concept components, while in (b) they are insufficient to reconstruct the representation. Refer to the text
for more details.

The intuition is as follows. As per Desideratum 1, linearly compositional models need to divide
the representation space into all possible combinations of concept values, nk of them. Each region
within the nk partitions must contain the corresponding combination of concept values. Under linear
factorization, the degrees of freedom of the embeddings within each cell are low, yielding an R2 score
of 1. However, even if linear factorization initially holds, the embeddings can generally be perturbed
to violate the linear factorization constraint while still being contained within the correct cell.

To illustrate this point, we consider two general cases: (i) the number of concepts is equal to the
dimension of the embeddings (k = d), and (ii) the number of concepts is less than the dimension
of the embeddings (k < d). As detailed in Section 4.2, case (i) is tight (the dimension cannot be
further reduced), while case (ii) is not. In both cases we assume two concepts and an embedding
space that admits two linear probes, one for each concept. Additionally, in both cases we illustrate
separately the argmax regions where a certain concept value is predicted (Ri,j , i ∈ [2], j ∈ [n]), and
the region where a certain combination of concept values is predicted (R0,j ∩R1,k, j, k ∈ [n], as per
Desideratum 1).

The first concept values’ regions in the embedding space are shown in blue, while the second concept
values’ regions are shown in orange.

Case (i): k = d. In Figure 14, (a), (b) we show two cases that exhibit perfect linear classification. In (a)
a few outliers violate the linearity of the representation, which is also reflected in the R2 = 0.53 < 1.
In (b) the argmax regions are highly irregular, and the majority of the embeddings are almost
intersecting the decision boundaries, resembling an extremely brittle embedding space susceptible to
adversarial attacks, though the classification accuracy is still 100%.

Case (ii): k < d. In Figure 14, (k), (d), (e) we show three cases that exhibit perfect linear classification,
but with linearity scores ranging from R2 = 0.32 to R2 = 0.83. Because of the higher degrees of
freedom, the embeddings enjoy even more space to be perturbed while still exhibiting perfect linear
classification.

Overall, these points illustrate that linear factorization is not a trivial property of linearly compositional
models, even when perfect classification holds.
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Figure 14: Counterexamples of linear factorization under perfect classification. The two concepts are
linearly separable, but the representation cannot be decomposed into a sum of two concept components. Each
subfigure shows the embedding space overlaid with three columns of argmax regions: the first column shows
R0,i, i ∈ [n] (shown in blue), the regions where the first concept values are predicted; the second column
shows R1,j , j ∈ [n] (shown in orange), the regions where the second concept values are predicted; and the third
column shows R0,i ∩R1,j , i, j ∈ [n], the joint argmax regions where specific combinations of concept values
are predicted. (a), (b) show embeddings for two concepts (color and shape) in R2 (k = d = 2). (d), (e) show
embedding points colored by the first concept value, all for two concepts in R3 (k = 2, d = 3). See text for
details.
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D ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide additional experimental results discussed in the main text.

D.1 ORTHOGONALITY OF FACTORS

Setup. For each dataset/model, we extract image embeddings xc and restrict analysis to the probe-
usable subspace by projecting as in Section 5.1, that is, for each dataset, we compute x̂c := PWxc.
For concept pair i, j ∈ [k] with value sets Ci, Cj , we estimate per-concept difference vectors by
averaging differences across concept factors. Concretely, for any pair (v, v′) ∈ Ci × Cj , we define

di,j,(v,v′) := ui,v − uj,v′ , d̃i,j,(v,v′) :=
di,j,(v,v′)

∥di,j,(v,v′)∥
. (7)

We measure orthogonality via absolute cosine between difference vectors (lower | cos | ⇒ greater
orthogonality). For any concepts i ̸= j, we define

Orth(i, j) :=
1

|Ci||Cj |
∑
a∈Ci

∑
b∈Cj

∣∣⟨d̃i,a, d̃j,b⟩
∣∣ and Orth(i, i) :=

1

|Ci|(|Ci| − 1)

∑
a,b∈Ci
a̸=b

∣∣⟨d̃i,a, d̃i,b⟩
∣∣

We report Orth(i, i) as within-concept direction similarity and Orth(i, j) for i ̸= j as across-concept
orthogonality.

We present the complete experimental results here.

In Figure 15, we show the orthogonality of the factors for four models, including a randomly-
initialized model, and three datasets.
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Figure 15: Orthogonality of factors. We shot the orthogonality of the factors for four models, including a
randomly-initialized model, and three datasets.
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Figure 16: Orthogonality between factors.

We show an aggregate view of this result when comparing orthogonality between values of the same
and different concepts in Figure 16.

D.2 DIMENSIONALITY OF FACTORS

Size vs shape

Size                

Figure 17: Geometry of datapoints in OpenCLIP ViT-L/14. We show the span of the joint features of
OpenCLIP ViT-L/14.
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(b) OCLIP ViT-L/14
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Figure 18: Dimensionality results computed as the number of SVD factors required to reach 95%
explained variance, per dataset.

D.3 EXPERIMENTS USING TEXT ENCODERS AS PROBES

In the main text (Section 5.1), we analyzed the factors of the models by training linear probes on the
image embeddings using gradient descent with cross-entropy. This was done for two reasons: (1)
to handle concepts that are difficult to express as text prompts (e.g., visually complex backgrounds
or continuous attributes like size or orientation), and (2) to avoid potential misalignment between
the text and vision modalities, where the text encoder must accommodate many visual categories,
potentially leading to suboptimal performance for certain domains. Here, we ask what happens when
we do not take into account these problems and instead rely on the linear probes that the text encoder
already produces.

In this section, we provide analogous analyses to those in the main text, but using the text encoder as
probes instead of external linear probes for two datasets: PUG-Animal and ImageNet-AO. We use
these datasets for two reasons: (1) their concepts and values map naturally to text prompts, and (2)
the datasets were released after the CLIP models and exhibit many unnatural concept combinations
unlikely to have appeared in text captions during pre-training, and not present in the visual training
data.

D.3.1 EXPERIMENTS ON PUG-ANIMAL

Setup. Four concepts are exposed: character, background, scale, and texture. For each character we
parse the character name into a set of words and use prompts of the form “A picture of a <character>”.
For each background, we use prompts of the form “A picture of a <background>” (detailed in Table 2).

We map numeric scale values and texture labels to descriptive prompt templates for evaluating the
models. Specifically, for scale, we use:

• 0.7→ “A picture of a small object”
• 1.0→ “A picture of a medium-sized object”
• 1.3→ “A picture of a large object”

For textures, we use the following mappings:

• “Sky” → “A picture of an object in sky texture”
• “Grass” → “A picture of an object in grass texture”
• “Asphalt” → “A picture of an object in asphalt texture”
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Table 2: Mapping from class names to clean prompt names for PUG-Animal experiments.

Original Name Prompt Name

Desert a desert
Tableland a tableland
EuropeanStreet a European street
OceanFloor the ocean floor
Racetrack a racetrack
Ruins ancient ruins
TrainStation a train station
BusStationInterior the interior of a bus station
BusStationExterior the exterior of a bus station
IndoorStairs indoor stairs
Circus a circus
BoxingRing a boxing ring
Mansion a mansion
ShoppingMall a shopping mall
ConferenceRoom a conference room
VillageOutskirt a village outskirt
VillageSquare a village square
Courtyard a courtyard
Forge a forge
Library a library
Museum a museum
Gallery an art gallery
Opera an opera house
Restaurant a restaurant
RuralAustralia rural Australia
AustraliaRoad a road in Australia
ShadyRoad a shady road
SaltFlats salt flats
Castle a castle
Temple a temple
Snow a snowy landscape
Grass a grassy field
DryGrass a dry grassland
Forest a forest

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

These prompt templates are used to generate the corresponding text enbeddings for each concept,
matching exactly with the setup of the experiments in the main text.

Concretely, for each concept value j ∈ [n], we pass the prompt template through the text encoder g
to obtain a (ℓ2-normalized) probe vector wi,j = g(pi,j) ∈ Z , as detailed in Section 3.4.
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Figure 19: Projected R2 vs accuracy on PUG-Animal
across models. Higher projected R2 coincides with
higher accuracy on the full dataset. The probes are ex-
tracted from the text encoder.

Linearity of factors and generalization. We
show the projected R2 and average accuracy
on all concept combinations on PUG-Animal
across models in Figure 19 when using the text
encoder as probes. Models exhibiting higher lin-
earity of representations generally exhibit higher
accuracy on the full dataset. This coincides with
the observations in the main text (Section 5.1);
random baseline achieves low projected R2 and
accuracy.

Orthogonality of the factors. For each of the
concepts, we compute the linear factors as de-
tailed in the main text (Section 5.1) with the
text encoder as probes. We compute the within-
and across-concept orthogonality as detailed in
Appendix D.1 and illustrate the results in Figure 20 for each of the models.
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Figure 20: Orthogonality of the factors on PUG-Animal. Heatmaps show pairwise cosine similarity between
factors for the four PUG-Animal concepts (character, world, size, texture) across multiple models. The factors
are more orthogonal across concepts (off-diagonal) than within concepts (diagonal). The random baseline does
not generally show this pattern.

For all evaluated models, we observe the same orthogonality pattern: the factors are more orthogonal
across concepts (off-diagonal) than within concepts (diagonal). The average cosine similarity for the
random baseline is higher (around 0.5) both within and across concepts.

We also note the qualitative similarity between the factors to the case when probes were trained on
90% of the concept combinations (Figure 15, second row).

Qualitative examples. We illustrate some of the highest- and lowest-scoring samples in terms of
R2 for the SigLIP2 model in Figure 21. We note that high-scoring samples generally depict clean
scenes where the character and its size and texture are easier to discern compared to the lower-scoring
samples.
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Figure 21: Qualitative examples of the top- and lowest-scoring samples in PUG-Animal for the SigLIP2
model. Each sample shows its character name, world name, size value (0.7 corresponds to “small”, 1.0 corre-
sponds to “medium”, 1.3 corresponds to “large”), texture name, and its R2 score.

D.3.2 EXPERIMENTS ON IMAGETNET-AO

We additionally perform experiments on a coarse-captioned dataset ImageNet-AO Abbasi et al.
(2024), where each image sample has an associated caption composed of an adjective and a noun.

The experiments here are slightly disimilar from the main experiments in Section 5.1, for a few
reasons: (1) scracity of per-combination data, (2) inability to train linear probes, (3) noisy/ambigious
data, and (4) coarse categories. Regardless, our framework still applies.
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Dataset description. The dataset contains images described by an adjective and a noun. There are
around 80 unique adjectives and over 600 unique nouns. To make the analysis balanced, we work
with the dataset restricted to the most common 80 nouns and adjectives. Each potential combination
of adjective and noun may have between 0 and 6 images. The dataset is thus sparse, and many of the
potential combinations are not observed in the dataset. This results in a total of 3243 datapoints. We
illustrate the sparsity and the pairs we work with in Figure 22.
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Figure 22: Adjective-noun count matrix for ImageNet-AO (Abbasi et al., 2024) of the top 80 adjectives
and nouns. The the adjective-noun pairs are sparse, and many of them are not observed in the dataset.

General setup. Due to limited availabilty of the data samples, we do not train linear probes. Because
each sample is associated with a (noun, adjective) combiantion, we instead use the probes from the
text encoder to assess the performance of the models (as detailed in the main text in Section 3.4).
Concretely, we pass captions in the style of “A picture of <noun>” in the case of noun, and “A picture
showing <adjective>” in the case of adjective, through the text encoder.

Because of imbalance and sparsity, we cannot rely on averaging to extract the factors as done in
Section 5.1. Instead, we follow Uselis et al. (2025) and solve a linear system of equations to recover the
factors. Concretely, we construct a design matrix A ∈ {0, 1}3243×80·2 where each row corresponds
to a sample, and each column corresponds to a either the presenece of a noun (if the column index
< 80) or the presenece of an adjective (if the column index ≥ 80). The matrix was of full rank
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2 · 80− 1. Then, we solve the linear system A

[
unoun
uadj

]
= X to recover the factors unoun ∈ R80×d

and uadj ∈ R80×d, where d is the dimension of the representation space, and X ∈ R3243×d is the
cenetered image embeddings. We show the whitened R2 scores. The remaining procedure in the
analysis follows Section 5.1.

Linearity of factors and generalization. We show the projected R2 vs accuracy on ImageNet-AO
across models in Figure 23. As seen in the main text (Section 5.1), higher projected R2 coincides
with higher accuracy on the full dataset. Importantly, the random baseline achieves substantially
lower projected R2 (less than 0.1) compared to the other models.
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Figure 23: Projected R2 vs accuracy on ImageNet-
AO across models. Higher projected R2 coincides with
higher accuracy on the full dataset. Linear probes were
not trained here, and the results are computed using the
text encoder.

Orthogonality of the factors. To substantiate
the claims of orthogonality of factors across con-
cepts, we extract the factors for all the models
as detailed in the setup above. Concretely, for
each of the attribute factor ui, i ∈ [80] and noun
factor uj , j ∈ [80], within- and across-concept
orthogonality as detailed in Section 5.1.

We illustrate the results in Figure 24. For all
of the evaluated models the same pattern of or-
thogonality is observed: the factors are more
orthogonal across concepts than they are within
concepts. For example, for the CLIP ViT-L/14
model, the within-concept similarity on average
is 0.10 between nouns, and 0.14 between adjec-
tives, while the average cosine similarity across
concepts is 0.07. The random baseline on aver-
age yields 0.49 cosine similarity both across and
within concepts.

Interestingly, all of the non-random models exhibit surprising degree of similarity in terms of the
cosine similarities. For example, CLIP ViT-L/14 and OpenCLIP ViT-L/14 on average exhibit almost
the same cosine similarity within and across concepts, differing only in the noun-noun cosine
similarity (0.10 vs 0.11, respectively). These results support the notions of universality between
models as argued by the Platonic Representation Hypothesis (Huh et al., 2024), and empirically
observed in Universal Sparse Autoencoders (Thasarathan et al., 2025).

Nouns Adjectives

Nouns
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Figure 24: Orthogonality of the factors on ImageNet-AO. We show the cosine similarity of the factors for
the SigLIP2 model on ImageNet-AO; we separate the first concept (nouns) from the second concept (adjectives)
and show average similarity across each 2× 2 block. The factors are more orthogonal across concepts than they
are within concepts. The random baseline does not show this pattern.

Qualitative examples. To understand the results deeper, we show the qualitative examples of the
top- and lowest-scoring samples in ImageNet-AO for the SigLIP2 model in Figure 25. The top-
scoring samples show high degree of projected R2 scores (generally > 0.75), and correctly depict
the adjective and noun of the sample. Even there, however, some samples are incorrectly predicted by
the model, suggesting a potential lack of alignment between the image and text encoders1.

1This was less of an issue in the main experiments because the image embeddings were analysed using linear
probes.
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The lowest-scoring samples show low degree of projected R2 scores (generally < 0.10), and are
often incorrectly predicted by the model. Few of the samples appear to be incorrectly labeled (e.g.
first image depicting a orangutan as a gorilla), while some are correctly classified by the model but
show a lack of factorization.
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Figure 25: Qualitative examples of the top- and lowest-scoring samples in ImageNet-AO for the SigLIP2
model. Each sample shows its adjective and noun, its R2 score, and whether it was correctly classified by the
model. Note that both top- and lowest-scoring samples may be either correctly or incorrectly classified by the
model.
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E SUFFICIENCY OF LINEAR FACTORIZATION FOR COMPOSITIONALLY GENER-
ALIZATION

A complementary analysis we provided is on the sufficient conditions for generalizing compositionally.
Here, we detail the key results for recovering the factors u from representations that already possess
linear factorization.

We first note the minimal dataset setting using the notion of a cross dataset, defined below.

Definition 5 (Cross dataset at c). Given a concept space C = C1 × · · · × Ck, we say that a dataset
Dc is a cross-dataset at c ∈ [n]k if:

1. It contains only samples that vary one concept at a time around the center c:

Dc =
{
(c′1, c2, . . . , cc) : c

′
1 ∈ [n]

}
∪ · · · ∪

{
(c1, c2, . . . , c

′
c) : c

′
c ∈ [n]

}
.

2. Its size is 1 + k(n− 1),

3. It satisfies the diversity condition: rank(AD
c

) = 1 + k(n− 1).
Proposition 3 (Uniqueness up to concept-wise shifts). Let the concept space be C = C1 × · · · × Cc
and assume linear factorisation holds, i.e. for every full combination (v1, . . . , vc) ∈ C we observe an
embedding

f(v1, . . . , vc) =

k∑
i=1

ui,vi ,

where ui,v ∈ Rd is the (unknown) vector for value v ∈ Ci.
Suppose {ai,v} and {bi,v} are any two families of vectors that satisfy the same equations:

k∑
i=1

ai,vi =

k∑
i=1

bi,vi , for every (v1, . . . , vc) ∈ C.

Then there exist vectors s1, . . . , sc ∈ Rd with the single constraint
∑k

i=1 si = 0 such that

bi,v = ai,v + si for all i ∈ {1, . . . , k}, v ∈ Ci.
Hence the solution space of the factorisation equations is (k − 1)d-dimensional: one free shift vector
si per concept, minus one global zero-sum constraint.

Proof. Let δi,v := bi,v − ai,v . Subtracting the two versions of the factorisation identity gives

k∑
i=1

δi,vi = 0 for every (v1, . . . , vc) ∈ C.

Fix any reference value v0i ∈ Ci for each concept and set si := δi,v0
i
. Evaluating the previous display

at the reference combination (v01 , . . . , v
0
c ) yields

k∑
i=1

si =

k∑
i=1

δi,v0
i

= 0.

Now fix an index j ∈ {1, . . . , k} and choose an arbitrary value v ∈ Cj . Evaluate the identity∑k
i=1 δi,vi = 0 at the combination (v01 , . . . , v

0
j−1, v, v

0
j+1, . . . , v

0
c ). Then

0 =

k∑
i=1

δi,vi = δj,v +
∑
i ̸=j

δi,v0
i
= δj,v +

∑
i ̸=j

si.

Using
∑k

i=1 si = 0, we obtain
δj,v = −

∑
i̸=j

si = sj .
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Since j and v ∈ Cj were arbitrary, we have shown that δi,v ≡ si for all i and all v ∈ Ci. Equivalently,
bi,v = ai,v + si with

∑
i si = 0.

Conversely, given any s1, . . . , sc ∈ Rd with
∑k

i=1 si = 0, define bi,v := ai,v + si. Then for every
(v1, . . . , vc) ∈ C,

k∑
i=1

bi,vi =

k∑
i=1

ai,vi +

k∑
i=1

si =

k∑
i=1

ai,vi ,

so {bi,v} also satisfies the factorisation equations. Therefore the set of all solutions is the affine
subspace {

ai,v

}
+
{
(s1, . . . , sc) ∈ (Rd)k :

k∑
i=1

si = 0
}
.

We illustrate this proposition graphically in Figure 26.

u1

u2
u3

v1

v2

v3

s1

Figure 26: Illustration of the shift ambiguity in the factorisation equations.

A neat consequence of this result is that the centered embeddings u′t are uniquely determined: any
factorization we acquire from the embeddings, when centered, will correspond exactly to the true
centered factorization.
Corollary 1 (Uniqueness of the centered factorization). Assume the setting of Proposition 3. For
each concept i, let

āi :=
1

|Ci|
∑
v∈Ci

ai,v, b̄i :=
1

|Ci|
∑
v∈Ci

bi,v,

and define the centered factors a′i,v := ai,v − āi and b′i,v := bi,v − b̄i. Then a′i,v = b′i,v for all i and
all v ∈ Ci. Equivalently, for every (v1, . . . , vc) ∈ C,

k∑
i=1

a′i,vi =

k∑
i=1

b′i,vi ,

so the centered embeddings are uniquely determined by the data. In particular, if {ui,v} is the
ground-truth factorization and u′i,v := ui,v − 1

|Ci|
∑

w∈Ci ui,w, then the centered version of any
recovered factorization coincides with {u′i,v}.

Proof. By Proposition 3, there exist s1, . . . , sc with
∑

i si = 0 such that bi,v = ai,v + si for all i, v.
Averaging over v ∈ Ci yields b̄i = āi + si. Thus,

b′i,v = bi,v − b̄i = (ai,v + si)− (āi + si) = ai,v − āi = a′i,v,

as claimed. Taking ai,v = ui,v gives the final statement.

First, we consider the general case where the concept values’ directions are not necessarily linearly
independent. However, suppose the inputs xc are linearly separable for any i ∈ [k], j ∈ [n]. In
that case, if we can recover all k · n factors, we can reconstruct any xc =

∑k
i=1 ui,ci as a linear

combination of the recovered factors. Due to linear separability, we can then train the linear probes to
classify the inputs into the correct concept values.
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While such an approach is in principle possible, it is not practical. The reason is that the number of
factors to recover is k · n, which is exponential in the number of concepts.

To uncover the factors we only need to establish the rank of the design matrix - this then indicates
how many datapoints need to be observed to recover the factors. Additionally, this dictates how the
samples need to be collected.

Proposition 4 (Rank of the full–factorial one–hot design). Let X ∈ {0, 1}nk×cn be the design
matrix whose cn columns are {xj,k : j = 1, . . . , k, k = 1, . . . , n}, arranged in k blocks of size n,
with all nk treatment combinations as rows and each row having exactly one 1 in each block. Then,

rank(X) = 1 + k(n− 1).

Proof. We show this for the column space of the design matrix X . We show that a set of 1+k(n−1)
columns span the column space.

Let u := 1 ∈ Rnk

and, for each block j and each k = 2, . . . , n, define vj,k := xj,k − xj,1. Let

B := {u} ∪ {vj,k : 1 ≤ j ≤ k, 2 ≤ k ≤ n}, so |B| = 1 + k(n− 1).

For every block j,
∑n

k=1 xj,k = u, hence
n∑

k=2

vj,k = u− nxj,1 ⇒ xj,1 = 1
n

(
u−

n∑
k=2

vj,k

)
, xj,k = xj,1 + vj,k (k ≥ 2).

Thus every original column xj,k lies in spanB, and since B ⊆ col(X) we have col(X) = spanB.

Independence of B can be shown by contradiction.

Clearly, when the design matrix has full rank rank(A) = 1 + k(n− 1), the linear system V = AU
becomes well-determined with a unique solution for the centred per-value vectors {u′v}. This ensures
that the linear factorization is uniquely identifiable, meaning there is exactly one way to decompose
the observed representations into their constituent concept factors. From that, one could recover the
full grid of representations over C and fit linear classifiers on top of them. As long as the original
space is linearly separable, a linearly compositional model follows (as defined in Definition 3).

We illustrate some configurations of this in Figure 27 over the case of three concepts with top two
rows indicating solvable systems, and the bottom row indicating unsolvable ones due to violating
rank constraint.
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Figure 27: Examples of one-hot design matrices for recovery of linear factors. We show sparse grid patterns
from the full space A ∈ {0, 1}n

k×
∏k

i=1 ni , where each row corresponds to a training tuple and each column to
a concept value. The matrices demonstrate how different sampling strategies affect rank and identifiability of the
linear factorization. Refer to Definition 5 for the definition of a cross-dataset.
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F PACKING AND MINIMUM DIMENSION

For a dimension d ≥ 1. We specify two types of hyperplanes (Ziegler, 1995)

• A central (or linear) hyperplane is the zero–set of a non-zero normal vector w ∈ Rd:

Hw =
{
x ∈ Rd : ⟨w, x⟩ = 0

}
,

so it always passes through the origin.
• Allowing an affine bias b ∈ R translates the supporting flat:

Hw,b =
{
x ∈ Rd : ⟨w, x⟩+ b = 0

}
.

Such hyperplanes need not contain the origin and are sometimes called offset or biased.

An arrangement H = {H1, . . . ,Hm} is a finite family of hyperplanes. It is said to be in general
position when no more than d hyperplanes meet at a single point. This condition prevents degeneracies
and maximises the number of connected regions that the arrangement carves out of Rd.

Theorem 1 (Zaslavsky’s region bounds in general position Ziegler (1995)). Let H be an arrangement
of m hyperplanes in Rd that is in general position. Then, the number of connected regions R(H) is
given by:

(a) Affine (biased) case. If the hyperplanes may carry arbitrary offsets bi (so H is not required to be
central), then

R(H) = Raff(m, d) :=

d∑
k=0

(
m

k

)
.

(b) Central case. If every hyperplane passes through the origin,

R(H) = Rlin(m, d) := 2

d−1∑
k=0

(
m− 1

k

)
.

For d < k one has R(k, d) = 2k −
∑k

k=d+1

(
k
k

)
< 2k, which is the key inequality we will need.

We now exploit Theorem 1 to prove the lower bound on probe dimension; first for the binary case,
then for general n.

3 concepts, 2 values per concept, 2D space.

H1

H2

H3

1

2

3

4

5

6

7

Reduction to two values

R1

R3

R4

R2

Figure 28: Illustration of the probe dimension lower bound. Schematic showing the arrangement of probe
hyperplanes and the resulting partitioning of the embedding space.

Proposition 5 (Minimum dimension for linear probes). Fix integers k ≥ 1 (number of concepts) and
n ≥ 2 (values per concept). Suppose:

(a) The feature extractor is f : X → Rd, z := f(x)

(b) For each (i, j) ∈ [k]× [n] there exists a probe (pi,j , bi,j) with pi,j ∈ Rd and bi,j ∈ R used
to compute the logit

si,j(z) := ⟨pi,j , z⟩+ bi,j , (8)
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and there are label functions v1, . . . , vc : X → [n] such that for every x ∈ X ,

argmax
j∈[n]

si,j(f(x)) = vi(x), ∀i ∈ [k]. (9)

Assume also that every label combination occurs: for every v = (v1, . . . , vc) ∈ [n]k, there exists
xv ∈ X such that vi(xv) = vi for all i. Then necessarily

d ≥ k, (10)

and this bound is tight: one can construct probe and representation families that achieve perfect
prediction in dimension d = k.

Proof sketch. Reduce to the binary case by fixing two values per concept and restricting to the
resulting 2c combinations. Each concept induces one affine separating hyperplane. To realize all
binary labelings, the arrangement must carve at least 2c regions. By Theorem 1, when d < c we
have

∑d
k=0

(
c
k

)
< 2c, so 2c regions are impossible. Hence d ≥ c. Tightness follows by a d = c

construction (coordinates per concept with suitable affine offsets). See Figure 6.

Proof. Binary case (n = 2). We can take one affine binary classifier per concept:

hi(z) := si,1(z)− si,2(z) = ⟨pi,1 − pi,2, z⟩+ (bi,1 − bi,2). (11)

By letting wi := pi,1 − pi,2, bi := bi,1 − bi,2. Each hi defines an affine hyperplane

Hi := {z ∈ Rd | ⟨wi, z⟩+ bi = 0}. (12)

Since all 2k binary label configurations occur, the k affine hyperplanes H1, . . . ,Hc must jointly
separate Rd into at least 2k distinct regions.

But the number of regions formed by k affine hyperplanes in Rd is at most

d∑
k=0

(
k

k

)
< 2k whenever d < k (by Theorem 1). (13)

Thus, we must have d ≥ k.

Construction is simple: assume parallel planes in their own dimensions. Let d = k, and embed

f(xv) := (v1, . . . , vc) ∈ Rk. (14)

We define probe vectors as
pi,j := ei and bi,j := −j. (15)

Then
si,j(f(xv)) = ⟨ei,v⟩ − j = vi − j. (16)

Thus, the correct label is recovered for all i, and d = k suffices.

In general for n > 2, we can repeat the same computation for colinear weights per concepts and
values. This reduces the general n case to the binary case above, and the same lower bound d ≥ k
follows.
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G PROOFS

We write D for the full dataset of all nk combinations and Dc for a cross-dataset as in Definition 5.
Any learned quantity carries a superscript indicating the training set, e.g., {w(D)

i,j } or {w(Dc)
i,j } with

logits ℓ
(S)
i,j (x) := (w

(S)
i,j )

⊤x and probabilities p
(S)
i,j (x) := exp(ℓ

(S)
i,j (x))

/∑
k exp(ℓ

(S)
i,k (x)) for a

training set S.

Definition 6 (Dataset index set and marginal counts). For any dataset S ⊆ {(xc′) : c′ ∈ [n]k} (e.g.,
S = D or S = Dc), define the index set I(S) := {c′ : (xc′) ∈ S}. For concept i ∈ [k] and value
j ∈ [n], the marginal count of value j in S is

Ni,j(S) :=
∣∣{ c′ ∈ I(S) : k′i = j }

∣∣.
When S is clear, we abbreviate Ni,j := Ni,j(S).
Remark 1 (Marginal counts: full vs cross-datasets). For the full dataset D, the marginal counts are
balanced:

Ni,j(D) = nk−1 for all i ∈ [k], j ∈ [n].

For a cross-dataset Dc as in Definition 5, the marginal counts satisfy

Ni,ci(Dc) = 1 + (k − 1)(n− 1), Ni,j(Dc) = 1 for all j ̸= ci.

Proof. In D fixing vi = j leaves nk−1 free coordinates. In Dc: varying concept i contributes one
point for each j ̸= ci; the center contributes one more with vi = ci; varying any other concept k ̸= i
adds (n− 1) points with vi = ci, across (k − 1) such concepts, totaling (k − 1)(n− 1).

Definition 7 (Intervention on a concept value). For any concept index i ∈ [k], target value j ∈ [n],
and concept vector c ∈ [n]k, define the intervened index and representation

c(i → j) := (c1, . . . , ci−1, j, ci+1, . . . , cc), xc(i→j) := xc with concept i set to j.

We also write c(i→j) as an alias for c(i → j) when convenient. Multiple interventions compose
componentwise.

Definition 8 (Binary complement notation). In the binary case (Ci = {0, 1}), we write c̄i := 1− ci
for the complement value of concept i. As shorthand for an intervention to the complement, we write
c(c̄i) := c(i←c̄i).

Definition 9 (Per-concept differences). For each concept i ∈ [k], fix a reference class ri ∈ [n] and
define the per-concept difference parameters

w̃i,j := wi,j −wi,ri , b̃i,j := bi,j − bi,ri .

Softmax probabilities for concept i are invariant under adding a constant vector and bias shared across
classes. Thus only differences ∆wi,jℓ := wi,j −wi,ℓ and ∆bi,jℓ := bi,j − bi,ℓ are identifiable; w̃
and b̃ provide a concrete representative.

For making use of the stability condition we note the degree of freedom in (arg/soft)max.
Lemma 1 (Equal probabilities imply equal weights up to a shift per concept). For any concept index
i, and for each class j ∈ [n], let fi,j ∈ Rd and f ′i,j ∈ Rd. Assume that for every input x ∈ Rd,

exp(fi,j · x)∑n
k=1 exp(fi,k · x)

=
exp(f ′i,j · x)∑n
k=1 exp(f

′
i,k · x)

for all j ∈ [n].

Then there exists a vector ui ∈ Rd (independent of j) such that

fi,j = f ′i,j + ui for all j ∈ [n].

Proof. Fix i and an arbitrary x ∈ Rd. Define

Zi(x) = log
( n∑

k=1

e fi,k·x
)
, Z ′i(x) = log

( n∑
k=1

e f ′
i,k·x

)
.
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Let

pi,j(x) =
e fi,j ·x∑
k e

fi,k·x
, p′i,j(x) =

e f ′
i,j ·x∑

k e
f ′
i,k·x

.

By assumption pi,j(x) = p′i,j(x) for all j. Taking logs gives

log pi,j(x) = log p′i,j(x) =⇒ fi,j · x− Zi(x) = f ′i,j · x− Z ′i(x) ∀j.

Thus for this x there exists a scalar bi(x) := Zi(x)− Z ′i(x) with

fi,j · x = f ′i,j · x+ bi(x) ∀j.
For classes j and ℓ, by subtracting, gives:(

fi,j − fi,ℓ

)
· x =

(
f ′i,j − f ′i,ℓ

)
· x ∀x ∈ Rd.

Since this defines a hyperplane on which all x need to lie, the weight differences need to be equal:

fi,j − fi,ℓ = f ′i,j − f ′i,ℓ ∀j, ℓ.

Fixing any reference class ℓ and setting ui := fi,ℓ − f ′i,ℓ, yields:

fi,j = f ′i,j + ui.

D(1,1) D(2,1)

D(1,2) D(2,2)

+1 -1

+1+1 -1

xcxc(i→c̄i)
y1

xc xc(i→c̄i)

y2

(a) (b)

y1 ≡ xc
xc(i→c̄i)

xcy2 ≡ xc(i→c̄i)

x1 x1 x1 x1

x
2

x
2

x
2

x
2

Figure 29: Illustration of the invariance lemma (left) and the main proposition (right). (a) The
invariance lemma: we can always find a dataset for which a single point is a support vector, leading
to invariance. (b) The main proposition: any point is projected onto the other class’ convex hull by a
single concept value flip.

Lemma 2 (Bi-directional tight support vectors in binary concepts). For binary concepts Ci =

{0, 1}, consider any cross-dataset Dc and the corresponding SVM solution {w(Dc)
i,j , b

(Dc)
i,j }. Because

Ni,0(Dc) = Ni,1(Dc) = 1, there exist support vectors xc0 ,xc1 ∈ Dc with v0i = 0 and v1i = 1 such
that both are tight with respect to their class boundaries:

(w
(Dc)
i,0 )⊤xc0 + b

(Dc)
i,0 = (w

(Dc)
i,1 )⊤xc0 + b

(Dc)
i,1 + 1 (17)

(w
(Dc)
i,1 )⊤xc1 + b

(Dc)
i,1 = (w

(Dc)
i,0 )⊤xc1 + b

(Dc)
i,0 + 1 (18)

Proof. This follows from standard hard-margin SVM theory: each class has at least one support
vector achieving equality at the margin (Cortes & Vapnik, 1995).

Lemma 3 (Invariance to irrelevant concepts, binary case). Assume each concept is binary, Ci = {0, 1}
for all i ∈ [k], and write v̄ := 1− v. For any i ∈ [k] and any c, c′ ∈ [2]k with ci = c′i =: v,

P (Ci = v | xc) = P (Ci = v | xc′). (19)
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Proof. We encode the i-label by yi(x) ∈ {+1,−1} with yi(x) = +1 iff Ci(x) = 1 and −1
otherwise. Let

gi(x) := (wi,1 −wi,0)
⊤x + (bi,1 − bi,0) (20)

By Lemma 1, the pair (∆wi,∆bi) := (wi,1 − wi,0, bi,1 − bi,0) is the same no matter which
cross-dataset we train on.

Let I = [2]k−1 be assignments of all concepts except i. For each u ∈ I there are two cross-datasets:
D(u,0) and D(u,1). In the binary hard-margin setting, each such training has exactly one minority
(support) example w.r.t. concept i, and for that example the signed margin is tight:

yi(x) gi(x) = 1 (for the unique support example of that training). (21)

• In D(u,0), the unique minority is xu,1, so yi(xu,1) = +1 and tightness gives

gi(xu,1) = +1. (Au) (22)

• In D(u,1), the unique minority is xu,0, so yi(xu,0) = −1 and tightness gives

gi(xu,0) = −1. (Bu) (23)

The same gi (same ∆wi,∆bi) appears in (Au) and (Bu) for every u, by Desideratum 3.

As u ranges over I , the equations (Au) cover every point with Ci = 1, and the equations (Bu) cover
every point with Ci = 0. Therefore

gi(x) =

{
+1, if Ci(x) = 1,

−1, if Ci(x) = 0,
on the whole grid {xc : c ∈ [2]k}.

Hence gi(x) depends only on Ci(x) and not on the other concepts. Since in the binary model

P (Ci = 1 | x) = σ(gi(x)) =
1

1 + e−gi(x)
(and P (Ci = 0 | x) = 1 − P (Ci = 1 | x)), the

conditional probability P (Ci = v | xc) is constant over all c with ci = v. In particular, for any c, c′

with ci = c′i,
P (Ci = ci | xc) = P (Ci = ci | xc′).

Next, we establish an important property of SVMs on two separable sets, one of which is a singleton.
Lemma 4 (SVM geometry for separable sets). Given a set of points Y := {yi}Ni (yi ∈ Rd) and a
point x ∈ Rd with an optimal linearly separable hyperplane Hw,b = {x | w⊤x + b = 0} under
SVM, the following hold:

1. The weight vector w separates convex combinations such that they are support vectors, that
is, for some {λi}Ni=1 it holds:

w⊤

(∑
i

λiyi

)
+ b = −1 for λi ≥ 0,

∑
i

λi = 1 (24)

w⊤x+ b = +1 (25)

2. The weight vector w equals the shortest distance between the sets:

2

||w||2
w =

(
x−

∑
i

λiyi

)
(26)

Proof. These conditions are implied by a standard fact in SVMs: the weight vector w is parallel to
the shortest line connecting the two sets (Bennett & Bredensteiner, 2000). By noting that αw =
(x−

∑
i λiyi), we can derive the proportionality constant as α = 2

||w||2 .

We now establish the main result of the resulting geometry of linearly generalizable compositional
models.
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Proposition 1 (Binary case: compositional generalization implies linear factorization). Let Π =
(f,H, A, T ) be the tuple instantiated in Section 3.4, with linear heads H and A given by GD+CE.
Suppose that the training sets follow random sampling with validity rule R(T ) = 1 if |T | = 2k−1+1.
Assume Desiderata 1–3 are satisfied. Then under the binary grid Ci = {0, 1} with X = {xc : c ∈
[2]k} ⊂ Rd, there exist {ui,0,ui,1 ∈ Rd}ki=1 such that for every c ∈ [2]k the following holds:

1. (Linearity) xc =
∑k

i=1 ui,ci .

2. (Cross-concept orthogonality) (ui,1 − ui,0) ⊥ (uj,1 − uj,0) for all i, j ∈ [k] with (i ̸= j).

Proof. First, note that the fact that any training set T ∈ T has 2n−1 + 1 points implies that for
any concept and its value, we can always choose a dataset which has only a single point over that
concept’s value. Because of this, the proof reduces to the case of working with a “cross-like” datasets.
We thus work within this simplified setting to avoid technical clutter, but the key idea remains the
same.

Linearity.

The idea is to show that for a pair of cross-datasets that share the datapoints in negative class, the
shortest distance from a single point in the positive class to the convex set of the positive points is
achieved by considering a flip in one of the concepts. We make this concrete below.

Consider any datapoint xc and its corresponding cross dataset centered at this point D(c). Additionally,
for any concept i ∈ [k] consider a “counterfactual” datapoint xc(i→c̄i) that flips the value of concept
i to c̄i, and consider its corresponding cross-dataset D(c(i→c̄i)).

Note that for the concept i it holds that:

1. Under Dc = {xc} ∪ {xc(i→c̄i) : i ∈ [k]}. For each concept i, the marginal counts are

Ni,ci(Dc) = k, Ni,c̄i(Dc) = 1 (27)

(by Remark 1). Thus xc(i→c̄i) is the unique minority example for concept i (label c̄i), and

Y1 := Dc \ {xc(i→c̄i)} (28)

is the set of k majority examples (label ci).

2. Note Dc(i→c̄i) := {xc(i→c̄i)} ∪ {xc(k→c̄k) : k ∈ [k]}.

For k ̸= i the counts are unchanged: Nk,ck(Dc(i→c̄i)) = k and Nk,c̄k(Dc(i→c̄i)) = 1, but
for concept i they swap: Ni,c̄i(Dc(i→c̄i)) = k and Ni,ci(Dc(i→c̄i)) = 1. Thus xc is now the
unique minority example for concept i (label ci). Let Y2 = Dc(i→c̄i) \ {xc} be the majority
examples for concept i.

Let the majority support vectors for Dc and Dc(i→c̄i) be y1 and y2 respectively. By Lemma 4, we
can write

y1 = λixc +
∑

j∈[k]\{i}

λjxc(j→c̄j) and y2 = γixc(i→c̄i) +
∑

j∈[k]\{i}

γjxc(j→c̄j) (29)

for some convex combinations λj ≥ 0 with
∑k

i λj = 1 and γj ≥ 0 with
∑k

i γj = 1.

Additionally, note that by Lemma 3 it holds that for any point xc′ it holds that

w⊤j xc′ + bj = yi(c
′), (30)

where we use a shorthand yi(c
′) = 1 if j = ci and yi(c

′) = −1 otherwise.

Then, by Lemma 4 it holds that the support vectors are aligned with the shortest segment between the
convex sets (pairs of xc(i→c̄i) and y1, and xc and y2)

xc(i→c̄i) + yi(c)
2

||wi||2
wi = y1 and xc − yi(c)

2

||wi||2
wi = y2, (31)
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where clearly yi(c(i → c̄i)) = −yi(c). From this, it follows that

y1 − xc(i→c̄i) = xc − y2. (32)

Now, for any k ̸= i, evaluate:

w⊤k y1 + bk = w⊤k

λixc +
∑

j∈[k]\{i}

λjxc(j→c̄j)

+ bk

= λiw
⊤
k xc +

∑
j∈[k]\{i}

λjw
⊤
k xc(j→c̄j) +

k∑
i

λibk

= λi(w
⊤
k xc + bk) +

∑
j∈[k]\{i}

λj(w
⊤
k xc(j→c̄j) + bk)

= λiyk(c) +
∑

j∈[k]\{i,k}

λjyk(c(j → c̄j)) + λkyk(c(k → c̄k))

= λiyk(c) +

 ∑
j∈[k]\{i,k}

λj

 yk(c)− λkyk(c)

= (1− λk)yk(c)− λkyk(c) = (1− 2λk)yk(c),

(33)

where we used the fact that λ are convex combinations in the second equality, and the fact that in the
paired dataset k-concept values remain the same when flipping any other concept than k.

By repeating the same calculation as (33) for y2, we get:

w⊤k y2 + bk = (1− 2γk)yk(c). (34)

By (32) it follows that

w⊤k (y1 − xc(i→c̄i)) = w⊤k (xc − y2)

⇒ w⊤k y1 + bk −w⊤k xc(i→c̄i) − bk = w⊤k xc + bk −w⊤k y2 − bk

⇒ (1− 2λk)yk(c)− yk(c) = yk(c)− (1− 2γk)yk(c)

⇒ 1− 2λk − 1 = 1− 1 + 2γk

⇒ λk + γk = 0.

(35)

Clearly, since λk and γk are convex combinations and thus non-negative, (35) implies that λk =
γk = 0.

By repeating this process for all k ̸= i, we get that λk = γk = 0 for all k ̸= i, and therefore
λi = γi = 1. From this, it follows that y1 = xc and y2 = xc(i→c̄i). This means that

xc(i→c̄i) + yi(c)
2

||wi||2
wi = xc and xc − yi(c)

2

||wi||2
wi = xc(i→c̄i), (36)

and therefore the differences between xc − xc(i→c̄i) are independent of other concept variations.
Because of that, we can write any datapoint xc as a sum of concept-specific values ui,ci(ci ∈ [2]).
For insstance, if we fix c0 = (0, . . . , 0) ∈ [2]k, and let ck = (0, . . . , 0, 1, 0, . . . , 0) ∈ [2]k be a vector
with 1 in the k-th position, we can express xc as, for example (up to a global linear shift per concept)

ui,0 = xc0/k, ui,1 = xc0/k +
2

||wi||2
wi,

xc =

k∑
i=1

ui,ci ,

(37)

which establishes linearity.
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Orthogonality. First, note that by invariance (Lemma 3) it holds that for any concept i, changes in
concept values other than i do not affect the prediction of concept i. Therefore, it holds that for any
concept j ̸= i, it holds that

w⊤i xc + bi = w⊤i xc(j→c̄j) + bi (38)
But by linear factorization (37) it follows that

w⊤i xc + bi = w⊤i xc(j→c̄j) + bi

⇒ w⊤i (xc − xc(j→c̄j)) = 0

⇒ w⊤i
(
uj,cj − uj,c̄j

)
= 0

⇒ w⊤i

(
2

||wj ||2
wj

)
= 0

⇒ w⊤i wj = 0.

(39)

Then,
(ui,ci − ui,c̄i)

⊤(uj,cj − uj,c̄j ) ∝ w⊤i wj = 0. (40)

More generally, orthogonality of one concept holds against the span of other concepts as well. For
{αj ∈ R}j ̸=i it follows that

(ui,ci − ui,c̄i)
⊤

∑
j ̸=i

αj(uj,cj − uj,c̄j )

 ∝ w⊤i

∑
j ̸=i

αjwj

 = 0, (41)

and therefore orthogonality holds against the span of other concepts differences.
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H EXAMPLES OF COMPOSITIONALLY GENERALIZABLE REPRESENTATIONS

We give a few instantiations of the linearly-factored representation families: one, where the rep-
resentations follow a “tight” LRH, and one, in a sense opposite case: where they follow linear
independence.

H.1 CASE 1: MINIMAL DIMENSIONALITY PROBING

To gain intuition into the geometry of the linear probes, let’s analyze a more constrained and idealized
version of the problem. Instead of a complex joint optimization, we assume the representations
are already given and possess a highly regular structure according to the Linear Representation
Hypothesis (LRH).

Specifically, we make the following assumptions:

(1) The representation for any input xv corresponding to a concept value combination v =
(v1, . . . , vc) is given by

f(xv) =

k∑
i=1

αi(vi)bi (42)

(2) The concept direction vectors {bi}ki=1 ⊂ Rd are known, fixed, and linearly independent (implying
d ≥ k). They can be thought of as forming an orthonormal basis for a k-dimensional subspace.

(3) For each concept i, its n values correspond to a known, ordered set of scalar coefficients. For
instance, the values for concept i are mapped to n equally spaced coefficients in an interval, such as
αi(vi,j) = 0.1 + (j − 1) 0.9

n−1 for j = 1, . . . , n.

Under these assumptions, the set of all nk representation points {f(xv)} is fixed and forms a regular
grid or lattice within the subspace spanned by {bi}. The optimization problem is no longer a search
for representations, but simplifies to finding the optimal set of linear probes {pi,j} that can correctly
classify these points.

The problem becomes:

min
{pi,j}

∑
v

k∑
i=1

Li

(
{p⊤i,jf(xv)}nj=1, vi

)
(43)

where the representations f(xv) are fixed as defined above. This is a much simpler problem; for
standard losses like cross-entropy or hinge loss, this is a convex optimization problem for each set of
probes {pi,j}nj=1 and can be solved efficiently. The key question then becomes understanding the
geometric structure of the resulting optimal probes.

Suppose the concept direction vectors {bi}ki=1 are linearly independent. In this case, we can write
down an explicit analytical solution for the optimal probes. Let V = span({bi}ki=1) be the subspace
spanned by the concept vectors. For each k ∈ [k], there exists a unique vector wk ∈ V such that

w⊤k bi = δki (44)
for all i ∈ [k]. In other words, wk is the unique linear functional that extracts the coefficient of
bk from any vector in V expressed as a linear combination of the bi. This property allows us to
construct probes that are perfectly "decoupled" or "disentangled": the classification of one concept is
completely unaffected by the values of any other concepts. The vector wk is the natural choice for
isolating the k-th concept from the representation.

The optimal affine probes that achieve perfect classification on the given grid of points are,
for each concept k and each of its possible values vk,j (for j = 1, . . . , n): (1) Linear part:
pk,j = 2αk(vk,j)bk, (2) Bias term: bk,j = −(αk(vk,j))

2 If the original concept vectors {bi}
are orthonormal, then bk = bk, and this solution reduces to the orthonormal case discussed in the
next section.

This construction is optimal because it achieves perfect classification and does so by maximizing the
classification margin, making it the solution for max-margin losses (such as those used in SVMs) and
for simpler error-counting losses.
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Let us verify the score function. The score for the j-th probe of concept k on an input xv (where the
true value for concept k is vk) is:

Sk,j(v) = p⊤k,jf(xv) + bk,j = (2αk(vk,j)bk)
⊤

(
k∑

i=1

αi(vi)bi

)
− (αk(vk,j))

2

= 2αk(vk,j)αk(vk)− (αk(vk,j))
2 (since only the i = k term survives)

= −(αk(vk)− αk(vk,j))
2

This score is maximized when vk = vk,j , so the classifier chooses argmaxj Sk,j(v) =
argminj(αk(vk) − αk(vk,j))

2. This is a nearest-neighbor rule that is guaranteed to be correct,
thus minimizing the zero-one loss.

The region where class m is predicted is where its coefficient αk(vk,m) is the closest prototype. The
decision boundary between any two adjacent classes, m and m + 1, is the set of points in the 1D
space where a point is equidistant to both prototypes:

|αk − αk(vk,m)| = |αk − αk(vk,m+1)| (45)

Given the ordering, this simplifies to αk − αk(vk,m) = −(αk − αk(vk,m+1)), which yields the
decision boundary at their exact midpoint:

αDB
k =

αk(vk,m) + αk(vk,m+1)

2
(46)

The margin for separating this pair of classes is the distance from either class’s coefficient to
this decision boundary, which is 1

2 (αk(vk,m+1)− αk(vk,m)). Since our solution places the decision
boundary at the midpoint for every adjacent pair, it maximizes the margin for each pair-wise separation.
Therefore, it is the optimal max-margin classifier for this 1D problem. The overall margin for concept
k is determined by the smallest gap between any two adjacent alpha values.

H.2 CASE 2: MAXIMUM DIMENSIONALITY PROBING OF CLIP-LIKE MODELS

We now consider the setting where representations are normalized to lie on the unit sphere, as in
CLIP-style models that use cosine similarity for classification. Here, both the representation vectors
x and the probe vectors pi,j are constrained to have unit ℓ2 norm, i.e., ∥x∥2 = 1 and ∥pi,j∥2 = 1.
The geometry of the decision regions is determined by spherical caps rather than half-spaces. For a
cosine similarity classifier, the decision region for class (i, j) is given by

Ci,j :=
{
x ∈ Sd−1 : p⊤i,jx > p⊤i,kx ∀k ̸= j

}
. (47)

Figure 30: Illustration of the “on-off concept classifier” mechanism. (a) A vision input is processed by
a neural network to produce an embedding. (b) Each concept (e.g., shape, object color, background color) is
probed independently using a set of language model probes, one per possible value. (k) The probe for a given
concept yields a high score α if the concept matches and a lower score β otherwise, as formalized in the logit
equation at bottom.
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That is, for each concept i and classes j, k, the cosine similarity satisfies

⟨xc,pi,k⟩ =
{
1 if j = ci
β if j ̸= ci

(48)

for some constant β ∈ [−1, 1).

Under such strict condition, the dimensionality of the representation space must satisfy “all indepen-
dent” condition. We show this below.

For a probe index (i, j) ∈ [k]× [n] we write

ei,j ∈ Rcn for the (i− 1)n+ j standard basis vector, i.e. (ei,j)(k,ℓ) =

{
1, k = i, ℓ = j,

0, otherwise.

In words, ei,j has a single 1 in the row corresponding to probe (i, j) and 0 elsewhere.
Proposition 6 (Minimal dimensionality from fixed dot-products). Fix integers k ≥ 1 (number of
concepts) and n ≥ 2 (values per concept). For each concept i ∈ [k] and value j ∈ [n] let

pi,j ∈ Rd, ∥pi,j∥2 = 1,

be unit probe vectors, and for each complete concept tuple v = (v1, . . . , vc) ∈ [n]k let

xv ∈ Rd, ∥xv∥2 = 1,

be unit representations. Assume there exist constants α, β ∈ [−1, 1] with α ̸= β such that the fixed
logit pattern

p⊤i,jxv =

{
α, j = vi,

β, j ̸= vi,
for all i, j,v, (49)

holds.

Then the ambient dimension d must satisfy

d ≥ 1 + k (n− 1). (50)

Moreover, this bound is tight: for any valid (α, β) with |α| ≤ 1, |β| ≤ 1 there exist explicit
probe/representation families that realise (49) in dimension d = 1 + k(n− 1).

Proof. We stack the probes as rows of the matrix

P =

p
⊤
1,1
...

p⊤k,n

 ∈ Rcn×d, (row (i− 1)n+ j = p⊤i,j). (51)

Stack the representations as columns of

X =
[
xv1 · · · xv

nk

]
∈ Rd×nk

. (52)

The logit constraints (49) read as
Y = P X ∈ Rcn×nk

, (53)

where Y ∈ Rcn×nk

has entries

Y(i−1)n+j, v =

{
α, j = vi,

β, j ̸= vi.
(54)

For one concept k = 1, (when Y ∈ Rn×n), the single block is

(α− β)In + β1n1
⊤
n (55)

which has full rank n because α ̸= β. Its row–space is therefore spanned by{
1nk

}︸ ︷︷ ︸
global offset

∪
{
1{vi = j} − 1{vi = 1}

∣∣ i ∈ [k], j = 2, . . . , n
}︸ ︷︷ ︸

k(n− 1) zero–sum contrast vectors

.
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The contrast vectors all have coordinate-sum 0, whereas 1nk has sum nk; hence 1nk /∈
span

{
contrasts

}
. The total of 1 + k(n− 1) vectors is therefore linearly independent, giving

rank(Y ) = 1 + k (n− 1). (56)

Because Y = P X ,
1 + k(n− 1) = rank(Y ) ≤ rank(P ) ≤ d. (57)

This proves (50).

Construction follows by placing the probes and representations on the unit sphere in independent
directions.

Below, we provide a numerical example to illustrate the form of the logit matrix Y for the case of
two concepts, three values each.
Example 1 (Two concepts, three values each: k = 2, n = 3). Set (α, β) = (1, 0.2). The row indices
are (i, j) ∈ {1, 2} × {1, 2, 3}, the column indices are the 32 = 9 tuples (v1, v2) ∈ {1, 2, 3}2:

Y =

11 12 13 21 22 23 31 32 33



(1, 1) 1 1 1 0.2 0.2 0.2 0.2 0.2 0.2

(1, 2) 0.2 0.2 0.2 1 1 1 0.2 0.2 0.2

(1, 3) 0.2 0.2 0.2 0.2 0.2 0.2 1 1 1

(2, 1) 1 0.2 0.2 1 0.2 0.2 1 0.2 0.2

(2, 2) 0.2 1 0.2 0.2 1 0.2 0.2 1 0.2

(2, 3) 0.2 0.2 1 0.2 0.2 1 0.2 0.2 1

(58)

Row-space decomposition. Each row has the form

β19 + (α− β)1{vi = j}, (59)

so every row is in the span of

19, 1{v1 = 2} − 1{v1 = 1}, 1{v1 = 3} − 1{v1 = 1}︸ ︷︷ ︸
n− 1 contrasts for concept 1

, 1{v2 = 2} − 1{v2 = 1}, 1{v2 = 3} − 1{v2 = 1}︸ ︷︷ ︸
n− 1 contrasts for concept 2

.

(60)

That is a set of 1 + 2(3− 1) = 5 linearly independent vectors, hence rank(Y ) = 5 = 1 + k(n− 1).

Under such a design, linear factorization holds immediately.
Proposition 7 (Additive factorisation from the on–off pattern). Let k ≥ 1 (concepts) and n ≥ 2
(values per concept). Assume there are unit vectors

pi,j ∈ Rd, i ∈ [k], j ∈ [n], xv ∈ Rd, v = (v1, . . . , vc) ∈ [n]k,

and two real numbers α ̸= β in (−1, 1) such that

⟨pi,j ,xv⟩ =
{
α if j = vi,

β if j ̸= vi,
∀ i, j,v. (61)

Define the global mean, conditional means, and shift vectors from {xv} as:

g :=
1

nk

∑
w∈[n]k

xw, Ai,j :=
1

n k−1

∑
w:wi=j

xw, ui,j := Ai,j − g.

Now, for each class v = (v1, . . . , vc), define the reconstructed vector

x̃v := g +

k∑
k=1

uk,vk
. (62)

Then:
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1. This reconstructed vector x̃v satisfies the original on–off pattern. That is, for every probe
pi,j and every class v,

⟨pi,j , x̃v⟩ = ⟨pi,j ,xv⟩ =
{
α if j = vi,

β if j ̸= vi.
(63)

This means x̃v is indistinguishable from xv by the probes and is sufficient for any classifi-
cation task based on these dot products.

2. Moreover, the set of vectors {x̃v} lies in an affine subspace of dimension exactly 1+k(n−1).
So:

dim(span{x̃v}) = 1 + k(n− 1). (64)

Proof. Fix (i, j). Averaging (61) over all nk classes w gives

⟨pi,j , g⟩ =
1

nk

(
nk−1α+ (nk − nk−1)β

)
=

α+ (n− 1)β

n
=: d. (65)

independent of (i, j).

Then, compute ⟨pi′,k, Ai,j⟩ by expanding the definition of Ai,j :

⟨pi′,k, Ai,j⟩ =
1

nk−1

∑
w:wi=j

⟨pi′,k,xw⟩. (66)

We consider two cases for the probe index i′.

Case 1: i′ = i (probe and condition on the same concept). The sum is over w where wi = j.

• If k = j, the probe is pi,j . For every term in the sum, wi = j, so ⟨pi,j ,xw⟩ = α. There are
nk−1 such terms, so the sum is nk−1α. The average is α.

• If k ̸= j, the probe is pi,k. For every term, wi = j ̸= k, so ⟨pi,k,xw⟩ = β. The sum is
nk−1β. The average is β.

Case 2: i′ ̸= i (probe and condition on different concepts). The sum is still over all nk−1 vectors
w where wi = j. For a given probe pi′,k, the value of ⟨pi′,k,xw⟩ depends on whether wi′ = k or
wi′ ̸= k. Since i′ ̸= i, the condition wi = j does not fix the value of wi′ .

• The number of vectors w with wi = j and wi′ = k is nk−2 (since two components are
fixed, and k − 2 are free). For these terms, ⟨pi′,k,xw⟩ = α.

• The number of vectors w with wi = j and wi′ ̸= k is (n− 1)nk−2 (one component fixed,
one has n− 1 choices, k − 2 are free). For these terms, ⟨pi′,k,xw⟩ = β.

The sum (66) is therefore (when i′ ̸= i)

nk−2α+ (n− 1)nk−2β. (67)

The average is:

⟨pi′,k, Ai,j⟩ =
nk−2α+ (n− 1)nk−2β

nk−1 =
α+ (n− 1)β

n
= d. (68)

Combining these cases, we have:

⟨pi′,k, Ai,j⟩ =


α, i′ = i, k = j,

β, i′ = i, k ̸= j,

d, i′ ̸= i.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

By linearity, ⟨pi′,k, ui,j⟩ = ⟨pi′,k, Ai,j⟩ − ⟨pi′,k, g⟩. The results from steps 1 and 2 give:

⟨pi′,k, ui,j⟩ =


α− d, i′ = i, k = j,

β − d, i′ = i, k ̸= k,

0, i′ ̸= i.

(69)

Finally, by evaluation, it follows that x̃v = g +
∑k

k=1 uk,vk
satisfies the on-off pattern:

⟨pi,j , x̃v⟩ = ⟨pi,j , g⟩+
k∑

k=1

⟨pi,j , uk,vk
⟩

= d+ ⟨pi,j , ui,vi⟩+
∑
k ̸=i

⟨pi,j , uk,vk
⟩︸ ︷︷ ︸

=0 from (69)

= d+ (⟨pi,j , Ai,vi⟩ − d) = ⟨pi,j , Ai,vi⟩

=

{
α, j = vi,

β, j ̸= vi.

This confirms that ⟨pi,j , x̃v⟩ = ⟨pi,j ,xv⟩ for all probes, and establishes (63).

The reconstructed vectors {x̃v} are all affine combinations of {g} ∪ {ui,j}. A basis for this affine
space can be formed by {g} and the differences {ui,j − ui,1 | i ∈ [k], j = 2, . . . , n}, a set of
1 + k(n− 1) vectors. These are linearly independent because contrasts from different concepts are
orthogonal (with respect to probes), and within a concept, independence follows from α ̸= β. Thus,
the set {x̃v} lies in an affine subspace of dimension exactly 1 + k(n− 1). This establishes (64).
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I WHAT IF STABILITY IS NOT REQUIRED?

We detail and discuss the stability axiom in the main text. Suppose it was not true, what other structure
does the representation need to have?

I.1 COUNTEREXAMPLES TO LINEAR FACTORIZATION EVEN AS n → ∞

Suppose that instead of assuming a transferable compositional model, we only assume the model
supports linear separation. That is, given nk datapoints in total, let’s suppose there exist n · k linear
probes that can be used to classify each concept value for any datapoint. (Formally: there are k
concepts indexed by j ∈ {1, . . . , k}, each with n values indexed by k ∈ {1, . . . , n}; a datapoint is
t = (k1, . . . , kc) ∈ {1, . . . , n}k; a representation map f : X → Rd yields zt := f(xt); and for each
concept j there are weights and biases {(wj,k, bj,k)}nk=1 with argmaxk (w

⊤
j,kzt + bj,k) = kj .)

Does such a construct imply a certain representational structure? Perhaps—but it is not, in general,
linearly factorizable. Concretely, suppose we restrict ourselves to a two-dimensional representation
space. Assume it’s Euclidean and the linear probes are weight vectors with biases. Additionally,
assume there are only two concepts that the data is distributed over. Now, given that there are n values,
is there some structure that the representations need to converge to as n → ∞? Not necessarily:
even in this d = 2, k = 2 setting, one can satisfy all the linear separability probes with point clouds
{zk1,k2

} ⊂ R2 that do not admit an additive decomposition of the form zk1,k2
= u0+u1,k1

+u2,k2
.

This is the sense in which linear separability does not imply linear factorizability.

n = 8 =⇒ 64 regions n = 14 =⇒ 196 regions Impossible factorization
C1 = 1

C1 = 2

C1 = 3

C1 = 4
C1 = 5

C1 = 6
C1 = 7

(a) (b) (c)

x1 x1 x1

x
2

Figure 31: Linear separability without linear factorization. Two families of affine decision boundaries in R2

(black for concept 1, gray for concept 2) divide the plane into regions, one per pair of concept values. Panels
(a,b): with n = 8 and n = 14 levels per concept the arrangement yields n2 regions (64 and 196). By inserting
additional nearly-parallel boundaries, existing regions can be split into smaller and smaller pieces, creating
arbitrarily tiny regions while maintaining perfect linear separability. Panel (k): No linear factorization can be
achieved: whichever factors we pick, the separability of some datapoints are violated.

From Figure 31: panels (a) and (b) show two interleaved line families whose intersections produce a
grid of n2 convex cells, one for each (k1, k2). Nothing forces these cells to align with an additive
basis; in fact, we can keep adding lines that are ε-perturbations of existing ones to subdivide cells,
driving some cell areas to zero as n grows, yet all multiclass linear probes remain valid.
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THE USAGE OF LLMS

In accordance with ICLR 2026 policy, we disclose that large language models were used to assist in
text editing and polishing of writing. All research ideas, experiments, and analyses were conducted
by the authors.
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