
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Enhancing Certified Robustness via Block Re-
flector Orthogonal Layers

Anonymous authors
Paper under double-blind review

Abstract

Lipschitz neural networks are well-known for providing certified robustness
in deep learning. In this paper, we present a novel efficient Block Reflector
Orthogonal layer that enables the construction of simple yet effective Lips-
chitz neural networks. In addition, by theoretically analyzing the nature of
Lipschitz neural networks, we introduce a new loss function that employs an
annealing mechanism to improve margin for most data points. This enables
Lipschitz models to provide better certified robustness. By employing our
BRO layer and loss function, we design BRONet, which provides state-of-
the-art certified robustness. Extensive experiments and empirical analysis
on CIFAR-10, CIFAR-100, and Tiny-ImageNet validate that our method
outperforms existing baselines. 1

1 Introduction

Although deep learning has been widely adopted in various fields (Wang et al., 2022; Brown
et al., 2020), it is shown to be vulnerable to adversarial attacks (Szegedy et al., 2013). This
kind of attack crafts an imperceptible perturbation on images (Goodfellow et al., 2014) or
voices (Carlini & Wagner, 2018) to make AI systems make incorrect predictions. In light
of this, many adversarial defense methods have been proposed to improve the robustness,
which can be categorized into empirical defenses and theoretical defenses. Common empirical
defenses include adversarial training (Madry et al., 2018; Shafahi et al., 2019; Wang et al.,
2023) and preprocessing-based methods (Samangouei et al., 2018; Das et al., 2018; Lee
& Kim, 2023). Though effective, the empirical defenses cannot provide any robustness
guarantees. Thus, the defenses may be ineffective when encountering sophisticated attackers.
Unlike empirical defenses, theoretical defenses offer quantitative and provable guarantees of
robustness, ensuring no adversarial examples within a specific ℓp-norm ball with a radius ε
around the prediction point.

Theoretical defenses against adversarial attacks are broadly categorized into probabilistic
and deterministic (Li et al., 2023) methods. Randomized smoothing (Cohen et al., 2019;
Lecuyer et al., 2019; Yang et al., 2020) is a prominent probabilistic approach, known for
its scalability in providing certified robustness. However, its reliance on extensive sam-
pling substantially increases computational overhead during inference, limiting its practical
deployment. Furthermore, the certification provided is probabilistic in nature.

Conversely, deterministic methods, exemplified by interval bound propagation (Ehlers, 2017;
Gowal et al., 2018; Mueller et al., 2022; Shi et al., 2022) and CROWN (Wang et al., 2021;
Zhang et al., 2022), efficiently provide deterministic certification. These methods aim to
approximate the lower bound of worst-case robust accuracy to ensure deterministic robustness
guarantees. Among various deterministic methods, neural networks with Lipschitz constraints
are able to compute the lower bound of worst-case robust accuracy with a single forward
pass, making them the most time-efficient at inference time. They are known as Lipschitz
neural networks.

Lipschitz neural networks are designed to ensure that the entire network remains Lipschitz-
bounded. This constraint limits the sensitivity of the outputs to input perturbations, thus

1The code will be made available upon acceptance. A version has been provided for reviewers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

providing certifiable robustness by controlling changes in the logits. A promising approach
to constructing Lipschitz neural networks focuses on designing orthogonal layers, which
inherently satisfy the the 1-Lipschitz constraint. Furthermore, these layers help mitigate the
issue of vanishing gradient norms due to their norm-preserving properties.

Figure 1: Visualization of model performance.
The circle size denotes model size.

In this work, we introduce the Block Re-
flector Orthogonal (BRO) layer, which
outperforms existing methods in terms of
computational efficiency as well as robust
and clean accuracy. We utilize our BRO
layer to develop various Lipschitz neural net-
works, thereby demonstrating its practical
utility across various architectures. Addi-
tionally, we develop a new Lipschitz neural
network BRONet, which shows promising
results.

Moreover, we delve into Lipschitz neural
networks, analyzing their inherent limited
capability. Building on this analysis, we
introduce a novel loss function, the Logit
Annealing loss, which is empirically shown
to be highly effective for training Lipschitz
neural networks. The certification results
of the proposed method outperform state-of-the-art methods with reasonable number of
parameters, as Figure 1 shows.

Our contributions are summarized as follows:
• We propose a novel BRO method to construct orthogonal layers using low-rank parame-

terization. It is both time and memory efficient, while also being stable during training
by eliminating the need for iterative approximation algorithms.

• We unlock the potential of applying orthogonal layers to more advanced architectures,
enhancing certified robustness while reducing resource requirements.

• We construct various Lipschitz networks using BRO method, including newly designed
BRONet, which achieves state-of-the-art certified robustness without adversarial training.

• Based on our theoretical analysis, we develop a novel loss function, the Logit Annealing
loss, which is effective for training Lipschitz neural networks via an annealing mechanism.

• Through extensive experiments, we demonstrate the effectiveness of our proposed method
on the CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets.

2 Preliminaries

2.1 Certified Robustness with Lipschitz Neural Networks

Consider a function f : Rm → Rn. The function is said to exhibit L-Lipschitz continuity
under the ℓ2-norm if there exists a non-negative constant L such that:

L = Lip(f) = sup
x1,x2∈Rm

∥f(x1)− f(x2)∥
∥x1 − x2∥

, (1)

where ∥·∥ represents the ℓ2 norm. This relationship indicates that any variation in the
network’s output is limited to at most L times the variation in its input, effectively character-
izing the network’s stability and sensitivity to input changes. Specifically, under the ℓ2-norm,
the Lipschitz constant is equivalent to the spectral norm of the function’s Jacobian matrix.

Assuming f(x) is the output logits of a neural network, and t denotes the target label.
We say f(x) is certifiably robust with a certified radius ε if argmaxi f(x + δ)i = t for
all perturbations {δ : ∥δ∥ ≤ ε}. Determining the certified radii is crucial for certifiable
robustness and presents a significant challenge. However, in L-Lipschitz neural networks,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ε can be easily calculated using ε = max(0, Mf (x)/
√
2L), where Mf (x) denotes the logit

difference between the ground-truth class and the runner-up class in the network output.
That is, Mf (x) = f(x)t −maxk ̸=t f(x)k (Tsuzuku et al., 2018; Li et al., 2019).

2.2 Lipschitz Constant Control & Orthogonality in Neural Networks

Obtaining the exact Lipschitz constant for general neural networks is known to be an NP-
hard problem (Virmaux & Scaman, 2018). However, there are efficient methods available
for computing it on a layer-by-layer basis. Once the Lipschitz constant for each layer is
determined, the Lipschitz composition property allows for the calculation of the overall
Lipschitz constant for the entire neural network. The Lipschitz composition property states
that given two functions f and g with Lipschitz constants Lf and Lg, their composition
h = g ◦ f is also Lipschitz with a constant Lh ≤ Lg · Lf . We can use this property to obtain
the Lipschitz constant of a complex neural network f :

f = ϕl ◦ ϕl−1 ◦ . . . ◦ ϕ1, Lip(f) ≤
l∏

i=1

Lip(ϕi). (2)

Thus, if the Lipschitz constant of each layer is properly regulated, robust certification
can be provided. A key relevant property is orthogonality, characterized by the isometry
property ∥Wx∥ = ∥x∥ for a given operator W . Encouraging orthogonality is crucial for
controlling the Lipschitz constant while preserving model expressiveness (Anil et al., 2019),
as it helps mitigate the vanishing gradient problem and ensures a tight Lipschitz bound for
the composition of layers in Equation 2.

3 Related Work

Orthogonal Layers Orthogonality in neural networks is crucial for various applications,
including certified robustness via Lipschitz-based methods, GAN stability (Müller et al.,
2019), and training very deep networks with inherent gradient preservation. While some
approaches implicitly encourage orthogonality through regularization or initialization (Qi
et al., 2020; Xiao et al., 2018), explicit methods for constructing orthogonal layers have
garnered significant attention, as evidenced by several focused studies in this area. Li et al.
(2019) proposed Block Convolution Orthogonal Parameterization (BCOP), which utilizes
an iterative algorithm for orthogonalizing the linear transformation within a convolution.
Trockman & Kolter (2020) introduced a method employing the Cayley transformation
W = (I − V)(I + V)−1, where V is a skew-symmetric matrix. Similarly, Singla & Feizi
(2021b) developed the Skew-Orthogonal Convolution (SOC), employing an exponential
convolution mechanism for feature extraction. Additionally, Xu et al. (2022) proposed the
Layer-wise Orthogonal training (LOT), an analytical solution to the orthogonal Procrustes
problem (Schönemann, 1966), formulated as W = (V V T)−1/2V . This approach requires the
Newton method to approximate the internal matrix square root. Yu et al. (2021) proposed
the Explicitly Constructed Orthogonal Convolution (ECO) to enforce all singular values of
the convolution layer’s Jacobian to be one. Notably, SOC and LOT achieve state-of-the-art
certified robustness for orthogonal layers. Most matrix re-parameterization-based methods
can be easily applied for dense layers, such as Cayley, SOC, and LOT. One recently proposed
orthogonalization method for dense layers is Cholesky (Hu et al., 2024), which explicitly
performs QR decomposition on the weight matrix via Cholesky decomposition.

Other 1-Lipschitz Layers A relaxation of isometry constraints, namely, ∥Wx∥ ≤ ∥x∥,
facilitates the development of extensions to orthogonal layers, which are 1-Lipschitz layers.
Prach & Lampert (2022) introduced the Almost Orthogonal Layer (AOL), which is a
rescaling-based parameterization method. Meanwhile, Meunier et al. (2022) proposed the
Convex Potential Layer (CPL), leveraging convex potential flows to construct 1-Lipschitz
layers. Building on CPL, Araujo et al. (2023) presented SDP-based Lipschitz Layers (SLL),
incorporating AOL constraints for norm control. Most recently, Wang & Manchester (2023)
introduced the Sandwich layer, a direct parameterization that analytically satisfies the SDP
conditions outlined by Fazlyab et al. (2019).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Lipschitz Regularization While the aforementioned methods control Lipschitz constant
by formulating constrained layers with guaranteed Lipschitz bound, Lipschitz regularization
methods estimate the layer-wise Lipschitz constant via power iteration (Farnia et al., 2019)
and apply regularization to control it. Leino et al. (2021) employed a Lipschitz regularization
term to maximize the margin between the ground truth and runner-up class in the loss
function. Hu et al. (2023; 2024) further proposed a new Lipschitz regularization method
Efficiently Margin Maximization (EMMA), which dynamically adjust all the non-ground-truth
logits before calculating the cross-entropy loss.

4 BRO: Block Reflector Orthogonal Layer

In this section, we introduce the BRO layer, designed to provide certified robustness via
low-rank orthogonal parameterization. First, we detail the fundamental properties of our
method. Next, we leverage the 2D-convolution theorem to develop the BRO orthogonal
convolutional layer. Finally, we conduct a comparative analysis of our BRO with existing
state-of-the-art orthogonal layers.

4.1 Low-rank Orthogonal Parameterization Scheme

The core premise of BRO revolves around a low-rank parameterization applied to an
orthogonal layer, as introduced by the following proposition. A detailed proof is provided in
Appendix A.1.
Proposition 1. Let V ∈ Rm×n be a matrix of rank n, and, without loss of generality,
assume m ≥ n. Then the parameterization W = I − 2V (V TV)−1V T satisfies the following
properties:

1. W is orthogonal and symmetric, i.e., WT = W and WTW = I.
2. W is an n-rank perturbation of the identity matrix, i.e., it has n eigenvalues equal

to −1 and m− n eigenvalues equal to 1.
3. W degenerates to the negative identity matrix when V is a full-rank square matrix.

This parameterization draws inspiration from the block reflector (Dietrich, 1976; Schreiber
& Parlett, 1988), which is widely used in parallel QR decomposition and is also important
in other contemporary matrix factorization techniques. This approach enables the parame-
terization of an orthogonal matrix derived from a low-rank unconstrained matrix, thereby
improving the computational efficiency.

Building on the definitive property of the proposition above, we initialize the parameter
matrix V as non-square to prevent it from degenerating into a negative identity matrix.

While the above discussion revolves around weight matrices for dense layers, the param-
eterization can also be used to construct orthogonal convolution operations. Specifically,
given an unconstrained kernel V ∈ Rc×n×k×k, where each slicing V:,:,i,j is defined as in
Proposition 1, WConv = IConv − 2V ⊛ (V T ⊛ V)−1 ⊛ V T constitutes a 2D multi-channel
orthogonal convolution, where the operation ⊛ represents the convolution operation. Note
that computing the inverse of a convolution kernel is challenging; therefore, we solve it
in the Fourier domain instead. Following Cayley and LOT, we apply the 2D convolution
theorem (Jain, 1989) to perform the convolution operation. Define FFT : Rs×s → Cs×s

as the 2D Fourier transform operator and FFT−1 : Cs×s → Cs×s as its inverse, where
s × s denotes the spatial dimensions, and the input will be zero-padded to s × s if the
original shape is smaller. The 2D convolution theorem asserts that the circular convolution
of two matrices in the spatial domain corresponds to their element-wise multiplication in the
Fourier domain. Furthermore, based on the idea that multi-channel 2D circular convolution
in the Fourier domain corresponds to a batch of matrix-vector products, we can perform
orthogonal convolution as follows. Let X̃ = FFT(X) and Ṽ = FFT(V), the convolution
operation Y = WConv ⊛ X is then computed as Y = FFT−1(Ỹ) and Ỹ:,i,j = W̃:,:,i,jX̃:,i,j ,
where W̃:,:,i,j = I − 2Ṽ:,:,i,j(Ṽ

∗
:,:,i,j Ṽ:,:,i,j)

−1Ṽ ∗
:,:,i,j and i, j are the pixel indices. Note that the

FFT is performed on the spatial (pixel) dimension, while the orthogonal multiplication is
performed on the channel dimension.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 BRO Convolution Layer

1: Input: Tensor X ∈ Rc×s×s, Kernel V ∈ Rc×n×k×k with n ≤ c ▷ c is channel size.
2: Xpad := zero_pad(X, (k, k, k, k)) ∈ Rc×(s+2k)×(s+2k)

3: V pad := zero_pad(V, (0, 0, k + s, k + s)) ∈ Rc×n×(s+2k)×(s+2k)

4: X̃ := FFT(Xpad) ∈ Cc×(s+2k)×(s+2k) ; Ṽ := FFT(V pad) ∈ Cc×n×(s+2k)×(s+2k)

5: for all i, j ∈ {1, . . . , s+ 2k} do
6: Ỹ:,i,j := (I − 2Ṽ:,:,i,j(Ṽ

∗
:,:,i,j Ṽ:,:,i,j)

−1Ṽ ∗
:,:,i,j)X̃:,i,j ▷ Apply our parameterization.

7: end for
8: return (FFT−1(Ỹ):,k:−k,k:−k).real ▷ Extract the real part.

Proposition 2. Let X̃ = FFT(X) ∈ Cc×s×s and Ṽ = FFT(V) ∈ Cc×n×s×s, the
proposed BRO convolution Y = FFT−1(Ỹ), where Ỹ:,i,j = W̃:,:,i,jX̃:,i,j and W̃:,:,i,j =

I − 2Ṽ:,:,i,j(Ṽ
∗
:,:,i,j Ṽ:,:,i,j)

−1Ṽ ∗
:,:,i,j , is a real, orthogonal multi-channel 2D circular convolution.

Importantly, the BRO convolution is a 2D circular convolution and is orthogonal, as demon-
strated by Proposition 2. Furthermore, Proposition 2 guarantees that, although the BRO
convolution primarily involves complex number computations in the Fourier domain, the
output Y remains real. The proof of Proposition 2 is provided in Appendix A.2. Additionally,
an detailed proof of BRO’s orthogonality is also included there.

Following LOT, we zero pad the input and parameters to size s+ 2k, where 2k is the extra
padding added to prevent circular convolution at the edges. A minor norm drop caused by
removing the output padding is discussed in detail in Appendix A.4. Algorithm 1 details
the proposed method, illustrating the case where the input and output channels are equal
to c. For layers where the input dimension differs from the output dimension, we enforce
the 1-Lipschitz constraint via semi-orthogonal matrices. In these matrices, only one side
of the orthogonality condition is satisfied: either WTW = I or WWT = I. We derive the
parameterization of these matrices by first constructing an orthogonal matrix W and then
truncating it to the required dimensions. Specifically, for BRO convolution, let the input
and output channel sizes be cin and cout, respectively. Define c = max(cout, cin). For each
index i and j, we parameterize Ṽ:,:,i,j ∈ Cc×n as W̃:,:,i,j ∈ Cc×c, which is then truncated to
W̃:cout,:cin,i,j ∈ Ccout×cin . For details about the semi-orthogonal layer, refers to Appendix A.3.

4.2 Properties of BRO Layer

This section compares BRO to SOC and LOT, the state-of-the-art orthogonal layers.

5 10 15 20 25 30 35 40
Layers10

0.5

10
1.0

10
1.5

10
2.0

10
2.5

10
3.0

Ru
nt

im
e

(S
ec

)

BRO
SOC
LOT

0

5

10

15

20

25

30

35

M
em

or
y

(G
B)

BRO
SOC
LOT

Figure 2: Comparison of runtime and memory
usage among SOC, LOT, and BRO.

Iterative Approximation-Free Both LOT
and SOC utilize iterative algorithms for con-
structing orthogonal convolution layers. Al-
though these methods’ error bounds are the-
oretically proven to converge to zero, em-
pirical observations suggest potential viola-
tions of the 1-Lipschitz constraint. Prior work
(Béthune et al., 2022) has noted that SOC’s
construction may result in non-1-Lipschitz
layers due to approximation errors inherent in
the iterative process involving a finite number
of terms in the Taylor expansion. Regarding
LOT, we observe numerical instability dur-
ing training due to the Newton method for
orthogonal matrix computation. Specifically,
the Newton method break the orthogonality
when encountering ill-conditioned parameters, even with the 64-bit precision computation
recommended by the authors. An illustrative example is that using Kaiming initialization
(He et al., 2015) instead of identity initialization results in a non-orthogonal layer. Detailed
experiments are provided in Appendix D.6. In contrast, the proposed BRO constructs or-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

thogonal layers without iterative approximation, ensuring both orthogonality and robustness
certification validity.

Time and Memory Efficiency LOT’s internal Newton method requires numerous steps
to approximate the square root of the kernel, significantly prolonging training time and
increasing memory usage. Conversely, the matrix operations in BRO are less complex,
leading to substantially less training time and memory usage. Moreover, the low-rank
parametrization characteristic of BRO further alleviates the demand for computational
resources. When comparing BRO to SOC, BRO has an advantage in terms of inference time
as SOC requires multiple convolution operations to compute the exponential convolution.
Figure 2 shows the runtime per epoch and the memory usage during training. We analyze the
computational complexity of different orthogonal layers both theoretically and empirically.
The detailed comparison can be found in Appendix A.5.

Non-universal Orthogonal Parameterization While a single BRO layer is not a universal
approximator for orthogonal layers, as established in the second property of Proposition 1,
we empirically demonstrate in Section 7.2 that the expressive power of deep neural networks
constructed using BRO is competitive with that of LOT and SOC.

5 BRONet Architecture

We design our architecture BRONet similar to SLL and LiResNet. It consists of a stem
layer for image-to-feature conversion, several convolutional backbone blocks of same width
for feature extraction, a neck block to convert feature maps into flattened vectors, and
multiple dense blocks followed by a spectral normalized LLN layer (Singla et al., 2022). For
non-linearity, MaxMin activation (Anil et al., 2019; Chernodub & Nowicki, 2016) is used.
Further details can be found in Appendix B.2.

Compared to LiResNet with Lipschitz-regularized (Lip-reg) convolutional backbone blocks
and SLL with SDP-based 1-Lipschitz layers, all the backbone blocks are BRO orthogonal
parameterized, which ensures a tight Lipschitz composition bound in Equation 2 and is
free from gradient norm vanishing. We keep the first stem layer in BRONet to be the only
Lipschitz-regularized layer since we empirically find it benefits the model training with a
more flexible Lipschitz control. Note that the Lipschitz composition bound of BRONet
remains tight due to the orthogonal backbone blocks. Let the stem layer be W1 and Q be
the composition of the layers before the neck block with QTQ = I, we have:

Lip(QW1) =
√
λmax((QW1)T (QW1)) =

√
λmax(WT

1 W1) = Lip(W1), (3)

where λmax(·) is the largest eigenvalue. Conversely, stacking multiple non-orthogonal layers
such as Lip-reg or SLL does not necessarily results in a tight Lipschitz bound in Equation 2.

6 Logit Annealing Loss Function

Singla et al. (2022) posited that cross-entropy (CE) loss is inadequate for training Lipschitz
models, as it fails to increase the margin. Thus, they integrated Certificate Regularization
(CR) with the CE loss, formulated as: LCE − γmax(Mf (x), 0), where Mf (x) = f(x)t −
maxk ̸=t f(x)k is the logit margin between the ground-truth class t and the runner-up class.
γmax(Mf (x), 0) is the CR term and γ is a hyper-parameter. However, our investigation
identifies several critical issues associated with the CR term, such as discontinuous loss
gradient and gradient domination. Please see Appendix C.2 for details.

Our insight reveals that Lipschitz neural networks inherently possess limited model complexity,
which impedes empirical risk minimization. Here, we utilize Rademacher complexity to justify
that the empirical margin loss risk (Bartlett et al., 2017) is challenging to minimize with
Lipschitz neural networks. Let H represent the hypothesis set. The empirical Rademacher
complexity of H over a set S = {x1, x2, . . . , xn} is given by:

RS(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
, (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where σi are independent Rademacher variables uniformly sampled from {−1, 1}. Next, we
use the Rademacher complexity to demonstrate that a model with low capacity results in a
greater lower bound for margin loss risk.
Theorem 1. Given a neural network f and a set S of size n, let ℓτ denote the ramp loss (a
special margin loss, see Appendix C) (Bartlett et al., 2017). Let F represent the hypothesis
set of f . Define that:

Fτ := {(x, y) 7→ ℓτ (M(f(x), y))) : f ∈ F}; (5)

R̂τ (f) :=

∑
i ℓτ (M(f(xi), yi))

n
. (6)

Assume that Pe is the prediction error probability. Then, with probability 1− δ, the empirical
margin loss risk R̂τ (f) is lower bounded by:

R̂τ (f) ≥ Pe − 2RS(Fτ)− 3

√
ln(1/δ)

2n
. (7)

Furthermore, for the L-Lipschitz neural networks, we introduce the following inequality to
show that the model complexity is upper bounded by L.
Proposition 3. Let F be the hypothesis set of the L-Lipschitz neural network f , and ℓτ is
the ramp loss with Lipschitz constant 1/τ , for some τ > 0. Then, given a set S of size n, we
have:

RS(Fτ) = Eσ

[
1

n
sup
f∈F

n∑
i=1

σi(ℓτ ◦ f)(xi)

]
≤ 1

τ
Eσ

[
1

n
sup
f∈F

n∑
i=1

σif(xi)

]
≤ L

τ · n

n∑
i=1

||xi||. (8)

This is also known as Ledoux-Talagrand contraction (Ledoux & Talagrand, 2013). In
Lipschitz neural networks, the upper bound is typically lower than in standard networks due
to the smaller Lipschitz constant L, consequently limiting RS(Fτ).

According to Theorem 1, the empirical margin loss risk exhibits a greater lower bound if
RS(Fτ) is low. It is important to note that the risk of the CR term, i.e., CR loss risk, is exactly
the margin loss risk decreased by one unit when τ = 1/γ. That is R̂CR(f) = R̂τ (f)−1. This
indicates that CR loss risk also exhibits a greater lower bound. Thus, it is unlikely to minimize
the CR term indefinitely if the model exhibits limited Rademacher complexity. Note that
limited Rademacher complexity can result from a low Lipschitz constant or a large sample
set. This also implies that we cannot limitlessly enlarge the margin in Lipschitz networks,
especially for large real-world datasets. Detailed proofs can be found in Appendix C.

The CR term encourages a large margin for every data point simultaneously, which is
impossible since the risk has a great lower bound. Due to the limited capacity of Lipschitz
models, we must design a mechanism that enables models to learn appropriate margins for
most data points. Specifically, when a data point exhibits a large margin, indicating further
optimizing it is less beneficial, its loss should be annealed to allocate capacity for other data
points. Based on this idea, we design a logit annealing mechanism to modulate the learning
process, gradually reducing loss values of the large-margin data points. Consequently, we
propose a novel loss function: the Logit Annealing (LA) loss. Let z = f(x) represent the
logits output by the neural network, and let y be the one-hot encoding of the true label t.
We define the LA loss as follows:

LLA(z,y) = −T (1− pt)
β log (pt),where p = softmax(z−ξy

T). (9)

The hyper-parameters temperature T and offset ξ are adapted from the loss function in
Prach & Lampert (2022) for margin training. The term (1−pt)

β , referred to as the annealing
mechanism, draws inspiration from Focal Loss (Lin et al., 2017). During training, LA loss
initially promotes a moderate margin for each data point, subsequently annealing the data
points with large margins as training progresses. Unlike the CR term, which encourages
aggressive margin maximization, our method employs a balanced learning strategy that
effectively utilizes the model’s capacity, especially when it is limited. Consequently, LA loss
allows Lipschitz models to learn an appropriate margin for most data points. Please see
Appendix C for additional details on LA loss.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of our method’s performance with previous works. The ℓ2 perturbation
budget ε for certified accuracy is chosen following the convention of previous works. For fair
comparison, diffusion-generated synthetic datasets are not used.

Datasets Models #Param. Clean
Acc.

Cert. Acc. (ε)
36
255

72
255

108
255

CIFAR10

Cayley Large (Trockman & Kolter, 2020) 21M 74.6 61.4 46.4 32.1
SOC-20 (Singla et al., 2022) 27M 76.3 62.6 48.7 36.0
LOT-20 (Xu et al., 2022) 18M 77.1 64.3 49.5 36.3
CPL XL (Meunier et al., 2022) 236M 78.5 64.4 48.0 33.0
AOL Large (Prach & Lampert, 2022) 136M 71.6 64.0 56.4 49.0
SOC-20+CRC (Singla & Feizi, 2022) 40M 79.1 66.5 52.5 38.1
SLL X-Large(Araujo et al., 2023) 236M 73.3 64.8 55.7 47.1
LiResNet(Hu et al., 2024) 83M 81.0 69.8 56.3 42.9

BRONet-M 37M 81.2 69.7 55.6 40.7
BRONet-L 68M 81.6 70.6 57.2 42.5

CIFAR100

Cayley Large (Trockman & Kolter, 2020) 21M 43.3 29.2 18.8 11.0
SOC-20 (Singla et al., 2022) 27M 47.8 34.8 23.7 15.8
LOT-20 (Xu et al., 2022) 18M 48.8 35.2 24.3 16.2
CPL XL (Meunier et al., 2022) 236M 47.8 33.4 20.9 12.6
AOL Large (Prach & Lampert, 2022) 136M 43.7 33.7 26.3 20.7
SOC-20+CRC (Singla & Feizi, 2022) 40M 51.8 38.5 27.2 18.5
SLL X-Large(Araujo et al., 2023) 236M 47.8 36.7 28.3 22.2
Sandwich(Wang & Manchester, 2023) 26M 46.3 35.3 26.3 20.3
LiResNet(Hu et al., 2024) 83M 53.0 40.2 28.3 19.2

BRONet-M 37M 54.1 40.1 28.5 19.6
BRONet-L 68M 54.3 40.2 29.1 20.3

Tiny-ImageNet

SLL X-Large(Araujo et al., 2023) 1.1B 32.1 23.2 16.8 12.0
Sandwich(Wang & Manchester, 2023) 39M 33.4 24.7 18.1 13.4
LiResNet(Hu et al., 2024) 133M 40.9 26.2 15.7 8.9

BRONet 75M 41.2 29.0 19.0 12.1

7 Experiments

In this section, we first evaluate the overall performance of our proposed BRONet against
the ℓ2 certified robustness baselines. Next, to further demonstrate the effectiveness of the
BRO layer, we conduct fair and comprehensive evaluations on multiple architectures for
comparative analysis with orthogonal and other Lipschitz layers in previous literature. Lastly,
we present the experimental results and analysis on the LA loss function. For detailed
implementation information, refer to Appendix B.

7.1 Main Results

We compare BRONet to the current leading methods in the literature. Figure 1 presents a
visual comparison on CIFAR-10. Furthermore, Table 1 details the clean accuracy, certified
accuracy, and the number of parameters. On CIFAR-10 and CIFAR-100, our model achieves
the best clean and certified accuracy with the ℓ2 perturbation budget ε = 36/255. On the
Tiny-ImageNet dataset, our method surpasses all baselines in terms of overall performance,
demonstrating its scalability. Notably, BRONets achieves these results with a reasonable
number of parameters.

7.2 Ablation Studies

Extra Diffusion Data Augmentation As demonstrated in previous studies (Hu et al.,
2024; Wang et al., 2023), incorporating additional synthetic data generated by diffusion models
such as elucidating diffusion model (EDM) (Karras et al., 2022) can enhance performance.
We evaluate the effectiveness of our method in this setting, using diffusion-generated synthetic
datasets from Hu et al. (2024); Wang et al. (2023) for CIFAR-10 and CIFAR-100, which
contain post-filtered 4 million and 1 million images, respectively. Table 2 presents the results,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Improvements of combining LA and BRO with LiResNet using diffusion data aug-
mentation. The best results of each dataset are marked in bold. Performance improvements
and degradations relative to the baseline are marked in green and red, respectively.

Datasets Methods Clean
Acc.

Cert. Acc. (ε)
36
255

72
255

108
255

CIFAR-10
(+EDM)

LiResNet 87.0 78.1 66.1 53.1
+LA 86.7 (-0.3) 78.1 (+0.0) 67.0 (+0.9) 54.2 (+1.1)

+LA + BRO 87.2 (+0.2) 78.3 (+0.2) 67.4 (+1.3) 54.5 (+1.4)

CIFAR-100
(+EDM)

LiResNet 61.0 48.4 36.9 26.5
+LA 61.1 (+0.1) 48.9 (+0.5) 37.5 (+0.6) 27.6 (+1.1)

+LA + BRO 61.6 (+0.6) 49.1 (+0.7) 37.7 (+0.8) 27.2 (+0.7)

Table 3: Comparison of clean and certified accuracy using different Lipschitz convolutional
backbones. The best results are marked in bold. #Layers is the number of convolutional
backbone layers, and #param. is the number of parameters in the constructed architecture.

Conv.
Backbone #Layers #Param. CIFAR-10 (+EDM) CIFAR-100 (+EDM)

Clean 36
255

72
255

108
255 Clean 36

255
72
255

108
255

LOT 2 59M 85.7 76.4 65.1 52.2 59.4 47.6 36.6 26.3
Cayley 6 68M 86.7 77.7 66.9 54.3 61.1 48.7 37.8 27.5
Cholesky 6 68M 85.4 76.6 65.7 53.3 59.4 47.4 36.8 26.9
SLL 12 83M 85.6 76.8 66.0 53.3 59.4 47.6 36.6 27.0
SOC 12 83M 86.6 78.2 67.0 54.1 60.9 48.9 37.6 27.8
Lip-reg 12 83M 86.7 78.1 67.0 54.2 61.1 48.9 37.5 27.6
BRO 12 68M 87.2 78.3 67.4 54.5 61.6 49.1 37.7 27.2

showing that combining LA and BRO effectively leverages these synthetic datasets to enhance
performance.

Backbone Comparison As the improvements in the previous work by Hu et al. (2024)
primarily stem from using diffusion-generated synthetic datasets and architectural changes,
we conduct a fair and comprehensive comparison of different Lipschitz convolutional layers
using the default LiResNet architecture (with Lipschitz-regularized convolutional layers),
along with LA and diffusion-based data augmentation. The only modification is swapping
out the convolutional backbone layers. It is important to note that for FFT-based orthogonal
layers (excluding BRO), we must reduce the number of backbone layers to stay within
memory constraints. LOT has the fewest parameters due to its costly parameterization.
With half-rank parameterization in BRO, the number of parameters for BRO, Cayley, and
Cholesky remain consistent, while SLL, SOC, and Lipschitz-regularized retain the original
number of parameters. The results in Table 3 indicate that BRO is the optimal backbone
choice compared to other layers in terms of overall performance.

LipConvNet Benchmark To further validate the effectiveness of BRO, we also evaluate
it on LipConvNets, which have been the standard architecture in the literature on orthogonal
layers. For LipConvNets details, refer to Appendix B.2. Table 4 illustrates the certified
robustness of SOC, LOT, and BRO layers. It is evident that the LipConvNet constructed by
BRO layers compares favorably to the other orthogonal layers in terms of clean and robust
accuracy. Detailed comparisons are provided in Appendix D.5.

7.3 LA Loss Effectiveness

Table 2 illustrates the performance improvements achieved using the proposed LA loss, with
LA showing better results on CIFAR-100 compared to CIFAR-10. We also provide extensive
ablation experiments in Appendix D.3 to validate its effectiveness on different architectures
and datasets. Our experiments show that LA loss promotes a balanced margin, increasing
clean and certified robust accuracies by approximately 1% to 2%, especially for models
trained on more challenging datasets like Tiny-ImageNet. See Table 11 for more details.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Comparison of clean and certified accuracy with different orthogonal layers in
LipConvNets (depth-width). Instances marked with a dash (-) indicate out of memory during
training. The best results with each model are marked with bold.

Models Layers CIFAR-100 Tiny-ImageNet

Clean 36
255

72
255

108
255 Clean 36

255
72
255

108
255

LipConvNet
(10-32)

SOC 47.5 34.7 24.0 15.9 38.0 26.5 17.7 11.3
LOT 49.1 35.5 24.4 16.3 40.2 27.9 18.7 11.8
BRO 48.6 35.4 24.5 16.1 39.4 28.1 18.2 11.6

LipConvNet
(10-48)

SOC 48.2 34.9 24.4 16.2 38.9 27.1 17.6 11.2
LOT 49.4 35.8 24.8 16.3 - - - -
BRO 49.4 36.2 24.9 16.7 40.0 28.1 18.9 12.3

LipConvNet
(10-64)

SOC 48.5 35.5 24.4 16.3 39.3 27.3 17.6 11.2
LOT 49.6 36.1 24.7 16.2 - - - -
BRO 49.7 36.7 25.2 16.8 40.7 28.4 19.2 12.5

To demonstrate that the LA loss enables learning an appropriate margin for most data points,
we further investigate the certified radius distribution. Following Cohen et al. (2019), we
plot the certified accuracy with respect to the radius on CIFAR-100 to visualize the margin

Table 5: The median, variance and skewness
of certified radius distribution.

Loss Median Variance Skewness

CE 0.2577 0.0732 1.2114
CE+CR 0.2750 0.1000 1.4843
LA 0.2840 0.0797 1.0539

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

Training
LA
CE
CE+CR

Test
LA
CE
CE+CR

Test
LA
CE
CE+CR

Figure 3: Certified accuracy with respect
to radius. LA loss helps learn appropriate
margin.

distribution in Figure 3. The certified radius
is proportional to the margin in Lipschitz mod-
els. Thus, the x-axis and y-axis can be seen
as margin and complementary cumulative dis-
tribution of data points, respectively (Lecuyer
et al., 2019). The results indicate that the num-
ber of data points with appropriate margins
increases, which is evident as the red curve
rises higher than the others at the radius be-
tween [0.0, 0.6]. Moreover, the clean accuracy,
which corresponds to certified accuracy at zero
radius, is also observed to be slightly higher.
This suggests that the LA loss does not com-
promise clean accuracy for robustness. To
further understand the annealing mechanism,
we analyze the distribution of the certified ra-
dius across the data points, as shown in Table 5.
Compared to CR, the LA loss reduces both the
positive skewness and variance of the distribu-
tion, indicating a rightward shift in the peak
and a decrease in the dispersion of the radius.
This suggests that LA loss helps mitigate the
issue of overfitting to certain data points and
improves the certified radius for most points.
Additional experiments, including an empirical
robustness test and ablation studies on BRO
rank and loss, are presented in Appendix D.

8 Conclusion

In this paper, we introduce a novel BRO layer to construct various Lipschitz neural networks.
The BRO layer features low-rank parameterization and is free from iterative approximations.
As a result, it is both memory and time efficient compared with existing orthogonal layers,
making it well-suited for integration into advanced Lipschitz architectures to enhance
robustness. Furthermore, extensive experimental results have shown that BRO is one of
the most promising orthogonal convolutional layers for constructing expressive Lipschitz
networks. Next, we address the limited complexity issue of Lipschitz neural networks and
introduce the new Logit Annealing loss function to help models learn appropriate margins.
Moving forward, the principles and methodologies in this paper could serve as a foundation
for future research in certifiably robust network design.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility

To ensure the reproducibility of our experiments, we have provided detailed implementation
of the proposed BRO method. Additionally, the code is included in the supplementary
material, enabling readers to replicate the experiments. The implementation of Algorithm 1
can be found in lipconvnet/models/layers/bro_conv.py.

References
Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation.

In Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A
unified algebraic perspective on lipschitz neural networks. In The Eleventh International
Conference on Learning Representations (ICLR), 2023.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Louis Béthune, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich,
and Alberto Gonzalez Sanz. Pay attention to your loss: understanding misconceptions
about lipschitz neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on
speech-to-text. In 2018 IEEE security and privacy workshops (SPW), 2018.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust
overfitting may be mitigated by properly learned smoothening. In International Conference
on Learning Representations (ICLR), 2020.

Artem Chernodub and Dimitri Nowicki. Norm-preserving orthogonal permutation linear
unit activation functions (oplu). arXiv preprint arXiv:1604.02313, 2016.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via
randomized smoothing. In International Conference on Machine Learning (ICML), 2019.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with
an ensemble of diverse parameter-free attacks. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen,
Michael E Kounavis, and Duen Horng Chau. Shield: Fast, practical defense and vaccination
for deep learning using jpeg compression. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD), 2018.

G Dietrich. A new formulation of the hypermatrix householder-qr decomposition. Computer
Methods in Applied Mechanics and Engineering, 9(3):273–280, 1976.

Timothy Dozat. Incorporating nesterov momentum into adam. International Conference on
Learning Representations workshop (ICLR workshop), 2016.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
International Symposium on Automated Technology for Verification and Analysis (ATVA),
2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding the
robustness of adversarial logit pairing. arXiv preprint arXiv:1807.10272, 2018.

Farzan Farnia, Jesse Zhang, and David Tse. Generalizable adversarial training via spectral
normalization. In International Conference on Learning Representations (ICLR), 2019.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the
effectiveness of interval bound propagation for training verifiably robust models. arXiv
preprint arXiv:1810.12715, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2015.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International
Conference on Learning Representations (ICLR), 2021.

Kai Hu, Andy Zou, Zifan Wang, Klas Leino, and Matt Fredrikson. Unlocking deterministic
robustness certification on imagenet. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Kai Hu, Klas Leino, Zifan Wang, and Matt Fredrikson. A recipe for improved certifiable
robustness. In The Twelfth International Conference on Learning Representations (ICLR),
2024.

Anil K Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., 1989.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana.
Certified robustness to adversarial examples with differential privacy. In 2019 IEEE
Symposium on Security and Privacy (SP), 2019.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and
processes. Springer Science & Business Media, 2013.

Minjong Lee and Dongwoo Kim. Robust evaluation of diffusion-based adversarial purification.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2023.

Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In Interna-
tional Conference on Machine Learning (ICML), 2021.

Linyi Li, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural networks. In 2023
IEEE symposium on security and privacy (SP), 2023.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jörn-Henrik
Jacobsen. Preventing gradient attenuation in lipschitz constrained convolutional networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for
dense object detection. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations (ICLR), 2018.

Laurent Meunier, Blaise J Delattre, Alexandre Araujo, and Alexandre Allauzen. A dynamical
system perspective for lipschitz neural networks. In International Conference on Machine
Learning (ICML), 2022.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

Mark Niklas Mueller, Franziska Eckert, Marc Fischer, and Martin Vechev. Certified training:
Small boxes are all you need. In The Eleventh International Conference on Learning
Representations (ICLR), 2022.

Jan Müller, Reinhard Klein, and Michael Weinmann. Orthogonal wasserstein gans. arXiv
preprint arXiv:1911.13060, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Bernd Prach and Christoph H Lampert. Almost-orthogonal layers for efficient general-purpose
lipschitz networks. In European Conference on Computer Vision (ECCV), 2022.

Bernd Prach, Fabio Brau, Giorgio Buttazzo, and Christoph H Lampert. 1-lipschitz layers
compared: Memory, speed, and certifiable robustness. arXiv preprint arXiv:2311.16833,
2023.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning
for visual recognition. In International conference on machine learning, pp. 7824–7835.
PMLR, 2020.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers
against adversarial attacks using generative models. In International Conference on
Learning Representations (ICLR), 2018.

Peter H Schönemann. A generalized solution of the orthogonal procrustes problem. Psy-
chometrika, 31(1):1–10, 1966.

Robert Schreiber and Beresford Parlett. Block reflectors: Theory and computation. SIAM
Journal on Numerical Analysis, 25(1):189–205, 1988.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. Efficiently
computing local lipschitz constants of neural networks via bound propagation. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

S Singla and S Feizi. Fantastic four: Differentiable bounds on singular values of convolution
layers. In International Conference on Learning Representations (ICLR), 2021a.

Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. In International Conference on
Machine Learning (ICML), 2021b.

Sahil Singla and Soheil Feizi. Improved techniques for deterministic l2 robustness. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Sahil Singla, Surbhi Singla, and Soheil Feizi. Improved deterministic l2 robustness on cifar-10
and cifar-100. In International Conference on Learning Representations (ICLR), 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International
Conference on Learning Representations (ICLR), 2013.

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley
transform. In International Conference on Learning Representations (ICLR), 2020.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable
certification of perturbation invariance for deep neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis
and efficient estimation. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696, 2022.

Ruigang Wang and Ian Manchester. Direct parameterization of lipschitz-bounded deep
networks. In International Conference on Machine Learning (ICML), 2023.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico
Kolter. Beta-crown: Efficient bound propagation with per-neuron split constraints for
neural network robustness verification. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better
diffusion models further improve adversarial training. In International Conference on
Machine Learning (ICML), 2023.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pen-
nington. Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer
vanilla convolutional neural networks. In International Conference on Machine Learning,
pp. 5393–5402. PMLR, 2018.

Xiaojun Xu, Linyi Li, and Bo Li. Lot: Layer-wise orthogonal training on improving l2
certified robustness. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

Greg Yang, Tony Duan, J Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li.
Randomized smoothing of all shapes and sizes. In International Conference on Machine
Learning (ICML), 2020.

Tan Yu, Jun Li, Yunfeng Cai, and Ping Li. Constructing orthogonal convolutions in an
explicit manner. In International Conference on Learning Representations (ICLR), 2021.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico
Kolter. General cutting planes for bound-propagation-based neural network verification.
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer:
k steps forward, 1 step back. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A BRO Layer Analysis

A.1 Proof of Proposition 1

Proposition 1. Let V ∈ Rm×n be a matrix of rank n, and, without loss of generality,
assume m ≥ n. Then the parameterization W = I − 2V (V TV)−1V T satisfies the following
properties:

1. W is orthogonal and symmetric, i.e., WT = W and WTW = I.

2. W is an n-rank perturbation of the identity matrix, i.e., it has n eigenvalues equal
to −1 and m− n eigenvalues equal to 1.

3. W degenerates to the negative identity matrix when V is a full-rank square matrix.

Proof. Assuming V is as defined in Proposition 1, the symmetry of this parameterization is
straightforward to verify. The orthogonality of W , however, requires confirmation that the
following condition is satisfied:

WWT = (I − 2V (V TV)−1V T)(I − 2V (V TV)−1V T)T

= (I − 2V (V TV)−1V T)(I − 2V (V TV)−1V T)

= I − 4V (V TV)−1V T + 4V (V TV)−1V TV (V TV)−1V T

= I − 4V (V TV)−1V T + 4V (V TV)−1V T

= I. (10)

Next, define S = {v1, v2, · · · , vn} as the set of column vectors of V . Let ei denote the i-th
standard basis vector in Rn. Then, we have

Wvi = (I − 2V (V TV)−1V T)vi

= vi − 2V (V TV)−1V T vi

= vi − 2V (V TV)−1(V TV ei)

= vi − 2V (V TV)−1(V TV)ei

= vi − 2V ei

= vi − 2vi = −vi. (11)

For the vectors in the orthogonal complement of S, denoted by S⊥ = {vn+1, vn+2, · · · , vm},
we have

Wvi = (I − 2V (V TV)−1V T)vi = vi. (12)

The equality holds because, for all vi ∈ S⊥, we have V T vi = 0.

Therefore, the eigenspace corresponding to eigenvalue −1 is spanned by S, while the
eigenspace corresponding to eigenvalue 1 is spanned by S⊥.

Assume V is a full-rank square matrix, which implies that V is invertible. Thus:

W = I − 2V (V TV)−1V T

= I − 2V V −1(V T)−1V T

= I − 2I

= −I. (13)

Thus, the proof is complete.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 Proof of Proposition 2

⋆ This subsection has been fully revised. ⋆

Proposition 2. Let X̃ = FFT(X) ∈ Cc×s×s and Ṽ = FFT(V) ∈ Cc×n×s×s, the
proposed BRO convolution Y = FFT−1(Ỹ), where Ỹ:,i,j = W̃:,:,i,jX̃:,i,j and W̃:,:,i,j =

I − 2Ṽ:,:,i,j(Ṽ
∗
:,:,i,j Ṽ:,:,i,j)

−1Ṽ ∗
:,:,i,j , is a real, orthogonal multi-channel 2D circular convolution.

Proof. To establish the results of Proposition 2, we first present several supporting lemmas.

Lemma 1. (2D convolution theorem) Let X,W ∈ Rs×s, and F ∈ Rs×s be the DFT matrix.
Then, X̃ = FFT(X) = FXF , i.e., the DFT is applied to the rows and columns of X. In
addition, let the 2D circular convolution of X with W be convW (X) ∈ Rs×s. It follows that

W̃ ⊙ X̃ = FWF ⊙ FXF = F convW (X)F,

where ⊙ is the element-wise product.

Next, we introduce the multi-channels 2D circular convolution. Following Trockman &
Kolter (2020), we flatten the four-dimension tensors into matrices to facilitate the analysis.
Let an input image with cin input channels represent X ∈ Rcin×s×s, it can be vectorized
into X = [vecT (X1), ..., vec

T (Xcin)]
T ∈ Rcins

2

. Similarly, the vectorized output is Y =

[vecT (Y1), ..., vec
T (Ycout)]

T ∈ Rcouts
2

. Then, we have a 2D circular convolution operation with
C ∈ Rcouts

2×cins
2

such that Y = CX . Note that C has cout × cin blocks with size s2 × s2.

Lemma 2. (Trockman & Kolter, 2020, Corollary A.1.1) If C ∈ Rcouts
2×cins

2

represents a 2D
circular convolution with cin input channels and cout output channels, then it can be block
diagonalized as

FcoutCF∗
cin = D, (14)

where Fc = Sc,s2 (Ic ⊗ (F ⊗ F)), Sc,s2 is a permutation matrix, Ik is the identity matrix of
order k, and D is block diagonal with s2 blocks of size cout × cin.

Lemma 3. Consider J ∈ Cp×p as a unitary matrix. Define V and Ṽ such that V = JṼ J∗,
where V ∈ Rp×p and Ṽ ∈ Cp×p. Let BRO(V) = I − 2V (V ∗V)−1V ∗ be our parameterization.
Then,

BRO(V) = JBRO(Ṽ)J∗. (15)

Proof. Assume J and V are as defined in Proposition 3. Then

J∗BRO(V)J = J∗(I − 2V (V TV)−1V T)J

= I − 2(J∗JṼ J∗)[(JṼ ∗Ṽ J∗)]−1(JṼ ∗J∗J)

= I − 2(Ṽ J∗)[(JṼ ∗Ṽ J∗)]−1(JṼ ∗)

= I − 2Ṽ (Ṽ ∗Ṽ)−1Ṽ ∗ (⋆)

= BRO(Ṽ).

The equality at (⋆) holds because

(Ṽ ∗Ṽ)−1 = J∗(JṼ ∗Ṽ J∗)−1J.

We begin the proof under the assumption that the number of input channels equals the
number of output channels, i.e., cin = cout = c. According to Lemma 2, the stacked weight
matrix C ∈ Rcouts

2×cins
2

can be diagonalized as follows:

C = F∗
cDFc. (16)

where F∗
c and Fc are unitary matrices, and D is a block diagonal matrix.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Note that since D is block diagonal, the BRO transformation of D can be expressed as:

BRO(D) = BRO(D1)⊕ BRO(D2)⊕ · · · ⊕ BRO(Ds2),

where ⊕ denotes the direct sum. This is because each block Dk for k = 1, . . . , s2 is
independently transformed by the BRO operation. Additionally, because the original weight
matrix C is real, the BRO convolution BRO(C) remains real as well.

Applying Lemma 3 on Equation 16, we consider a real vectorized input X . The output of
the BRO convolution is given by:

Y = BRO(C)X = F∗
c BRO(D)FcX . (17)

This ensures that Y is real. Consequently, Algorithm 1 is guaranteed to produce a real
output when given a real input X .

Finally, the orthogonality of the BRO convolution operation BRO(C) can be derived as
follows. Since both F∗

c and Fc are unitary matrices (Trockman & Kolter, 2020), and BRO(D)
is unitary as well, the composition of these unitary operations preserves orthogonality.

Thus, we have established that the BRO convolution operation BRO(C) is orthogonal, thereby
completing the proof of Proposition 2.

A.3 Analysis of Semi-Orthogonal Layer

⋆ This is a newly added subsection. ⋆

In this section, we provide the detailed analysis about semi-orthogonal BRO layers, which
can be categorized into two types: dimension expanding layers and dimension reduction
layers. To facilitate understanding, we begin with the dense version of BRO (a single 2D
matrix).

For a expanding layer constructed with W ∈ Rdout×din , where din < dout, it satisfies the
condition WTW = Idin . Since the condition is equivalent to ensure that the columns are
orthonormal, the norm of a vector is preserved when projecting onto its column space, which
means ∥Wx∥ = ∥x∥ for every x ∈ Rdin , thus, ensures 1-Lipschitz property.

For a reduction layer constructed with W ∈ Rdout×din , where din > dout, it satisfies the
condition WWT = Idout . Unlike expanding layers, the columns of W in reduction layers
cannot be orthonormal due to the dimensionality constraint din > dout. Consequently, we
have the following relationship for every x ∈ Rdin , ∥Wx∥ ≤ ∥x∥. The equality holds if x lies
entirely within the subspace spanned by the rows of W . In general, reduction layers do not
preserve the norm of input vectors. However, they remain 1-Lipschitz bounded, ensuring
that the transformation does not amplify the input norm.

The same principles apply to BRO convolution. The primary difference between the dense
and convolution versions of BRO layers arises from the dimensions they are applied to.
Therefore, the results discussed for BRO dense layers also hold for BRO convolution layers.
Figure 4 visualizes BRO convolution under three different dimensional settings, illustrating the
behavior of channel-expanding and channel-reduction operations in convolutional contexts.

A.4 The effect of zero-padding

⋆ This is a newly added subsection. ⋆

Following LOT (Xu et al., 2022), we apply zero-padding on images X ∈ Rc×s×s, creating
Xpad ∈ Rc×(s+2k)×(s+2k), before performing the 2D FFT. After applying FFT−1, we obtain
Ypad ∈ Rc×(s+2k)×(s+2k), from which the padded pixels are removed to restore the original
dimensions of X, resulting in Y ∈ Rc×s×s. This approach leverages zero-padding to avoid

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of BRO convolution for different cin and cout.

circular convolution across edges, which empirically improves performance. However, since
circular convolution is still applied to the entire image, including the padded regions, these
padded areas can acquire information from the central spatial region. Moreover, as norm
preservation only holds for ||X|| = ||Xpad|| = ||Ypad||, removing pixels from Ypad causes
the slight norm drop. Importantly, it does not affect the validity of the certified results,
as neither zero-padding nor the removal of padded parts expands the norm or violates the
1-Lipschitz bound.

A.5 Complexity Comparison of Orthogonal Layers

In this section, we demonstrate the computational and memory advantages of the proposed
method by analyzing its complexity compared to prior work. We use conventional notation
from Prach et al. (2023). We focus on algorithmic complexity and required memory,
particularly in terms of multiply-accumulate operations (MACs). The detailed complexity
comparison is presented in Table 7.

The analysis has two objectives: input transformation and parameter transformation. The
computational complexity and memory requirements of the forward pass during training
are the sum of the respective MACs and memory needs. The backward pass has the same
complexity and memory requirements, increasing the overall complexity by a constant factor.
In addition to theoretical complexity, we report the practical time and memory usage for
different orthogonal layers under various settings in Figure 5.

In the following analysis, we consider only dimension-preserving layers, where the input
and output channels are equal, denoted by c. Define the input size as s× s× c, the batch
size as b, the kernel size as k × k, the number of inner iterations of a method as t, and the
rank-control factor for BRO as κ, as listed in Table 6. To simplify the analysis, we assume
c > log2(s). Under the PyTorch (Paszke et al., 2019) framework, we can also assume that
rescaling a tensor by a scalar and adding two tensors do not require extra memory during
back-propagation.

Standard Convolution In standard convolutional layers, the computational complexity of
the input transformation is C = bs2c2k2 MACs, and the memory requirement for input and
kernel are M = bs2c and P = c2k2, respectively. Additionally, these layers do not require
any computation for parameter transformation.

SOC For the SOC layer, t convolution iterations are required. Thus, the input transformation
requires computation complexity and memory t times that of standard convolution. For the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

5 10 15 20 25 30 35 40
Layers10

0.5

10
1.0

10
1.5

10
2.0

10
2.5

10
3.0

Ru
nt

im
e

(S
ec

)
Runtime vs. #Layers (n=32, init=32, k=3)

BRO
SOC
LOT

5 10 15 20 25 30 35 40
Layers

0

5

10

15

20

25

30

35

M
em

or
y

(G
B)

Memory vs. #Layers (n=32, init=32, k=3)
BRO
SOC
LOT

5 10 15 20 25 30 35 40
Layers10

0.5

10
1.0

10
1.5

10
2.0

10
2.5

10
3.0

Ru
nt

im
e

(S
ec

)

Runtime vs. #Layers (n=32, init=64, k=3)

BRO
SOC
LOT

5 10 15 20 25 30 35 40
Layers

0

10

20

30

40

M
em

or
y

(G
B)

Memory vs. #Layers (n=32, init=64, k=3)
BRO
SOC
LOT

5 10 15 20 25 30 35 40
Layers10

0.5

10
1.0

10
1.5

10
2.0

10
2.5

10
3.0

Ru
nt

im
e

(S
ec

)

Runtime vs. #Layers (n=64, init=32, k=3)

BRO
SOC
LOT

5 10 15 20 25 30 35 40
Layers

0

5

10

15

20

25

30

35

40

M
em

or
y

(G
B)

Memory vs. #Layers (n=64, init=32, k=3)
BRO
SOC
LOT

5 10 15 20 25 30 35 40
Layers10

0.5

10
1.0

10
1.5

10
2.0

10
2.5

10
3.0

Ru
nt

im
e

(S
ec

)

Runtime vs. #Layers (n=32, init=32, k=5)

BRO
SOC
LOT

5 10 15 20 25 30 35 40
Layers

0

5

10

15

20

25

30

35

40

M
em

or
y

(G
B)

Memory vs. #Layers (n=32, init=32, k=5)
BRO
SOC
LOT

Figure 5: Demonstration of the runtime and memory consumption under different settings
with LipConvNet architecture. The notation n denotes the input size, init denote the initial
channel of the the entire model, and k denotes the kernel size. The batch sizes are fixed at
512 for all plots, and each value is the average over 10 iterations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Notation used in this section.

Notation Description

b batch size
k kernel size
c input/output channels
s input size (resolution)
t number of internal iterations
κ Rank-Control factor for BRO

Table 7: Computational complexity and memory requirements of different methods. We
report multiply-accumulate operations (MACS) as well as memory requirements for batch
size b, input size s×s×c, kernel size k×k and number of inner iterations t for SOC and LOT,
rank-control factor κ ∈ [0, 1] for BRO. We denote the complexity and memory requirement
of standard convolution as C = bs2c2k2, M = bs2c, and P = c2k2, respectively.

Method Input Transformations Parameter Transformations

MACS O(·) Memory MACS O(·) Memory O(·)

Standard C M - P

SOC Ct Mt c2k2t P

LOT bs2c2 3M 4s2c3t 4s2c2t

BRO bs2c2 2.5M s2c3κ 2s2c2

parameter transformation, a kernel re-parameterization is needed to ensure the Jacobian of
the induced convolution is skew-symmetric. During training, the SOC layer applies Fantastic
Four (Singla & Feizi, 2021a) technique to bound the spectral norm of the convolution, which
incurs a cost of c2k2t. The memory consumption remains the same as standard convolution.

LOT The LOT layer achieves orthogonal convolution via Fourier domain operations. Apply-
ing the Fast Fourier Transform (FFT) to inputs and weights has complexities of O(bcs2 log(s2))
and O(c2s2 log(s2)), respectively. Subsequently, s2 matrix orthogonalizations are required
using the transformation V (V TV)−

1
2 . The Newton Method is employed to find the inverse

square root. Specifically, let Y0 = V TV and Z0 = I, then Yi is defined as

Yi+1 =
1

2
Yi (3I − ZiYi) , Zi+1 =

1

2
(3I − ZiYi)Zi. (18)

This iteration converges to (V TV)−
1
2 . Executing this procedure involves computing 4s2t

matrix multiplications, requiring about 4s2c3t MACs and 4s2c2t memory. The final steps
consist of performing 1

2bs
2 matrix-vector products, requiring 1

2bs
2c2 MACs, as well as the

inverse FFT. Given our assumption that c > log(s2), the FFT operation is dominated by
other operations. Considering the memory consumption, LOT requires padding the kernel
from a size of c× c× k × k to c× c× s× s, requiring bs2c2 memory. Additionally, we need
to keep the outputs of the FFT and the matrix multiplications in memory, requiring about
4s2c2t memory each.

BRO Our proposed BRO layer also achieves orthogonal convolution via Fourier domain
operations. Therefore, the input transformation requires the same computational complexity
as LOT. However, by leveraging the symmetry properties of the Fourier transform of a real
matrix, we reduce both the memory requirement and computational complexity by half.
During the orthogonalization process, only 1

2s
2 are addressed. The low-rank parameterization

results in a complexity of approximately s2c3κ and memory usage of 1
2s

2c2. Additionally, we
need to keep the outputs of the FFT, the matrix inversion, and the two matrix multiplications
in memory, requiring about 1

2s
2c2t memory each.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 6: The proposed Block Reflector Orthogonal (BRO) convolution kernel, which is an
orthogonal matrix, employs Fourier transformation to simulate the convolution operation.
This convolution is inherently orthogonal and thus 1-Lipschitz, providing guarantees for
adversarial robustness.

Figure 7: Following Trockman & Kolter (2020); Singla & Feizi (2021b); Xu et al. (2022),
we use the proposed orthogonal convolution layer to construct the Lipschitz neural network.
This figure illustrates the LipConvnet-5, which cascades five BRO convolution layers. The
activation function used is the MaxMin function, and the final layer is the last layer
normalization (LLN).

B Implementation Details

In this section, we will detail our computational resources, the architectures of BRONet
and LipConvNet, rank-n configuration, hyper-parameters used in LA loss, and experimental
settings.

B.1 Computational Resources

All experiments are conducted on a computer with an Intel Xeon Gold 6226R processor and
192 GB of DRAM memory. The GPU we used is the NVIDIA RTX A6000 (10,752 CUDA
cores, 48 GB memory per card). For CIFAR-10 and CIFAR-100, we used a single A6000
card for training. For Tiny-ImageNet and diffusion data augmentation on CIFAR-10/100, we
utilized distributed data parallel (DDP) across two A6000 cards for joint training. Training a
LipConvNet-10 on this setup, as detailed in Table 12, required approximately 3,400 seconds.

B.2 Architecture Details

The proposed BRO layer is illustrated in Figure 6. In this paper, we mainly use the BRO
layer to construct two different architectures: BRONet and LipConvNet. We will first explain
the details of BRONet, followed by an explanation of LipConvNet constructed using the
BRO layer.

BRONet Architecture Figure 8 illustrates the details of the BRONet architecture, which
is comprised of several key components:

• Stem: This consists of a unconstrained convolutional layer that is Lipschitz-
regularized during training. The width W is the feature channel dimension, which
is an adjustable parameter.

• Backbone: This segment includes L BRO convolutional blocks of channel width W ,
each adhering to the 1-Lipschitz constraint.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Following the LiResNet architecture (Leino et al., 2021; Hu et al., 2023), we utilized
the BRO layer to construct BRONet. The parameters L, W , and D can be adjusted to
control the model size.

• Neck: This consists of a convolutional down-sampling layer followed by a dense
layer, which reduces the feature dimension. For the convolutional layer, we fol-
low LiResNet (Hu et al., 2024) to construct a 1-Lipschitz matrix with dimension
(cout, cin × k2) and reshape it back to (cout, cin, k, k). It is important to note that
while the reshaped kernel differs from the orthogonal convolution described in BRO
convolutional layer, it remains 1-Lipschitz bounded due to being non-overlapping
(stride = kernel size k) (Tsuzuku et al., 2018).

• Dense: BRO or Cholesky-orthogonal (Hu et al., 2024) dense layers with width 2048
are appended to increase the network’s depth and enhance the model capability.

• Head: The architecture concludes with an LLN (Last Layer Normalization) layer,
an affine layer that outputs the prediction logits.

We can use the W , L, and D to control the model size.

LipConvNet Architecture This architecture is utilized in orthogonal neural networks such
as SOC and LOT. The fundamental architecture, LipConvNet, consists of five orthogonal
convolutional blocks, each serving as a down-sampling layer. The MaxMin or householder
(Singla et al., 2022) activation function is employed for activation, and the final layer is an
affine layer such as LLN. Figure 7 provides an illustration of LipConvNet. To increase the
network depth, dimension-preserving orthogonal convolutional blocks are added subsequent
to each down-sampling block; thus, the depth remains a multiple of five. We use the
notation LipConvNet-N to describe the depth, where N represents the number of layers. For
example, LipConvNet-20 indicates a network with 20 layers, consisting of five down-sampling
orthogonal layers and 15 dimension-preserving orthogonal layers.

B.3 Architecture and Rank-n Configuration

As mentioned in Section 4.1, for BRO layers with dimension dout = din = m, we explicitly
set the unconstrained parameter V to be of shape m×n with m > n to avoid the degenerate
case. For the BRONet-M backbone and dense layers, we set n = m/4 for CIFAR-10 and
CIFAR-100 and n = m/8 for Tiny-ImageNet experiments. For the BRONet-L architecture,
we use n = m/2 for for the BRO backbone and use Cholesky-orthogonal dense layers. For

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

LipConvNet, we set n = m/8 for all experiments. An ablation study on the effect of different
choices of rank-n is presented in Appendix D.2.

B.4 LA Hyper-parameters

Unless particularly specified, the LA loss hyper-parameters T, ξ, and β are set to
0.75, 2

√
2, and 5.0, respectively. The hyper-parameters are selected by an ablation ex-

periments done on LipConvNet. Please see Appendix D.4 for the experiments.

B.5 Table 1 Details

On CIFAR-10 and CIFAR-100, BRONet is configured with L12W512D8, and on Tiny-
ImageNet, it is L6W512D4. Mainly following Hu et al. (2024), we use NAdam (Dozat, 2016)
and the LookAhead Wrapper (Zhang et al., 2019) with an initial learning rate of 10−3,
batch size of 256, and weight decay of 4× 10−5. The learning rate follows a cosine decay
schedule with linear warm-up during the first 20 epochs, and the model is trained for a
total of 800 epochs. We combine the LA loss with the EMMA (Hu et al., 2023) method
to adjust non-ground-truth logit values for Lipschitz regularization on the stem layer. The
target budget for EMMA is set to ε = 108/255 and offset for LA is set to ξ = 2. To report
the results of LiResNet (Hu et al., 2024), we reproduce the results without diffusion data
augmentation for fair comparison. All experimental results are the average of three runs.
For other baselines, results are reported as found in the literature.

B.6 Table 2 Details

In this table, we utilize diffusion-synthetic datasets from Hu et al. (2024); Wang et al. (2023)
for CIFAR-10 and CIFAR-100, which contain 4 million and 1 million images, respectively.
Following Hu et al. (2024), we employ a 1:3 ratio of real to synthetic images for each
mini-batch, with a total batch size of 1024. We have removed weight decay, as we observed
it does not contribute positively to performance with diffusion-synthetic datasets. All other
settings remain consistent with those in Table 1.

B.7 Table 3 Details

The settings are consistent with those in Table 2, where we use the default architecture
of LiResNet (L12W512D8), LA loss, and diffusion data augmentation. We replace the
convolutional backbone for each Lipschitz layer.

B.8 Table 4 Details

Following the training configuration of Singla & Feizi (2021b), we adopt the SGD optimizer
with an initial learning rate of 0.1, which is reduced by a factor of 0.1 at the 50-th and 150-th
epochs, over a total of 200 epochs. Weight decay is set to 3× 10−4, and a batch size of 512
is used for the training process. The architecture is initialized with initial channel sizes of
32, 48, and 64 for different rows in the table. The LA loss is adopted for training.

C Logit Annealing Loss Function

In this section, we delve into the details of the LA loss. Initially, we will prove Theorem 1,
which illustrates the lower bound of the empirical margin loss risk. Next, we will visualize
the LA loss and its gradient values. Additionally, we will discuss issues related to the CR
term used in the SOC and LOT frameworks. Lastly, we will thoroughly explain the annealing
mechanism.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.1 Empirical Margin Loss Risk

Here, we explain Theorem 1, which demonstrates how model capacity constrains the opti-
mization of margin loss. The margin operation is defined as follows:

Mf = f(x)t −max
k ̸=t

f(x)k. (19)

This operation is utilized to formulate margin loss, which is employed in various scenarios
to enhance logit distance and predictive confidence. The margin loss can be effectively
formulated using the ramp loss (Bartlett et al., 2017), which offers a analytic perspective on
margin loss risk. Ramp loss provides a linear transition between full penalty and no penalty
states. It is defined as follows:

ℓτ,ramp(f, x, y) =


0 if f(x)t −maxk ̸=t f(x)k ≥ τ,

1 if f(x)t −maxk ̸=t f(x)k ≤ 0,

1− f(x)t−maxk ̸=t f(x)k
τ otherwise.

We employ the margin operation and the ramp loss to define margin loss risk as follows:

Rτ (f) := E(ℓτ,ramp(M(f(x), y))), (20)

R̂τ (f) :=
1

n

∑
i

ℓτ,ramp(M(f(xi), yi)), (21)

where R̂τ (f) denotes the corresponding empirical margin loss risk. According to Mohri et al.
(2018), a risk bound exists for this loss:
Lemma 4. (Mohri et al., 2018, Theorem 3.3) Given a neural network f , let τ denote the
ramp loss. Let F represent the function class of f , and let RS(.) denote the Rademacher
complexity. Assume that S is a sample of size n. Then, with probability 1− δ, we have:

Rτ (f) ≤ R̂τ (f) + 2RS(Fτ) + 3

√
ln(1/δ)

2n
. (22)

Next, apply the following properties for the prediction error probability:

Pe = Pr
[
argmax

i
f(x)i ̸= y

]
= Pr [−M(f(x), y) ≥ 0] (23)

= E1 [M(f(x), y) ≤ 0] (24)
≤ E(ℓτ,ramp(M(f(x), y))) (25)
= Rτ (f), (26)

where Pe is the prediction error probability. Assuming that the Pe is fixed but unknown, we
can utilize Lemma 4 to prove Theorem 1:

R̂τ (f) ≥ Pe − 2RS(Fτ)− 3

√
ln(1/δ)

2n
. (27)

This illustrates that the lower bound for the margin loss risk is constrained by model
complexity.

Next, we illustrate and prove the relationship between margin loss risk and the CR loss risk.
Let the empirical CR loss risk be defined as follows:

R̂CR(f) :=
1

n

∑
i

−γmax(M(f(xi), yi), 0). (28)

Proposition 4. Let R̂CR(f) and R̂τ (f) are the CR loss risk and margin loss risk, respectively.
Assume that τ = supi Mf (xi) and γ = 1/τ . Then, R̂CR(f) is R̂τ (f) decreased by one unit:

R̂CR(f) = R̂τ (f)− 1. (29)

Proof. (Proof for Proposition 4) Consider two cases based on the value of M(x):

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
pt

4

2

0

2

4

Loss Curves
LA
CE
CR0.5

(a) Loss function

0.0 0.2 0.4 0.6 0.8 1.0
pt

12

10

8

6

4

2

0

2
Derivative of Loss

LA
CE
CR0.5

(b) Derivative of loss function

Figure 9: Comparison of three loss functions. The x-axis is pt. This figure displays curves
representing the behavior of the proposed LA loss, contrasted with cross-entropy loss and
the Certificate Regularization (CR) term. We observe the discontinuous gradient of the
CR term. Additionally, the gradient of the CR term tends to infinity as pt approaches one,
leading to gradient domination and subsequently hindering the optimization of other data
points. In contrast, the proposed LA loss employs a different strategy, where the gradient
value anneals as nears one. This prevents overfitting and more effectively utilizes model
capacity to enhance learning across all data points.

• When M(x) ≤ 0: the CR loss is always zero and the ramp loss is always one. Thus,
the distance between R̂CR(f) and R̂τ (f) is one.

• When M(x) > 0: The distance between the ramp loss and CR loss is:

ℓτ,ramp(M(f(xi), yi)) + γmax(M(f(xi), yi), 0) = 1− M(xi)

τ
+ γM(xi)

= 1 + (γ − 1

τ
)M(xi). (30)

Therefore, the empirical CR loss risk can be rewritten as:

R̂CR(f) = R̂τ (f)− 1− (γ − 1

τ
)M+, where (31)

M+ =
∑

xi∈{xi|M(xi)>0}
M(xi). (32)

This equation simplifies to the one stated in Proposition 4 if γ = 1/τ .

Conclusively, we demonstrate that the CR loss risk has a lower bound as follows:

R̂CR(f) ≥ Pe − 2RS(Fτ)− 3

√
ln(1/δ)

2n
− 1. (33)

When the complexity is limited, CR loss risk exhibits a great lower bound. This indicates
that we cannot indefinitely minimize the CR loss risk. Thus, enlarging margins using the
CR term is less beneficial beyond a certain point.

C.2 CR Issues

Recall that CE loss with CR term is formulated as: LCE−γmax(Mf (x), 0), where Mf (x) =
f(x)t −maxk ̸=t f(x)k is the logit margin between the ground-truth class t and the runner-up
class. We compare LA loss, CE loss, and the CE+CR loss with γ = 0.5. Figure 9 illustrates

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

3
2

1
0

1
2

3

Direction 1
3

2

1

0

1

2

3

Dire
cti

on
 2

0.02

0.04

0.06

0.08

0.10

0.12

CR

(a) CR landscape

2 1 0 1 2
Direction 1

2

1

0

1

2

Di
re

ct
io

n
2

CR Landscape Contour

0.000

0.016

0.032

0.048

0.064

0.080

0.096

0.112

0.128

Lo
ss

 V
al

ue

(b) CR landscape contour plot

Figure 10: CR Loss Landscape Analysis. This figure illustrates the loss landscape to
investigate the effects of the CR term. Notably, the CR term can suddenly become “activated”
or “deactivated,” which is vividly depicted in the landscape transitions. These abrupt changes
contribute to unstable optimization during training, potentially affecting the convergence and
reliability of the model. Understanding this behavior is crucial for improving the training
process of Lipschitz neural networks. Regarding the direction of loss landscape, we follow
the setting in Engstrom et al. (2018) and Chen et al. (2020). We visualize the loss landscape
function z = LCR(x,w + ω1d1 + ω2d2), where d1 = sign(∇wLCR), d2 ∼ Rademacher(0.5),
and ω is the grid.

the loss values and their gradient values with respect to pt, where pt represents the softmax
result of the target logit. When using CR term as the regularization for training Lipschitz
models, we summarize the following issues:

(1). Discontinuous loss gradient: the gradient value of CR term at pt = 0.5 is discon-
tinuous This discontinuity leads to unstable optimization processes, as shown in
Figure 9. This indicates that, during training, the CR loss term may be “activated” or
“deactivated.” This phenomenon can be further explored through the loss landscape.
Figure 10 displays the CR loss landscape for the CR term, where it can be seen that
the CR term is activated suddenly. The transition is notably sharp.

(2). Gradient domination: as pt approaches one, the gradient value escalates towards
negative infinity. This would temper the optimization of the other data points in
the same batch.

(3). Imbalance issue: our observations indicate that the model tends to trade clean
accuracy for increased margin, suggesting a possible imbalance in performance
metrics.

Therefore, instead of using the CR term to train Lipschitz neural networks, we design the
LA loss to help Lipschitz models learn better margin values.

C.3 Annealing Mechanism

We can observe the annealing mechanism in the right subplot of Figure 9. The green curve
is the gradient value of the LA loss. We can observe that the gradient value is gradually
annealed to zero as the pt value approaches one. This mechanism limits the optimization
of the large-margin data points. As mentioned previously, Lipschitz neural networks have
limited capacity, so we cannot maximize the margin indefinitely. Since further enlarging

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Margin

0

1000

2000

3000

4000
Nu

m
be

r

Training set
LA
CE
CE+CR

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Margin

0

100

200

300

400

500

600

700

800
Test set

LA
CE
CE+CR

Figure 11: Histogram of margin distribution. The left histogram represents margin distri-
bution obtained from the training set, while the right histogram shows margin distribution
from the test set. The x-axis represents the margin values. These visualizations demonstrate
that the LA loss helps the model learn better margins.

Table 8: The clean, certified, and empirical robust accuracy of BRONet-M on CIFAR-10,
CIFAR-100, and Tiny-ImageNet.

Datasets Clean
Acc.

Certified / AutoAttack (ε)
36
255

72
255

108
255

CIFAR10 81.1 69.9 / 76.1 55.3 / 69.7 40.4 / 62.6

CIFAR100 54.3 40.0 / 47.3 28.7 / 41.0 19.4 / 35.5

Tiny-ImageNet 41.0 29.2 / 36.3 19.7 / 31.7 12.3 / 27.5

the margin for data points with sufficiently large margin is less beneficial, we employ the
annealing mechanism to allocate the limited capacity for the other data points.

In addition, we delve deeper into the annealing mechanism of the proposed LA loss function.
As illustrated in Figure 11, we train three different models using three loss functions, and
we plot the histogram of their margin distribution. The red curve represents the proposed
LA loss. Compared to CE loss, the proposed LA loss has more data points with margins
between 0.4 and 0.8. This indicates that the annealing mechanism successfully improves the
small-margin data points to appropriate margin 0.4 and 0.8.

Additionally, as the left subplot in Figure 11 illustrates, the margin exhibits an upper bound;
no data points exceed a value of 2.0, even when a larger γ is used in the CR term. This
observation coincides with our theoretical analysis, confirming that the Lipschitz models
cannot learn large margins due to its limited capacity.

D Additional Experiments

In this section, we present additional experiments and ablation studies.

D.1 Empirical robustness

In addition to certified robustness, we can validate the empirical robustness of the proposed
method. This further supports our robustness certificate. Theoretically, certified robust
accuracy is the lower bound for the worst-case accuracy, while empirical robust accuracy
is the upper bound for the worst-case accuracy. Thus, empirical robust accuracy must be

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 9: We compare the clean accuracy, certified accuracy, and training time for different
choices of n for the unconstrained parameter V on CIFAR-100 with BRONet L6W256D4
and L6W512D4. Time is calculated in minutes per training epoch.

n
L6W256D4 L6W512D4

Clean 36
255

72
255

108
255 Time Clean 36

255
72
255

108
255 Time

m/8 51.6 39.2 28.3 19.5 0.66 52.8 40.2 28.6 20.3 1.57
m/4 52.8 39.5 27.9 19.7 0.73 54.0 40.2 28.3 19.3 1.92
m/2 53.4 39.0 27.3 18.5 0.94 54.1 39.7 27.7 18.6 2.82
3m/4 52.7 39.5 28.0 19.2 1.27 53.5 39.8 27.9 18.9 3.75

Table 10: The improvement of LA loss with
BRONet-M on different datasets.

Datasets Loss Clean 36
255

72
255

108
255

CIFAR10 CEEMMA 81.8 68.9 53.6 38.3
LAEMMA 81.2 69.7 55.6 40.7

CIFAR100 CEEMMA 54.7 38.9 26.3 16.7
LAEMMA 54.1 40.1 28.5 19.6

Tiny-
ImageNet

CEEMMA 40.5 26.9 17.1 10.1
LAEMMA 41.2 29.0 19.0 12.1

Table 11: The improvement of LA loss with
LipConvNet on different datasets.

Datasets Loss Clean 36
255

72
255

108
255

CIFAR10 CE 77.5 62.1 44.8 29.2
LA 76.9 63.4 47.2 32.6

CIFAR100 CE 48.5 34.1 22.6 14.4
LA 48.6 35.4 24.5 16.1

Tiny-
ImageNet

CE 38.0 26.3 17.0 10.3
LA 39.4 28.1 18.2 11.6

greater than certified robust accuracy. We employ AutoAttack (Croce & Hein, 2020) to
assess empirical robustness. The certified and empirical robust accuracy for different attack
budgets are illustrated in Table 8. We observe that all empirical robust accuracy values for
each budget are indeed higher than their corresponding certified accuracy. This indicates
that the certification is correct under the AutoAttack test. Additionally, Table 8 shows that
the proposed method achieves strong empirical robustness without any adversarial training
techniques.

D.2 BRO Rank-n Ablation Experiments

As mentioned earlier, we can control the rank of V to construct the orthogonal weight matrix.
In this paper, the matrix V is of low rank. Considering the internal term V (V TV)−1V T in
our method’s parameterization, the concept is similar to that of LoRA (Hu et al., 2021).
We further investigate the effect of different n values of V . For the unconstrained m × n
parameter V in the backbone and dense blocks of BRONet, we conduct experiments using
different n values. The clean and certified accuracy, as well as training time, on CIFAR-100
are presented in Table 9. Different n values result in slightly different performance. Therefore,
we choose n = m/4 for all CIFAR-10/CIFAR-100 experiments on BRONet-M, and n = m/2
for BRONet-L. For TinyImageNet, considering our computational resources, we choose
n = m/8 to save memory, as the n values help control memory usage.

D.3 LA Loss Ablation Experiments

Table 10 presents an ablation study on the effectiveness of the proposed LA loss function.
We train BRONet-M using both the original CE-based EMMA loss, as described in Hu et al.
(2023), and the newly proposed LA-based EMMA loss. By switching from CE to LA, we
achieve an improvement in certified accuracy for all ℓ2 perturbations by approximately 1.94%
on average while maintaining the same level of clean accuracy.

Moreover, we verify the LA loss on LipConvNet constructed using BRO, LOT, or SOC.
Table 12 illustrates the improvement achieved by replacing the CE+CR loss, which is
initially recommended for training LipConvNet. The results suggest that using the LA loss
improves the performance of LipConvNet constructed with all three orthogonal layers on
both CIFAR-100 and Tiny-ImageNet.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 12: Comparison of clean and certified accuracy, training and inference time (sec-
onds/epoch), and number of parameters with different orthogonal layers in LipConvNet-10.
Instances marked with a dash (-) indicate out of memory during training. In the Time
column, we show the training time, and the inference time is in brackets.

Init.
Width Methods CIFAR-100 Tiny-ImageNet

Clean 36
255

72
255

108
255 Time Clean 36

255
72
255

108
255 Time

32

SOC + CR 48.1 34.3 23.5 15.6 19.2
(5.3)

37.4 26.2 17.3 11.2 107.7
(11.1)LA 47.5 34.7 24.0 15.9 38.0 26.5 17.7 11.3

LOT + CR 48.8 34.8 23.6 15.8 52.7
(1.4)

38.7 26.8 17.4 11.3 291.5
(7.3)LA 49.1 35.5 24.4 16.3 40.2 27.9 18.7 11.8

BRO + CR 48.4 34.7 23.6 15.4 17.3
(0.9)

38.5 27.1 17.8 11.7 98.6
(4.6)LA 48.6 35.4 24.5 16.1 39.4 28.1 18.2 11.6

48

SOC + CR 48.4 34.9 23.7 15.9 35.4
(8.7)

38.2 26.6 17.3 11.0 199.3
(20.3)LA 48.2 34.9 24.4 16.2 38.9 27.1 17.6 11.2

LOT + CR 49.3 35.3 24.2 16.3 143.0
(3.0)

- - - - -LA 49.4 35.8 24.8 16.3 - - - -

BRO + CR 49.4 35.7 24.5 16.3 35.2
(1.1)

38.9 27.2 18.0 11.6 196.9
(4.8)LA 49.4 36.2 24.9 16.7 40.0 28.1 18.9 12.3

64

SOC + CR 48.4 34.8 24.1 16.0 53.1
(12.4)

38.6 26.9 17.3 11.0 305.1
(32.5)LA 48.5 35.5 24.4 16.3 39.3 27.3 17.6 11.2

LOT + CR 49.4 35.4 24.4 16.3 301.8
(5.8)

- - - - -LA 49.6 36.1 24.7 16.2 - - - -

BRO + CR 49.7 35.6 24.5 16.4 64.4
(1.6)

39.6 27.9 18.2 11.9 355.3
(4.9)LA 49.7 36.7 25.2 16.8 40.7 28.4 19.2 12.5

Table 13: Experimental results for LipConvNet-10 on CIFAR-100 for different values of β in
the LA loss.

β value Clean 36
255

72
255

108
255

1 48.63 35.48 24.36 17.19
3 48.57 35.68 24.78 16.66
5 49.09 35.58 24.46 16.38
7 49.02 35.72 24.34 16.05

We also compare LA to CE on LipConvNet. Table 11 shows the results for LipConvNet
constructed with BRO. Our results show that the LA loss encourages a moderate margin
without compromising clean accuracy. Notably, the LA loss is more effective on larger-scale
datasets, suggesting that the LA loss effectively addresses the challenge of models with
limited Rademacher complexity.

D.4 LA Loss Hyper-parameters Experiments

There are three tunable parameters in LA loss: temperature T , offset ξ, and annealing factor
β. The first two parameters control the trade-off between accuracy and robustness, while
the last one determines the strength of the annealing mechanism. For the temperature and
offset, we slightly adjust the values used in Prach & Lampert (2022) to find a better trade-off
position, given the differences between their network settings and ours. Additionally, we
present the results of LA loss with different β values for CIFAR-100 on LipConvNet in
Table 13.

D.5 LipConvNet Ablation Experiments

More detailed comparison stem from Table 4 are provided in Table 12, demonstrating the
efficacy of LA loss across different model architectures and orthogonal layers. Following the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 14: The experiments conducted with varying initial widths and model depths using
the CIFAR-100 and Tiny-ImageNet datasets. The model employed is LipConvNet.

Depth Init.
Width

CIFAR-100 Tiny-ImageNet

Clean 36
255

72
255

108
255 Clean 36

255
72
255

108
255

5
32 49.04 35.06 24.19 16.06 39.28 27.47 18.23 11.47
48 49.60 35.80 24.63 16.20 40.12 27.79 18.36 11.92
64 49.97 36.21 24.92 16.45 40.82 28.26 18.76 12.31

10
32 48.62 35.36 24.48 16.11 39.37 28.06 18.16 11.58
48 49.39 36.19 24.86 16.68 39.98 28.12 18.86 12.17
64 49.74 36.70 25.24 16.80 40.66 28.36 19.24 12.48

15
32 48.59 35.51 24.42 16.28 39.20 27.66 18.08 11.84
48 49.37 36.50 24.93 16.81 39.87 27.96 18.49 12.11
64 49.91 36.57 25.26 16.81 40.38 28.73 18.78 12.52

20
32 48.62 35.68 24.66 16.57 38.74 27.23 17.75 11.67
48 49.26 36.09 24.91 16.62 39.63 27.88 18.49 12.07
64 49.60 36.47 25.24 17.09 39.77 28.03 18.53 12.17

0 10 20 30 40 50
Number of Newton Iterations

100

101

102

103

Co
nd

iti
on

 N
um

be
r

15.4

204.2

2.4

27.0

2.3

26.9

2.3

26.9

2.3

26.9

2.3

26.9

2.3

26.9

Random Initialized
Average Condition Number
Max Condition Number
Ideal Condition Number

0 10 20 30 40 50
Number of Newton Iterations

100

101

102

103

10.6

89.3

1.8

11.9

1.8

11.8

1.8

11.8

1.8

11.8

1.8

11.8

1.8

11.8

Trained
Average Condition Number
Max Condition Number
Ideal Condition Number

Figure 12: Plots of condition number of parameterized matrix in Fourier domain. The left
plot shows the condition number with randomly initialized parameters, whereas the right
plot shows the condition number with trained parameters.

same configuration as in Table 4, we further investigate the construction of LipConvNet
by conducting experiments with varing initial channels and model depths, as detailed in
Table 14.

D.6 Stability of LOT Parameterization

During the construction of the LOT layer, we empirically observed that replacing the identity
initialization with the common Kaiming initialization for dimension-preserving layers causes
the Newton method to converge to a non-orthogonal matrix. We check orthogonality by
computing the condition number of the parameterized matrix of LOT in the Fourier domain.
For an orthogonal layer, the condition number should be close to one. However, even after
five times the iterations suggested by the authors, the result for LOT does not converge to
one. Figure 12 illustrates that, even with 50 iterations, the condition number of LOT does
not converge to one. The orange curve represents the case with Kaiming randomly initialized
parameters, while the blue curve curve corresponds to the case after a few training epochs.
Both exhibit a significant gap compared to the ideal case, indicating that LOT may produce
a non-orthogonal layer.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E Limitations

⋆ This is a newly added section. ⋆

While our proposed methods have demonstrated improvements across several metrics, the
results for large perturbations, such as ε = 108/255, are less consistent. Additionally,
the proposed LA loss requires extra hyperparameter tuning. In our experiments, the
parameters were chosen based on LipConvNets trained on CIFAR-100 without diffusion-
synthetic augmentation (Appendix B.4), which may not fully align with different models
and datasets. Furthermore, our methods are specifically designed for ℓ2 certified robustness,
and certifying against attacks like ℓ∞-norm introduces additional looseness. Lastly, although
BRO addresses some limitations of orthogonal layers, training certifiably robust models on
large datasets, such as ImageNet, remains computationally expensive and beyond our current
resources.

31

	Introduction
	Preliminaries
	Certified Robustness with Lipschitz Neural Networks
	Lipschitz Constant Control & Orthogonality in Neural Networks

	Related Work
	BRO: Block Reflector Orthogonal Layer
	Low-rank Orthogonal Parameterization Scheme
	Properties of BRO Layer

	BRONet Architecture
	Logit Annealing Loss Function
	Experiments
	Main Results
	Ablation Studies
	LA Loss Effectiveness

	Conclusion
	BRO Layer Analysis
	Proof of Proposition 1
	Proof of Proposition 2
	Analysis of Semi-Orthogonal Layer
	The effect of zero-padding
	Complexity Comparison of Orthogonal Layers

	Implementation Details
	Computational Resources
	Architecture Details
	Architecture and Rank-n Configuration
	LA Hyper-parameters
	Table 1 Details
	Table 2 Details
	Table 3 Details
	Table 4 Details

	Logit Annealing Loss Function
	Empirical Margin Loss Risk
	CR Issues
	Annealing Mechanism

	Additional Experiments
	Empirical robustness
	BRO Rank-n Ablation Experiments
	LA Loss Ablation Experiments
	LA Loss Hyper-parameters Experiments
	LipConvNet Ablation Experiments
	Stability of LOT Parameterization

	Limitations

