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Abstract

Claim identification is crucial in NLP for detect-001
ing assertive statements, especially with the rise002
of generative AI and automated fact-checking.003
Traditional neural networks struggle with the004
temporal dynamics of language. This paper005
introduces StyleLTC, which uses liquid neu-006
ral networks with continuous-time properties007
to overcome these issues. It also incorporates008
stylistic features to predict claims. Evaluations009
show that liquid neural networks outperform010
static models, offering higher accuracy, robust-011
ness, and efficiency. StyleLTC achieves com-012
parable accuracy with only 0.612 MB of mem-013
ory, far less than traditional models, making it014
highly scalable and effective for claim detec-015
tion in combating misinformation.016

1 Introduction017

The spread of misinformation in digital and scien-018

tific communications threatens information accu-019

racy. As digital platform reliance grows, effective020

claim detection—distinguishing factual from mis-021

leading statements—becomes crucial, particularly022

in specialized domains where traditional methods023

struggle. Automated systems for large-scale claim024

detection are necessary for journalists, researchers,025

and the public to assess statements.026

Defining a claim is a non-trivial task, especially027

in automated fact-checking and argument mining028

(Alam et al., 2020; Gupta et al., 2021; Nakov et al.,029

2022; Konstantinovskiy et al., 2021; Panchendrara-030

jan and Zubiaga, 2024). We define factual claims031

as statements verifiable as true or false based on032

empirical evidence (Ni et al., 2024). Claim spot-033

ting and pledge detection (Arslan et al., 2020;034

Atanasova et al., 2018; Barron-Cedeno et al., 2020;035

Subramanian et al., 2019; Fornaciari et al., 2021;036

Schlichtkrull et al., 2024) have been explored, with037

tools like ClaimRank (Jaradat et al., 2018) and038

ClaimBuster (Hassan et al., 2017) aiding in detec-039

tion. Hybrid models (Kartal and Kutlu, 2022) and040

neural ranking models (Hansen et al., 2019) also 041

contribute to claim identification. Large language 042

models (LLMs) have been used for automatic claim 043

detection (Qi et al., 2024; Quelle and Bovet, 2024), 044

but their high hardware requirements and the im- 045

practicality of fine-tuning or few-shot prompting 046

on small, imbalanced data make them unsuitable 047

for real-world claim identification tasks. 048

In contrast, Liquid Neural Networks 049

(LNNs)(Lechner et al., 2020; Hasani et al., 050

2021) represent a significant advancement in 051

modeling sequential data, as they dynamically 052

adapt to temporal patterns, allowing for more 053

effective processing of time-dependent information. 054

The integration of linguistic stylistic features, 055

such as usage of grammatical category of words, 056

sentiment, tone, conviction, and concreteness, is 057

critical for improving the precision and reliability 058

of automated claim identification systems. These 059

stylistic elements provide important contextual and 060

cognitive signals that reflect the degree of certainty, 061

engagement, and intent within the text, which are 062

essential for accurate classification. Traditional 063

models often fail to capture these nuances, leading 064

to limitations in handling complex datasets. 065

In this paper, we proposed Style-Infused Liquid 066

Neural Network (StyleLTC) that embed stylistic 067

features into the LNN framework to combine the 068

advantages of linguistic feature and temporal dy- 069

namics, resulting in enhanced accuracy, robustness, 070

and efficiency. The lightweight architecture, re- 071

quiring only 0.612 MB of memory, achieves per- 072

formance comparable to more resource-intensive 073

models while significantly reducing memory usage, 074

making it highly scalable. Furthermore, StyleLTC 075

demonstrates domain extensibility, robustness to 076

skewed data distributions, and superior resource 077

efficiency, positioning it as a powerful and efficient 078

solution for claim identification task in diverse do- 079

mains. 080
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Figure 1: Liquid Time-Constant Network based model architecture for the claim identification.

2 Model Architecture081

Hasani et al. introduced the LTC model by082

modifying the hidden state flow of continuous-083

time recurrent neural networks (CTRNN)084

(Funahashi and Nakamura, 1993), defined085

as: dx(t)
dt = −

[
1
τ + f(x(t), I(t), t, θ)

]
x(t)086

+f(x(t), I(t), t, θ). Here, x(t) is the hidden087

state, I(t) the inputs, τ the time-constant, and088

f is a neural network parameterized by θ and089

A. LTC networks offer key advantages: 1) an090

input-dependent time-constant τsys, introducing091

the “liquid” nature to RNNs, enabling updates092

after training; 2) they are universal approximators,093

able to approximate any autonomous ordinary094

differential equation(ODE) with finite neurons.095

For the liquid neural network in our model, we use096

Neural Circuit Policies (NCP) wiring (Lechner097

et al., 2020), inspired by biological neural circuits098

like those in C.elegans. AutoNCP mimics the099

nematode’s nervous system, with four neuron100

layers: Sensory Neurons, Inter Neurons, Command101

Neurons, and Motor Neurons.102

Our StyleLTC model (Figure 1) for claim iden-103

tification uses pre-trained GloVe embeddings and104

LNNs. It has three main components: pre-trained105

GloVe with stylistic features for text embedding,106

an LNN for sequence processing, and a fully con-107

nected layer for final identification. The process108

starts with pre-trained GloVe embeddings (Pen-109

nington et al., 2014), where each word is mapped110

to a 300-dimensional vector. Words are tokenized,111

and their embeddings are retrieved, with unseen112

words given a zero vector. Sentence embeddings113

are generated by averaging the word embeddings114

to represent the sentence’s meaning.115

The Stylistic Feature Vector Generation process116

involves creating a 73-dimensional vector using117

LIWC (Pennebaker et al., 2015), which analyzes118

the frequency of categories like Nouns, Verbs, and 119

Subject-Verb Agreement in a document generat- 120

ing a vector [x1, x2, ..., x73], where each xi repre- 121

sents the frequency of a specific category. In addi- 122

tion, stylistic features such as Vagueness, Commit- 123

ment, and Conviction scores are introduced (Sinha 124

et al., 2020). Conviction refers to strong beliefs, 125

that identifies the presence of pride and trust and 126

the absence of timidity, nervousness, or confusion. 127

Commitment is linked to optimism, zest, gain, and 128

achievement in a text. Vagueness reflects a lack of 129

precision or clarity in language, indicating impre- 130

cision or ambiguity. Combining these three scores 131

with the LIWC vector forms a 76-dimensional 132

stylistic vector. By concatenating this with the 133

300-dimensional GloVe vector, we obtain a 376- 134

dimensional style-aware embedding, which is fed 135

into the Input Layer (Ref: Fig 1). 136

The input layer receives a sequence of embed- 137

ding vectors, typically designed for time-series 138

data. To adapt non-temporal data, the time dimen- 139

sion is set to 1, ensuring compatibility without in- 140

troducing explicit temporal progression. 141

The liquid layer processes the sequence, captur- 142

ing temporal dependencies. The sensory and motor 143

neurons are set to 70 and 1 (output size), respec- 144

tively. Optimal number of sensory neurons was 145

determined based on F1 scores for Political Bias 146

detection in News Articles, as presented in Figure 147

3 in Appendix B. 148

In the readout layer, the output of the liquid layer 149

is passed through a fully connected layer. This 150

layer map the high-dimensional states to the output, 151

which is then processed by subsequent layers. 152

The output of the fully connected layer is passed 153

through a ReLU activation function and a sigmoid 154

activation function for binary classification. This 155

layer gives the final predicted label for the input 156

sentence. 157
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3 Evaluation158

Table 1: Dataset statistics

Dataset Total Claims Not
Sentences Claims

Checkworthy English (CT) 23851 5759 18092
(Barrón-Cedeño et al., 2024)
Environmental Claim (ECD) 2647 665 1982
(Stammbach et al., 2023)
Green-Claims (GCC) 773 267 506
(Woloszyn et al., 2021)
Scientific Claim (SCDC) 11519 4000 7519
(Achakulvisut et al., 2019)

We evaluated our model’s performance using159

four diverse datasets for an unbiased assessment,160

with detailed statistics available in Table 1 (See161

Appendix A for data descriptions). We con-162

ducted three experiments based on the datasets.163

In Experiment-I, each dataset was split into 70%164

for training and 30% for testing, with the Train165

and Test sets predetermined for Dataset-CT. For166

other datasets, a 70:30 split and Monte Carlo cross-167

validation (Xu and Liang, 2001) were applied, aver-168

aging performance metrics to ensure robust general-169

ization. In Experiment-II, we combined all datasets170

to create an annotated corpus of 38,790 documents,171

followed by a 70:30 train-test split and Monte Carlo172

cross-validation. For the SCDC dataset, sentences173

were grouped into two output classes (“claim” and174

“not-claim”) instead of the original six classes. In175

Experiment-III, we tested the model’s ability to176

learn from unseen data by training on one dataset177

(e.g., ECD) and testing on others (GCC).178

We used the pre-trained BERT-large model179

(Vaswani et al., 2017) as our baseline. To train the180

model, we set the early stopping of training to 800181

steps to prevent over-fitting. We use a batch size of182

32, a maximum sequence length of 200, and a learn-183

ing rate of 2 ∗ 10−5 for training. We have also com-184

pared StyleLTC’s results with BiLSTM-att, Dis-185

tilBERT, BERT+style (768-dimensional text em-186

beddings of pre-trained BERT are concatenated187

with 76 dimensional stylistic features), LTC+GloVe188

model (when GloVe embeddings are given as in-189

put), CFC model (details available in Appendix C)190

and different open-source LLMs such as LLAMA-191

3.1 8B and Mistral 7B. LTC+BERT denotes to the192

instance when 768-dimensional text embeddings193

of pre-trained BERT given as input to LTC model.194

In LTC+BERT+style, 768-dimensional text embed-195

dings of pre-trained BERT concatenated with 76196

dimensional stylistic features, is given as input.197

3.1 Results 198

Figure 2: Class-wise F1 Score analysis across different
datasets for LTC+Glove and StyleLTC, demonstrating
the benefits of stylistic features on claim identification.

Figure 2 demonstrates the benefits of integrat- 199

ing stylistic vectors into text embeddings (LTC+G 200

denotes to LTC+GloVe). As we can observe, 201

StyleLTC shows significantly better performance in 202

identifying both claim and not-claim sentences than 203

LTC+GloVe. Our results show that while BERT 204

and GloVe embeddings capture contextual nuances, 205

combining them with stylistic factors greatly en- 206

hances claim detection. The StyleLTC model 207

(LTC+GloVe+style) outperforms BERT in detect- 208

ing claims, with improved performance across the 209

CT, ECD, and GCC datasets. For example, the F1 210

score increases by 41% for Dataset-ECD and 2% 211

for SCDC, while stylistic features improve the F1 212

score by 19% in Dataset-GCC. StyleLTC performs 213

better than BERT and BiLSTM-att, even with only 214

100,000 parameters compared to BERT’s 110 mil- 215

lion. Though BERT-based models are more accu- 216

rate, StyleLTC is more resource-efficient. Adding 217

BERT embeddings or stylistic features with BERT 218

embeddings improves results, but StyleLTC re- 219

mains more efficient. When compared to large 220

language models like LLAMA-3.1 and Mistral-7B, 221

StyleLTC outperforms them in claim identifica- 222

tion, even after fine-tuning. Experiment-II (Table 223

2 (ALL)) further confirms StyleLTC’s superiority 224

over LLAMA-3.1, achieving an F1 score of 0.86, 225

nearly matching BERT+style’s score of 0.88, while 226

maintaining a lightweight structure. 227

Regarding domain extensibility, LTC models 228

demonstrate strong adaptability across different do- 229

mains. Experiment-III (Table 3) shows that train- 230

ing the model on one dataset and evaluating it 231

on another results in an F1 score exceeding 85% 232

for Datasets-ECD and GCC. However, testing on 233

SCDC reveals a drop in Precision due to its scien- 234

tific and biomedical nature. The model success- 235

fully adapts to new claim structures, as shown 236

in Dataset-GCC, which involves Twitter data. In 237
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Table 2: Results of experiment-I and II demonstrating performance of models across each datasets ECD, GCC, SDC
and CT(for experiment-I) and when combining all of them together (ALL) for experiment-II.

ECD GCC SCDC CT ALL
P R F1 P R F1 P R F1 P R F1 P R F1

BiLSTM-att 0.43 0.39 0.46 0.69 0.69 0.75 0.77 0.78 0.7 0.724 0.42 0.52 0.71 0.73 0.75
BERT-base 0.49 0.74 0.53 0.75 0.71 0.77 0.69 0.68 0.82 0.95 0.94 0.89 0.73 0.79 0.75
DistilBERT 0.73 0.64 0.68 0.79 0.91 0.85 0.61 0.95 0.73 0.85 0.78 0.81 0.81 0.84 0.82
BERT+style 0.79 0.86 0.83 0.96 0.96 0.96 0.94 0.75 0.84 0.91 0.78 0.84 0.83 0.87 0.85
LLAMA-3.1 8B (zero-shot) 0.63 0.53 0.58 0.84 0.22 0.35 0.78 0.61 0.68 0.39 0.28 0.32 0.88 0.89 0.88
LLAMA-3.1 8B (few-shot) 0.97 0.34 0.51 0.98 0.25 0.40 0.87 0.43 0.58 0.80 0.28 0.41 0.51 0.37 0.43
Mistral 7B (zero-shot) 0.39 0.98 0.56 0.38 0.84 0.53 0.44 0.82 0.57 0.41 0.8 0.54 0.9 0.44 0.59
Mistral 7B (few-shot) 0.44 0.98 0.61 0.42 0.86 0.54 0.43 0.78 0.56 0.56 0.82 0.66 0.4 0.85 0.54
Finetuned LLAMA-3.1 8B 0.88 0.54 0.67 0.82 0.39 0.53 0.89 0.62 0.73 0.85 0.65 0.74 0.61 0.82 0.70
Finetuned Mistral 7B 0.48 0.82 0.61 0.45 0.89 0.6 0.41 0.79 0.54 0.59 0.85 0.69 0.61 0.41 0.49
LTC+BERT 0.74 0.73 0.74 0.88 0.84 0.86 0.51 0.4 0.45 0.92 0.79 0.85 0.77 0.89 0.83
LTC+BERT+style 0.92 0.95 0.94 0.97 0.93 0.96 0.87 0.83 0.85 0.94 0.79 0.86 0.61 0.32 0.42
LTC+GloVe 0.69 0.62 0.65 0.79 0.53 0.64 0.53 0.23 0.32 0.82 0.58 0.68 0.73 0.29 0.41
CfC+GloVe 0.74 0.66 0.7 0.69 0.65 0.67 0.49 0.43 0.46 0.8 0.47 0.59 0.88 0.73 0.79
CfC+GloVe+style 0.92 0.87 0.9 0.98 0.99 0.98 0.79 0.76 0.78 0.91 0.82 0.86 0.85 0.86 0.85
StyleLTC (LTC+GloVe+style) 0.92 0.95 0.94 0.92 0.98 0.96 0.86 0.83 0.84 0.94 0.81 0.87 0.88 0.89 0.88

Table 3: Results of Experiment-III for StyleLTC when
trained over a given dataset Di (rows) and tested over
other datasets Dj (columns) such that i ̸= j.

ECD (I) GCC (II) SCDC(III) CT (IV)
P R F1 P R F1 P R F1 P R F1

(1) X 0.95 0.96 0.95 0.6 0.94 0.73 0.94 0.78 0.85
(II) 0.96 0.91 0.93 X 0.52 0.93 0.67 0.86 0.79 0.82
(III) 0.95 0.65 0.77 0.98 0.97 0.97 X 0.94 0.79 0.86
(IV) 0.96 0.64 0.77 0.99 0.96 0.98 0.85 0.78 0.81 X

Table 4: Performance of models on skewed dataset

Model P R F1
BiLSTM-att 0 0 0
BERT-base 0 0 0
DistilBERT 0 0 0
LTC+GloVe 0 0 0
CfC+GloVe 0 0 0
CfC+GloVe+style 0.88 0.65 0.75
BERT+style 0.231 0.017 0.031
LTC+BERT 0.57 0.0074 0.015
LTC+BERT+style 0.93 0.723 0.813
StyleLTC (LTC+GloVe+style) 0.93 0.74 0.82

terms of performance on highly skewed datasets,238

the StyleLTC model outperforms traditional mod-239

els like BiLSTM and BERT when applied to a240

modified Dataset-SCDC (Table 4). In this skewed241

dataset, where over 80% of sentences are labeled as242

not-claim, StyleLTC achieves an F1 score of 82%,243

while traditional models struggle, with BERT+style244

scoring only 0.31%. This highlights the effective-245

ness of the LTC model in handling skewed datasets246

and underscores the importance of incorporating247

stylistic vectors in claim detection.248

Resource Efficiency: LTC models are highly249

resource-efficient in terms of FLOP counts (see250

Table 5 in Appendix D), making them suitable 251

for CPU memory operations, unlike transformer- 252

based models like BERT, which require substan- 253

tial GPU resources. For instance, the BERT-base 254

model demands around 20.3 GB of GPU memory, 255

while LTC and StyleLTC models use less than 1 256

MB (see Figure 4 in Appendix D), highlighting 257

their minimal memory requirements. When com- 258

pared to large-scale models like LLAMA-3.1 (8B), 259

the LTC-based text identification model, which 260

uses only 100K parameters and 70 neurons in 261

AutoNCP wiring, outperforms LLAMA-3.1 dur- 262

ing inference. Training large language models is 263

resource- and time-intensive, while the LTC model 264

trains much faster—StyleLTC, for example, trains 265

for 50 epochs on domain-specific datasets in just 1 266

hour. Additionally, as shown in Figure 5 Appendix 267

D, the training time per epoch for Dataset-CT is 268

minimal, and prediction times per sample are only 269

in the milliseconds range. 270

4 Conclusion 271

The paper introduced style-infused liquid neural 272

networks for claim identification task, showing 273

their ability to capture the intricate temporal dy- 274

namics present in the sequential nature of lan- 275

guage. The StyleLTC model has consistently out- 276

performed baseline models, particularly in noisy, 277

cross-domain environments, providing significant 278

advantages in both accuracy and resource efficiency. 279

Evaluation across diverse domains highlights that 280

StyleLTC excels in specialized settings, solidifying 281

its position as an alternative to conventional models 282

in claim identification tasks. 283
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5 Limitations284

While a standout feature of liquid neural networks285

is their proficiency in handling time-series data,286

this study limited the time dimension to one, rely-287

ing solely on text as sequential data. Despite this288

constraint, our style-aware LTC model has demon-289

strated a notable capacity to exceed state-of-the-art290

baselines and, in certain cases, even outperform291

large language models in resource-constrained en-292

vironments. This suggests that even within a re-293

stricted temporal framework, the model can ef-294

fectively leverage linguistic nuances to achieve295

impressive results. Our experiments have consis-296

tently demonstrated that incorporating textual em-297

beddings with stylistic features leads to enhanced298

performance. We have explored both pre-trained299

BERT and GloVe embeddings in our work. Look-300

ing ahead, we aim to investigate the use of more301

contextually rich embeddings. Detailed specifica-302

tions and parameters of our model and experiments303

can be found in Section 2 and 3.304

Future Work: The potential applications of Liq-305

uid Neural Network-based models extend beyond306

claim identification; they offer a chance to enhance307

the explainability of the model’s decision-making308

processes, particularly concerning the verifiability309

of claims. Our future research will prioritize this310

critical aspect, seeking to unpack the mechanisms311

behind the model’s predictions. Moreover, our ex-312

periments indicate that integrating text embeddings313

with grammatical vectors and stylistic scores re-314

sults in a significant improvement in F1 scores for315

StyleLTC. As we move forward, we aim to inves-316

tigate which specific stylistic features contribute317

most substantially to performance enhancements.318

By further refining our model and examining its319

versatility across a broader range of contexts, we320

aspire to contribute to the ongoing development of321

Liquid Neural Networks and their implementation322

in natural language processing, ultimately advanc-323

ing the field’s understanding of how sophisticated324

temporal analysis can enhance language compre-325

hension and processing capabilities.326
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A Data Descriptions521

A.1 Dataset-CT: Checkworthy English522

Dataset523

This dataset is obtained from Check-Worthiness524

Estimation task of CheckThat! Lab at CLEF 2024525

(Barrón-Cedeño et al., 2024). The aim of this task526

is to determine whether a claim in a tweet or tran-527

scriptions is worth fact-checking. The binary iden-528

tification task is available in Arabic, English, and529

Spanish. We have taken the expertly annotated en-530

glish dataset which are labeled as "yes" and "no"531

to detect "claim" and "not-claim" respectively. The532

training dataset consists 22501 sentences among533

which 5413 are "claim" and 17088 are "not-claim".534

The test dataset consists 1350 texts among which535

346 are claims and 1004 are not-claims.536

A.2 Dataset-ECD: Environmental Claim537

Detection Dataset538

We have collected the environmental claim dataset539

available from (Stammbach et al., 2023). The540

dataset contains environmental claims made by541

listed companies. The authors have collected text542

from sustainability reports, earning calls, and an-543

nual reports of listed companies and annotated544

3000 sentences. After discarding tied annotations,545

the final dataset contains 2647 examples. There546

are 665 claim statements and 1982 not claim state-547

ments.548

A.3 Dataset-GCC: Green-Claims Corpus549

We choose the Automatic Green Claims Detec-550

tion corpus consisting of 773 tweets from domains551

such as cosmetics and electronics (Woloszyn et al., 552

2021). All the tweets are classified into two classes 553

"green-claim" and "not green-claim". For Binary 554

Classification, there are 506 "not green-claim" and 555

267 "green-claims". 556

A.4 Dataset-SCDC: Scientific Claim 557

Detection Corpus 558

To test the generalizability of the proposed model in 559

biomedical domain, we took the dataset mentioned 560

in (Achakulvisut et al., 2019). The dataset includes 561

text extracts from expertly annotated 11519 claims 562

in biomedical paper abstracts. Here the dataset 563

is labeled into six classes: "False", "barely-true", 564

"half-true", "pants-fire", "barely-false", and "True". 565

B Determining Model Parameters 566

As discussed in Section 2, we determine the opti- 567

mal number of sensory neurons by analyzing the 568

F1 scores for Political Bias detection in News Ar- 569

ticles and News Media (available in English), as 570

specified in Subtask 3A of the CheckThat! Lab 571

at CLEF 2023 (Barrón-Cedeño et al., 2023). The 572

corresponding plot is presented in Figure 3. To 573

identify the optimal configuration, we systemati- 574

cally increase the number of sensory neurons in the 575

model and evaluate performance on the specified 576

task. As observed from the graph, the highest F1 577

score is achieved when the number of sensory neu- 578

rons in the LTC model is set to 70. Consequently, 579

we adopt this configuration for our StyleLTC model. 580

Figure 3: No. of sensory neurons of StyleLTC Model
vs corresponding F1 Scores of the Model

581

C Closed-Form Continuous-Time Neural 582

Networks 583

Continuous neural network architectures based 584

on ordinary differential equations serve as effec- 585

tive models for capturing complex data dynamics 586

(Hasani et al., 2022). They transform the depth 587
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dimension of static neural networks and the time588

dimension of recurrent networks into a continuous589

vector field, facilitating parameter sharing, adaptive590

computations, and efficient function approxima-591

tion for non-uniformly sampled data. The closed-592

form solution for neuron-synapse interactions in593

continuous-time neural networks provides signif-594

icant efficiency enhancements, allowing training595

and inference to be between one and five orders of596

magnitude faster than models reliant on numer-597

ical differential equation solvers. Additionally,598

the Closed-form control (CfC) derived from liq-599

uid time-constant dynamics exhibits notable scal-600

ability and performance in time-series modeling,601

making it applicable across various domains. The602

CfC model consists of an input perception mod-603

ule, an LTC module, and outputs. A distinguishing604

feature of CfC neural networks is their indepen-605

dence from numerical ordinary differential equa-606

tion (ODE) solvers for generating temporal roll-607

outs, thereby achieving the flexible, causal, and608

continuous-time characteristics of ODE-based net-609

works while enhancing efficiency (Huang et al.,610

2024). In this study, we employed the CFC network611

for identifying claim and non-claim sentences.612

C.1 Training and Validation of CFC Network613

The CFC network was trained using the training614

dataset from each discussed dataset: ECD, GCC,615

SCDC, and CT. To ensure reproducibility, a ran-616

dom seed of 42 was set on the CPU. The PyTorch617

Lightning Trainer was initialized with an early stop-618

ping callback to monitor validation loss, halting619

training after 20 epochs without improvement. The620

AdamW optimization algorithm was employed to621

minimize the mean squared error loss function,622

with training configured for a maximum of 100623

epochs and gradient clipping set at 1 for stability.624

After each epoch, validation metrics such as loss,625

precision, recall, and F1 score were recorded to626

track performance and guide early stopping. In627

the CFC+GloVe configuration, we provided 300-628

dimensional GloVe embeddings of the text as in-629

put, while in the CFC+GloVe+style configuration,630

we concatenated the 300-dimensional GloVe em-631

beddings with 76-dimensional stylistic features for632

input.633

D Parameter efficiency of StyleLTC634

In Figure 4, we present plots depicting epoch vs.635

accuracy, epoch vs. validation loss, and epoch636

Table 5: FLOPs Parameter count for LTC model trained
on Dataset-CT

Name Shape
rnn cell.gleak (70,)
rnn cell.vleak (70,)
rnn cell.cm (70,)
rnn cell.sigma (70,70)
rnn cell.mu (70,70)
rnn cell.w (70,70)
rnn cell.erev (70,70)
rnn cell.sensory sigma (376,70)
rnn cell.sensory mu (376,70)
rnn cell.sensory w (376,70)
rnn cell.sensory erev (376,70)
rnn cell.sparsity mask (376,70)
rnn cell.sensory sparsity mask (376,70)
rnn cell.input w (376,)
rnn cell.input b (376,)
rnn cell.output w (1,)
rnn cell.output b (1,)

vs. memory usage for StyleLTC, LTC+GloVe, and 637

the pre-trained BERT model. Subfigures (a), (b), 638

(c), and (d) correspond to the results obtained on 639

Datasets ECD, GCC, SCDC, and CT, respectively. 640

Based on these plots, we derive several key obser- 641

vations. Liquid Neural Network-based models ex- 642

hibit exceptional resource efficiency, making them 643

highly suitable for CPU-based memory operations. 644

This stands in contrast to transformer-based mod- 645

els such as BERT, which require significant GPU 646

resources. As shown in Figure 4, the BERT-base 647

model consumes approximately 20.3 GB of GPU 648

memory, whereas the LTC and StyleLTC models 649

require less than 1 MB, underscoring their minimal 650

memory footprint relative to transformer-based ar- 651

chitectures. Furthermore, we compared LTC mod- 652

els with large-scale models such as LLAMA-3.1 (8 653

billion parameters) and observed that LLAMA-3.1 654

demonstrated inferior inference performance com- 655

pared to our LTC-based text identification model. 656

The LTC-based model operates with only 100K 657

parameters and 70 neurons in the AutoNCP wiring, 658

highlighting its computational efficiency. Train- 659

ing large language models is both computationally 660

and time-intensive, whereas the LTC model offers 661

a significantly faster training process. For exam- 662

ple, the StyleLTC model requires only one hour 663

to train for 50 epochs on domain-specific datasets. 664

Additionally, as illustrated in Figure 5, the train- 665

ing time per epoch for Dataset-CT is minimal, and 666

the prediction time per sample is measured in mil- 667

liseconds, further emphasizing the efficiency of the 668

LTC-based approach. 669
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Figure 4: Epoch Vs Metrics and Memory Usage for Different Datasets

Figure 5: Training time per epoch and prediction time
per sample for StyleLTC across various datasets

E Fine-Tuning LLama 3.1 and Mistral 7B670

for Claim Detection671

We fine-tune LLama 3.1 8B and Mistral 7B us-672

ing transfer learning, incorporating quantization673

and LoRA adapters (Dettmers et al., 2023) to en-674

hance efficiency and adaptability for claim detec-675

tion. The process begins with loading and pro-676

cessing one of the datasets— ECD, GCC, SCDC,677

or CT—where each sample is augmented with a678

task-specific prompt. To improve computational679

efficiency, we apply quantization, reducing the 680

model’s precision from 32-bit to 4-bit. This en- 681

ables faster computation and lower memory usage 682

with minimal impact on accuracy. Additionally, 683

LoRA adapters are integrated into specific model 684

layers, enabling task-specific fine-tuning while pre- 685

serving the pre-trained weights. The training setup 686

consists of a batch size of 8, the AdamW optimizer 687

(Zhuang et al., 2022), a learning rate of 2 ∗ e−4 688

with a cosine scheduler, and 50 training epochs 689

with a maximum of 500 steps. Gradient accumula- 690

tion is employed to reduce memory consumption, 691

and learning rate scheduling ensures stable con- 692

vergence. During training, the model processes 693

batches of data, making predictions that are com- 694

pared with ground truth labels to compute loss, 695

which is minimized via backpropagation. Logging 696

occurs at regular intervals to monitor progress, loss, 697

and resource usage, while evaluation metrics are 698

periodically computed on validation data to assess 699

generalization and detect potential overfitting. 700
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