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Abstract

Claim identification is crucial in NLP for detect-
ing assertive statements, especially with the rise
of generative Al and automated fact-checking.
Traditional neural networks struggle with the
temporal dynamics of language. This paper
introduces StyleLTC, which uses liquid neu-
ral networks with continuous-time properties
to overcome these issues. It also incorporates
stylistic features to predict claims. Evaluations
show that liquid neural networks outperform
static models, offering higher accuracy, robust-
ness, and efficiency. StyleLTC achieves com-
parable accuracy with only 0.612 MB of mem-
ory, far less than traditional models, making it
highly scalable and effective for claim detec-
tion in combating misinformation.

1 Introduction

The spread of misinformation in digital and scien-
tific communications threatens information accu-
racy. As digital platform reliance grows, effective
claim detection—distinguishing factual from mis-
leading statements—becomes crucial, particularly
in specialized domains where traditional methods
struggle. Automated systems for large-scale claim
detection are necessary for journalists, researchers,
and the public to assess statements.

Defining a claim is a non-trivial task, especially
in automated fact-checking and argument mining
(Alam et al., 2020; Gupta et al., 2021; Nakov et al.,
2022; Konstantinovskiy et al., 2021; Panchendrara-
jan and Zubiaga, 2024). We define factual claims
as statements verifiable as true or false based on
empirical evidence (Ni et al., 2024). Claim spot-
ting and pledge detection (Arslan et al., 2020;
Atanasova et al., 2018; Barron-Cedeno et al., 2020;
Subramanian et al., 2019; Fornaciari et al., 2021;
Schlichtkrull et al., 2024) have been explored, with
tools like ClaimRank (Jaradat et al., 2018) and
ClaimBuster (Hassan et al., 2017) aiding in detec-
tion. Hybrid models (Kartal and Kutlu, 2022) and

neural ranking models (Hansen et al., 2019) also
contribute to claim identification. Large language
models (LLMs) have been used for automatic claim
detection (Qi et al., 2024; Quelle and Bovet, 2024),
but their high hardware requirements and the im-
practicality of fine-tuning or few-shot prompting
on small, imbalanced data make them unsuitable
for real-world claim identification tasks.

In contrast, Liquid Neural Networks
(LNNs)(Lechner et al., 2020; Hasani et al.,
2021) represent a significant advancement in
modeling sequential data, as they dynamically
adapt to temporal patterns, allowing for more
effective processing of time-dependent information.
The integration of linguistic stylistic features,
such as usage of grammatical category of words,
sentiment, tone, conviction, and concreteness, is
critical for improving the precision and reliability
of automated claim identification systems. These
stylistic elements provide important contextual and
cognitive signals that reflect the degree of certainty,
engagement, and intent within the text, which are
essential for accurate classification. Traditional
models often fail to capture these nuances, leading
to limitations in handling complex datasets.

In this paper, we proposed Style-Infused Liquid
Neural Network (StyleLTC) that embed stylistic
features into the LNN framework to combine the
advantages of linguistic feature and temporal dy-
namics, resulting in enhanced accuracy, robustness,
and efficiency. The lightweight architecture, re-
quiring only 0.612 MB of memory, achieves per-
formance comparable to more resource-intensive
models while significantly reducing memory usage,
making it highly scalable. Furthermore, StyleLTC
demonstrates domain extensibility, robustness to
skewed data distributions, and superior resource
efficiency, positioning it as a powerful and efficient
solution for claim identification task in diverse do-
mains.
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Figure 1: Liquid Time-Constant Network based model architecture for the claim identification.

2 Model Architecture

Hasani et al. introduced the LTC model by
modifying the hidden state flow of continuous-

time recurrent neural networks (CTRNN)

(Funahashi and Nakamura, 1993), defined
d

as: U = — L4 f(a(t), 1(6),1,0)] 2(t)

+f(xz(t),1(t),t,6). Here, z(t) is the hidden
state, I(t) the inputs, 7 the time-constant, and
f is a neural network parameterized by 6 and
A. LTC networks offer key advantages: 1) an
input-dependent time-constant 7,5, introducing
the “liquid” nature to RNNs, enabling updates
after training; 2) they are universal approximators,
able to approximate any autonomous ordinary
differential equation(ODE) with finite neurons.
For the liquid neural network in our model, we use
Neural Circuit Policies (NCP) wiring (Lechner
et al., 2020), inspired by biological neural circuits
like those in C.elegans. AutoNCP mimics the
nematode’s nervous system, with four neuron
layers: Sensory Neurons, Inter Neurons, Command
Neurons, and Motor Neurons.

Our StyleLTC model (Figure 1) for claim iden-
tification uses pre-trained GloVe embeddings and
LNN:s. It has three main components: pre-trained
GloVe with stylistic features for text embedding,
an LNN for sequence processing, and a fully con-
nected layer for final identification. The process
starts with pre-trained GloVe embeddings (Pen-
nington et al., 2014), where each word is mapped
to a 300-dimensional vector. Words are tokenized,
and their embeddings are retrieved, with unseen
words given a zero vector. Sentence embeddings
are generated by averaging the word embeddings
to represent the sentence’s meaning.

The Stylistic Feature Vector Generation process

involves creating a 73-dimensional vector using
LIWC (Pennebaker et al., 2015), which analyzes

the frequency of categories like Nouns, Verbs, and
Subject-Verb Agreement in a document generat-
ing a vector [x1, z2, ..., 73], where each z; repre-
sents the frequency of a specific category. In addi-
tion, stylistic features such as Vagueness, Commit-
ment, and Conviction scores are introduced (Sinha
et al., 2020). Conviction refers to strong beliefs,
that identifies the presence of pride and trust and
the absence of timidity, nervousness, or confusion.
Commitment is linked to optimism, zest, gain, and
achievement in a text. Vagueness reflects a lack of
precision or clarity in language, indicating impre-
cision or ambiguity. Combining these three scores
with the LIWC vector forms a 76-dimensional
stylistic vector. By concatenating this with the
300-dimensional GloVe vector, we obtain a 376-
dimensional style-aware embedding, which is fed
into the Input Layer (Ref: Fig 1).

The input layer receives a sequence of embed-
ding vectors, typically designed for time-series
data. To adapt non-temporal data, the time dimen-
sion is set to 1, ensuring compatibility without in-
troducing explicit temporal progression.

The liguid layer processes the sequence, captur-
ing temporal dependencies. The sensory and motor
neurons are set to 70 and 1 (output size), respec-
tively. Optimal number of sensory neurons was
determined based on F1 scores for Political Bias
detection in News Articles, as presented in Figure
3 in Appendix B.

In the readout layer, the output of the liquid layer
is passed through a fully connected layer. This
layer map the high-dimensional states to the output,
which is then processed by subsequent layers.

The output of the fully connected layer is passed
through a ReLU activation function and a sigmoid
activation function for binary classification. This
layer gives the final predicted label for the input
sentence.



3 Evaluation

Table 1: Dataset statistics

Dataset Total |Claims| Not
Sentences Claims

Checkworthy English (CT) 23851 | 5759 | 18092

(Barrén-Cedeiio et al., 2024)

Environmental Claim (ECD)| 2647 665 | 1982

(Stammbach et al., 2023)
Green-Claims (GCC) 773 267 506
(Woloszyn et al., 2021)
Scientific Claim (SCDC)
(Achakulvisut et al., 2019)

11519 | 4000 | 7519

We evaluated our model’s performance using
four diverse datasets for an unbiased assessment,
with detailed statistics available in Table 1 (See
Appendix A for data descriptions). We con-
ducted three experiments based on the datasets.
In Experiment-I, each dataset was split into 70%
for training and 30% for testing, with the Train
and Test sets predetermined for Dataset-CT. For
other datasets, a 70:30 split and Monte Carlo cross-
validation (Xu and Liang, 2001) were applied, aver-
aging performance metrics to ensure robust general-
ization. In Experiment-II, we combined all datasets
to create an annotated corpus of 38,790 documents,
followed by a 70:30 train-test split and Monte Carlo
cross-validation. For the SCDC dataset, sentences
were grouped into two output classes (“claim” and
“not-claim”) instead of the original six classes. In
Experiment-III, we tested the model’s ability to
learn from unseen data by training on one dataset
(e.g., ECD) and testing on others (GCC).

We used the pre-trained BERT-large model
(Vaswani et al., 2017) as our baseline. To train the
model, we set the early stopping of training to 800
steps to prevent over-fitting. We use a batch size of
32, a maximum sequence length of 200, and a learn-
ing rate of 2 x 10~ for training. We have also com-
pared StyleLTC’s results with BiLSTM-att, Dis-
tilBERT, BERT+style (768-dimensional text em-
beddings of pre-trained BERT are concatenated
with 76 dimensional stylistic features), LTC+GloVe
model (when GloVe embeddings are given as in-
put), CFC model (details available in Appendix C)
and different open-source LLLMs such as LLAMA-
3.1 8B and Mistral 7B. LTC+BERT denotes to the
instance when 768-dimensional text embeddings
of pre-trained BERT given as input to LTC model.
In LTC+BERT+style, 768-dimensional text embed-
dings of pre-trained BERT concatenated with 76
dimensional stylistic features, is given as input.

3.1 Results
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Figure 2: Class-wise F1 Score analysis across different
datasets for LTC+Glove and StyleLTC, demonstrating
the benefits of stylistic features on claim identification.

Figure 2 demonstrates the benefits of integrat-
ing stylistic vectors into text embeddings (LTC+G
denotes to LTC+GloVe). As we can observe,
StyleLTC shows significantly better performance in
identifying both claim and not-claim sentences than
LTC+GloVe. Our results show that while BERT
and GloVe embeddings capture contextual nuances,
combining them with stylistic factors greatly en-
hances claim detection. The StyleLTC model
(LTC+GloVe+style) outperforms BERT in detect-
ing claims, with improved performance across the
CT, ECD, and GCC datasets. For example, the F1
score increases by 41% for Dataset-ECD and 2%
for SCDC, while stylistic features improve the F1
score by 19% in Dataset-GCC. StyleLTC performs
better than BERT and BiLSTM-att, even with only
100,000 parameters compared to BERT’s 110 mil-
lion. Though BERT-based models are more accu-
rate, StyleLTC is more resource-efficient. Adding
BERT embeddings or stylistic features with BERT
embeddings improves results, but StyleLTC re-
mains more efficient. When compared to large
language models like LLAMA-3.1 and Mistral-7B,
StyleLTC outperforms them in claim identifica-
tion, even after fine-tuning. Experiment-II (Table
2 (ALL)) further confirms StyleLTC’s superiority
over LLAMA-3.1, achieving an F1 score of 0.86,
nearly matching BERT+style’s score of (.88, while
maintaining a lightweight structure.

Regarding domain extensibility, LTC models
demonstrate strong adaptability across different do-
mains. Experiment-III (Table 3) shows that train-
ing the model on one dataset and evaluating it
on another results in an F1 score exceeding 85%
for Datasets-ECD and GCC. However, testing on
SCDC reveals a drop in Precision due to its scien-
tific and biomedical nature. The model success-
fully adapts to new claim structures, as shown
in Dataset-GCC, which involves Twitter data. In



Table 2: Results of experiment-I and II demonstrating performance of models across each datasets ECD, GCC, SDC
and CT(for experiment-I) and when combining all of them together (ALL) for experiment-II.

ECD GCC SCDC CT ALL
P R FI|P R FI|P R FI| P R Fl| P R Fl
BiLSTM-att 0.43 0.39 0.46/0.69 0.69 0.75]0.77 0.78 0.7 |0.724 0.42 0.52|(0.71 0.73 0.75
BERT-base 0.49 0.74 0.53(0.75 0.71 0.77]0.69 0.68 0.82| 0.95 0.94 0.89|(0.73 0.79 0.75
DistilBERT 0.73 0.64 0.68]0.79 0.91 0.85]0.61 0.95 0.73| 0.85 0.78 0.81|{0.81 0.84 0.82
BERT+style 0.79 0.86 0.83]0.96 0.96 0.96/0.94 0.75 0.84| 0.91 0.78 0.84|(0.83 0.87 0.85
LLAMA-3.1 8B (zero-shot) 0.63 0.53 0.58]0.84 0.22 0.35]0.78 0.61 0.68| 0.39 0.28 0.32/(0.88 0.89 0.88
LLAMA-3.1 8B (few-shot) 0.97 0.34 0.51{0.98 0.25 0.40{0.87 0.43 0.58| 0.80 0.28 0.41|(0.51 0.37 0.43
Mistral 7B (zero-shot) 0.39 0.98 0.56/0.38 0.84 0.53]0.44 0.82 0.57| 0.41 0.8 0.54|| 0.9 0.44 0.59
Mistral 7B (few-shot) 0.44 0.98 0.61]0.42 0.86 0.54/0.43 0.78 0.56| 0.56 0.82 0.66|| 0.4 0.85 0.54
Finetuned LLAMA-3.1 8B 0.88 0.54 0.67(0.82 0.39 0.53]0.89 0.62 0.73| 0.85 0.65 0.74|(0.61 0.82 0.70
Finetuned Mistral 7B 0.48 0.82 0.61]0.45 0.89 0.6 |0.41 0.79 0.54| 0.59 0.85 0.69|(0.61 0.41 0.49
LTC+BERT 0.74 0.73 0.74/0.88 0.84 0.86/0.51 0.4 0.45| 0.92 0.79 0.85|(0.77 0.89 0.83
LTC+BERT+style 0.92 0.95 0.94/0.97 0.93 0.96/0.87 0.83 0.85| 0.94 0.79 0.86|(0.61 0.32 0.42
LTC+GloVe 0.69 0.62 0.65(0.79 0.53 0.64/0.53 0.23 0.32| 0.82 0.58 0.68|(0.73 0.29 0.41
CfC+GloVe 0.74 0.66 0.7 [0.69 0.65 0.67]0.49 0.43 0.46| 0.8 0.47 0.59/(0.88 0.73 0.79
CfC+GloVe+style 0.92 0.87 0.9 {0.98 0.99 0.98/0.79 0.76 0.78| 0.91 0.82 0.86|(0.85 0.86 0.85
StyleLTC (LTC+GloVe+style)|0.92 0.95 0.94/0.92 0.98 0.96(0.86 0.83 0.84| 0.94 0.81 0.87(/0.88 0.89 0.88

Table 3: Results of Experiment-III for StyleLTC when
trained over a given dataset D; (rows) and tested over
other datasets D; (columns) such that 7 # ;.

ECD (I) GCC (ID) SCDCII) CT (IV)

P R F1|P R F1|P R Fl|P R Fl

X 0.950.96 0.95/ 0.6 0.940.73

@

0.940.78 0.85

II) {0.96 0.91 0.93 X 0.520.93 0.67

0.860.79 0.82

(111){0.95 0.65 0.77]0.98 0.97 0.97 X

0.940.79 0.86

(Iv)[0.96 0.64 0.77(0.99 0.96 0.98|0.85 0.78 0.81 X

Table 4: Performance of models on skewed dataset

Model P R F1
BiLSTM-att 0 0 0
BERT-base 0 0 0
DistilBERT 0 0 0
LTC+GloVe 0 0 0
CfC+GloVe 0 0 0
CfC+GloVe+style 0.88 0.65 0.75
BERT+style 0.231 | 0.017 | 0.031
LTC+BERT 0.57 | 0.0074 | 0.015
LTC+BERT+style 0.93 0.723 | 0.813
StyleLTC (LTC+GloVe+style) | 0.93 0.74 0.82

terms of performance on highly skewed datasets,
the StyleLTC model outperforms traditional mod-
els like BiLSTM and BERT when applied to a
modified Dataset-SCDC (Table 4). In this skewed
dataset, where over 80% of sentences are labeled as
not-claim, StyleLTC achieves an F1 score of 8§2%,
while traditional models struggle, with BERT+style
scoring only 0.31%. This highlights the effective-
ness of the LTC model in handling skewed datasets
and underscores the importance of incorporating
stylistic vectors in claim detection.

Resource Efficiency: LTC models are highly
resource-efficient in terms of FLOP counts (see

Table 5 in Appendix D), making them suitable
for CPU memory operations, unlike transformer-
based models like BERT, which require substan-
tial GPU resources. For instance, the BERT-base
model demands around 20.3 GB of GPU memory,
while LTC and StyleLTC models use less than 1
MB (see Figure 4 in Appendix D), highlighting
their minimal memory requirements. When com-
pared to large-scale models like LLAMA-3.1 (8B),
the LTC-based text identification model, which
uses only 100K parameters and 70 neurons in
AutoNCP wiring, outperforms LLAMA-3.1 dur-
ing inference. Training large language models is
resource- and time-intensive, while the LTC model
trains much faster—StyleLTC, for example, trains
for 50 epochs on domain-specific datasets in just 1
hour. Additionally, as shown in Figure 5 Appendix
D, the training time per epoch for Dataset-CT is
minimal, and prediction times per sample are only
in the milliseconds range.

4 Conclusion

The paper introduced style-infused liquid neural
networks for claim identification task, showing
their ability to capture the intricate temporal dy-
namics present in the sequential nature of lan-
guage. The StyleLTC model has consistently out-
performed baseline models, particularly in noisy,
cross-domain environments, providing significant
advantages in both accuracy and resource efficiency.
Evaluation across diverse domains highlights that
StyleLTC excels in specialized settings, solidifying
its position as an alternative to conventional models
in claim identification tasks.



5 Limitations

While a standout feature of liquid neural networks
is their proficiency in handling time-series data,
this study limited the time dimension to one, rely-
ing solely on text as sequential data. Despite this
constraint, our style-aware LTC model has demon-
strated a notable capacity to exceed state-of-the-art
baselines and, in certain cases, even outperform
large language models in resource-constrained en-
vironments. This suggests that even within a re-
stricted temporal framework, the model can ef-
fectively leverage linguistic nuances to achieve
impressive results. Our experiments have consis-
tently demonstrated that incorporating textual em-
beddings with stylistic features leads to enhanced
performance. We have explored both pre-trained
BERT and GloVe embeddings in our work. Look-
ing ahead, we aim to investigate the use of more
contextually rich embeddings. Detailed specifica-
tions and parameters of our model and experiments
can be found in Section 2 and 3.

Future Work: The potential applications of Lig-
uid Neural Network-based models extend beyond
claim identification; they offer a chance to enhance
the explainability of the model’s decision-making
processes, particularly concerning the verifiability
of claims. Our future research will prioritize this
critical aspect, seeking to unpack the mechanisms
behind the model’s predictions. Moreover, our ex-
periments indicate that integrating text embeddings
with grammatical vectors and stylistic scores re-
sults in a significant improvement in F1 scores for
StyleLTC. As we move forward, we aim to inves-
tigate which specific stylistic features contribute
most substantially to performance enhancements.

By further refining our model and examining its
versatility across a broader range of contexts, we
aspire to contribute to the ongoing development of
Liquid Neural Networks and their implementation
in natural language processing, ultimately advanc-
ing the field’s understanding of how sophisticated
temporal analysis can enhance language compre-
hension and processing capabilities.
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A Data Descriptions

A.1 Dataset-CT: Checkworthy English
Dataset

This dataset is obtained from Check-Worthiness
Estimation task of CheckThat! Lab at CLEF 2024
(Barrén-Cedeiio et al., 2024). The aim of this task
is to determine whether a claim in a tweet or tran-
scriptions is worth fact-checking. The binary iden-
tification task is available in Arabic, English, and
Spanish. We have taken the expertly annotated en-
glish dataset which are labeled as "yes" and "no"
to detect "claim" and "not-claim" respectively. The
training dataset consists 22501 sentences among
which 5413 are "claim" and 17088 are "not-claim".
The test dataset consists 1350 texts among which
346 are claims and 1004 are not-claims.

A.2 Dataset-ECD: Environmental Claim
Detection Dataset

We have collected the environmental claim dataset
available from (Stammbach et al., 2023). The
dataset contains environmental claims made by
listed companies. The authors have collected text
from sustainability reports, earning calls, and an-
nual reports of listed companies and annotated
3000 sentences. After discarding tied annotations,
the final dataset contains 2647 examples. There
are 665 claim statements and 1982 not claim state-
ments.

A.3 Dataset-GCC: Green-Claims Corpus

We choose the Automatic Green Claims Detec-
tion corpus consisting of 773 tweets from domains

such as cosmetics and electronics (Woloszyn et al.,
2021). All the tweets are classified into two classes
"green-claim" and "not green-claim". For Binary
Classification, there are 506 "not green-claim" and
267 "green-claims".

A.4 Dataset-SCDC: Scientific Claim
Detection Corpus

To test the generalizability of the proposed model in
biomedical domain, we took the dataset mentioned
in (Achakulvisut et al., 2019). The dataset includes
text extracts from expertly annotated 11519 claims
in biomedical paper abstracts. Here the dataset
is labeled into six classes: "False", "barely-true",
"half-true", "pants-fire", "barely-false", and "True".

B Determining Model Parameters

As discussed in Section 2, we determine the opti-
mal number of sensory neurons by analyzing the
F1 scores for Political Bias detection in News Ar-
ticles and News Media (available in English), as
specified in Subtask 3A of the CheckThat! Lab
at CLEF 2023 (Barrén-Cedefio et al., 2023). The
corresponding plot is presented in Figure 3. To
identify the optimal configuration, we systemati-
cally increase the number of sensory neurons in the
model and evaluate performance on the specified
task. As observed from the graph, the highest F1
score is achieved when the number of sensory neu-
rons in the LTC model is set to 70. Consequently,
we adopt this configuration for our StyleLTC model.

0.72f «— (70, 0.72)

e Max Point

20 40 60 80 100 120 140
Number of Sensory Neurons

Figure 3: No. of sensory neurons of StyleLTC Model
vs corresponding F1 Scores of the Model

C Closed-Form Continuous-Time Neural
Networks

Continuous neural network architectures based
on ordinary differential equations serve as effec-
tive models for capturing complex data dynamics
(Hasani et al., 2022). They transform the depth



dimension of static neural networks and the time
dimension of recurrent networks into a continuous
vector field, facilitating parameter sharing, adaptive
computations, and efficient function approxima-
tion for non-uniformly sampled data. The closed-
form solution for neuron-synapse interactions in
continuous-time neural networks provides signif-
icant efficiency enhancements, allowing training
and inference to be between one and five orders of
magnitude faster than models reliant on numer-
ical differential equation solvers. Additionally,
the Closed-form control (CfC) derived from lig-
uid time-constant dynamics exhibits notable scal-
ability and performance in time-series modeling,
making it applicable across various domains. The
CfC model consists of an input perception mod-
ule, an LTC module, and outputs. A distinguishing
feature of CfC neural networks is their indepen-
dence from numerical ordinary differential equa-
tion (ODE) solvers for generating temporal roll-
outs, thereby achieving the flexible, causal, and
continuous-time characteristics of ODE-based net-
works while enhancing efficiency (Huang et al.,
2024). In this study, we employed the CFC network
for identifying claim and non-claim sentences.

C.1 Training and Validation of CFC Network

The CFC network was trained using the training
dataset from each discussed dataset: ECD, GCC,
SCDC, and CT. To ensure reproducibility, a ran-
dom seed of 42 was set on the CPU. The PyTorch
Lightning Trainer was initialized with an early stop-
ping callback to monitor validation loss, halting
training after 20 epochs without improvement. The
AdamW optimization algorithm was employed to
minimize the mean squared error loss function,
with training configured for a maximum of 100
epochs and gradient clipping set at 1 for stability.
After each epoch, validation metrics such as loss,
precision, recall, and F1 score were recorded to
track performance and guide early stopping. In
the CFC+GloVe configuration, we provided 300-
dimensional GloVe embeddings of the text as in-
put, while in the CFC+GloVe+style configuration,
we concatenated the 300-dimensional GloVe em-
beddings with 76-dimensional stylistic features for
input.

D Parameter efficiency of StyleLTC

In Figure 4, we present plots depicting epoch vs.
accuracy, epoch vs. validation loss, and epoch

Table 5: FLOPs Parameter count for LTC model trained
on Dataset-CT

Name Shape
rnn cell.gleak (70,)
rnn cell.vleak (70,)
rnn cell.cm (70,)
rnn cell.sigma (70,70)
rnn cell.mu (70,70)
rnn cell.w (70,70)
rnn cell.erev (70,70)
rnn cell.sensory sigma (376,70)
rnn cell.sensory mu (376,70)
rnn cell.sensory w (376,70)
rnn cell.sensory erev (376,70)
rnn cell.sparsity mask (376,70)
rnn cell.sensory sparsity mask | (376,70)
rnn cell.input w (376,)
rnn cell.input b (376,)
rnn cell.output w (L,
rnn cell.output b (1,

vs. memory usage for StyleLTC, LTC+GloVe, and
the pre-trained BERT model. Subfigures (a), (b),
(c), and (d) correspond to the results obtained on
Datasets ECD, GCC, SCDC, and CT, respectively.
Based on these plots, we derive several key obser-
vations. Liquid Neural Network-based models ex-
hibit exceptional resource efficiency, making them
highly suitable for CPU-based memory operations.
This stands in contrast to transformer-based mod-
els such as BERT, which require significant GPU
resources. As shown in Figure 4, the BERT-base
model consumes approximately 20.3 GB of GPU
memory, whereas the LTC and StyleLTC models
require less than 1 MB, underscoring their minimal
memory footprint relative to transformer-based ar-
chitectures. Furthermore, we compared LTC mod-
els with large-scale models such as LLAMA-3.1 (8
billion parameters) and observed that LLAMA-3.1
demonstrated inferior inference performance com-
pared to our LTC-based text identification model.
The LTC-based model operates with only 100K
parameters and 70 neurons in the AutoNCP wiring,
highlighting its computational efficiency. Train-
ing large language models is both computationally
and time-intensive, whereas the LTC model offers
a significantly faster training process. For exam-
ple, the StyleLTC model requires only one hour
to train for 50 epochs on domain-specific datasets.
Additionally, as illustrated in Figure 5, the train-
ing time per epoch for Dataset-CT is minimal, and
the prediction time per sample is measured in mil-
liseconds, further emphasizing the efficiency of the
LTC-based approach.



(a) Epoch vs Metrics for Dataset-ECD
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consists of a batch size of 8, the AdamW optimizer
(Zhuang et al., 2022), a learning rate of 2 x e¢~*
with a cosine scheduler, and 50 training epochs
with a maximum of 500 steps. Gradient accumula-
tion is employed to reduce memory consumption,
and learning rate scheduling ensures stable con-
vergence. During training, the model processes
batches of data, making predictions that are com-
pared with ground truth labels to compute loss,

Epochs Test Sample

Figure 5: Training time per epoch and prediction time
per sample for StyleLTC across various datasets

E Fine-Tuning LLama 3.1 and Mistral 7B
for Claim Detection

We fine-tune LLama 3.1 8B and Mistral 7B us-

ing transfer learning, incorporating quantization
and LoRA adapters (Dettmers et al., 2023) to en-
hance efficiency and adaptability for claim detec-
tion. The process begins with loading and pro-
cessing one of the datasets— ECD, GCC, SCDC,
or CT—where each sample is augmented with a
task-specific prompt. To improve computational

which is minimized via backpropagation. Logging
occurs at regular intervals to monitor progress, loss,
and resource usage, while evaluation metrics are
periodically computed on validation data to assess
generalization and detect potential overfitting.
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