

000 SELF-ANCHOR: LARGE LANGUAGE MODEL REASON- 001 002 ING VIA STEP-BY-STEP ATTENTION ALIGNMENT 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 To solve complex reasoning tasks for Large Language Models (LLMs),
011 prompting-based methods offer a lightweight alternative to fine-tuning and re-
012 inforcement learning. However, as reasoning chains extend, critical intermediate
013 steps and the original prompt will be buried in the context, receiving insufficient
014 attention and leading to errors. In this paper, we propose SELF-ANCHOR, a novel
015 pipeline that leverages the inherent structure of reasoning to steer LLM attention.
016 SELF-ANCHOR decomposes reasoning trajectories into structured plans and auto-
017 matically aligns the model’s attention to the most relevant inference steps, allow-
018 ing the model to maintain focus throughout generation. Our experiment shows
019 that SELF-ANCHOR outperforms SOTA prompting methods across six bench-
020 marks. Notably, SELF-ANCHOR significantly reduces the performance gap be-
021 tween “non-reasoning” models and specialized reasoning models, with the poten-
022 tial to enable most LLMs to tackle complex reasoning tasks without retraining.
023

024 1 INTRODUCTION

025 Reasoning abilities in Large language models (LLMs) are key to solve complex tasks, from math-
026 ematical problem solving to logical inference and multi-step reasoning (Ahn et al., 2024; Huang &
027 Chang, 2023; Cheng et al., 2025). Recent LLMs, such as OpenAI o1 (OpenAI, 2024) and DeepSeek-
028 R1 (DeepSeek-AI, 2025), have further advanced their reasoning capabilities through fine-tuning and
029 reinforcement learning (Luo et al., 2024; et al., 2025). However, despite their impressive perfor-
030 mance, they require substantial computation and a considerable amount of training data.
031

032 As an alternative, prompting-based methods emerged to induce LLMs’ inherent reasoning capabili-
033 ties at test time without updating model parameters. Methods such as Self-Refine (Madaan et al.,
034 2023) and ReAct (Yao et al., 2023) facilitate reasoning by iteratively expanding and refining the
035 generation process. Methods like Self-planning (Jiang et al., 2024), Plan-and-Solve (Wang et al.,
036 2023), and Re-Reading (Xu et al., 2024) explicitly decompose complex problems before solving
037 them. However, a tradeoff of being training-free is that these prompting-based methods necessitate
038 long reasoning chains because they depend on iterative generation or explicit planning. While this
039 can be seen as the cost of training-free methods, recent studies have revealed another issue: long-
040 context reasoning can cause severe attention misalignment issue (Gu et al., 2024; Chi et al., 2023;
041 Liu et al., 2024; Sun et al., 2024; Yao et al., 2021; Tian & Zhang, 2024; Li et al., 2024; Hong et al.,
042 2025).

043 As a key component in LLMs, the attention mechanism (Vaswani et al., 2023) enables LLMs to
044 selectively integrate relevant information from preceding context. However, LLM attention is an
045 inherently limited resource. As the generation proceeds, the number of preceding tokens increases,
046 making it increasingly difficult for the model to pay attention to the relevant context, especially
047 when the context is long and complex (Tian & Zhang, 2024; Li et al., 2024; Hong et al., 2025). In
048 such cases, even with the ability to correctly predict next token based on the corresponding context,
049 LLMs may attend to irrelevant context, thereby generating off-topic or wrong results. As shown
050 in Figure 1, the intermediate reasoning steps and most of the original prompt will be buried in the
051 middle, receive insufficient attention, and consequently, introduce errors (Liu et al., 2024).

052 To mitigate such attention misalignment issues, recent works explicitly steer LLM attention to in-
053 fluence generation behavior. For example, PASTA (Zhang et al., 2023) adjusts the self-attention
distribution within a subset of attention heads, while SPA (Tian & Zhang, 2024) simulates attention

steering through logit arithmetic. However, these methods mainly focus on developing robust attention steering mechanisms, while requiring humans to specify which tokens the model should pay more attention to. Since such tokens can vary significantly at different generation steps and across different tasks, it is unrealistic for humans to manually decide for every generation step.

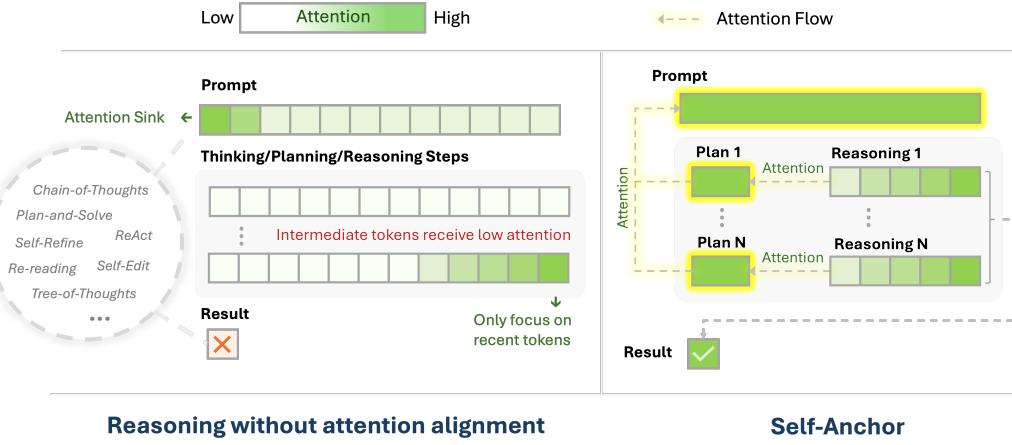


Figure 1: Comparison between existing reasoning methods and SELF-ANCHOR. Due to inherent attention patterns, existing reasoning methods may easily overlook intermediate reasoning and make mistakes. SELF-ANCHOR addresses this by decomposes the task into plans, and takes each plan as a component for attention alignment.

To reduce human efforts, we introduce SELF-ANCHOR, a novel generative pipeline that explicitly aligns LLM attention by leveraging the inherent structure of a reasoning chain. SELF-ANCHOR builds on two key insights: (1) complex reasoning problems can be decomposed into structured plans, and (2) each decomposed plan can naturally serve as a component for attention alignment. As illustrated in Figure 1, SELF-ANCHOR decomposes the original prompt into plan steps with corresponding reasoning steps. During generation, it automatically selects and steers the model attention to the prompt and the corresponding plan. This enables the LLM to keep attending to both the problem statement and immediate reasoning goals, thereby preventing attention mistakes among continuously expanding reasoning steps.

We evaluate SELF-ANCHOR on six benchmarks and six base LLMs with varying sizes, and compare it with SOTA prompting methods. The evaluation benchmarks include three mathematical reasoning benchmarks (GSM8K, AQuA, MATH), two commonsense benchmarks (StrategyQA & Things for Doing), and an multi-task evaluation benchmark (BIG-Bench Hard, BBH). SELF-ANCHOR consistently improves accuracy on all the settings, outperforming all the prompting-based baselines by at least 5.44% on average. In addition, we demonstrate that SELF-ANCHOR achieves performance on par with five reasoning models but with substantially lower cost and complexity, suggesting a practical alternative to applying reinforcement learning to enhance the reasoning capability of LLMs.

2 METHOD

2.1 SELF-ANCHOR

Reasoning as the Scaffold for Attention Alignment. We are inspired by the observation that planning offers a natural scaffold for attention alignment. Specifically, planning helps the model to understand and break down complex problems into subproblems (Jiang et al., 2024; Wang et al., 2023). Each decomposed plan step provides a correspondence to subsequent reasoning, which can naturally serve to guide attention alignment. Building on this idea, we design SELF-ANCHOR to leverage the inherent structure in the reasoning chain to conduct the attention alignment. SELF-ANCHOR prompts the model to decompose the prompt into plans, and then generates and corresponding reasoned solutions with explicit attention steering.

108 **Attention Steering Mechanism.** Several studies have explored methods for attention steering
 109 (Zhang et al., 2023; Shi et al., 2023; Tian & Zhang, 2024). These methods primarily address
 110 *how to steer the model attention*. By contrast, our work focuses on an orthogonal problem—*how*
 111 *to automatically select relevant context* and uses these methods as a plug-and-play component. In
 112 this work, we choose Selective Prompt Anchoring (SPA) (Tian & Zhang, 2024) as the underlying
 113 attention steering mechanism, since it is low-cost and efficient. We briefly summarize how SPA
 114 works here and refer interested readers to the original paper for more technical details.

115 Given a set of tokens that an LLM should pay more attention to, SPA simulates attention steering
 116 through logit arithmetic. Specifically, it estimates the influence of selected tokens by contrasting the
 117 original logits with the logits when these tokens are masked, and then add this influence back to the
 118 original logits. Formally, the steered logit is represented by the linear combination of the original
 119 logits and the logits with selected tokens masked, where ω_i is a coefficient determining the attention
 120 steering strength. Formally, it can be represented as

$$\text{logits}_i^{\text{steered}} = \omega_i \cdot \text{logits}_i^{\text{original}} + (1 - \omega_i) \cdot \text{logits}_i^{\text{mask}} \quad (1)$$

123 **Selection of Attention Alignment.** Building on this attention steering mechanism, we propose a
 124 novel strategy that dynamically aligns model attention to changing context tokens during generation.
 125

126 According to the attention sink phenomenon (Xiao et al., 2023), the model already attends strongly
 127 to initial tokens and the recent generated tokens. Our method complementarily steer the model
 128 attention to the planning steps when conducting the corresponding reasoning. Furthermore, SELF-
 129 ANCHOR additionally steers the model attention to the question in the prompt, which serves as the
 130 core generation purpose, ensuring the model keeps focusing on the problem statement.¹

131 Formally, we use $f(x, \mathbf{S})$ to represent the generation function with attention steering, where x rep-
 132 presents the entire preceding tokens and \mathbf{S} represents the selected tokens where the model’s attention
 133 should be steered to. Let sys denote the system prompt together with high-level background instruc-
 134 tions (e.g., “*You are a helpful assistant*”), and let Q denote the core question under consideration.
 135 Thus, the original prompt can be represented as $\text{concat}(\text{sys}, Q)$. The generation of SELF-ANCHOR
 136 consists of two parts: the *planning* and the corresponding *reasoning*.

137 At step i , the planning is generated by

$$\text{plan}_i = f\left(\text{concat}(\text{sys}, Q, \text{plan}_1, \text{plan}_2, \dots, \text{plan}_{i-1}), \mathbf{Q}\right). \quad (2)$$

140 The planning is generated by

$$\text{reason}_i = f\left(\text{concat}(\text{sys}, Q, \text{plan}_1, \text{plan}_2, \dots, \text{plan}_{i-1}), \text{concat}(\mathbf{Q}, \text{plan}_i)\right). \quad (3)$$

144 The generation proceeds by alternating between plan_i and reason_i , until the process terminates with
 145 the final result.

146 **Dynamic Tuning of Attention Alignment Strength.** As reasoning trajectories progress, the re-
 147 quired degree of attention alignment may vary at different steps. According to prior work (Geng
 148 et al., 2024; Fu et al., 2025), LLMs’ predicted probability distribution can be viewed as a confidence
 149 signal to determine its prediction quality. High-confidence prediction suggests reliable generation,
 150 implying a correct attention, whereas low confidence may indicate unreliable generation and attention
 151 drift. Therefore, we introduce step-level anchoring strength ω_i that are dynamically adjusted
 152 based on model confidence.² Let $P_i = \{p_1, p_2, \dots, p_m\}$ represent the predicted probability at step
 153 i . We calculate the confidence score using the harmonic mean of P_i

$$p_{\text{avg}} = \frac{n}{\sum_{i=1}^n \frac{1}{p_i}} \quad (4)$$

154 This confidence score serves as additional factor to scale the attention steering strength ω_i in Equa-
 155 tion 1. We discuss detailed design choices and experiments in Appendix B.

156 ¹Alternative anchoring strategies are discussed in Appendix D

157 ²Our strength adjustment strategy builds upon the confidence-modulated strength strategy in SPA (Tian &
 158 Zhang, 2024). While SPA adjusts the strength based on confidence for each logit at the vocabulary level, we
 159 introduce an additional factor to adjust the strength for each step.

162

3 EXPERIMENTS

163

3.1 BENCHMARKS

166 We evaluated SELF-ANCHOR on six benchmarks. The first three benchmarks incorporate
 167 GSM8K (Cobbe et al., 2021), AQuA (Ling et al., 2017), and MATH (Hendrycks et al., 2021) repre-
 168 sent arithmetic reasoning. The second two benchmarks include StrategyQA (Geva et al., 2021), and
 169 Thinking for Doing (T4D) (Zhou et al., 2023) represent commonsense reasoning. Lastly, we eval-
 170 uated on a subset of BIG-Bench Hard (BBH) (Suzgun et al., 2022), which covers a diverse range of
 171 reasoning problems spanning the multi-step algorithmic reasoning, natural language understanding,
 172 the application of world knowledge, and Multilingual Knowledge. We report final answer accuracy
 173 across all benchmarks³.

174

3.2 MODELS AND BASELINES

175 **Base Models.** We conduct our experiments on six non-reasoning LLMs spanning various scales.
 176 For non-reasoning models, we select Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Llama-3.2-3B-
 177 Instruct (Grattafiori et al., 2024), Phi-4-mini-instruct (Abouelenin et al., 2025), Qwen3-4B-Instruct-
 178 2507 (Team, 2025), Phi-4 (Abdin et al., 2024), and Qwen3-30B-A3B-Instruct-2507 (Team, 2025).

179 **Comparison Baselines.** We compare our method against three representative prompting meth-
 180 ods for LLM reasoning. First, we include **CoT** (Wei et al., 2022; Kojima et al., 2022), a widely
 181 used baseline that models are prompted to generate a reasoning process leading to the final answer.
 182 Second, we include **Plan-and-Solve+ (PS+)** (Wang et al., 2023), a prompting method that models
 183 are prompted to first generate a plan and then solve the problem. Third, we include **Re-Reading**
 184 (**RE2**) (Xu et al., 2024), which asks the model to read the question again and then solve the problem.

185 Furthermore, we consider five state-of-the-art reasoning LLMs as baselines to see if non-reasoning
 186 LLMs combined with SELF-ANCHOR achieve competitive performance against reasoning mod-
 187 els. The reasoning models include Phi-4-mini-reasoning (Abouelenin et al., 2025), Qwen3-
 188 4B-Thinking-2507 (Team, 2025), DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI, 2025), Phi-4-
 189 reasoning (Abdin et al., 2024), and Qwen3-30B-A3B-Thinking-2507 (Team, 2025).

190

3.3 MAIN RESULTS

191 **Mathematical Reasoning.** Arithmetic reasoning represents one of the most challenging aspects of
 192 LLM reasoning capabilities. As shown in Table 1, SELF-ANCHOR consistently improves accuracy
 193 across three arithmetic benchmarks. These gains reach over 10% improvements on GSM8K, over
 194 5% on AQuA, and up to 8% on MATH across most models, outperforming all competing methods.
 195 While PS+ and RE2 also demonstrate potential for enhancing mathematical reasoning performance,
 196 our experiments show performance degradation on certain LLMs, suggesting limited generalization
 197 capabilities.

198 Interestingly, the three benchmarks span increasing difficulty levels, from grade-school prob-
 199 lems (Cobbe et al., 2021) to GMET/GRE (Ling et al., 2017) level and competition-level problems
 200 (Hendrycks et al., 2021). SELF-ANCHOR demonstrates performance gain in all three benchmarks,
 201 suggesting superior generalization capabilities across diverse model architectures and reasoning
 202 complexity levels.

203 **Commonsense Reasoning.** StrategyQA requires multi-hop reasoning over commonsense knowl-
 204 edge. As detailed in Table 1, SELF-ANCHOR persistently improves accuracy across six evaluated
 205 LLMs. In contrast, PS+ and RE2 occasionally outperform the baseline CoT method.

206 For T4D, a grounded social agent reasoning task requires mental state reasoning to determine appro-
 207 priate actions. SELF-ANCHOR demonstrates significant performance gains over 9% in four LLMs.
 208 In comparison, both PS+ and RE2 exhibit mixed performance; they tend to be more effective in
 209 larger models. These findings highlight the challenge of applying generic prompting strategies to
 210 specialized reasoning domains.

211 ³Prompt templates and evaluation details are provided in Appendix E.

216
217
218
Table 1: Evaluation results on six benchmarks. Best results are shown in **green**, and those indicating
a performance drop compared to standard greedy decoding are shown in **grey**.

219 220 Model	221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Method	220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Math			220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 CommonSense		220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 BBH
		220 GSM8K	221 AQuA	222 MATH	223 StrQA	224 T4D	
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Llama3.2-3B	220 CoT	221 63.84	222 46.06	223 42.5	224 66.64	225 32.98	226 35.09
	220 PS+	221 70.62 (+6.78)	222 38.58 (-7.48)	223 44.50 (+2.00)	224 62.79 (-3.85)	225 31.81 (-1.17)	226 40.51 (+5.42)
	220 RE2	221 57.38 (-6.46)	222 47.28 (+1.22)	223 45.00 (+2.50)	224 65.03 (-1.61)	225 30.32 (-2.66)	226 38.02 (+2.93)
	220 SELF-ANCHOR	221 77.86 (+14.02)	222 48.43 (+2.37)	223 45.00 (+2.50)	224 67.55 (+0.91)	225 43.79 (+10.81)	226 50.48 (+15.39)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Phi-4-mini-4B	220 CoT	221 75.36	222 61.81	223 51.00	224 67.03	225 39.54	226 60.51
	220 PS+	221 87.17 (+11.81)	222 62.02 (+0.21)	223 54.50 (+3.50)	224 58.86 (-8.17)	225 41.16 (+1.62)	226 59.63 (-0.88)
	220 RE2	221 85.75 (+10.39)	222 59.06 (-2.75)	223 51.50 (+0.50)	224 61.83 (-5.20)	225 44.50 (+4.96)	226 61.39 (+0.88)
	220 SELF-ANCHOR	221 88.02 (+12.66)	222 68.50 (+6.69)	223 59.00 (+8.00)	224 68.69 (+1.66)	225 49.47 (+9.93)	226 62.42 (+1.91)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Qwen3-4B	220 CoT	221 86.66	222 73.62	223 82.00	224 68.03	225 70.21	226 73.33
	220 PS+	221 82.79 (-3.87)	222 71.65 (-1.97)	223 83.50 (+1.50)	224 68.56 (+0.53)	225 59.82 (-10.39)	226 70.99 (-2.34)
	220 RE2	221 79.98 (-6.68)	222 75.98 (+2.36)	223 82.50 (+0.50)	224 69.83 (+1.80)	225 67.02 (-3.19)	226 75.75 (+2.42)
	220 SELF-ANCHOR	221 87.26 (+0.60)	222 79.92 (+6.30)	223 86.50 (+4.50)	224 70.13 (+2.10)	225 71.56 (+1.35)	226 75.31 (+1.98)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Llama3.1-8B	220 CoT	221 61.85	222 50.79	223 44.50	224 70.24	225 26.77	226 49.45
	220 PS+	221 62.24 (+0.39)	222 48.65 (-2.14)	223 47.00 (+2.50)	224 65.85 (-4.39)	225 28.79 (+2.02)	226 51.72 (+2.27)
	220 RE2	221 57.68 (-4.17)	222 51.97 (+1.18)	223 44.50 (+0.00)	224 69.74 (-0.50)	225 28.55 (+1.78)	226 54.58 (+5.13)
	220 SELF-ANCHOR	221 76.72 (+14.87)	222 55.51 (+4.72)	223 52.50 (+8.00)	224 73.54 (+3.30)	225 40.01 (+13.24)	226 58.53 (+9.08)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Phi-4-15B	220 CoT	221 73.16	222 68.11	223 74.50	224 77.51	225 73.94	226 72.08
	220 PS+	221 79.07 (+5.91)	222 72.75 (+4.64)	223 72.50 (-2.00)	224 75.59 (-1.92)	225 76.24 (+2.30)	226 68.42 (-3.66)
	220 RE2	221 74.87 (+1.17)	222 69.29 (+1.18)	223 73.50 (-1.00)	224 76.90 (-0.61)	225 75.79 (+1.85)	226 74.94 (+2.86)
	220 SELF-ANCHOR	221 82.41 (+9.25)	222 79.13 (+11.02)	223 81.00 (+6.50)	224 77.82 (+0.31)	225 85.99 (+12.05)	226 75.31 (+3.23)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Qwen3-30B	220 CoT	221 84.46	222 81.10	223 78.00	224 78.60	225 84.92	226 67.69
	220 PS+	221 85.11 (+0.65)	222 80.83 (-0.27)	223 73.50 (-4.50)	224 78.70 (+0.10)	225 82.62 (-2.30)	226 66.67 (-1.02)
	220 RE2	221 87.21 (+2.75)	222 82.28 (+1.18)	223 76.00 (-2.00)	224 78.91 (+0.31)	225 89.36 (+4.44)	226 70.55 (+2.86)
	220 SELF-ANCHOR	221 87.41 (+2.95)	222 83.46 (+2.36)	223 87.00 (+9.00)	224 79.65 (+1.05)	225 85.56 (+0.64)	226 69.30 (+1.61)

241
BBH. BBH aggregates challenging algorithmic and symbolic tasks. SELF-ANCHOR demonstrates
242 average performance gains ranging from 1.61% to 15.39%⁴. Among all sub-benchmarks, we find
243 that tasks requiring tracking of intermediate reasoning benefit the most, for example *date under-
244 standing*, and *logical deduction*. We attribute this to SELF-ANCHOR’s attention steering that aug-
245 ments critical reasoning steps and the original question throughout generation. In contrast, PS+ and
246 RE2 show inconsistent improvements.

247 In summary, these results highlight two takeaways. First, while prompting strategies are effective
248 in some tasks, they lack robustness across benchmarks and model architectures, tending to be more
249 effective on larger LLMs and simpler reasoning tasks. This may be because larger models are more
250 capable of following instructions and external guidance to align reasoning trajectories. Second,
251 by integrating planning, structured reasoning, and automatic anchoring, SELF-ANCHOR achieves
252 consistent improvements across tasks, model sizes, and architectures, demonstrating both robustness
253 and effectiveness.

254 3.4 CAN SELF-ANCHOR RIVAL RL-ENHANCED THINKING MODEL?

255 Recent advances in reasoning capabilities have been dominated by reinforcement learning-enhanced
256 “thinking” models that employ extensive internal reasoning chains during inference. However, these
257 models are costly to fine-tune and require large-scale training data. This raises a question: *Can non-
258 reasoning LLMs combined with SELF-ANCHOR achieve competitive performance against reasoning
259 models?* To investigate this question, we compare our method applied to non-reasoning LLMs
260 against corresponding thinking models. Since thinking models typically require longer generated
261 contexts to support their internal reasoning, we set 1.5x larger maximum token length than the non-
262 reasoning models in our experiments.

263 Table 2 presents our findings across mathematical reasoning, commonsense reasoning, and symbolic
264 reasoning tasks. Remarkably, our method applied to non-thinking models achieves competitive or
265 superior performance compared to RL-enhanced thinking models. Specifically, our approach closes
266 the performance gap significantly with three arithmetic benchmarks in varying difficulties, achieving
267

268
269 ⁴We detail the subtask performance in Appendix G

Table 2: Evaluation comparison with thinking models

Model	Method	Math			CommonSense		BBH
		GSM8K	AQuA	MATH	StrQA	T4D	
Phi-4-mini-4B	CoT	75.36	61.81	51.00	67.03	39.54	60.51
	SELF-ANCHOR	88.02	68.50	59.00	68.69	49.47	62.42
	Reasoning	81.27	60.62	75.00	66.38	45.04	59.85
Qwen3-4B	CoT	86.66	73.62	82.00	68.03	70.21	73.33
	SELF-ANCHOR	87.26	79.92	86.50	70.13	71.56	75.31
	Reasoning	83.24	67.32	87.00	68.31	73.40	75.34
Llama3.1-8B	CoT	61.85	50.79	44.50	70.24	26.77	49.45
	SELF-ANCHOR	76.72	55.51	52.50	73.54	40.01	58.53
	Reasoning	73.62	62.99	72.50	65.41	48.58	64.98
Phi-4-15B	CoT	73.16	68.11	74.50	77.51	73.94	72.08
	SELF-ANCHOR	82.41	79.13	81.00	77.82	85.99	75.31
	Reasoning	81.12	83.20	95.5	75.43	74.11	74.98
Qwen3-30B	CoT	84.46	81.10	78.00	78.60	84.92	67.69
	SELF-ANCHOR	87.41	83.46	87.00	79.65	85.56	69.30
	Reasoning	94.5	80.31	85.00	77.26	80.96	76.54

within 5% difference of most thinking models; On commonsense reasoning tasks and BBH, SELF-ANCHOR exceeds thinking model performance on most benchmarks and LLMs.

Noteably, we observe that thinking models demonstrate superior performance on tasks where corresponding non-reasoning models show poor baseline performance. For example, Llama3.1 and Phi-4-mini show large gaps on MATH, and Llama3.1 underperforms on AQuA and BBH. In these settings, post-training with reinforcement learning significantly boosts performance in areas where models previously performed poorly. In contrast, for tasks where non-reasoning models already demonstrate strong performance, reinforcement learning provides limited improvement. This pattern is also observed in Kirk et al. (2023). Nevertheless, SELF-ANCHOR shows consistent performance improvements across all tasks and difficulty levels.

In summary, rather than learning implicit reasoning patterns through training, our approach leverages the inherent structure in the reasoning chain for attention alignment to improve the reasoning capabilities, yielding stable improvement across varying difficulty levels without additional training cost. These findings suggest that SELF-ANCHOR can serve as an effective alternative to computationally expensive RL-enhanced reasoning.

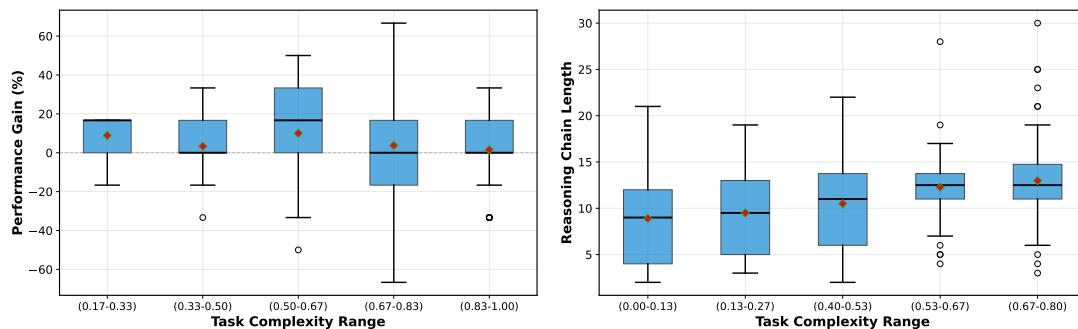
3.5 WHICH TYPES OF TASKS DO SELF-ANCHOR HELP THE MOST?

To understand which types of tasks SELF-ANCHOR help the most, we analyze performance gains across task complexity. We adapt the method for quantifying task complexity from Wu et al. (2025); Jin et al. (2024), where each task is represented by an individual question in a benchmark. For each benchmark, 200 questions are randomly sampled to compute the average accuracy per task across all experimented models. Task complexity is then defined as $1 - \text{accuracy}^5$, where lower accuracy indicates higher complexity.

Reasoning Task Complexity. First, we examine the relationship between task complexity and SELF-ANCHOR’s performance gains to understand how our method scales with task difficulty. We compare SELF-ANCHOR’s performance gains against RE2, a strong baseline identified in our main results (subsection 3.3). For each task, we compute performance gain as the difference in accuracy between the two methods.

As shown in Figure 2a, the box plot summarizes the distribution of performance gains for tasks across complexity ranges. While tasks in the 0.67–0.83 complexity range show a few negative cases, the average improvement remains positive across all task complexities. Overall, SELF-ANCHOR presents performance gains spanning all complexity levels, achieving approximately 7% perfor-

⁵Segmenting reasoning steps and task complexity details are provided in Appendix E.



(a) Reasoning Tasks Complexity and performance gains comparison

(b) Reasoning Tasks Complexity and reasoning chain length comparison. The lower value represents the easier task.

Figure 2: Analysis of task complexity and reasoning chain length

mance improvement. These results demonstrate that SELF-ANCHOR achieves consistent gains and generalizes effectively across varying task complexities.

Reasoning Chain Length vs. Task Complexity. Next, we analyze how reasoning chain length scales with task difficulty. Figure 2b shows the distribution of successful reasoning chain lengths across tasks of varying difficulty on Llama3.2-3B. The results show a clear trend that as complexity increases, SELF-ANCHOR tends to generate longer reasoning chains. This aligns with the observation in Wu et al. (2025) that harder problems require longer reasoning chains to solve. We attribute this capability to the attention steering mechanism, which enables the model to focus on both problem context and immediate reasoning object throughout the reasoning, preventing attention drift as the reasoning chain extends.

In summary, our analysis highlights two takeaways: (1) SELF-ANCHOR demonstrates consistent improvements across all complexity levels, confirming its ability to generalize beyond narrow task categories. (2) SELF-ANCHOR encourage the model to generate longer reasoning chains for difficult problems, supporting its effectiveness in scaling to complex tasks.

3.6 EFFICIENCY

Table 3: Efficiency comparison

Model	Token/Second			
	SELF-ANCHOR	CoT	PS+	RE2
Llama3.2-3B	9.97	10.87	10.84	12.01
Phi-4-mini-4B	11.02	12.25	12.24	12.21
Qwen3-4B	5.41	6.22	6.22	6.23
Llama3.1-8B	7.54	8.38	8.26	8.19
Phi-4-15B	7.92	9.00	8.94	8.88
Qwen3-30B	1.07	1.39	1.39	1.37

SELF-ANCHOR achieved superior performance compared to state-of-the-art methods; we are committed to evaluating its efficiency. Table 3 reports inference throughput (tokens/sec) for SELF-ANCHOR compared to baseline methods. On average, SELF-ANCHOR introduces minimal computational overhead, with throughput reductions typically below 1–2 tokens/sec relative to baselines. The results highlight a favorable trade-off; SELF-ANCHOR consistently improves reasoning while maintaining comparable runtime cost. Importantly, the cost-performance balance remains stable across both smaller (3B–4B) and larger (15B–30B) models, suggesting scalability without prohibitive latency.

378 Table 4: Performance comparing SELF-ANCHOR with and without attention steering
379

380 381 382 Model	383 384 385 386 Method	387 Math			388 CommonSense		389 390 BBH
		391 GSM8K	392 AQuA	393 MATH	394 StrQA	395 T4D	
396 Llama3.1-8B	397 SELF-ANCHOR (w/o attention steering)	398 73.01	399 53.15	400 40.90	401 71.17	402 35.28	403 52.77
	404 SELF-ANCHOR	405 76.72	406 55.51	407 52.50	408 73.54	409 40.01	410 58.53
411 Phi-4-mini-4B	412 SELF-ANCHOR (w/o attention steering)	413 78.77	414 58.66	415 55.50	416 68.60	417 38.83	418 57.44
	419 SELF-ANCHOR	420 88.02	421 68.50	422 59.00	423 68.69	424 49.47	425 62.42

387
388 Table 5: An example of BBH. Incorrect inferences are highlighted in red. Correct ones are high-
389
lighted in green.

Prompt	Sentence: The secretary came to the analyst's office and helped her to book a flight. Options: (A) Helped the secretary book a flight (B) Helped the analyst book a flight (C) Ambiguous
SELF-ANCHOR (w/o attention steering)	{ "Step 1: Identify the pronoun": "The pronoun is 'her'.", "Step 2: Determine the antecedent of the pronoun": "The antecedent of 'her' is the subject of the sentence, which is 'The secretary'.", "Step 3: Analyze the sentence structure": "The subject of the sentence is 'The secretary', and the verb is 'came'. The object of the verb 'came' is 'to the analyst's office'. The verb 'helped' has the pronoun 'her' as its object.", "Step 4: Determine the antecedent of the pronoun based on the sentence structure": "Based on the sentence structure, the antecedent of the pronoun 'her' is the subject of the sentence, which is 'The secretary'.", "Step 5: Choose the correct option": "The correct option is (A) Helped the secretary book a flight." }
SELF-ANCHOR	{ "Step 1: Identify the pronoun": "The pronoun in the sentence is 'her'.", "Step 2: Determine the antecedent of the pronoun": "To find the antecedent, we need to look for the noun that 'her' refers to. In this case, 'her' is a possessive pronoun that refers to the analyst.", "Step 3: Analyze the sentence structure": "The subject of the sentence is 'The secretary', and the object of the verb 'helped' is 'her'.", "Step 4: Identify the antecedent based on the sentence structure": " 'her' refers to the analyst, not the secretary.", "Step 5: Choose the correct option": "Since 'her' refers to the analyst, the correct option is (B) Helped the analyst book a flight." }

402 In summary, SELF-ANCHOR achieves strong effectiveness and efficiency, offering improved rea-
403 soning performance with only minor latency overhead compared to state-of-the-art baselines.

404 3.7 ABLATION STUDY: THE EFFECTIVENESS OF ATTENTION STEERING

405 To isolate the contribution of attention steering, we conducted an ablation study comparing SELF-
406 ANCHOR with and without attention steering on two representative LLMs across all six benchmarks.
407 As illustrated in Table 4, SELF-ANCHOR consistently outperformed its variant without attention
408 steering, across all benchmarks, demonstrating the effectiveness of attention steering.

409 Table 5 further illustrates a representative example where attention steering prevents reasoning er-
410 rors. In Steps 2 and 4, the SELF-ANCHOR without attention steering approach incorrectly identifies
411 "her" as referring to "the secretary"; this may be because models over-focus on sentence subjects
412 rather than maintaining focus on the syntactic relationships that determine pronoun reference. In
413 contrast, SELF-ANCHOR correctly identifies that "her" refers to "the analyst" by maintaining atten-
414 tion on both the original question context and the current reasoning step⁶.

415 This ablation confirms that, while structured reasoning provides a foundation for improved per-
416 formance, it is often insufficient to prevent attention drift on its own. The attention anchoring com-
417 ponent is crucial to ensure the model maintains focus throughout the reasoning process, leading to
418 more robust and accurate results.

419 3.8 FAILURE CASE ANALYSIS

420 To understand the failure modes in SELF-ANCHOR. We conducted a manual failure case analysis
421 on 200 randomly sampled cases from *casual_judgement* and *AQuA*. Our analysis identified three
422 primary failure modes:

423 **Reasoning Errors (42%).** The most frequent failure mode involves LLM making mistakes during
424 the reasoning. These include the misapplication of causal principles, flawed deductions, and incor-
425 rect conditional reasoning. For example, in one *casual_judgement* instance, the model incorrectly
426 treated a necessary but insufficient condition as the sole causal factor, leading to an invalid conclu-

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855

432 sion. Such errors suggest that, while attention anchoring helps maintain focus on relevant steps, it
 433 cannot fully compensate for weak logical priors or gaps in world knowledge.
 434

435 **Misunderstanding the problem (36.5%).** A substantial portion of failures stems from incompre-
 436 hension of complex questions, leading to errors such as misidentifying all variables, misinterpreting
 437 the problem’s requirements, or incorrectly parsing the relationships between entities. For instance,
 438 in multi-variable problems, the model sometimes assigns numerical values to the wrong entity.

439 **Computational Errors (21.5%).** The remaining failures involve arithmetic mistakes, unit conver-
 440 sion errors, or algebraic slips. Even when the reasoning chain is correct, a single miscalculation
 441 often propagates to the final answer.

442 Taken together, these findings suggest that SELF-ANCHOR primarily mitigates *attention misalign-
 443 ment*, but does not fully resolve deeper issues of logical validity, semantic understanding, or compu-
 444 tational precision.

445 4 RELATED WORK

446 **Prompt engineering for reasoning.** Prompt engineering has been widely adopted as a fundamen-
 447 tal approach for enhancing LLM reasoning capabilities (Liu et al., 2023; Brown et al., 2020). A
 448 foundational line of work, initiated by Chain-of-Thought (CoT) prompting (Wei et al., 2022), en-
 449 courages explicit intermediate steps, which significantly improve performance on multi-step reason-
 450 ing tasks. This has inspired numerous derivatives, including problem decomposition methods (Wang
 451 et al., 2023; Zhou et al., 2022; Khot et al., 2022; Drozdov et al., 2022), as well as techniques focused
 452 on enhancing query comprehension (Xu et al., 2024; Zheng et al., 2023; Mekala et al., 2023; Deng
 453 et al., 2023; Mishra & Nouri, 2022).

454 While these prompting methods demonstrate effectiveness in specific domains, they rely on pre-
 455 determined, static prompt formats for different tasks. On the other hand, LLMs remain sensitive to
 456 prompt variations and suffer from attention dilution during long generations (Liu et al., 2024; Li
 457 et al., 2024; Hong et al., 2025; Lu et al., 2021; Gu et al., 2024). SELF-ANCHOR addresses these
 458 limitations by integrating structured reasoning with dynamic attention steering. It goes beyond static
 459 prompting by enabling the model to recalibrate its focus on the most salient context at each step of
 460 the reasoning trajectory.

461 **Attention steering.** In contrast to the aforementioned prompt engineering, which devises better
 462 prompt strategies, attention steering methods directly guide LLMs during inference to emphasize
 463 the user-specified part of context. Specifically, Selective Prompt Anchoring (SPA) (Tian & Zhang,
 464 2024) adjusts the logit probability distribution to emphasize the specified context. PASTA(Zhang
 465 et al., 2023) identifies and reweights a subset of attention heads to redirect the model’s attention
 466 to user-specified parts. Selective Self-Attention (SSA) (Zhang et al., 2024) augments the softmax
 467 nonlinearity with a principled temperature scaling strategy. TOAST (Shi et al., 2023) learns feature
 468 selection modules that guide attention toward task-relevant information. However, these methods
 469 require manual specification of anchor content, limiting their adaptability to diverse reasoning con-
 470 texts. Real-world applications demand automatic identification of relevant context elements across
 471 varying task requirement and reasoning patterns. SELF-ANCHOR addresses this limitation by lever-
 472 aging structured intermediate representations to enable context-aware anchor selection without hu-
 473 man intervention.

474 5 CONCLUSION

475 We presented SELF-ANCHOR, a lightweight pipeline that leverages the inherent structure of reason-
 476 ing for attention alignment. Across six diverse reasoning benchmarks, SELF-ANCHOR consistently
 477 outperforms existing baselines. Notably, SELF-ANCHOR enhanced “non-reasoning” models achieve
 478 competitive performance with specialized reasoning models while maintaining significantly lower
 479 cost. Moreover, our analysis reveals that SELF-ANCHOR’s advantages are generalizable to varying
 480 task complexities. We hope SELF-ANCHOR serves as a step toward more reliable LLMs reasoning
 481 that requires neither parameter updates nor additional sampling.

486 **6 REPRODUCIBILITY STATEMENT**
487488 We have made extensive efforts to ensure the reproducibility of our work. Additional implementa-
489 tion details, hyperparameters, and ablation studies are provided in the appendix. We also include
490 complete descriptions of benchmark datasets, sampling procedures, and task complexity measures.
491492 Lastly, to foster reproducibility and further research, source code will be made publicly available
493 upon acceptance of this paper.
494495 **7 ETHICS STATEMENT**
496497 This paper does not involve any ethical concerns. The proposed methods focus on improving rea-
498 soning ability and robustness in LLMs and do not raise issues related to the code of ethics.
499500 **REFERENCES**
501502 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
503 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
504 cal report. *arXiv preprint arXiv:2412.08905*, 2024.505 Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin
506 Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical
507 report: Compact yet powerful multimodal language models via mixture-of-loras. *arXiv preprint*
508 *arXiv:2503.01743*, 2025.509 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
510 for mathematical reasoning: Progresses and challenges. In Neele Falk, Sara Papi, and Mike
511 Zhang (eds.), *Proceedings of the 18th Conference of the European Chapter of the Association*
512 *for Computational Linguistics: Student Research Workshop*, pp. 225–237, St. Julian’s, Malta,
513 March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.eacl-srw.17.
514 URL <https://aclanthology.org/2024.eacl-srw.17/>.515 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
516 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
517 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.519 Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert van Rooij, Kun Zhang, and Zhouchen Lin. Em-
520 powering llms with logical reasoning: A comprehensive survey. *arXiv preprint arXiv:2502.15652*,
521 2025.522 Ta-Chung Chi, Ting-Han Fan, and Alexander I Rudnicky. Attention alignment and flexible positional
523 embeddings improve transformer length extrapolation. *arXiv preprint arXiv:2311.00684*, 2023.525 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He. Dola:
526 Decoding by contrasting layers improves factuality in large language models. In *The Twelfth*
527 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Th6NyL07na>.529 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
530 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
531 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.533 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
534 2025. URL <https://arxiv.org/abs/2501.12948>.535 Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large
536 language models ask better questions for themselves. *arXiv preprint arXiv:2311.04205*, 2023.538 Andrew Drozdzov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen,
539 Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large language models.
540 *arXiv preprint arXiv:2209.15003*, 2022.

540 Guiyao Tie et al. A survey on post-training of large language models, 2025. URL <https://arxiv.org/abs/2503.06072>.
 541
 542

543 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.
 544 URL <https://arxiv.org/abs/2508.15260>.
 545

546 Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koepll, Preslav Nakov, and Iryna Gurevych. A survey
 547 of confidence estimation and calibration in large language models. In Kevin Duh, Helena Gomez,
 548 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter
 549 of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
 550 Long Papers)*, pp. 6577–6595, Mexico City, Mexico, June 2024. Association for Computational
 551 Linguistics. doi: 10.18653/v1/2024.nacl-long.366. URL <https://aclanthology.org/2024.nacl-long.366/>.
 552

553 Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
 554 use a laptop? a question answering benchmark with implicit reasoning strategies. *Transactions of
 555 the Association for Computational Linguistics*, 9:346–361, 2021.
 556

556 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 557 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 558 of models. *arXiv preprint arXiv:2407.21783*, 2024.
 559

559 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
 560 Min Lin. When attention sink emerges in language models: An empirical view. *arXiv preprint
 561 arXiv:2410.10781*, 2024.
 562

562 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 563 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 564 2021.
 565

566 Kelly Hong, Anton Troynikov, and Jeff Huber. Context rot: How increasing input tokens im-
 567 pacts llm performance. Technical report, Chroma, July 2025. URL <https://research.trychroma.com/context-rot>.
 568

569 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
 570vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the As-
 571sociation for Computational Linguistics: ACL 2023*, pp. 1049–1065, Toronto, Canada, July
 572 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
 573 <https://aclanthology.org/2023.findings-acl.67/>.
 574

575 Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
 576 Jiao. Self-planning code generation with large language models. *ACM Transactions on Software
 577 Engineering and Methodology*, 33(7):1–30, 2024.
 578

578 Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
 579 Mengnan Du. The impact of reasoning step length on large language models. *arXiv preprint
 580 arXiv:2401.04925*, 2024.
 581

582 Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
 583 Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. *arXiv
 584 preprint arXiv:2210.02406*, 2022.
 585

585 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 586 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 587 diversity. *arXiv preprint arXiv:2310.06452*, 2023.
 588

589 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 590 language models are zero-shot reasoners. *Advances in neural information processing systems*,
 591 35:22199–22213, 2022.
 592

592 Kenneth Li, Tianle Liu, Naomi Bashkansky, David Bau, Fernanda Viégas, Hanspeter Pfister, and
 593 Martin Wattenberg. Measuring and controlling instruction (in)stability in language model dialogs,
 594 2024. URL <https://arxiv.org/abs/2402.10962>.

594 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
 595 ation: Learning to solve and explain algebraic word problems. In Regina Barzilay and Min-Yen
 596 Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
 597 guistics (Volume 1: Long Papers)*, pp. 158–167, Vancouver, Canada, July 2017. Association for
 598 Computational Linguistics. doi: 10.18653/v1/P17-1015. URL <https://aclanthology.org/P17-1015/>.

600 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 601 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
 602 Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
 603 <https://aclanthology.org/2024.tacl-1.9/>.

604 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 605 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 606 cessing. *ACM computing surveys*, 55(9):1–35, 2023.

608 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
 609 prompts and where to find them: Overcoming few-shot prompt order sensitivity. *arXiv preprint
 610 arXiv:2104.08786*, 2021.

611 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
 612 Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
 613 in language models by automated process supervision, 2024. URL <https://arxiv.org/abs/2406.06592>.

616 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 617 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 618 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

619 Rajasekhar Reddy Mekala, Yasaman Razeghi, and Sameer Singh. Echoprompt: instructing the
 620 model to rephrase queries for improved in-context learning. *arXiv preprint arXiv:2309.10687*,
 621 2023.

623 Swaroop Mishra and Elnaz Nouri. Help me think: A simple prompting strategy for non-experts to
 624 create customized content with models. *arXiv preprint arXiv:2208.08232*, 2022.

625 OpenAI. Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

627 Baifeng Shi, Siyu Gai, Trevor Darrell, and Xin Wang. Toast: Transfer learning via attention steering.
 628 *arXiv preprint arXiv:2305.15542*, 2023.

631 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
 630 models. *arXiv preprint arXiv:2402.17762*, 2024.

632 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 633 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 634 and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

635 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

637 Yuan Tian and Tianyi Zhang. Selective prompt anchoring for code generation. *arXiv preprint
 638 arXiv:2408.09121*, 2024.

639 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 640 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

642 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 643 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 644 models. *arXiv preprint arXiv:2305.04091*, 2023.

646 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 647 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 648 neural information processing systems*, 35:24824–24837, 2022.

648 Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
 649 less: Understanding chain-of-thought length in llms. *arXiv preprint arXiv:2502.07266*, 2025.
 650

651 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 652 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

653 Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu, Hongbo Xu, Guodong Long, Jian-Guang Lou, and
 654 Shuai Ma. Re-reading improves reasoning in large language models. In *Proceedings of the 2024*
 655 *Conference on Empirical Methods in Natural Language Processing*, pp. 15549–15575, 2024.

656

657 Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
 658 works can process bounded hierarchical languages. *arXiv preprint arXiv:2105.11115*, 2021.

659

660 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 661 ReAct: Synergizing reasoning and acting in language models. In *International Conference on*
 662 *Learning Representations (ICLR)*, 2023.

663

664 Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, and Tuo
 665 Zhao. Tell your model where to attend: Post-hoc attention steering for llms. *arXiv preprint*
arXiv:2311.02262, 2023.

666

667 Xuechen Zhang, Xiangyu Chang, Mingchen Li, Amit Roy-Chowdhury, Jiasi Chen, and Samet Oy-
 668 mak. Selective attention: Enhancing transformer through principled context control. *Advances in*
669 Neural Information Processing Systems, 37:11061–11086, 2024.

670

671 Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V Le,
 672 and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
arXiv preprint arXiv:2310.06117, 2023.

673

674 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
 675 mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
 reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022.

676

677 Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju, Aditya Gupta, Kevin R McKee, Ari Holtzman,
 678 Jay Pujara, Xiang Ren, Swaroop Mishra, Aida Nematzadeh, et al. How far are large language
 679 models from agents with theory-of-mind? *arXiv preprint arXiv:2310.03051*, 2023.

680

681 Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed Chi, Denny Zhou,
 682 Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-compose
 683 reasoning structures. *Advances in Neural Information Processing Systems*, 37:126032–126058,
 2024.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
703704 We leverage Large Language Models (LLMs) primarily for grammar checking and polishing for our
705 manuscript.
706707 B CALCULATING AVERAGE CONFIDENCE SCORES
708710 We conduct an ablation study to evaluate different methods for calculating confidence scores from
711 token-level probabilities. Let $P_i = \{p_1, p_2, \dots, p_m\}$ represent the set of token-level confidence
712 scores for tokens generated in the current reasoning step i .

713 We compare three approaches for calculating average confidence scores at sequence level:

714 **Harmonic Mean:**

715
$$p_{\text{harmonic}} = \frac{n}{\sum_{i=1}^n \frac{1}{p_i}} \quad (5)$$

716
717

718 **Geometric Mean:**

719
$$p_{\text{geometric}} = \left(\prod_{i=1}^n p_i \right)^{1/n} \quad (6)$$

720
721
722

723 **Arithmetic Mean:**

724
$$p_{\text{arithmetic}} = \frac{1}{n} \sum_{i=1}^n p_i \quad (7)$$

725
726

727 Table 6 presents the results across two reasoning benchmarks using Llama3.1 and Phi-4-mini mod-
728 els. The harmonic mean consistently outperforms both geometric and arithmetic means across all
729 settings. This is because the harmonic mean is more sensitive to low confidence values, which bet-
730 ter captures potential attention drift during reasoning. The geometric mean performs second-best,
731 as it also penalizes low values more than the arithmetic mean, though less aggressively than the
732 harmonic mean. The arithmetic mean shows the weakest performance, as it can be dominated by
733 high-confidence tokens and may miss instances where attention drift occurs for specific reasoning
734 components.735 C SELF-ANCHOR PROMPT DETAILS
736737 You are an expert problem solver. Your task is to decompose the given problem into a clear,
738 step-by-step plan, reasoning the plan and solve the problem step by step in JSON format.739 For each plan step, provide a key-value pair: the key is the plan step (as stated), the value is
740 the detailed reasoning and action for that step.741 Now, implement a reasoning structure to follow step-by-step and arrive at correct answers
742 in JSON format. Conclude with the final answer using the format: "Final answer": "<your
743 answer>".

744 Original problem: {question}

745 D ALTERNATIVE DESIGN
746747 As described in Section 2.1, our primary SELF-ANCHOR design anchors attention to the original
748 question and the current plan step during reasoning generation. We investigate an alternative design
749 that anchors to all prior plan steps in addition to the current step and the original question. The
750 motivation for this alternative is that maintaining attention to all previous planning steps might
751 provide additional context for the current reasoning step.
752753 We compare two anchoring strategies:
754

756

- 757 • **SELF-ANCHOR (Primary):** Anchors to the original question and current plan step only,
758 where $a_i = \{\text{Question}, \text{Plan}_i\}$

759 • **Anchor to All:** Anchors to the original question, current plan step, and all prior plan steps,
760 where $a_i = \{\text{Question}, \text{Plan}_1, \text{Plan}_2, \dots, \text{Plan}_i\}$

761 Table 7 presents the results comparing these two approaches across AQuA and T4D benchmarks
762 using Llama3.1-8B and Phi-4-mini models. The primary SELF-ANCHOR design consistently out-
763 performs the alternative that anchors to all prior steps. This performance difference may be because
764 the alternative design dilutes attention across too many anchor points, reducing focus on the most
765 relevant current step. In contrast, the primary design maintains sharp focus on the most relevant
766 context while avoiding attention dilution.

767 Table 6: Mean selection ablation study. Results show accuracy (%) on AQuA-RAT and T4D bench-
768 marks.
769

770 Model	771 Method	772 AQuA-RAT	773 T4D
772 LLaMA3.1-8B	CoT	50.79	26.77
	SELF-ANCHOR (Harmonic)	55.51	40.01
	SELF-ANCHOR (Geometric)	55.11	35.28
	SELF-ANCHOR (Arithmetic)	54.72	35.99
775 Phi-4-mini	CoT	61.81	39.54
	SELF-ANCHOR (Harmonic)	68.50	49.47
	SELF-ANCHOR (Geometric)	67.72	49.11
	SELF-ANCHOR (Arithmetic)	67.71	48.40

778 Table 7: Alternative anchoring design comparison. Results show accuracy (%) on AQuA-RAT and
779 T4D benchmarks.
780

782 Model	783 Method	784 AQuA-RAT	785 T4D
783 LLaMA3.1-8B	CoT	50.79	26.77
	SELF-ANCHOR	55.51	40.01
	Anchor to All Prior Steps	53.54	32.62
786 Phi-4-mini	CoT	61.81	39.54
	SELF-ANCHOR	68.50	49.47
	Anchor to All Prior Steps	67.32	47.34

789 E IMPLEMENTATION AND EVALUATION DETAILS

790 E.1 PROMPT EXAMPLE

791 Chain-of-Thought.

792 Let's think step by step.

793 **Plan-and-solve+.** We adopt the implementation from Plan-and-solve+(Wang et al., 2023), for math-
794 ematical reasoning we apply prompt:

800 Let's first understand the problem, extract relevant variables and their corresponding numer-
801 als, and make and devise a complete plan. Then, let's carry out the plan, calculate interme-
802 diate variables (pay attention to correct numerical calculation and commonsense), solve the
803 problem step by step, and show the answer.

805 Otherwise, we use:

808 Let's first prepare relevant information and make a plan. Then, let's answer the question step
809 by step (pay attention to commonsense and logical coherence).

810 **Re-Reading.**
811812 {Question}
813 Read the question again:
814 {Question}
815816
817 **E.2 EVALUATION DETAILS**
818819 We adopt standard metrics used in prior work (Chuang et al., 2024; Wang et al., 2023; Zhou et al.,
820 2024), including accuracy and exact match, for AQuA, BBH, T4D, and MATH. For GSM8K and
821 StrategyQA, we follow the factual accuracy evaluation protocol introduced by Chuang et al. (2024).822 To ensure consistent answer extraction, we prompt all models to conclude their response with the
823 phrase: “Conclude with the final answer using the format: “Final answer”: ”<your answer>” where
824 <your answer> denotes either a multiple-choice option or a string answer. We then apply task-
825 specific heuristics to extract <your answer> from the output.826 For the MATH dataset, we randomly sample 200 test instances and manually verify the extracted
827 answers to ensure correctness.
828829 **E.3 IMPLEMENTATION DETAILS**
830831 We follow the definitions of reasoning step segmentation and task complexity from (Wu et al., 2025;
832 Jin et al., 2024). The performance gain of a task is computed as the difference in accuracy between
833 two methods on that task.834 To measure the number of reasoning steps, we split the full reasoning chain by “\n” and remove
835 empty lines caused by consecutive breaks (“\n\n”). The remaining lines are counted as the CoT
836 length.
837838 **F CASE STUDY**
839840 In this section, we provided a qualitative example to illustrate the reasoning trajectory generated by
841 each method. The task is to determine whether a prime number can be represented by the number
842 of days in a week. CoT 1 and RE 3 immediately arrive at an incorrect conclusion by misidentifying
843 7 as a non-prime number. PS+ 2 follows a more structured plan but also makes a critical error
844 in its final conclusion, contradicting its own evidence. In contrast, SELF-ANCHOR 4 successfully
845 decomposes the problem, correctly identifies 7 as a prime number, and reaches the correct answer
846 by systematically executing its reasoning plan.
847848 **Algorithm 1** Chain-of-Thought (CoT)
849850 1: **Question:** Can a prime number be represented by the number of days in a week?
851 2: **Prompt:** Let’s think step by step.
852 3: **Model Completion:** No, a prime number cannot be represented by the number of days in a
853 week because the number of days in a week is 7, which is not a prime number. Prime numbers
854 are numbers greater than 1 that have no positive divisors other than 1 and themselves. Since 7
855 is divisible by 1 and 7, it is not a prime number.
856 4: **Final answer: No**857 **G NUMERICAL EXPERIMENT RESULT ON BIG-BENCH-HARD**
858859
860
861
862
863

864

865

866

Algorithm 2 Plan-and-Solve (PS+)

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

1: **Question:** Can a prime number be represented by the number of days in a week?2: **Prompt:** Let's first prepare relevant information and make a plan. Then, let's answer the question step by step (pay attention to commonsense and logical coherence).3: **Model Completion:** Step 1: Gather Information: Prime numbers are natural numbers greater than 1 that have no positive divisors other than 1 and themselves. The number of days in a week is 7.

4: Step 2: Plan the Solution: We will first identify prime numbers less than 7 to see if any match the number of days in a week. - Then, we will determine if any prime number can represent the number of days in a week based on our findings.

5: Step 3: Execute the Plan: Prime numbers less than 7 are 2, 3, 5, and 7. - Among these, 2, 3, and 5 are less than 7 and are indeed prime numbers. - None of these prime numbers (2, 3, 5) match the number of days in a week (7).

6: Step 4: Analyze and Draw a Conclusion: Since none of the prime numbers less than 7 (2, 3, 5) match the number of days in a week (7), a prime number cannot be represented by the number of days in a week.

7: **Step 5: Final Answer: The final answer is No**

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

Algorithm 3 Re-Reading (RE)

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

1: **Question:** Can a prime number be represented by the number of days in a week?2: **Prompt:** Read the question again3: **Model Completion:** No, a prime number cannot be represented by the number of days in a week because the number of days in a week is 7, which is not a prime number.

4: Prime numbers are numbers greater than 1 that have no positive divisors other than 1 and themselves.

5: The number 7 is a prime number, but the question seems to be asking if the number of days in a week (7) can be represented by a prime number, which it already is.

6: However, if the question is interpreted as asking if there is a prime number that equals the number of days in a week, the answer would still be "No" because 7 is already a prime number.

7: If the question is asking if the number of days in a week (7) can be represented by any prime number, the answer would be "Yes" because 7 itself is a prime number.

8: However, the phrasing of the question suggests that it is asking if the number of days in a week can be represented by a prime number other than 7, in which case the answer would be "No."

9: For clarity, I will assume the question is asking if the number of days in a week (7) can be represented by a prime number other than itself, and the final answer is "No."

10: **"Final answer": "No"**

902

903

904

905

Algorithm 4 SELF-ANCHOR

906

907

908

909

910

911

912

913

914

915

916

917

1: **Question:** Can a prime number be represented by the number of days in a week?2: **Prompt:** Decompose the given problem into step-by-step plan, reasoning the plan and solve the problem step by step in JSON format. For each plan step, provide a key-value pair: the key is the plan step, the value is the detailed reasoning for that step.3: **Model Completion:** "Understand the question.": "The question asks if a prime number can be represented by the number of days in a week.",

4: "Identify the number of days in a week.": "There are 7 days in a week.",

5: "Determine if 7 is a prime number.": "A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.",

6: "Check if 7 meets the criteria of a prime number.": "7 is greater than 1 and its only divisors are 1 and 7.",

7: **"Final answer": "Yes"**

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935

Table 8: BBH details

Model	Method	BBH					
		disambiguation_qa	causal.judgement	date_understanding	logical.deduction	salient.translation.error.detection	snarks
Llama3.1-8B	CoT	100	91/187	182	67	110	125
	PS+	138	108	136	78	124	122
	re-read	124	98	190	85	121	127
	SELF-ANCHOR	152	100	160	128	132	127
Llama3.2-3B	CoT	88/250	71	102	34	95	89
	PS+	104	63	97	86	98	105
	re-read	74	84	127	40	89	105
	SELF-ANCHOR	131	101	131	101	96	129
Phi4-mini-4B	CoT	162/250	113	154	114	149	134
	PS+	160	126	138	130	136	124
	re-read	162	115	165	113	135	148
	SELF-ANCHOR	152	116	174	128	140	142
Qwen3-mini-4B	CoT	183/250	121	174	208	167	148
	PS+	179	108	165	207	160	150
	re-read	179	121	203	230	147	154
	SELF-ANCHOR	185	115	193	224	161	150
Phi-4-15B	CoT	180	120	203	169	152	160
	PS+	180	117	140	186	155	156
	re-read	179	120	221	191	158	154
	SELF-ANCHOR	176	122	218	203	148	161
Qwen3-30B	CoT	105	125	182	185	172	155
	PS+	114	122	172	181	165	156
	re-read	113	125	185	210	174	156
	SELF-ANCHOR	110	123	196	200	160	157

955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971