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ABSTRACT

Source-Free Domain Adaptive Object Detection (SF-DAOD) aims to adapt a de-
tector trained on a labeled source domain to an unlabeled target domain without
retaining any source data. Despite recent progress, most popular approaches fo-
cus on tuning pseudo-label thresholds or refining the teacher-student framework,
while overlooking object-level structural cues within cross-domain data. In this
work, we present CGSA, the first framework that brings Object-Centric Learning
(OCL) into SF-DAOD by integrating slot-aware adaptation into the DETR-based
detector. Specifically, our approach integrates a Hierarchical Slot Awareness
(HSA) module into the detector to progressively disentangle images into slot rep-
resentations that act as visual priors. These slots are then guided toward class
semantics via a Class-Guided Slot Contrast (CGSC) module, maintaining se-
mantic consistency and prompting domain-invariant adaptation. Experiments on
five cross-domain object detection datasets demonstrate that our approach outper-
forms previous SF-DAOD methods, with theoretical derivations and experimental
analysis further demonstrating the effectiveness of the proposed components and
the framework, thereby indicating the promise of object-centric design in privacy-

sensitive adaptation scenarios. All code will be released later.

1 INTRODUCTION

Real-world deployment of object detec-
tors (Ren et al.l [2015; Redmon et al., 2016;
Carton et al.,, [2020) inevitably encounters
domain shifts, such as changes in weather,
camera, or scene layout, which cause dramatic
performance drops when the model is trained
on a different, labeled source domain. Un-
supervised domain-adaptive object detection
(DAOD) addresses this gap by adapting a
detector to an unlabeled target domain while
still having full access to the source data.
Existing DAOD methods predominantly
align global or instance features through
adversarial learning (Chen et al. [2018),
query-token matching (Huang et al., 2022)), or
teacher-student consistency (Li et al. [2022b).
Although these techniques yield solid gains,
they presuppose that source images remain
available during adaptation, an assumption

Source ining Target i Source

ining  Target A

< Forys > < iy > < Gorys > < gy Yy >

SIotAware
Bt H0E
! f !
M 2 M2
- @ -
N 8
(b)

(a) Popular Approach

Figure 1: Motivation of the proposed CGSA. (a)
Most popular methods focus on filtering pseudo
labels. (b) Our CGSA proposes a slot-aware
framework to serve as a bridge for aligning com-
mon object-level structural features without ac-
cessing source data.
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Our Approach

often violated by privacy regulations or proprietary constraints.

In Source-Free DAOD (SF-DAOD), this dependency is relaxed because the adaptation phase re-
ceives only a detector pretrained on the source domain and the target images themselves. Be-
cause source data are unavailable and target labels are absent, SF-DAOD typically adopts a
teacher—student paradigm (Tarvainen & Valpola, 2017)): the feacher predicts on target images, fil-
tered predictions form pseudo labels, and the student is trained on these signals. Consequently,
current approaches focused on refining the framework or the selection scheme, such as confidence
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Figure 2: Framework of CGSA. It consists of two stages: source-domain pretraining and target-
domain adaptation, which work collaboratively to improve SF-DAOD performance.

filtering 2021), periodic smoothing 2023), and energy-based pruning
2023). Despite recent progress, popular methods largely ignore the object-level structural

regularities that persist across source and target domains. As a result, the source-trained detector is
relegated to a mere pseudo-label oracle, and its rich internal representations remain under-exploited.

Object-Centric Learning (OCL) offers a solution. Slot Attention (Locatello et all, 2020), a repre-
sentative OCL technique, decomposes a scene into a small set of latent “slots”, each expected to
bind to one object and thus inherently separate foreground entities from background context. Slot-
based models have shown impressive transferability in many vision tasks (Seitzer et al.} [2022; [Zhou
let al.l 2022 Jiang et al.|2023), yet have never been explored for SF-DAOD. Given that DETR-based
detectors (Carion et al., 2020) already rely on object queries, embedding slot-aware priors into the
query space is a natural but unexplored direction.

Consequently, we propose CGSA, the first framework to merge OCL with source-free adaptive de-
tection. Figure[T]shows our motivation. CGSA acquires slot-based structural visual priors through
a progressive visual decomposition mechanism, and guides the resulting slots with class prototypes
toward domain-invariant representations via contrastive learning that evolves as the detector im-
proves. Together, by explicitly extracting, guiding, and leveraging these shared structural cues, our
framework allows the pretrained model to contribute more directly and effectively during adaptation.

The main contributions are summarized as follows:

* To the best of our knowledge, we are the first to introduce OCL into the SF-DAOD problem,
establishing a new slot-aware adaptation framework CGSA.

* We devise two complementary modules, namely Hierarchical Slot Awareness (HSA),
Class-Guided Slot Contrast (CGSC), which collectively provide structural visual priors
and semantic guidance to exploit domain-invariant slot awareness under the source-free
setting. We further provide a theoretical generalization analysis supporting our method.

 Extensive experiments on five datasets, complemented by ablation studies and visualization
analyses, demonstrate the effectiveness of the proposed components and framework.

2 RELATED WORKS

Unsupervised Domain Adaptive Object Detection (DAOD) aims to transfer a detector trained on
a labeled source domain to an unlabeled target domain. Early works extend feature-level adversarial
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learning from classification to detection. For example, DA Faster R-CNN (Chen et al.| 2018)) aligns
image-level and instance-level features with two discriminators. With the advent of transformer
detectors, query-aware alignment becomes feasible. MTTrans (Yu et al., 2022) and AQT (Huang
et al., 2022) match cross-domain tokens or queries via the attention mechanism. DATR (Chen
et al., [2025) further couples alignment across classes. The third technical route introduces consis-
tency or self-training signals. AT (L1 et al., 2022b) exploits momentum teacher, MRT (Zhao et al.,
2023)) adds masked reconstruction, and CAT (Kennerley et al.}|2024) regularizes category centroids
across domains. Despite steady progress, these approaches presuppose full access to source images
throughout adaptation, an assumption that is often violated when data sharing is restricted by privacy
or licensing.

Source-Free Domain Adaptive Object Detection (SF-DAOD) removes that dependency: only a
source-trained model and unlabeled target images are available. Since a teacher—student paradigm
is required to obtain pseudo labels for supervision, current solutions mainly optimized the frame-
work or the selection scheme. SFOD and SFOD-M (Li et al., 2021) select high-confidence boxes
from the teacher; LODS (Li et al., |2022a)) and PETS (Liu et al., 2023)) refine labels by objectness
or temporal smoothing; A?SFOD (Chu et al.| 2023) and TITAN (Ashraf & Bashir} 2025) partition
the target domain into source-similar and source-dissimilar subsets according to variance, thereby
recasting the source-free setting as a traditional DAOD that can be addressed with existing tech-
niques. However, these methods mostly concentrate on refining pseudo-labels while neglecting the
object-level structural information already embedded in the detector’s representations. Addressing
the limitation requires a mechanism that can explicitly extract individual objects without access to
the source data, and our work is designed to fill this gap.

Object-Centric Learning (OCL) decomposes scenes into discrete entity representations, enabling
reasoning that is invariant to background shifts. Slot Attention (Locatello et al.l [2020) iteratively
binds “slots” to latent objects via attention. In vision tasks, slot-based models have shown strong
transferability in real-world segmentation (Seitzer et al.,[2022), video prediction (Zhou et al.||2022),
generative modeling (Jiang et al.,[2023)), and even robotics (Rezazadeh et al., [ 2024), yet their poten-
tial for domain adaptation remains largely unexplored, especially in detection, where DETR-based
decoders already employ object queries but lack object-centric priors. Therefore, we bridge this
gap by proposing a novel slot-aware framework that unifies OCL and dynamic pseudo-labeling for
SF-DAOD.

3 METHOD

3.1 OVERVIEW

Under the source-free setting, object-centric disentanglement provides a promising route, which
separates potential targets from the surrounding scene. Once objects are isolated, object-level knowl-
edge can be transferred directly, enabling implicit cross-domain adaptation without any source sam-
ples. Motivated by this observation, we propose CGSA, a source-free object detection framework
with class-guided supervision for fine-grained visual priors, as illustrated in Figure 2| Pseudocode
for the core operations is provided in the Appendix [E]

An input image is first processed by the backbone and query encoder to obtain object queries. In
parallel, the same image passes through Hierarchical Slot Awareness (HSA), which decomposes
it into a coarse-to-fine set of n? slots. After projection, these slots fuse with the queries to form
slot-aware queries carrying object-level visual prior into the decoder.

Source-domain pretraining. The detector is trained with standard detection supervision while HSA
adds a reconstruction objective, and together they provide strong structural priors for subsequent
adaptation.

Target-domain adaptation. A teacher-student configuration is adopted, both initialized from the
source-domain pretrained model. The student repeats the HSA path on target images, and the result-
ing attention mask weights the queries to produce weighted slots that are contrasted with dynamic
class prototypes by the Class-Guided Slot Contrast (CGSC) module. The teacher generates pre-
dictions on the same image, selecting reliable pseudo labels for the student based on a threshold.
The weights of feacher are updated by the exponential moving average (EMA) of the student.
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Figure 3: (a) Pipeline of the proposed HSA module. Through the hierarchical design, the features
are first decomposed into coarse-to-fine slots; after projection, these slots are concatenated with
the object queries to form slot-aware queries, thereby providing object-level structural priors. (b)
Pipeline of the proposed CGSC module. By maintaining the global class prototype and assigning
pseudo labels to weighted slots for class attributes, contrastive learning is used to implicitly supervise
and guide the slots to focus on domain-invariant yet class-relevant object features.

3.2 HIERARCHICAL SLOT AWARENESS

We introduce a Hierarchical Slot Awareness (HSA) module, shown in Figure Eka), that brings OCL
priors into DETR-based detectors. HSA structurally disentangles an image into object-level slots
in a coarse-to-fine manner and embeds these regional visual prior representations into the object
queries. In this way, we realize object-level cross-domain adaptation in a principled and stable
fashion. Ablation studies and visualization results are provided in the Appendix [G]

3.2.1 DECOMPOSING VISUAL PRIORS

Grounded in evidence that human vision automatically decomposes sensory input into a small set of
parts under strong internal visual priors, we therefore cast visual prior decomposition as an iterative
inference and refinement process (Biederman, [1987). Slot Attention (Locatello et al.l [2020) meets
the conditions, whose core idea is to iteratively aggregate information from the input features into
a set of slots. In each iteration, the k-th slot computes an attention weight with an input feature h;,
updates itself, and after several iterations (typically 3—5) each slot z;, becomes a latent representation
of an individual object. The process is expressed as follows:

N (t) T
(t+1) (2 Wa) (hiWh) @)\
2y, :GRU< E softmax; hiWy, 2,7 |, ie{l,...,N}, ke {l,...,n}.
i=1 ( vD ) 0
(t)

where h; € RYD is the i-th input feature, z;,° € R1*D denotes the k-th slot state at iteration ¢,
Wy, Wy, and W,, € RP*P are shared linear projection matrices.

Given that decomposing process is unsupervised, to bind these slots to spatial support and regularize
discovery, we decode slots with a lightweight spatial-broadcast MLP (Seitzer et al.|[2022), obtaining

per-slot reconstructions hi, € RN*D and mask logits a € RY*1. Competition among regions is
enforced by a softmax across slots, my = softmaxk(ozk), And the optimized way is to reconstruct,
defined as below.

h=>home,  Lu=|h—h| )
k=1

3.2.2 HIERARCHICAL ARCHITECTURE

Traditional slot-based decomposition on real-world datasets limits the number of slots (typically
< 10) to ensure convergence and avoid collapse (Seitzer et al., 2022). To break this constraint
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while retaining stability, we take inspiration from evidence that human vision performs a progressive
decomposition of scenes into parts and relations, first establishing coarse structural descriptions and
then refining detail (Schyns & Oliva, [1994). Therefore, we adopt a hierarchical design in which
a first-stage decoupling extracts coarse, region-level visual priors and a second-stage decoupling
refines them into finer-grained priors. Concretely, we first obtain coarse-grained priors, denoted
2(1) e R™*4 and h(1) € RN*?, as described in Section We then treat the latter as the raw
features for the next level, apply the same refinement rule as in Eq[I} and concatenate the resulting

representations to obtain z(2) € R"* ¥4, A mirrored decoder predicts {iL,(f), al(f)}ﬁz:l with masks

m](f) = softmaxk.(osz)), yielding the reconstruction (2 = ZZ; il;f) 0 m,(f). We supervise

awareness formation at both levels with the total objective:
Loce = L&+ LE = [[AD = A+ [|A® = h]f5. ©)

In practice, we set n=>5, resulting in n2=25 fine slots, which retains training stability while provid-
ing finer region representations and adequate granularity. Ablation studies and visualization results
are provided in the Appendix [G|

3.2.3 SLOT-AWARE QUERIES

The slots encode structural cues of potential objects or regions. To infuse this information into the
decoder, we first project the slot representations through a linear mapper fi,p 0 that their dimension
matches that of the object queries. We then add them to the original queries Qobj € RM*da to obtain
the slot-aware queries as final decoder input:

2(2) = fmap (3(2)) € RnQqu’ Qaware = Qobj + 2(2)- (4)

This fusion endows slot-aware queries with object-level structural priors, enabling more domain-
invariant localization, while the original queries can be regarded as the weight distribution of the
visual priors.

3.3 CLASS-GUIDED SLOT CONTRAST

Existing Slot-aware mechanism receives no explicit semantic constraints, so some slot vectors zy,
tend to absorb domain-specific background noise. To steer the slots toward more domain-invariant
yet class-relevant object features, we introduce Class-Guided Slot Contrast (CGSC), shown in
Figure[3(b). CGSC maintains class prototypes online and imposes a contrastive loss, thus providing
implicit supervision to guide the slots towards their potential class attributes.

3.3.1 CLASS-PROTOTYPE MEMORY

Given the M decoder queries {g; }}, and their predicted classes ¢; € {1,...,C}, we compute a
temporary object queries prototype p. for each class by averaging queries of the same class.

_ 1 .

Pe= 5] > g, Qe={alé=c} )

2 €Qc

The global-class prototype memory P, is then updated with an exponential moving average (EMA):
Pe=pBP.+(1-p)pe, Bel0,1) (6)

3.3.2 WEIGHTED SLOT CONSTRUCTION

With h denoting the original features and m,(f) from Sectionm as the normalized attention mask,
the weighted slot zj, is defined as:

Zo=Y my h. 7)
i=1

2 . . . . .
Because mé ) measures the visual evidence assigned to each feature, this aggregation suppresses

slots dominated by background regions and keeps Zj, in the same representation space as the decoder
queries, generating a reliable measure of similarity to class prototypes.
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3.3.3 PROTOTYPE-SLOT MATCHING AND CONTRASTING

We first measure the cosine similarity between each weighted slot Z; and every decoder query g; to
form the matrix Sy; = ¢(Zk, ¢;). Applying the Hungarian algorithm (Kuhn,|1955) to S yields a one-
to-one assignment 7 (k) that pairs slot & with query ¢.(x). Because each query carries a predicted
class label ¢, (1), this assignment implicitly labels the slot as ¢, = Cr(x)-

Next, all weighted slots with the same label are averaged to obtain the slots prototype Z.:

56:%'25,“ Zo={k|&x=c}. (8)
‘CkEZc

Finally, we compute a contrastive loss (Oord et al.| 2018} (Chen et al., 2020) between the slot
prototypes Z. and the global-class prototypes P, as follows:

1 & exp(¢(Pe, Z:) /T
> 1o i : ) ©)
Z exp(¢(Pc, Zc/)/T)

=1

where 7 is a temperature hyperparameter and ¢(-, -) denotes cosine similarity. This loss pulls each
weighted slot toward its matched class prototype while pushing it away from prototypes of other
classes, driving the slots to capture class-specific, domain-invariant semantics.

Through the combined forces of class guidance and contrastive regulation, CGSC enables HSA
to disentangle reliable object representations without access to source images. Consequently, the
detector achieves fine-grained, class-relevant, and slot-aware adaptation to target domain.

3.4 TOTAL ADAPTATION OBJECTIVE

Given the filtered pseudo labels ), = {(l;j, ¢;) | pj > 7(s)}, where p; is the teacher’s confidence
and 7(s) is the threshold (details in Appendix , the student’s unsupervised detection objective
consists of a classification term and a box-regression term, where we use Focal Loss (Lin et al.,
2017) for classification and a combination of ¢; and GloU loss (Rezatofighi et al.l [2019) for box

regression. .
Eunsup =& Z |:£cls(fcls (xt)7 é]) + £b0x(fb0x (xt)7 8]):| . (10)

Vx| (bj,85)€P-
Then the complete loss that drives the student network combines the unsupervised detection loss
with the reconstruction loss L. and the contrastive 10ss Lcon:

Lioal = ﬁunsup + Acon Leon t Arec Lrec- (11)

3.5 GENERALIZATION ANALYSIS

We aim to theoretically characterize how our components interact with a DETR-based detector to en-
able reliable source-free adaptation on the target domain. In brief, our modules (i) contract domain-
specific background variance, (ii) enlarge cosine inter-class margins, and (iii) propagate the margin
gain through the decoder. Under standard regularity conditions detailed in the Appendix [A] these
effects combine into a risk descent bound for the target objective, with full statements and proofs
deferred to the Appendix

Theorem: Risk descent on the target domain.

Let R7(6) be the target objective in Egs. For the iterate 6; produced by minimizing Lye. +
AconLeon, there exist constants ¢y, co > 0 such that

ER7(0141) < ERr(0) — c1 A + c2 (€rec +07), (12)

where A, is the cosine-margin gain induced by prototype—slot InfoNCE (Eq. [9) and propagated by
slot-aware query fusion (Eq. El), while €, and o2 stem from reconstruction consistency (Eq. [3) and
bounded background.
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Table 1: Adaptation from Small-Scale to Large-Scale Dataset: Cityscapes — BDD100K. “SF”
refers to the source-free setting. “Base” denotes the base detector used by the model; “FRCNN”
denotes variants based on the Faster R-CNN family; “DETR” denotes variants based on the DETR
family. “Oracle” denotes an upper bound obtained by training on the target domain with ground-
truth annotations.

Method SF Base Person  Rider Car  Truck Bus Mcycle  Bicycle mAP
Oracle - DETR 68.2 53.2 84.0 67.7 67.9 54.1 54.7 64.3
DA-Faster(Chen et al.}|2018) X FRCNN 28.9 27.4 442 19.1 18.0 14.2 224 24.9
SFA(Wang et al.}[2021) X DETR 40.2 27.6 57.5 19.1 234 15.4 19.2 28.9
AQT(Huang et al.}[2022) X DETR 38.2 33.0 58.4 17.3 18.4 16.9 235 29.4
MRT(Zhao et al.}|2023) X DETR 48.4 30.9 63.7 24.7 25.5 20.2 22.6 33.7
DATR(Chen et al.}[2025) X DETR 58.5 42.8 73.4 26.9 39.9 242 373 433
SFOD(Li et al.,|2021) v FRCNN 31.0 324 48.8 20.4 21.3 15.0 243 27.6
SFOD-M(Li et al.[[2021) v FRCNN 324 32.6 50.4 20.6 234 18.9 25.0 29.0
PETS(Liu et al.||2023) v FRCNN 42.6 345 62.4 19.3 16.9 17.0 26.3 313
AZSFOD(Chu et al.|[2023) v FRCNN 332 36.3 50.2 26.6 244 22.5 28.2 31.6
TITAN(Ashrat & Bashir; 2025) v DETR 49.9 35.6 65.7 24.6 35.9 31.5 29.2 38.3
CGSA(Ours) v DETR 60.0 47.6 75.0 48.4 53.1 43.5 434 53.0

The margin term guarantees a monotone decrease in the classification component. The residual is
controlled by reconstruction quality and target background noise. Under a mild contraction condi-
tion (see Appendix [A)), the induced one-dimensional iterate converges and the expected target risk
decreases monotonically.

4 EXPERIMENTS

4.1 DATASET

We conducted experiments on five widely used object detection datasets to evaluate the performance
of our proposed method. (1) Cityscapes (Cordts et al., 2016) provides 2,975 training images and
500 validation images of high-quality urban street scenes. (2) Foggy-Cityscapes (Sakaridis et al.,
2018) extends Cityscapes by simulating fog in the same set of images, maintaining identical anno-
tations to assess robustness under degraded visibility. (3) BDD100K (Yu et al., 2020) is a diverse,
large-scale dataset with 100,000 driving images; in our experiments, we used the daytime subset
containing 36,728 training and 5,258 validation images. (4) Sim10K (Johnson-Roberson et al.,
2016)) offers 10,000 synthetic images, providing a large-scale synthetic-to-real adaptation bench-
mark. (5) KITTI (Geiger et al., 2013)) includes 7,481 real-world driving images captured from an
onboard camera in urban environments.

4.2 IMPLEMENTATION DETAILS

For source-domain training, we employ the official pretrained weights and follow the default opti-
mizer and learning rate settings. The HSA module was pretrained on the COCO dataset and further
updated jointly with the network, with A,... = 1.

For target-domain adaptation, we adopt the teacher-student paradigm with both the HSA and the
CGSC module, with \... = 1 and A.,,, = 0.05. During evaluation, we report performance using
the mAP @50 metric. We use RT-DETR (Zhao et al.,|2024) as our base detector. All experiments in
both the source pretraining and target adaptation stages are conducted on 4 NVIDIA A100 GPUs.
More details are provided in the Appendix B}

4.3 MAIN RESULTS

Cityscapes — BDD100K. We evaluate our method under the challenging domain adaptation
scenario from a small-scale, homogeneous dataset (Cityscapes) to a large-scale, diverse dataset
(BDD100K), as presented in Table[I] Our approach outperforms the state-of-the-art (SOTA) source-
free methods by nearly 15%, and also surpasses leading traditional DAOD methods by around 10%.
This significant improvement demonstrates the strong generalization capability of our framework,
particularly when transferring from limited to large-scale data. These advantages indicate the poten-
tial for future real-world deployment in more complex and scalable domain adaptation tasks.
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Table 2: Adaptation from Normal to Foggy Weather: Cityscapes — Foggy-Cityscapes.

Method SF Base Person Rider Car Truck Bus Train Mcycle Bicycle mAP
Oracle - DETR 55.6 55.8 752 44.8 63.5 56.1 45.6 522 56.1
DA-Faster(Chen et al.||2018) X FRCNN 29.2 40.4 43.4 19.7 38.3 28.5 237 327 32.0
SFA(Wang et al.|[2021) X DETR 46.5 48.6 62.6 25.1 46.2 29.4 283 44.0 413
AQT(Huang et al.|[2022) X DETR 49.3 52.3 64.4 27.7 53.7 46.5 36.0 46.4 47.1
AT(Li et al.}2022b) X FRCNN 43.7 54.1 62.3 319 54.4 49.3 352 47.9 474
MRT(Zhao et al.}|2023) X DETR 52.8 51.7 68.7 359 58.1 54.5 41.0 47.1 51.2
CAT(Kennerley et al.}[2024) X FRCNN 44.6 57.1 63.7 40.8 66.0 49.7 44.9 53.0 525
DATR(Chen et al.||2025) X DETR 61.6 60.4 74.3 35.7 60.3 354 43.6 55.9 53.4
SFOD(Li et al.|[2021) v FRCNN 21.7 44.0 40.4 32.6 11.8 253 345 343 30.6
SFOD-M(Li et al.[[2021) v FRCNN 255 445 40.7 332 222 28.4 34.1 39.0 335
LODS(Li et al.|[2022a) v FRCNN 34.0 45.7 48.8 273 39.7 19.6 332 37.8 35.8
AZSFOD(Chu et al.|[2023) v FRCNN 323 44.1 44.6 28.1 343 29.0 31.8 389 354
IRG(VS et al }|2023) v FRCNN 374 452 51.9 24.4 39.6 252 315 41.6 37.1
PETS(Liu et al.}[2023) v FRCNN 46.1 52.8 63.4 21.8 46.7 255 374 484 40.3
LPLD(Yoon et al.}|2024) v FRCNN 39.7 49.1 56.6 29.6 46.3 26.4 36.1 43.6 40.9
SF-UT(Hao et al.}|2024) v FRCNN 40.9 48.0 58.9 29.6 51.9 50.2 36.2 44.1 45.0
TITAN(Ashraf & Bashir|[2025) v DETR 52.8 51.7 68.0 432 65.5 41.8 46.0 48.7 522
CGSA(Ours) v DETR 49.6 53.1 68.6 43.7 62.1 54.3 445 49.3 53.2

Cityscapes — Foggy-Cityscapes. We evaluate our method under the challenging domain adapta-
tion scenario from clear weather (Cityscapes) to foggy conditions (Foggy-Cityscapes), as presented
in Table[2] Our approach outperforms all existing SF-DAOD methods and surpasses the majority of
traditional DAOD methods. These results demonstrate our modules effectively disentangle object-
level features in the target domain and guide them toward category-consistent semantics, leading to
more robust adaptation under weather degradation.

Sim10K — Cityscapes. This experiment
Table 3: Adaptation from Synthetic to Real Im- evaluates synthetic-to-real domain adaptation
ages: SimI0K — Cityscapes, Adaptation on from SimlOK to Cityscapes, focusing on the
cross-camera: KITTI — Cityscapes. The results ~car category. As shown in Table 3] our method

are reported using the “car” class. achieves t.he best pqrformance among all ap-
proaches in two settings. The results demon-
Method SF Base  S2C  K2C strate that even in single-class adaptation sce-
Oracle - DETR 799 799 narios (see Appendix [D|for implementation de-
DA-Faster{Chen et al] p018) X  FRCNN 419 418 tails), our model can achieve state-of-the-art
SFA(Wang et al.|[2021) X DETR 52.6 41.3
DATR(Chen et al.||2025) X DETR 64.3 533 performance'
SFOD{Li et al 2021) v FRONN. 423 436 KITTI — Cityscapes. This experiment eval-
SFOD-M(Li et al.}[2021) v FRCNN 429 44.6 . .
IRG(VS et al}[2023) v/ FRONN 452 469 uates from KITTI to Cityscapes, focusing on
AZSFOD(Chu et al.|[2023) v FRCNN 44.0 449 _ 1
e A A the car category across real-world datasets with
LPLD(Yoon et al][2024) v/ FRCNN 494 513 different viewpoints and camera setups. As
SF-UT(Hao et al.}|2024) v FRCNN 554 46.2 H :
TITAN(Ashrat & Bashir|[2025) v DETR 59.8 532 Shown m Table our methOd also aChleYeS the
CGSA(Ours) v DEIR 617 608 best performance among all approaches in two
settings. For the single-class setting, the imple-
mentation details of Section [3.3]are provided in
the Appendix

4.4 ABLATION STUDY

To evaluate the contribution of each component in our framework, we conduct an ablation study
over all datasets, as shown in Table The results show that incorporating HSA yields consis-
tent improvements across all datasets, demonstrating that structural, slot-based visual priors play a
crucial role in stabilizing target-domain localization. Building on this, CGSC consistently brings
additional gains by aligning slot representations with class semantics in a domain-invariant man-
ner. The improvements are stable across diverse domain shifts, which suggests that two components
are complementary, producing stronger source-free adaptation overall. See the Appendix [Fi& [G] for
additional ablation experiments.

4.5 ANALYSIS

4.5.1 VISUALIZATION OF QUERY

Figure 5| compares the target-domain feature distributions of the “Source Only” baseline and our ap-
proach. Unlike the scattered and overlapping features in the baseline, our approach produces clearer
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Figure 4: Ablation on four cross-domain Figure 5: The t-SNE visualization comparing feature
benchmarks. “Source Only” denotes the distributions of object queries on the Foggy-Cityscapes
baseline without adaptation, where the dataset between “Source Only” and our approach.
source-trained model is directly tested on

the target domain.

inter-class separation and tighter intra-class clustering. This suggests that HSA provides structured
visual priors that stabilize feature formation, while CGSC pulls slot representations toward class
prototypes, improving semantic alignment in the target domain. The resulting geometry is consis-
tent with higher mAP and supports the effectiveness of the proposed components.

4.5.2 QUALITATIVE RESULTS

Il person Il bicycle B rider I car B bus

Source Only Our Approach Ground Truth

Figure 6: Qualitative comparison of our method with the ”Source only” and TITAN. The red box
is enlarged to highlight and compare the detection results more clearly. Our method captures fine-
grained details more effectively, detecting distant objects that the other methods miss.

Figure [6] provides a visual comparison of the results on the Foggy-Cityscapes. The “"Source Only”
model detects just the nearby, larger objects. Although TITAN identifies the person on the left, it
misses some distant objects on the right. In contrast, our approach CGSA performs better, suc-
cessfully detecting the distant cars and bicycles obscured by dense fog and yielding more accurate
bounding boxes for the objects in the foreground. Notably, since the official TITAN implementation
is not publicly available, we re-implemented the method and report results from our reproduction.

5 LIMITATIONS

Our approach is tailored to DETR-based detectors because OCL and DETR share the same attention-
based computation, making their underlying logic consistent. Portability to two-stage or non-query
architectures remains to be established. In the transfer setting, we explore only object detection.
More vision tasks, such as classification and segmentation, should be covered in future work.

6 CONCLUSION

We introduce CGSA, the first SF-DAOD framework that integrates Object-Centric Learning into a
DETR-based detector by decomposing target images into hierarchically refined slot-aware priors,
and guiding them with semantics via class-guided contrast. Extensive experiments and in-depth
analysis demonstrate the effectiveness and robustness of the proposed components and the gener-
ality of the framework. The object-centric paradigm also opens a promising path for the privacy-
preserving domain transfer.
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A  PROOF

Why Guided Slots Form Domain-Invariant Priors and Yield Convergent Improvements in Source-
Free Target Adaptation?

A.1 STANDING SETTING AND NOTATION.

We consider a C-class detection task with image space X C R¥*Wx3 and label space ) of finite

sets of pairs (b,c) with b € [0,1]* and ¢ € {1,...,C}. The source and target joint distributions
factorize as P{y = PY Py and PYy = PYPY o

The learning protocol contains two phases. On the source pretraining, a DETR-based detector fy is
trained on Dg by the standard detection loss, yielding 6. On the target adaptation, only Dy ~ PL
is available; we maintain a student—teacher pair (65, 6;) initialized by 6y and update the teacher by

~

EMA 6, < 70, + (1 — ) 6,. Teacher predictions are turned into training targets via G(Y(z); ),
and the student minimizes E,, _pz [Cact (fo, (z), G(Y(2); K))].

We follow all the modules, losses, and notation as defined in the main text: hierarchical slot con-
struction and reconstruction losses (Egs.[TH3)), slot-aware query fusion (Eq.[)), class prototype main-
tenance (Eqs. [5HE), weighted slots, matching, and contrastive training (Eqs. [7H9), and the target-
domain objective (Eqgs.[TOHIT). The hypotheses HI-H3 below are assumed in all proofs.

A.2 HYPOTHESES

+ H1 Bounded background: the backbone feature can be decomposed as h = h°P + hbg
with E[hP8 | X] = 0 and Cov(h"8) < 021

* H2 Reconstruction consistency: the hierarchical reconstruction objective in Eq. [3] in-
duces a slot projection S(h) that is approximately identity on the object subspace S, i.e.,
EHS(h’) - HS(hObJ)HQ < €rec-

* H3 Prototype semantic stability: the class anchors P, maintained by Egs. P& [6] have
bounded drift across iterations, and enjoy a positive cosine margin w.r.t. same-class
weighted slots.

A.3 LEMMA 1 (VARIANCE CONTRACTION: WEIGHTED SLOTS SUPPRESS DOMAIN-SPECIFIC
BACKGROUND)

Claim. Let the weighted slot Z; be defined as in Eq.[7} Under H1 & H2,
- 02 2
Elz —h%)]" < €ree + mpo? k= |m?[; € (0,1). (A1)

ere j enotes the effective component o in the object subspace S. e quantity k, =
Here h%p) d he eff p f h in the obj bspace S. The quantity

(2)
k

lm,”||3 acts as a clear contraction factor.

Proof. Write h = hobi 1 hbe asin H1. Then by the convex-variance bound,
Var((mgf))Thbg) < ng) Hz o = ko’ (A2)
By the reconstruction consistency in H2, the slot projection S(h) is approximately identity on S,

ie., E||S(h) — IIs(h°®)||? < €rec. Identifying S(h) with the weighted aggregation above yields
equation This completes the proof.

A.4 LEMMA 2 (INFONCE ENLARGES COSINE INTER-CLASS MARGINS AND SUPPRESSES
CROSS-CLASS SIMILARITY)

Claim. Let the contrastive loss between class prototypes and slot prototypes be Eq. [9 i.e., an
InfoNCE/NT-Xent objective with positive pairs (P., Z.) and negatives (P., Z.s). Then the gradients
w.r.t. the similarities satisfy

aEcon 1- Tpos aEcon 7Tneg

= — <0, = > 0, A3
O5pos T OSneg T (A-3)
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where 7 are softmax weights and 7 is the temperature. Consequently, a gradient-descent step on
Lcon increases the same-class similarity and decreases the cross-class similarities, thereby enlarging
the cosine margin

Ay = (]EQD(PC,E |Y =¢) — ICI}QI;(EQO(PCI,E |Y = c)) (A4)

Proof. Write the InfoNCE loss in Eq. [9]for one anchor P, as

exp(Spos/T)
con — —1 ne
Feon =0 <exp<spos/r> Y xS /)

S 1
— ——I;OS + log(exp(spos/r) + E exp(sc,eg/r))7
' #c

(AS)

where sp0s 1= (P, z.) and s, ® := ¢©(Pe, Zer). Let

c!

o neg exp(Spos/T) exp(s®/T)
Z = exp(spos/7) + 3 exp(s5/7), Mo 1= SRV T) o O JT),

-~ 7Z Z
(A.6)
Then
OLcon 1 11 1 - Tpos
- 4 .z os = ——FF <0, A7
O5pos T + Z T eXP(Spos/7) T (AD
and for any negative ¢’ # c,
8£COH 1 1 neg e/
e = 7 - exp(s, ®/T) = - > 0. (A.8)

Therefore, under a gradient-descent update s < s — 170 L¢on/Os with step size 7 > 0, we have
Spos strictly increases and each s}, strictly decreases. Since the cosine margin A, is the difference
between the expected same-class similarity and the maximal cross-class similarity, these monotone
updates enlarge A, (in expectation over samples). The construction of (P, z.) via Egs. ensures
semantic stability of positives and well-defined negatives across steps. The gradient form above is
the standard derivative of the log-softmax used in CPC/SimCLR analyses (Oord et al., 2018}; (Chen

et al.,[2020). This completes the proof.

A.5 LEMMA 3 (MARGIN TRANSFER: SLOT-AWARE QUERY INFUSION YIELDS AT LEAST
LINEAR DECODER-MARGIN GAIN)

Claim. Let the decoder g be locally L-Lipschitz in its query input, and let Qaware = Qobj + Z as in
Eq.|4l We use the shorthand Z := #(?) for the stack of mapped level-2 slots. Then

. . 1 -
|marginge. (Qaware) — marginge. (Qob;)| > 7 1 2], (A.9)

where || Z||of denotes the component of Z aligned with the span of { P, }.

Proof. Let ¢(Q) := marging.(Q) denote the decoder-level margin, i.e., #(Q) = Spos(Q) —
maxe £ Sy °(Q), where each similarity score s(Q) = ¢(P, ¢(Q)) is composed with g. Write IT
for the orthogonal projector onto the prototype-aligned subspace S := span { P.} and decompose
Z = Zeg + Z, with Zeg := IIZ. Since g is locally L-Lipschitz, every score s(Q) is locally
L-Lipschitz in @, and so is ¢(Q) up to the 1-Lipschitz max operator. Assume moreover that on
the subspace S the map @ — ¢(Q) is locally bi-Lipschitz with constants (u, L), i.e., for all small
A e S, pllA]] < 19(Q + A) — g(@)|l < L||A|. (When the Jacobian Jg(Q) restricted to S is
nonsingular, such p > 0 exists by the inverse function theorem; see, e.g., (Rudin, [1976).)

By the mean value theorem for vector-valued functions (Rudin, |1976)),

1

(Qobi + 2) — H(Quny) = / (V(Qun; +12), Z) dt. (A.10)

0

14



Under review as a conference paper at ICLR 2026

Because V(@) lies in the pullback of S (the margin depends on inner products with {P.}), the
component orthogonal to S does not contribute, hence

1
9(Quts + 2) = 6(@uts)| = | [ (V6(@uis +¢2), Zaa) ] = int [96(Quts +42)] | Zn].
0 t€[0,1]

(A.11)
Along S, variations of ¢ are controlled from below by the bi-Lipschitz constant of ¢: ||V¢(-)|| > p
(the margin changes at least as fast as the feature change induced by g on S). Therefore,

|6(Qobj + Z) — $(Qobi)| = 1| Zegt]- (A.12)

Finally, since ;1 > 1/L after rescaling the margin (or when the condition number on S is at most
L/ ), we obtain

. . 1.5
}marglndcc(Qaware) - marglndcc(Qobj)| > Z HZHGH' (A.13)

This completes the proof.

A.6 THEOREM (A BASIC RISK DESCENT INEQUALITY ON THE TARGET DOMAIN)

Let the target risk R (6) be the expectation of the target-domain detection objective in Eq. plus
regularization in Eq.[TI} Under H1-H3 and per-step minimization, there exist constants ¢1,co > 0
such that

ERr(0i41) < ERp(6:) — c1 A + 2 (erec +07). (A.14)

Proof. We decompose the one-step change of the expected risk into (i) a margin-driven decrease in
the classification component and (ii) a residual term due to representation noise.

(i) Margin gain. By Lemma 2, the InfoNCE objective in Eq.[9]yields monotone updates that increase
the same-class similarity and decrease cross-class similarities, enlarging the cosine margin A; on the
slot—prototype pairs. By Lemma 3, this margin gain transfers through the decoder at least linearly.
Hence there exists a; > 0 such that the classification part of the risk satisfies

ELSE(01) < ELS(0:) — a1 Ay (A.15)

(ii) Residual noise. By Lemma 1, the weighted-slot aggregation contracts the background variance,
and the reconstruction consistency H2 bounds the object-subspace approximation error by €;... Con-
sequently, the representation noise contributes at most a term az (€. +2) to the change of the total
risk, for some ay > 0 that absorbs Lipschitz constants of the detection loss and the decoder.

Combining (i) and (ii), and noting that Egs. just add Lipschitz-continuous regularization
terms, we arrive at

ERr(0:41) < ERr(6:) — a1 A¢ + ag (erec + 02). (A.16)

Renaming ¢; := a; and ¢, := ay gives equation[A.T4] This completes the proof.

A.7 COROLLARY (CONVERGENCE VIA CONTRACTION)

Notation. Let n; € [0, 1] denote an effective noise level (e.g., an upper-bound proxy of classifica-
tion/matching error on the target domain) at step ¢, and let A; > 0 be the margin increment defined
above. Consider the iteration

P = — alp + B(eree +07), (A.17)

where oo > 0 summarizes the efficiency of contrastive/prototype alignment and query infusion, and
B > 0 captures residual effects of reconstruction error and background variance. By Lemmas 2-3,
there exists & > 0 such that Ay > k (n; — n*) for some fixed point n*.

Claim. If 0 < ok < 1 and B(€rec + 02) < (1 — ak) n*, then ® is a contraction on [0, 1]:
[@(n) — @) < (L—ak)lp—n| (V9" €[0,1]). (A.18)
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Hence, by Banach’s fixed-point theorem (Banachl [1922), n; converges to the unique fixed point
n*. Together with the risk inequality equation and Ay > k(n: — n*) 1, ERr(6;) decreases
monotonically and converges.

Proof. By definition, |®(n) — ®(n')| = «|A(n) — A()| < ak|n —17|. Letp = ak < 1;
contraction follows. Banach’s fixed-point theorem then yields existence/uniqueness and geometric
convergence. Summing equation [A.T4]over ¢ yields risk convergence. This completes the proof.

B EXPERIMENTAL DETAILS

B.1 SOURCE-DOMAIN PRETRAINING

During the source pretraining stage, we train the detector only on source-domain images. The
training is based on RT-DETR (Zhao et al.,2024) with official pretrained weights on COCO dataset
and its default optimizer and learning rate configurations. The HSA module, pretrained for 100
epochs on the COCO dataset, is included in the training process, and the reconstruction loss is
applied with a weight of \,... = 1. Training is conducted for 72 epochs with gradient clipping at a
maximum norm of 0.1. Mixed precision and exponential moving average are enabled, where EMA
is configured with a decay of 0.9999 and a warmup of 2000 steps.

The optimizer is AdamW. Backbone layers excluding normalization are trained with a learning rate
of le-5, encoder and decoder normalization layers are set with zero weight decay, and the remaining
parameters use a base learning rate of le-4 with 5 = (0.9,0.999) and weight decay of le-4. The
HSA module is optimized with a separate learning rate of le-5. Learning rate scheduling follows a
MultiStepLR strategy with milestones at 1000 iterations and a decay factor of 0.1, together with a
linear warmup scheduler of 2000 steps.

B.2 TARGET-DOMAIN ADAPTATION

During the target adaptation stage, we adopt a teacher-student architecture and run 12 epochs. The
teacher is updated by an exponential moving average with decay 0.9993, initialized from the source-
pretrained student.

The training objective in the CGSA component adds a contrastive term with coefficient A, = 0.05.
All other settings are identical to the source stage, including the use of HSA (with its reconstruction
loss weight A\... = 1 and its learning rate of 1 x 1075), the RT-DETR defaults, optimizer and
parameter groups (AdamW with the same learning rates, betas, and weight decay), learning-rate
scheduling and warmup, mixed precision, gradient clipping, and any remaining implementation
details. All experiments in both the source pretraining and target adaptation stages are conducted on
4 NVIDIA A100 GPUs.

During inference, the HSA remains active while CGSC is turned off, so the parameter count in-
creases only marginally and the model does not become overly large.

C DYNAMIC THRESHOLD SELECTION

During target-domain adaptation, following previous work, we employ a standard teacher-student
framework. At each step, the teacher network generates pseudo labels Y for a mini-batch of tar-
get images X;; the student network is trained with these labels and updates its parameters 6 via
backpropagation, while the teacher parameters ¢, are updated with an exponential moving average
(EMA):

O <70+ (1 —7)0s,v €10,1). (C.1D

Because supervision entirely relies on pseudo labels, selecting reliable ones is critical to stable
adaptation. Rather than fixing a single confidence threshold, we propose a cosine-adaptive strategy
that gradually relaxes the threshold as the student improves. Denote the current optimization step by
s and the total number of adaptation steps by S. The threshold 7($) € [Tmin, Tmax] iS computed as:

T(S) = Tmin T (Tmax - 7-min) : w (C2)
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This schedule starts with a strict filter (7 /= 7,,x) to suppress early noise, then gradually lowers
the bar, allowing more pseudo labels to participate once the detector becomes more accurate. The
smooth, non-monotonic decay avoids abrupt changes that could destabilize training and requires
no hand-tuned milestones. We also construct parameter ablation and comparative experiments, see

Appendix [F}

D SINGLE-CLASS PROTOCOL ON CLASS-GUIDED SLOT CONTRAST

In the datasets SIM10K—CITYSCAPES and KITTI—CITYSCAPES, detection is conducted un-
der a single-class protocol focusing exclusively on the car category. Concretely, SIM10K pro-
vides bounding boxes only for cars, while CITYSCAPES (used as the target domain) contains mul-
tiple traffic-related categories but evaluation is restricted to cars. Similarly, when transferring from
KITTI to CITYSCAPES, we retain only the car annotations and treat all non-car instances as back-
ground. This setting isolates domain shift without confounding class imbalance or multi-class inter-
ference, and it aligns with prevalent practice in the DA detection literature.

Under this single-class setting, our slot—query matching and prototype construction simplify accord-
ingly. Let Zj, be the k-th weighted slot and g; the i-th decoder query. We compute cosine similarities

Ski = ¢(Zk, @), (D.1)

and obtain a one-to-one assignment 7 (k) via the Hungarian algorithm applied to S. Since every
valid detection hypothesis is of the same semantic class (car), the assignment induces a trivial label
for each slot, i.e.,

¢ = car forall k, (D.2)

so that all slots fall into a single index set
Zear ={k|éy=car}={1,2,...,K}. (D.3)

We then form the single-class slot prototype by averaging all weighted slots:

1 -
Zear = 757 Z k- (D.4)
|anr| kEZo.,

The contrastive regulation in the multi-class case (which pulls each class-specific slot prototype
toward its corresponding global prototype while pushing it away from others) reduces here to a pure
alignment objective, because the InfoNCE denominator collapses when C' = 1. Let P.,, denote the
global prototype of the car class. The single-class contrastive loss becomes

Eii(?ngle = - (b(Pcaru 2car)7 D.5)

which maximizes the cosine agreement between the dataset-level car prototype and the slot-level
car prototype. Intuitively, this objective preserves the attractive force that consolidates car-specific
semantics across domains while discarding inter-class repulsion that is meaningless in a single-
class regime, thereby stabilizing representation learning and ensuring that the slots encode domain-
invariant, class-relevant information for cars. In implementation, this corresponds to setting C'=1 (so
that label indices are degenerate), computing a single dataset prototype of dimension D, and replac-
ing the multi-class InfoNCE with the alignment objective above. All other components, including
slot weighting, similarity-based matching (including the Hungarian refinement), and exponential
moving average updates of the dataset prototype, remain unchanged and operate identically under
the single-class constraint.

E PSEUDOCODE

Below is the pseudocode from Section [3.2.1)& for reference.
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Algorithm 1 Hierarchical Slot-Based Reconstruction

Requlre Input features i, number of slots n, slot dimension d, token length NV

2(1) < Encode h with slot attention
Broadcast z(1) across tokens
(R, mM)) < Decode into reconstruction and masks

Split A into n slot-specific feature maps

Initialize (2 « Gaussian distribution

for each coarse slot feature map do
Get fine slots < Encode with slot attention
Append to z(?)

: end for

: Concatenate into n? slots

: (h® ;m®)) < Broadcast z(? and decode

PRDIN RPN

—_
A S

: Normalize masks m(?) across tokens
w®) « Weighted combination of m(?) and input features h
. Stage 4: Reconstructlon Loss

¢ Lree = — h|2+[|A® = 2.
: Outputs: h(Q), 22 Mm@ w®

—_— = =
=N N W

—_
(2]

Nel

: Stage 1: Coarse Decomposition > obtain coarse slots

Stage 2: Fine Decomposition > refine into fine slots

: Stage 3: Weighted Slot Features > aggregate features

Below is the pseudocode from Section [3.2.3|for reference.

Algorithm 2 Slot-Aware Target Fusion with MLP

Require: Object queries tgt € REXEXD glots z € RE*"*P | slot mapper finap :

RBXSXD

Compute segment length s < L/n
Initialize fused segments F < &
for i = 1tondo
Extract target segment tgt; < tgt[:, (i — 1)s : is, ]
Select slot z; < z[,i: 9+ 1,]
Map slot to segment mapped_z; < fmap(2i)
Fuse with target segment téti <+ tgt; + mapped_z;
Append tgt; to F
end for
Concatenate fused segments tgt < Concat(F,dim = 1)
return tgt

TRYR R AUNhRN

Ju—

RBxlxD —

>BxsxD
>Bx1xD
>BxsxD

Below is the pseudocode from Section for reference.
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Algorithm 3 Class-Guided Slot Contrast (CGSC)

Require: Decoder queries {q;}}2, with predicted labels ¢;, weighted slots {7} |, class proto-
types {P.}<,

1: Stage 1: Class-prototype memory

2: foreachclassc=1...C do

3: Collect queries Q. < {¢; | & = ¢}

4: if Q. not empty then

S: Compute temporary prototype p. <— mean(Qc)
6: Update global prototype P, < SP. + (1 — 8)p.
7: end if

8: end for

°

Stage 2: Weighted slot construction
for eachslotk =1... K do
Aggregate features Zj, < >, mgfz - h;
: end for
: Stage 3: Prototype-slot matching
: Compute similarity matrix Sk; < &(Zk, gi)
: Get one-to-one assignment 7 (k) +— Apply Hungarian algorithm

— s e

16: Assign pseudo label ¢ < Cq(x)

17: Stage 4: Slot prototypes

18: for eachclassc=1...C do

19: Collect slots Z. < {k | ¢, = ¢}

20: if Z. not empty then

21: Compute slot prototype zZ. < mean({Zj }rcz.)
22: end if

23: end for

24: Stage 5: Contrastive objective

25: Compute loss:

< exp(p(Pe, Z.)/T)
; Z/ 1eXP(¢PuZ()/)

26: return L.,

F ABLATION: DYNAMIC THRESHOLD SCHEDULES

We investigate the effect of threshold scheduling on target-domain adaptation under a teacher—
student self-training framework. After an initial burn-in stage (where no pseudo-label filtering is
applied), different scheduling functions 7(s) are used, where s € [0, S] is the step index after burn-in
and S is the total number of adaptation steps.

Fixed threshold
Thixed (8) = Tiix- (D)
Cosine (our method, see the Appendix[C)
1+ cos(ms/S)
5 .

This schedule starts strict (7 &~ Tiax) and gradually decays to Ty,i, in a smooth and symmetric
manner.

TCOS(S) = Tmin + (Tmax - TIIlil’l) . (F2)

Exponential
Texp(s) = Tmin + (Tmax - Tmin) : EXP(_ﬁ 8)7 (F3)
where 3 > 0 controls the decay speed.

Sigmoid

7-sigmoid(s) = Tmin T (Tmax - 7-min) : (F4)

1+exp(—k(5-13))
where k controls the steepness of the curve.
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Table F.1: Comparison of threshold schedules. The cosine schedule with 0.55—0.40 achieves the
best result.

Range Method mAP

0.55-0.40 Cosine 53.2
0.80-0.40 Cosine 45.7
0.55-0.20 Cosine 51.2
0.80-0.20 Cosine 47.0

0.50 Fixed 50.9
0.40 Fixed 48.9
0.55 Fixed 50.8

0.55-0.40 Exponential ~ 50.5
0.55-0.40 Sigmoid 48.8

Analysis. Table summarizes the results (mMAP@50) under different scheduling strategies and
thresholds. The comparison shows that cosine scheduling consistently outperforms fixed thresholds.
In particular, the best cosine setting (0.55—0.40) achieves 53.2 mAP, which surpasses the best
fixed threshold (0.50, 50.9) by a margin of +2.3. This demonstrates the advantage of progressively
relaxing the confidence threshold rather than keeping it static throughout training.

The choice of threshold bounds also has a clear impact. When 7y, is set too high (e.g., 0.8),
pseudo-label coverage becomes overly restrictive in the early stages, leading to poor adaptation
results (45.7/47.0). Conversely, when 7p,i, is set too low (e.g., 0.2), the model admits too many
noisy pseudo labels in later stages, which also degrades performance (51.2/47.0). Moderate ranges,
such as 0.55—0.40, provide the most balanced trade-off between early precision and late recall.

When comparing different dynamic strategies under the same threshold range (0.55—0.40), the
cosine schedule again proves most effective (53.2), outperforming exponential (50.5) and sigmoid
(48.8). The key reason is that cosine decay (Eq. introduces a smooth and symmetric relaxation,
which avoids the overly aggressive early drop of exponential decay (Eq. and the saturation
effects that slow down sigmoid adjustment (Eq. [F4).

From a practical perspective, if hyperparameter tuning is limited, cosine scheduling with
(Tmax, Tmin) = (0.55,0.40) is a safe and effective default. In noisier domains, slightly higher 7in
may be beneficial to suppress noise, whereas in cleaner domains, reducing 7,,;, can further expand
recall without sacrificing stability.

G ABLATION: SLOT NUMBER AND ARCHITECTURE

To further justify our choice of HSA, we conduct both qualitative and quantitative ablations against
vanilla Slot Attention (SA) under different slot numbers. Figure [G.I]visualizes the per-slot masks;
Table [G.1] reports the detection performance (mAP@50). Unless otherwise stated, the training
schedule, backbone, and detector remain fixed; only the slot mechanism differs.

SA (num_slots = 5). With only 5 slots, SA roughly separates foreground from background but
remains too coarse: fine-grained structures (e.g., cars, pedestrians) are merged into large regions,
limiting the discriminability of object-level priors. This indicates that a small slot budget is insuffi-
cient for complex scenes.

SA (numslots = 25). Simply increasing the slot count to 25 does not yield finer decomposition.
Instead, we observe severe striping artifacts, where multiple slots collapse into redundant, nearly
vertical partitions, reflecting training instability under large slot numbers on real-world data. Why
are there fewer than 25 visible regions? Although we set 25 slots, the masks are produced via
competition across slots (softmax over slot logits). Collapsed or low-confidence slots receive near-
zero weights and thus become effectively inactive or overlap with dominant slots; the final argmax
visualization therefore does not exhibit 25 distinct segments.

HSA (numslots = 5 x 5). HSA performs coarse-to-fine decomposition: five stable coarse slots
are first established and then refined into 25 fine slots, avoiding the collapse of vanilla SA. As shown
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in Figure[G.T] HSA generates spatially coherent, object-aligned partitions that achieve both stability
and granularity.

Original Image HSA (num_slots=5*5)

s

SA (num_slots=5) SA (num_slots=25)

Figure G.1: Visualization of mask decomposition under different configurations. Top-left: Original
image. Top-right: HSA (5 x 5 slots). Bottom-left: SA (5 slots). Bottom-right: SA (25 slots). HSA
achieves both stability and granularity, while vanilla SA either under-segments or collapses.

Table G.1: Quantitative ablation on slot configurations (mAP@50). HSA consistently outperforms
vanilla SA under both small and large slot settings.

Method mAP

SA (num_slots = 5) 50.6
SA (num_slots =25) 50.2
HSA (5 x 5 slots) 53.2

Analysis. From Table [G.I] we observe the following: (i) SA-5 attains 50.6 mAP, matching the
qualitative observation that coarse segmentation captures only parts of the foreground. (ii) SA-25
fails to improve (50.2 mAP) due to slot collapse and redundancy—some slots become inactive and
provide little additional capacity. (iii) HSA (5 x 5) achieves 53.2 mAP, validating that hierarchical
decomposition delivers stable training and effective fine-grained priors.

Conclusion. HSA is superior to vanilla SA: (i) it alleviates under-segmentation with few slots; (ii)
it avoids collapse when the slot count is large; and (iii) it provides stable, fine-grained object-level
priors that benefit source-free adaptation.

H VISUAL AND QUANTITATIVE EVIDENCE FOR SLOT-BASED
DECOMPOSITION

As shown in Figure [H:1] across diverse driving scenes in the BDD100K, the slots consistently par-
tition the image into spatially coherent regions that roughly align with objects or large structures
(e.g., cars, road surfaces, buildings, sky, vegetation). Importantly, this behavior emerges without
any pixel-level supervision: HSA is trained purely with a reconstruction objective and competitive
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Figure H.1: Additional visualizations of the slot.

assignment among slots. As a result, the decomposition is not intended to match semantic seg-
mentation perfectly. This is main reason why some regions can span multiple semantic categories,
and some small objects may be merged with nearby background. This phenomenon is expected in
unsupervised slot-based models and has also been observed in prior object-centric learning works.

I VISUALIZATION OF THE SLOT DECOMPOSITION PROCESS

epoch 5 epoch 20 epoch 40

epoch 60 epoch 80 epoch 100

Figure I.1: Visualization of slot-based decomposition

To make the slot decomposition process more intuitive, we visualize the masks produced by HSA
at different training epochs on the same target image from the BDD100K, as shown in Figure [T}
At the beginning of training (epoch 5), the slots appear as irregular, fragmented patches that mix
cars, road, and buildings, indicating that the model has not yet learned meaningful groups. As
training proceeds (epochs 20-80), the decomposition becomes progressively more structured: slot
boundaries increasingly follow strong image edges and large regions such as road, sky, and building
facades are covered by a few coherent slots, while other slots start to focus on car-shaped regions.
By epoch 100, the slots stabilize into a consistent partition of the scene, where a few slots cover the
road, several specialize on individual cars or rows of cars, and others capture background structures
like buildings and sky.
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This evolution from noisy, mixed patches to clean, object-like regions illustrates how HSA progres-
sively learns an object-centric decomposition without any pixel-level supervision. The visualization
supports our claim that HSA provides meaningful structural priors as the slots specialize to coherent
regions that roughly correspond to objects or large parts over the course of training.

J  EMPIRICAL VALIDATION OF COSINE-MARGIN GAIN AND
RECONSTRUCTION CONSISTENCY

Average Cosine-margin Gain Reconstruction Loss Comparison

0.27 —e— L1 loss
—o— L2 loss

0.022
0.021 0.26
0.020
0.019

0.018

loss_reconstruction

o o
e e
£ g

avg cosine-margin gain
°

°

0.015

0.014

e
S

8 10 0 2 4 6
Epoch

(a) (b)

Figure J.1: Empirical validation of cosine-margin gain and reconstruction consistency

To further substantiate our theoretical analysis, we now provide training dynamics on the
Cityscapes—Foggy Cityscapes. The reported cosine-margin gain is computed exactly according
to the definition in Eq.(A.4) of the appendix, and for the reconstruction consistency of HSA we
additionally test two reconstruction objectives (L1 and L2) to verify that the observed convergence
behavior is not tied to a specific metric.

As shown in Fig[J.T(a), the average cosine-margin gain increases steadily during training, rising
from about 0.014 at the start to above 0.022 at the end. This monotonic upward trend empirically
supports our theoretical claim that CGSC enlarges the cosine margin between same-class and cross-
class prototype—slot similarities, which is a key condition in our risk-descent analysis.

Meanwhile, Fig[l.T(b) shows that the reconstruction loss decreases consistently over epochs under
both L1 and L2 formulations, indicating progressively better and more stable slot-based decompo-
sition, which we refer to as reconstruction consistency. Importantly, both reconstruction objectives
lead to the same qualitative trend of steady convergence, suggesting that our approach is robust to the
specific choice of reconstruction metric. Quantitatively, L2 reconstruction yields a slightly higher
final detection performance (53.2 vs. 52.5 mAP), so we adopt L2 as the default in CGSA.

Overall, the simultaneous increase of cosine margin and decrease of reconstruction loss provides
direct empirical validation of the key variables used in our theoretical analysis, strengthening the
connection between our risk-descent theory and practical training dynamics.

K VISUALIZATION OF DISTRIBUTION DIFFERENCES BETWEEN DATASETS

To further explore how COCO pretraining affects the generalization capability of HSA, we visualize
the feature distributions of COCO and all datasets used in our experiments, as shown in Figure K.1.
To ensure a fair comparison, we use the same frozen DINO backbone as in HSA pretraining, we
extract global image features and apply t-SNE for dimensionality reduction. As a reference case, we
also plot COCO vs Pascal VOC (first row, first column). These two classic datasets are both generic
web images with centrally framed, prominent objects, and their t-SNE embeddings significantly
overlap, confirming that their distributions are relatively similar.

In contrast, when we compare COCO with Cityscapes, Foggy-Cityscapes, BDD100K, Sim10K, and
KITTI, the two feature distributions are clearly separated in every plot. These datasets are all related
to driving scenarios but differ substantially from COCO and each other. For instance, Cityscapes,
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t-SNE of Image Features: COCO vs VOC t-SNE of Image Features: COCO vs Cityscapes  t-SNE of Image Features: COCO vs Foggy Cityscapes

- Ccoco - Ccoco e %3 - Ccoco
. Foggy Cityscapes

VOoC Cityscapes

t-SNE of Image Features: COCO vs BDD100K t-SNE of Image Features: COCO vs SIM10K t-SNE of Image Features: COCO vs KITTI

- coco - coco
SIM10K KITTI

. coco
BDD100K

Figure K.1: Visualization of distribution differences between COCO and all datasets used in our
experiments.

BDDI100K, and KITTI are captured from on-board cameras in real driving scenes, featuring ego-
centric viewpoints, long horizons, and structured road layouts. Meanwhile, Sim10K is a synthetic
dataset generated from a driving simulation game engine, and Foggy-Cityscapes is an augmented
version of Cityscapes with synthetic fog that alters low-level statistics.

All of these are very different from COCO’s general, static object photographs. Nevertheless, our
COCO-pretrained HSA consistently improves performance across all these benchmarks in the main
experiments. This strongly suggests that the COCO-pretrained HSA generalizes well, as evidenced
by its ability to transfer the object-centric structural prior learned from generic web images to very
different driving domains, rather than overfitting to COCO-specific statistics.

L ETHICS STATEMENT

This work focuses on proposing and analyzing methodological advances, with all experiments con-
ducted on publicly available datasets and open-source models. No private or sensitive data are
involved in this study. Our contribution lies in understanding the underlying mechanisms and im-
proving model performance, rather than deploying downstream applications that may raise ethical
or societal concerns. Therefore, this work does not pose direct risks of misuse.

M REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The main paper describes
the model architecture and training procedure in detail (Section [3). Additional implementation de-
tails and hyperparameters are provided in the Appendix[B] The pseudocode of the main algorithm is
presented in the Appendix [E] Furthermore, we commit to releasing the full source code and scripts
for data processing and experiments upon publication of the paper, ensuring that all reported results
can be independently verified and extended.

N THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used ChatGPT-5 to solely polish the readability and grammatical accuracy of selected
passages after the initial draft was completed.
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