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Abstract

Deep neural networks are known to be vulnerable to unseen data: they may wrongly assign
high confidence scores to out-distribution samples. Existing works try to handle the prob-
lem using intricate representation learning methods and specific metrics. In this paper, we
propose a simple yet effective post-hoc out-of-distribution detection algorithm named Test
Time Augmentation Consistency Evaluation (TTACE). It is inspired by a novel observation
that in-distribution data enjoy more consistent predictions for its original and augmented
versions on a trained network than out-distribution data, which separates in-distribution
and out-distribution samples. Experiments on various high-resolution image benchmark
datasets demonstrate that TTACE achieves comparable or better detection performance
under dataset-vs-dataset anomaly detection settings with a 60% ∼ 90% running time reduc-
tion of existing classifier-based algorithms. We also provide empirical verification that the
key to TTACE lies in the remaining classes between augmented features, which previous
works have partially ignored.

1 Introduction

Deep neural networks have shown substantial flexibility and valuable practicality in various tasks (Huang
et al., 2017; LeCun et al., 2015). However, when deploying deep learning in reality, one of the most concerning
issues is that deep models are overconfident when exposed to unseen data (Amodei et al., 2016; Goodfellow
et al., 2015). That is, although the deep models generalize well on unseen datasets drawn from the same
distribution (in-distribution data), it incorrectly assigns high confidence to unseen data drawn from another
distribution (out-distribution data). To handle the issue, out-of-distribution detection (Aggarwal, 2013) aims
to separate out-distribution data from in-distribution data.

Existing out-of-distribution (OOD) research is dedicated to finding and designing a metric that exhibits
significant differences in value between in-distribution and out-distribution data. Common methods include
tuning a well-trained model (Liang et al., 2018; Lee et al., 2018), training an extra OOD model (Schölkopf
et al., 1999; Tack et al., 2020), or some extra OOD functions (Tack et al., 2020; Sastry & Oore, 2020).
These methods introduce extra computation to handle the OOD task. A previous study used the pre-
dicted maximum softmax probability (MSP) of the trained model directly to distinguish out-distribution
data (Hendrycks & Gimpel, 2017). It is not only very simple but also achieves good results on some simple
tasks. However, it does not perform as well as the advanced algorithms mentioned above on complex tasks.
Inspired by the MSP algorithm, we extend their idea by using test time augmentation (TTA).

When testing deep neural networks, TTA utilizes the property that a well-trained classifier has a low variance
in predictions across augmentations on most data (Shorten & Khoshgoftaar, 2019; Shanmugam et al., 2020).
This phenomenon is only explored and verified on data drawn from the training distribution. However, this
property does not generalize to other different distributions.

To verify, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize the projected feature space of a
ResNet-34 (He et al., 2016) supervisedly trained with CIFAR-10 (Krizhevsky et al., 2009) in Figure 1. The
figure contains test samples from CIFAR-10 and SVHN Netzer et al. (2011) test sets. For each sample,
we plot the raw feature and the feature of its augmented version with a line connecting them. It shows
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Figure 1: T-SNE feature space visualization. We randomly pick 200 CIFAR-10 (in-distribution, ID) and
SVHN samples (out-distribution, OD). For each sample, we compute its vanilla feature and the feature of
its augmented version. Here we use flip. We draw lines between a pair of the vanilla feature point and the
augmented feature point. For each pair, the longer the line segment, the greater the feature difference.

that the relative distance between a CIFAR-10 pair (red-blue pairs with black lines) is statistically smaller
than that of an SVHN pair (green-orange pairs with gray lines). Similar observations widely exist across
networks, datasets, and augmentation methods (see Appendix A). Therefore, a well-trained model is not
robust towards augmentations of all distributions; Instead, the property only holds for in-distribution data.

Based on this observation, we develop our algorithm, named TTACE (Test Time Augmentation and Con-
sistency Evaluation), which has the following characteristics:

Effectiveness. TTACE achieves comparable or better detection performance on challenging benchmark
vision datasets for both supervised and unsupervised SOTA models. Efficiency. TTACE is a post-hoc
algorithm that is able to be directly applied to a plain classifier. It only computes two forward passes
to obtain the anomaly scores, making it more efficient than most popular classifier-based algorithms. We
provide a clock running time comparison in Figure 2. Prior-free. TTACE is dataset-agnostic and prior-
free. Therefore, we do not have to tune the hyper-parameters with out-distribution prior, which may be
hard or impossible to obtain during training. Adaptability. TTACE not only helps a plain classification
model to detect anomalies but also adapts to other representation learning out-of-distribution detection
algorithms (e.g., Tack et al.). Meanwhile, TTACE does not require access to internal features and gradients,
making it desirable when a white-box model is unavailable.

We further analyze the reasons for improved performance through empirical observations. TTACE gains
benefits from mutual relations between different augmentations of a single sample. We name all the classes
except for the maximum class as remaining classes. Specifically, we verify that the mutual relations be-
tween the remaining classes of a single sample’s different augmentations significantly diverge for in- and
out-distribution data. The idea is different from previous ones which focus on maximum softmax proba-
bility (Hendrycks & Gimpel, 2017; Liang et al., 2018; Hendrycks et al., 2019), mutual relations between
layers of a sample (Sastry & Oore, 2020), mutual relations between different samples (Tack et al., 2020) and
class-conditional distributions (Lee et al., 2018; Winkens et al., 2020). We will provide detailed evidence
for the huge statistical difference between the remaining classes on in-distribution and out-distribution data
later.

To conclude, our contributions are:

• We observe a significant difference in the mutual relations between in- and out-distribution data,
which is helpful for out-of-distribution detection.

• Based on this observation, we propose a new out-of-distribution detection algorithm, TTACE. It
achieves comparable or better results on the challenging benchmark vision datasets for both su-
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pervised and unsupervised dataset-vs-dataset anomaly detection. Meanwhile, it is computationally
efficient and free to out-distribution prior and the model’s internal weights/gradients.

• Empirical evidence for how TTACE works is provided, which is not often addressed by previous
OOD algorithms.

2 Related work

Out-of-distribution detection The terminology is also named dataset-vs-dataset anomaly detection. A
series of previous works focus on the dataset-vs-dataset image classification setting. Hendrycks & Gimpel
observe that correctly classified samples tend to have larger maximum softmax probability, while erroneously
classified and out-distribution samples have lower values. The distribution gap allows for the detecting
anomalies. To enlarge the distribution gap, Hendrycks et al. enhance the data representations by introducing
self-supervised learning and Liang et al. propose input pre-processing and temperature scaling. Input pre-
processing advocates fine-tuning the input so that the model is more confident in its prediction. Temperature
scaling introduces temperature to the softmax function. Besides maximum probability, Lee et al. introduce
the Mahalanobis score, which computes the class-conditional Gaussian distributions from a pre-trained model
and confidence scores. Tack et al. propose contrastive losses and a scoring function to improve out-of-
distribution detection performance on high-resolution images. Sastry & Oore utilize Gram matrices of a
single sample’s internal features from different layers.

Each of these classifier-based dataset level algorithms has their own characteristics. Prior out-distribution
knowledge is required to tune the parameters by some algorithms (Liang et al., 2018; Lee et al., 2018).
Input pre-processing (Hsu et al., 2020; Lee et al., 2018; Liang et al., 2018) is time-consuming because one
needs several times of forwarding and backpropagation. Scoring-based methods are computationally costly
since they rely on internal model features (Abdelzad et al., 2019; Lee et al., 2018; Sastry & Oore, 2020).
Our algorithm acts in a post-hoc manner, and utilizes test time augmentation and consistency evaluation to
achieve prior-free and computational friendly out-of-distribution detection (summarized in Table 4).

Data augmentations in out-of-distribution detection Using data augmentations in out-of-
distribution detection is not a piece of news. It has been incorporated by existing algorithms in both training
and evaluating phases. Training data augmentation usually aims to learn a better data representation. Pre-
vious works employ augmentations from self-supervised learning and contrastive learning in training phase
to gain better detection performance (Hendrycks et al., 2019; Tack et al., 2020; Zhou et al., 2021). Test data
augmentation usually relates to the calculation of anomaly scores. Golan & El-Yaniv utilize summarized
predicted probability over multiple geometric augmentations at test time to detect anomalies. Wang et al.
calculate averaged negative entropy over each augmentation as the detection criterion.

Differently, our TTACE emphasizes the importance of interrelationships. It uses test data augmentation
as well but with two main differences. First, we utilize the mutual relations between augmentations of a
single sample rather than treat each augmentation independently, which is not explored by previous works.
Second, we empirically verify that the performance improvement is attributed to the remaining classes, while
previous works empirically find augmentations are helpful without any reasons.

Beyond the algorithms we mentioned above, various methods of out-of-distribution detection are well sum-
marized by Chalapathy & Chawla. There are shallow methods such as OC-SVM (Schölkopf et al., 1999),
SVDD (Tax & Duin, 2004), Isolation Forest (Liu et al., 2008), and deep methods such as deep SVDD (Ruff
et al., 2018) and deep-SAD (Ruff et al., 2020) used to detect anomalies under different settings. We also
notice that model uncertainty is highly related to out-of-distribution detection. In fact, out-of-distribution
detection is exactly a task that assigns uncertainty (or anomaly) scores to samples, so the final goals are
similar. The main factor that distinguishes them is how such scores are generated (Hendrycks et al., 2019;
Seeböck et al., 2020).
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Algorithm 1 Computation pipeline of TTACE.
Input: A model f pre-trained on in-distribution data; A predetermined data augmentation method T
drawn from function space T ; A set of test data x1, x2, ..., xn containing in-distribution and out-distribution
data;
Output: Anomaly scores S(x1), S(x2), ...S(xn);
for i = 1 to n do

Augment xi with T to obtain T (xi);
Feed xi and T (xi) into f , and compute f(xi) and f(T (xi)) through forward passes;
S(xi) = 1 − ⟨f(xi), f(T (xi))⟩;

end for

3 Methodology

We present our simple yet effective algorithm TTACE, which is purely based on test time data augmentation
and consistency evaluation. The whole computation pipeline is shown in Algorithm 1. Notice that there
is no need to train a specific out-of-distribution detection model in our pipeline. Instead, the model in
Algorithm 1 refers to a simple image classifier.

Our algorithm adapts to both supervised and unsupervised pre-trained models. The performance in both
cases is covered in experiments. Below, we first explain the two cores of our algorithm in detail.

3.1 Data augmentation and feature space distance

We use data augmentation techniques without backpropagation at test time, which is similar to TTA, to
help enlarge the sensitivity gap between in-distribution and out-distribution samples. Formally, given test
data X = {x1, x2, x3, ..., xn}, a transformation function T drawn from transformation function space T , the
augmentation process can be described as xi → T (xi).

Notice that unlike previous algorithms which also incorporate transformations, our algorithm focuses on the
relationship between augmented feature pairs instead of treating each augmented output separately (Golan
& El-Yaniv, 2018; Tack et al., 2020). So the transformations discussed below are actually pairs (the original
sample and the transformed sample) instead of a single sample.

Transformation function space An immediate and important question is how to choose a suitable func-
tion space T . We know that there are numerous different transformation functions designed for computer
vision tasks. Testing all the transformations is exhausting. Fortunately, recent progress has revealed that
modern neural networks naturally show sensitivity to low-frequency components (Wang et al., 2020) and
visual chirality (Lin et al., 2020), especially for image tasks. Specifically, Wang et al. show that a well-
trained convolution neural network can exploit high-frequency components of a figure that are imperceivable
to human, and Lin et al. first challenge the flip-invariant assumption. Meanwhile, recall that the core
idea of TTACE is to utilize the different degrees of sensitivity property of neural networks towards in- and
out-distribution samples. Based on this intuition, our function space T contains Fast Fourier Transforma-
tion (FFT) and Horizontal Flip (HF). And TTACE extends these conclusions by revealing that while the
neural networks are known to be sensitive to high frequency components and visual chirality (horizontal
flip), the sensitivity is enhanced in out-distribution data.

FFT is a widely used efficient image processing technique (Bracewell & Bracewell, 1986; Oppenheim et al.,
1997). FFT converts an image from the space domain to the frequency domain using a linear operator. Then
the frequency representation can be inversely converted into the original image data by IFFT (Inverse Fast
Fourier Transformation). In TTACE, we propose to cut off partial sensitive high-frequency signals. Our
ablation experiments on the filter radius show that the out-of-distribution detection performance fluctuates
little within a wide range of filter radius (see experiment section). In the following text, we will use FFT100
to represent the FFT and IFFT transformation with a 100-pixel filter radius. Since Lin et al. discovered
visual chirality, there have not been many studies exploring how to exploit it. We introduce it into out-of-
distribution detection, and according to our observations, it indeed enlarges the sensitivity gap. We verify
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Algorithm Out-distribution dataset AVG. STD.CUB-200 Dogs Pets Places Caltech DTD
Rot+Trans 74.5±0.5 77.8±1.1 70.0±0.8 53.1±1.7 70.0±0.2 89.4±0.6 72.5 10.9
CSI Unlabeled 90.5±0.1 97.1±0.1 85.2±0.2 78.3±0.3 87.1±0.1 96.9±0.1 89.2 6.6
TTACEFFT100 (ours) 84.8±0.1 93.9±0.1 93.7±0.1 89.9±0.2 91.1±0.1 91.3±0.1 90.8 3.0
TTACEFlip (ours) 86.3±0.1 94.8±0.1 94.7±0.1 91.2±0.2 92.1±0.1 92.2±0.2 91.9 2.8

Table 1: AUROC (%) of ImageNet-30 results on unsupervised models. Higher average AUROC score is
reached by TTACE. On Places-365, our algorithm improves the SOTA algorithm by 12.9%. We also report
the average and standard variance of the AUROC values of all out-distribution datasets for each algorithm.
Bold denotes the best results.

through extensive experiments (Figure 1 and Appendix A) to show that the sensitivity is more significant in
out-distribution data with both transformations. Specifically, the distance of paired in-distribution sample
features is statistically shorter than that of paired out-distribution samples.

Remark All the discussions about the transformation functions above focus on the testing phase rather
than the training phase. There is no apparent relationship between the transformation functions used when
training the network and our transformation function space T at test time as far as we know. Exploring
such relationship is an interesting future work.

Other transformations are also worth a try. There are also other transformations which may satisfy the
sensitivity criterion such as adversarial examples. However, they may bring undesired randomness and high
computation burden, which is contrary to the original intention of TTACE. Additionally, employing data
augmentation is not a new idea in out-of-distribution detection as mentioned in related works. Curiously, we
implement rotation transformation in Appendix C, which is proposed by a previous work (Hendrycks et al.,
2019), although no previous researches reported networks’ sensitivity of rotation as far as we know.

3.2 Consistency Evaluation

Unlike previous works that ignore the interaction between different transformations of a sample, our anomaly
score evaluates the relations between augmentations of a single sample in a simple but effective form. With a
model f trained on the training (in-distribution) data, we denote the softmax output of x as f(x). Suppose
we fix a transformation method T . The consistency score of a given data x is defined as the inner product
of the model output of x and T (x), which is ⟨f(x), f(T (x))⟩.

To further enlarge the gap of the model output for in- and out-distribution data, we use a fixed temperature
scaling technique. Given a sample x, we denote the softmax output with temperature scaling parameter t
as f(x; t). And, define our final anomaly score for a given sample x as

S(x) = 1 − ⟨f(x; t), f(T (x; t))⟩. (1)

Based on the observation (Figure 1), the model f tends to make more consistent outputs for in-distribution
data than out-distribution data. Ideally, S(x) should be close to 0 for in-distribution data and S(x) should
be approximately 1 for out-distribution data.

4 Experiments

4.1 Baseline algorithms and metrics

In out-of-distribution detection, algorithms with different settings often cannot be measured simultaneously.
For example, some algorithms focus on the one-class-vs-all setting (Ruff et al., 2018; Golan & El-Yaniv,
2018; Wang et al., 2019; Gong et al., 2019) (a.k.a. anomaly detection), while others focus on the dataset-
vs-dataset setting (Liang et al., 2018; Zhou et al., 2021) only. There are also algorithms that cover multiple
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settings (Hendrycks et al., 2019; Tack et al., 2020). Since our algorithm relies on the remaining classes, i.e.,
multiple classes in the training set, those one-vs-all algorithms are not compared. The SOTA algorithm
of advanced dataset is CSI (Tack et al., 2020). It mainly benefits from better representation learned by
contrastive learning. We also cover MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Maha-
lanobis (Lee et al., 2018), and Rot (Hendrycks et al., 2019) as baselines. The Rot algorithm also uses the
transform during the test phase but in a different manner. Specifically, it uses the negative log probability
assigned to the true rotation to improve performance.

Following previous works (Hendrycks et al., 2019; Lee et al., 2018; Tack et al., 2020), we use the AUROC (Area
Under Receiver Operating Characteristic curve) as our evaluation metric. It summarizes True Positive
Rate (TPR) against False Positive Rate (FPR) at various threshold values. The use of the AUROC metric
frees us from fixing a threshold and provides an overall comparison metric.

4.2 Dataset settings

Dataset settings are diverse in out-of-distribution detection. We mainly consider the advanced Ima-
geNet (Deng et al., 2009) settings. ImageNet-30, a subset of ImageNet, is the commonly used benchmark
ImageNet setting. Beyond that, we also conduct experiments on other larger ImageNet settings, including
the full set settings and three subset settings, to evaluate the generalization ability of TTACE.

The ImageNet-30 subset benchmark is used in relevant researches (Hendrycks et al., 2019; Tack et al., 2020).
The corresponding out-distribution datasets includes CUB-200 (Wah et al., 2011), Stanford Dogs (Khosla
et al., 2011), Oxford Pets (Parkhi et al., 2012), Places-365 (Zhou et al., 2018) with small images (256*256)
validation set, Caltech-256 (Griffin et al., 2007), and Describable Textures Dataset (DTD) (Cimpoi et al.,
2014).

For the full-size ImageNet setting, the whole validation set is treated as the in-distribution test set. Since
the ImageNet training set already contains all-embracing natural scenery, the corresponding out-distribution
dataset is chosen to be a publicly available artificial image dataset from Kaggle1. We use the first 50000
figures since the ImageNet validation dataset is of the same size. Some examples of the dataset are depicted
in Appendix B. We will call this setting ImageNet vs. Artificial. We also conduct experiments on variants
of ImageNet such as ImageNet-R and ImageNet-A in Appendix C.

Beyond that, we also validate our algorithm on several public ImageNet subset combinations introduced by
other works (Geirhos et al., 2019; Tsipras et al., 2020) and public sources2.These additional three ImageNet
subsets are denoted as Living 9, Geirhos 16, and Mixed 10. The out-distribution categories are randomly
selected from the complement set. The detailed subset hierarchy and configuration are shown in Appendix B.

We notice the performance of out-of-distribution detection is affected by the trained classifiers. So we train
networks with three random seeds per setting and report the mean and variance. The training details are
in Appendix G.

4.3 Detection results

This section covers the main out-of-distribution detection results including the ImageNet-30 (Table 1), the
full ImageNet setting (Table 2), and three ImageNet subset settings(Table 3).

ImageNet-30 For the ImageNet-30 benchmark, we adapt the TTACE to the unsupervised CSI model
by substituting the predicted probabilities in Eqn. (1) with output features (512 dimensional tensors). The
results are shown in Table 1. TTACE outperforms SOTA algorithms in three of the OOD datasets and
reaches a better average AUROC value. At the same time, TTACE achieves the smallest average standard
variance, indicating that it exhibits robustness to out-distribution dataset shift.

1https://www.kaggle.com/alamson/safebooru
2https://github.com/MadryLab/robustness
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Algorithm Architecture
ResNet-50 DenseNet-121

MSP 81.05 79.81
TTACEFFT100 (ours) 92.08 90.84
TTACEFlip (ours) 90.20 89.36

Table 2: AUROC (%) of full ImageNet vs. Artificial dataset on the pre-trained torchvision models (Paszke
et al., 2019).

Architecture Algorithm ImageNet subset settings
Living 9 Geirhos 16 Mixed 10

ResNet-50

MSP 95.32±0.15 90.06±1.37 95.29±0.06
ODIN 96.78±0.36 82.35±0.70 95.92±0.78
Mahalanobis1 64.21±3.31 64.31±1.96 71.33±8.11
TTACEFFT100 (ours) 97.17±0.20 92.53±0.67 97.25±0.13
TTACEFlip (ours) 97.29±0.19 92.82±0.68 97.38±0.15

DenseNet-121

MSP 95.57±0.07 91.76±0.09 94.99±0.40
ODIN 96.61±0.52 86.61±4.36 96.49±0.83
Mahalanobis2 49.01±2.95 59.26±5.83 65.52±3.88
TTACEFFT100 (ours) 97.21±0.07 93.10±0.24 96.82±0.35
TTACEFlip (ours) 97.26±0.08 93.23±0.22 96.80±0.33

1,2 We use the official code and hyper parameter settings of the paper. The implementation details
are in Appendix F.

Table 3: AUROC (%) of ImageNet subset results on supervised models. TTACE has a uniform performance
improvement on all settings. Bold denotes the best results.

ImageNet For the full ImageNet vs. Artificial setting, we directly download the pre-trained model from
Pytorch. Since the weights of the downloaded model are trained for image classification, for fair comparision,
we only compare our post-hoc TTACE with the MSP algorithm. The performance is shown in Table 2.

ImageNet subsets For the other three subset settings, Living 9, Geirhos 16, and Mixed 10, we compare
TTACE with supervised algorithms listed in Table 3. We can see that TTACE is more efficient and outper-
forms all counterparts. All the compared algorithms are implemented according to the original paper and
code except necessary modification of ImageNet figure size. Implementation details are stated in Appendix F.

Discussion Zhou et al. Zhou et al. (2021) report that severe performance degradation of the Maha-
lanobis (Lee et al., 2018) exists when generalizing to other datasets due to validation bias. In order to
verify whether TTACE also has similar problems, we conduct experiments on CIFAR-10 based settings to
test the generalization ability of TTACE. Limited to space, the detection results are in Appendix H. Our
experiments lead to a similar conclusion as Zhou et al. that simpler algorithms generalize better on different
settings. The results also show that TTACE can not only achieve better results on advanced datasets, but
also has stable generalization performance on low-resolution datasets such as CIFAR-10.

4.4 Algorithms running time

We show the computational costs of all considered algorithms in this section since running time is important
in practical use. We run all experiments on an RTX3090 graphics card.

The post-hoc algorithms, ODIN and TTACE, do not include a training phase, while the Mahalanobis needs a
little bit of time to train. All implementations are based on official code sources. Figure 2 shows that TTACE
only requires 10% ∼ 40% running time of advanced algorithms while maintaining comparable or better
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Algorithm Access to the
internal weights

Out-distribution
data prior

Parameters
search

Computational
cost

ODIN (Liang et al., 2018) Not Req. Req. Req. 1FP+1BP+1FP

Mahalanobis (Lee et al., 2018) Req. Req. Req. 1FP+k×(1FP+1BP+
1FP)1+Regression2

TTACE (ours) Not Req. Not Req. Not Req. 2FP
1 Compute feature mean and covariance of k selected layers.
2 Regression on the computed Mahalanobis score.

Table 4: Training and testing costs of highly related (classifier-based) algorithms. Running time experiments
and detailed explanations are shown in Figure 2 and discussed in the algorithm running time section. TTACE
actis in a post-hoc manner and only requires two forward passes to get the score. (FP: forward pass. BP:
backpropagation. Req.: Required.)

ODIN Mahalanobis TTACE
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ImageNet subset runtimes on ResNet-50
search a single param setting
search all param settings

Ours

Figure 2: Average classifier-based algorithm running time on ImageNet subset Living 9. For algorithms
that require parameter search, we provide the total time of searching all parameter settings and the time of
a single search. TTACE has the minimum time consumption.

detection results (Table 3). The difference in running time is mainly due to the use of different techniques
as summarized in Section 2 and Table 4. The number of parameter searching groups comes directly from
the original papers and codes. The running time of CSI is missing because introducing contrastive learning
is often considered much more time-inefficient than plain training which is the default training methods of
the three algorithms in Figure 2. The details, criteria for choosing comparison algorithms and running times
on other network architectures are stated in Appendix E.

4.5 Ablation studies for filter radius and temperature

Performance tables in this paper include several different augmentation methods of TTACE. Although the
AUROC values fluctuate with different augmentation methods and filter radius, the performance is similar.
With linear searching across the FFT filter radius and temperature settings, we demonstrate that they have
a small effect on the out-of-distribution detection performance within a wide range.

For the FFT filter radius, we provide ablation studies across a wide range of filter radius settings, ranging
from 40 to 160 pixels, in Figure 3. Among all settings, TTACE does not degrade much and still outperforms
other algorithms as shown in Table 3, which demonstrates that the performance of TTACE is not very
sensitive to the filter radius. A possible reason is that the energy is highly concentrated in the low frequency
space instead of high frequency parts for images. More ablations of other settings are in Appendix I.
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Figure 3: Detection AUROC with different radius of the FFT filter. Flatter curves mean less sensitivity to
parameters.
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Figure 4: Detection AUROC with different temperature. Flatter curves mean less sensitivity to parameters.

Unlike the previous algorithms (Lee et al., 2018; Liang et al., 2018), which consider large-scale candidates of
temperature scaling (e.g., from 1 to 1000) and then do the grid-search with prior out-distribution knowledge,
we empirically find that the best temperature for our method is stable around 5 and the performance does
not decrease much within the considered wide temperature range. All our experiments set the temperature
parameter to 5 if not specified. Ablation studies for temperature parameter are shown in Figure 4, and more
results on other settings can be found in Appendix J. All curves show that TTACE is not sensitive to the
temperature parameter, thus we do not have to tune it with out-distribution prior.

5 Empirical analysis

In this section, we will explain where performance improvement comes from empirically.

5.1 Empirical analysis of using remaining classes probability

Our anomaly score (Eqn (1)) adds up all class probabilities rather than focusing only on the maximum
predicted probability (Hendrycks & Gimpel, 2017; Hendrycks et al., 2019). The main difference between
consistency evaluation and maximum predicted probability comes from the remaining score Srem, defined as

Srem = ⟨f(x), f(T (x))⟩ − fj(x)fj(T (x)), (2)

where j = arg max fj(x) is the predicted class with the highest probability of the input x.

Figure 5 shows the beneficial effect of including the remaining classes. First, Figure 5(a) presents the
distribution of maximum probability fj(x). Notice that the x axis is evenly divided into several intervals.
Then, for samples within each interval, we calculate the mean and variance of the remaining scores Srem, as
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Figure 5: Figures showing the effect of remaining classes of a pre-trained ResNet-50. Full ImageNet valida-
tion set and the Artificial dataset (see Section 4.2) are treated as in- and out-distributions respectively. (a)
Maximum probability distributions of in- and out-distribution samples. (b) Mean and variance of remaining
scores within each slot (Pmax − ϵ, Pmax + ϵ). (c) Distributions of inner product I of in- and out-distribution
samples. Note that our anomaly score S(x) = 1 − I.

Figure 5(b) shows, where the line is the average and the shaded area is variance. More specifically, to draw the
Figure 5(b), we first evenly divide the interval (0, 1) in Figure 5(a) into 50 parts. Then we pick one interval
(Pmax − ϵ, Pmax + ϵ), select all the samples whose maximum predicted probability fj(x) is between (Pmax −
ϵ, Pmax + ϵ), and compute the mean and variance of those selected samples’ remaining scores Srem. Notice
that the reaming classes does not contain class j. For every interval, we process the in- and out-distribution
data separately indicated by the red and blue lines. Recall that the goal of out-of-distribution detection is
to decrease the overlap sample number from the two distributions. Intuitively, samples in Figure 5(a) from
both in- and out-distributions with similar Pmax values (i.e., samples from the same interval) are mixed,
which hinders out-of-distribution detection. Figure 5(b) shows that for samples within the same interval, the
remaining scores of the in-distribution samples are statistically larger than that of out-distribution samples.
Therefore, adding the remaining scores gives different momentum to the mixed samples located in the same
interval in Figure 5(a), and the momentum of the in-distribution samples is larger (Figure 5(b)), which
makes the two distributions that originally coincided to be distinguished. When this process happens in
every interval, we obtain our inner product scores (1 − S(x)) as depicted in Figure 5(c), which improves
the maximum probability method from Figure 5(a). Comparing the maximum probability (Figure 5(a))
and consistency evaluation methods (Figure 5(c)), our method is more discriminative. Generally, a larger
vertical gap in Figure 5(b) indicates a higher performance improvement. This empirical analysis is consistent
with our numerical results in the experiment section. Similar observations across network architectures and
datasets can be found in Appendix D.

6 Limitation

Although TTACE is effective and easy to be implemented, it has its inherit limitations. TTACE may
fail under some adversarially designed synthetic datasets, e.g., a transformation-invariant vision dataset.
For example, it is obvious that the HF transformation takes no effect when we artificially design a mirror
symmetrical dataset. In this case, we have f(x) = f(T (x)) and the feature space distance like Figure 1 will
not be sensitive to the in- and out-distribution samples and the performance will decrease. Fortunately, we
have not met such adversarial cases in real-world datasets.

7 Conclusion

In this paper, we propose an elegant (simple yet effective) dataset-vs-dataset vision post-hoc out-of-
distribution detection algorithm, TTACE, which reaches comparable or better detection performance with
current advanced and SOTA algorithms. It largely reduces the computational costs, demands no specific
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network architectures, no access to the internal feature, and no prior out-distribution data knowledge. We
empirically show that TTACE gains performance improvement from the remaining classes, which are ignored
by some previous works.
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A Test time augmentation feature space under different data distributions

We verify the observation mentioned in Section 1 across architectures, dataset settings, and augmentation
methods in Figure 6. Due to the resolution problem, some images may be needed to zoom in to reflect
the fine details we described. For each figure, we randomly pick 100 in-distribution samples and 100 out-
distribution samples. For each pair of samples, a longer line segment means the distance in the projected
feature space is large, leading to a smaller inner product value. In general, all the out-distribution samples
in each subfigure have a statistically larger feature difference, compared to in-distribution samples. The
dataset names, architectures, and transformation methods are annotated in each title of the subfigures.
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(a) FFT22 transformantion on DenseNet-
121 for CIFAR-10 vs. SVHN
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(b) Flip transformantion on ResNet-34
for CIFAR-10 vs. SVHN
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(c) Flip transformantion on DenseNet-
121 for CIFAR-10 vs. SVHN
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(d) FFT40 transformantion on ResNet-50
for ImageNet Living 9 setting
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(e) FFT40 transformantion on ResNet-50
for ImageNet Geirhos 16 setting
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(f) FFT40 transformantion on ResNet-50
for ImageNet Mixed 10 setting
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(g) Flip transformantion on ResNet-50 for
ImageNet Living 9 setting
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(h) Flip transformantion on ResNet-50
for ImageNet Geirhos 16 setting
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(i) Flip transformantion on ResNet-50 for
ImageNet Mixed 10 setting
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(j) FFT40 transformantion on DenseNet-
121 for ImageNet Living 9 setting
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(k) FFT40 transformantion on DenseNet-
121 for ImageNet Geirhos 16 setting
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(l) FFT40 transformantion on DenseNet-
121 for ImageNet Mixed 10 setting
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(m) Flip transformantion on DenseNet-
121 for ImageNet Living 9 setting
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(n) Flip transformantion on DenseNet-
121 for ImageNet Geirhos 16 setting
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(o) Flip transformantion on DenseNet-
121 for ImageNet Mixed 10 setting

Figure 6: More feature space projection examples across networks, datasets and augmentation methods.

B Dataset construction and examples

We show the detailed WordNet IDs and corresponding classes of each ImageNet subset in Table 5. And some
examples of the Artificial dataset are shown in Figure 7.
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Subsets In-distribution classes & WordNet IDs Out-distribution classes & WordNet IDs

Living 9

dog n02084071 furniture n03405725
bird n01503061 oven n03862676
arthropod n01767661 aircraft n02686568
reptile n01661091 bicycle n02834778
primate n02469914 musical instrument n03800933
fish n02512053
feline n02120997
bovid n02401031
amphibian n01627424

Geirhos 16

aircraft n02686568 insect n02159955
bear n02131653 salamander n01629276
bicycle n02834778 clothing n03623556
bird n01503061 dophin n02068974
boat n02858304 reptile n01661091
bottle n02876657
car n02958343
cat n02121808
char n03001627
clock n03046257
dog n02084071
elephant n02503517
keyboard n03614532
knife n03623556
oven n03862676
truck n04490091

Mixed 10

dog n02084071 furniture n03405725
bird n01503061 fish n02512053
insect n02159955 knife n03623556
monkey n02484322 keyboard n03614532
car n02958343
feline n02120997
truck n04490091
fruit n13134947
fungus n12992868
boat n02858304

Table 5: ImageNet subsets classes and the corresponding WordNet IDs.

C Additional experiments

We conduct additional experiments. Limited to space, we put these less relevant experiments here.

First of all, we evaluate ImageNet vs. ImageNet-R and ImageNet vs. ImageNet-A with ResNet-50 and
DenseNet-121. The classifier parameters are downloaded from Pytorch official implementation. The AUROC
values are shown in Table 6 and Table 7. Although TTACE achieves the best performance, we are not sure
whether treating ImageNet-R and ImageNet-A as out-distribution datasets is appropriate since they share
the same categories as ImageNet. In the authors’ opinion, out-of-distribution detection is a task where the
in- and out-distribution do not share the same categories. And the categories of in- and out-distribution
public benchmark dataset and the dataset settings in our main text are different.

Secondly, we try to use rotation as the transformation function in TTACE (denoted as TTACERot*).
Notice that we do not propose to use rotation in practice. We perform this experiment because the rotation
transformation has been reported to be effective with another technique in other works Hendrycks et al.
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Figure 7: Some examples from the Anime dataset.

Algorithms ImageNet-R ImageNet-A
MSP 80.55 82.49
TTACEFFT100 (ours) 87.97 84.68
TTACEFlip (ours) 87.74 85.21

Table 6: AUROC values on ResNet-50 of ImageNet vs. ImageNet-R and ImageNet vs. ImageNet-A. Bold
denotes the best results.

(2019). However, since the core rule of the transformation space is sensitivity as discussed in Section 3.1,
and we are not aware of any work that studies the sensitivity of neural networks to rotation, it may not be
a suitable transformation. Nevertheless, we report the results in Table 7 to interested readers.

Thirdly, we also implement the original Rot+Trans algorithm on the full ImageNet and three subset settings.
We do not put the results into the main text since the model parameter is separately trained apart from the
model in Table 3. We directly apply the original Rot+Trans to the following settings. The results are shown
in Table 9.

D Remaining score effect

More examples showing the effect of the remaining classes across network architectures and datasets are
shown in Figure 8 and Figure 9. Similar to Figure 5, each row contains (a) Maximum probability distributions
of in- and out-distribution samples. (b) Mean and variance of remaining scores within each slot (Pmax −
ϵ, Pmax + ϵ). (c) Inner product (ours) distributions of in- and out-distribution samples.

E Detailed computational cost description of highly related algorithms

In Table 4, we briefly summarize the extra training and testing computational cost of highly related (standard
classifier-based) algorithms. But we did not provide details because of space limitation. In this section, we
will describe the details to clarify.

E.1 ODIN

After obtaining a standard classification model, ODIN requires input pre-processing, which first needs a
forward pass to compute the loss, then a backpropagation to modify the input, and finally a forward pass
again to calculate the final predicted probability values. The searching process of hyperparameters like noisy
magnitude and temperature demands prior out-distribution knowledge.
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Algorithms ImageNet-R ImageNet-A
MSP 78.82 83.29
TTACEFFT100 (ours) 86.27 84.76
TTACEFlip (ours) 85.71 85.33

Table 7: AUROC values on DenseNet-121 of ImageNet vs. ImageNet-R and ImageNet vs. ImageNet-A. Bold
denotes the best results.

Algorithms ResNet-50 DenseNet-121
TTACERot90 81.53 80.29
TTACERot180 82.71 80.32
TTACERot270 81.58 82.07

Table 8: AUROC values on ResNet-50 and DenseNet-121 of ImageNet vs. Artificial. Note that no previous
work has reported the sensitivity of networks to rotation transformation, so we do not recommend incorpo-
rating rotation into the transformation function space.

E.2 Mahalanobis

Mahalanobis method assumes that the features of the in-distribution dataset follow a Gaussian distribution.
It first needs forward all training samples to compute feature mean and variance. And then, it adopts a
similar idea from input pre-processing, thus requires two forward passes and one backward pass to record
the internal feature at test time. Meanwhile, the Mahalanobis method does a grid search across k (pre-
determined) internal layers and several noise magnitude values. The best setting is selected with the help
of prior out-distribution knowledge. After recording all the features of the test samples, it finally trains a
regression model and gives final anomaly scores of test samples.

E.3 Ours

The computational cost of TTACE is almost the same as doubling testing a test point. We only need two
forward passes per sample to compute the anomaly score. The pipeline is shown in Algorithm 1.

E.4 Running time of classifier based algorithms

For experiments in this section, we run all the running time experiments on an RTX 2080Ti graphic card.
We only consider the CIFAR-10 vs. SVHN setting since the proportion of running time does not change with
different datasets. For DenseNet-100, we conduct experiments similarly and the result is shown in Figure 10.
And we omit the common classifier training time.

For ODIN, we slightly simplify the search space. According to the original ODIN paper, there are 210 times
of searches in total. We only choose 44 among the 210 settings, which are useful in the CIFAR-10 vs. SVHN
setting Liang et al. (2018). The Mahalanobis algorithm demands recording the mean and variance of the
training samples, which takes about 19 seconds for the CIFAR-10 dataset in ResNet-34. This process will
take more time if the training sample size increases. We follow the hyperparameter searching settings, which
include 7 independent searches.

We do not mention other algorithms because they adopt other training ways which are significantly different
from supervised training. For example, GAN-based algorithms require GAN training, which highly depends
on the GAN algorithm. And obtaining a satisfying GAN usually takes a longer time than supervised classifier
training. Contrastive learning aided algorithms Tack et al. (2020) use contrastive methods (SimCLR Chen
et al. (2020)) to train a model, which takes much more time than standard classifier training. For example,
SimCLR still gains performance improvement after 800 epochs training Chen et al. (2020) and the computa-
tion of contrastive losses is more complicated. Considering the significant difference in pre-training time, we
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Algorithms ImageNet vs Artificial Living 9 Geirhos 16 Mixed 10
Rot+Trans 56.94 55.90 56.27 64.50

Table 9: AUROC values of Rot+Trans algorithm on ImageNet vs. Artificial, Living 9, Geirhos 16, and
Mixed 10.
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Figure 8: Figures showing the effect of remaining classes of a pre-trained model. (a)-(c): CIFAR-10 vs.
ImageNet_resize on DenseNet-100. (d)-(f): CIFAR-10 vs. SVHN on ResNet-34. (g)-(i): CIFAR-10 vs.
LSUN_resize on DenseNet-100.

only compare the running time of our algorithm with these relatively lightweight standard classifier-based
algorithms.

F Attempts for adapting previous algorithm

F.1 Network architecture

For CIFAR classifiers, we simply follow the common architectures which are also used by Liang et al. Liang
et al. (2018) and Lee et al. Lee et al. (2018).
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Figure 9: Figures showing the effect of remaining classes of a pre-trained model on ImageNet subsets. (a)-(c):
The Living 9 subset setting on ResNet-50. (d)-(f): The Geirhos 16 subset setting on DenseNet-121. (g)-(i):
The Mixed 10 subset setting on ResNet-50.
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Figure 10: Average algorithm running time on DenseNet-100.

CIFAR models can not be directly used in ImageNet images. Following common configurations, we resize the
ImageNet figures into 224x224, and use torchvision’s official ImageNet models: ResNet-50 and DenseNet-
121 from https://pytorch.org/vision/stable/models.html. Standard normalization is added when pre-
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processing the images. For ImageNet subset training, we only change the output size of the last layer to the
corresponding class numbers.

F.2 MSP

The MSP algorithm Hendrycks & Gimpel (2017) can be directly adopted to different datasets because
its criteria is the maximum probability value. And stable performance across low-resolution datasets and
high-resolution datasets can be observed in Table 2, Table 3 and Table 12, .

F.3 ODIN

The major difference between ODIN Liang et al. (2018) and the MSP method is that ODIN uses two
techniques, input-preprocessing and temperature scaling, to enlarge the gap between the in-distribution and
out-distribution samples in maximum predicted value. For both CIFAR and ImageNet subset settings, we
do a grid search for noise value from [0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2], and
temperature value from [1, 10, 100, 1000].

ODIN and the MSP method do not tune the feature space of deep neural networks, and reach good perfor-
mance in both the ImageNet subset settings (Table 3) and CIFAR (Table 12).

F.4 Mahalanobis algorithm

For the CIFAR setting, we directly use the official setting mentioned in Lee et al. (2018). For the ImageNet
subset settings, we use the official ResNet-50 and DenseNet-121 architecture from torchvision. The choice
of internal output features is the same as the CIFAR setting: we choose the output of the first convolution
layer and output of every transition layer for DenseNet, and the input of the first residual block and the
output of every residual block for ResNet.

We also expand the hyperparameter search space. Specifically, we search the noise magnitude of the Maha-
lanobis method from [0.0, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005], which expands
the original search space a lot. The validation dataset size is defined as 10% of the whole test set size, which
is the same as the original paper.

G Classifier model training

Since we find the performance of classifier-based algorithms is highly based on the pre-trained classifier, e.g.
different random seeds, we train three models for all settings and report the mean and variance. Standard
training data augmentation methods are adopted, including resizing, padding and flipping. For full ImageNet
training, we directly use pre-trained models from torchvision3. The validation accuracy is 76.01% for ResNet-
50 and 74.47% for DenseNet-121.

For ImageNet subset training, we use the official implementation of ResNet-50 and DenseNet-121 models
from torchvision. We train 200 epochs using SGD with a stepping learning rate. The training and test
accuracy is shown in Table 10.

Subset ResNet-50 DenseNet-121
Training Test Training Test

Living 9 96.00 ± 0.35 75.91 ± 0.70 96.23 ± 0.05 76.86 ± 0.35
Geirhos 16 93.56 ± 2.79 64.61 ± 0.10 96.39 ± 0.11 67.06 ± 0.44
Mixed 10 95.37 ± 0.16 80.37 ± 0.13 95.90 ± 0.26 80.24 ± 0.46

Table 10: Classifier training and test accuracy (%) on ImageNet subset.

3https://pytorch.org/docs/stable/torchvision/models.html
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For the CIFAR-10 dataset, we follow the training configuration from Lee et al. Lee et al. (2018). And the
training and test result is shown in Table 11.

Training acc. Test acc.
ResNet-34 100.00±0.00 94.84±0.12

DenseNet-100 100.00±0.00 94.49±0.23

Table 11: Classifier training and test accuracy (%) on CIFAR-10.

H Generalization of out-of-distribution detection and CIFAR results

As mentioned by Zhou et al. (2021), when exposed to a new different out-distribution dataset, some previous
algorithms suffer from severe performance degradation due to a severe bias introduced by validation bias. In
the main text, TTACE has shown better average performance on advanced dataset settings like ImageNet.
To verify whether our data augmentation and consistency evaluation pipeline has similar bias to out-of-
distribution datasets, we conduct CIFAR experiments to test whether there is a generalization problem of
TTACE.

The performance on CIFAR-10 settings are shown in Table 12. Specifically, the CIFAR-10 dataset is treated
as in-distribution data, while the SVHN Netzer et al. (2011), TinyImageNet Le & Yang (2015), and LSUN Yu
et al. (2015) datasets are out-distribution datasets. TTACE reaches the second best results with other
algorithms on most settings. At the same time, we should notice that the best algorithm of CIFAR setting
in Table 12, i.e. the Mahalanobis, suffers from sever performance degradation in ImageNet settings Table 3,
which is consistent with the observations from Zhou et al. (2021). One possible reason is that the features of
large network architectures and complicated datasets are not easy to be modeled as Gaussian distributions,
which is the main assumption of the Mahalanobis algorithm. Another possible reason is that for ImageNet
subset training, the test set size is not as large as CIFAR, so the hyperparameter searching process is difficult
on ImageNet settings.

At the same time, our TTACE not only reaches higher average detection performance, but also shows stable
generalization ability to low-resolution dataset settings.

Architecture Algorithm Out-distribution data
SVHN ImageNet_resize LSUN_resize

ResNet-34

MSP 88.86 ± 0.96 86.98 ± 2.01 90.28 ± 1.13
OC-SVM 90.34 ± 0.45 89.64 ± 0.99 91.07 ± 0.50
ODIN 90.84 ± 1.71 88.64 ± 2.77 91.87 ± 2.31
Mahalanobis 98.50 ± 0.12 99.39 ± 0.06 99.68 ± 0.07
TTACEFFT(t=1) 92.95 ± 0.89 89.15 ± 1.93 92.53 ± 0.85
TTACEFlip 88.59 ± 0.84 88.01 ± 1.57 90.67 ± 0.71

DenseNet-100

MSP 86.80 ± 1.64 92.92 ± 0.87 93.90 ± 0.66
OC-SVM 77.54 ± 2.45 80.93 ± 1.86 82.22 ± 0.63
ODIN 90.76 ± 0.34 97.73 ± 0.55 98.57 ± 0.34
Mahalanobis 95.61 ± 2.23 91.20 ± 1.29 80.49 ± 17.67
TTACEFFT(t=1) 91.15 ± 3.17 96.48 ± 0.94 97.88 ± 0.52
TTACEFlip 86.64 ± 1.62 92.64 ± 0.77 93.48 ± 0.56

Table 12: AUROC (%) of CIFAR results. Best results are in bold. Second best results are underlined.
However, algorithms that reach the best on CIFAR seem to have generalization problems on ImageNet
benchmarks. See the main text for more details. TTACE is comparable to others algorithms while main-
taining strong generalization ability to other out-of-distribution settings.

21



Under review as submission to TMLR

I Sensitivity to filter radius

More sensitivity results for ImageNet subsets are in Figure 11 and Figure 12. In these figures, flatter curves
mean less sensitivity to filter radius. For ImageNet subset settings, the optimal FFT filter radius seems to
be much lower than that of the full ImageNet setting. A possible explanation is that the frequency domain
characteristic of the Artificial dataset is different from the ImageNet dataset because artificial images are
drawn by humans which lack fine-grained changes (high frequency signals). Meanwhile, we can see from
Table 3 that no matter which radius is used, the performance is still good enough to outperform other
algorithms.
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Figure 11: Detection AUROC of Living 9 setting
with different radius of FFT filter.
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Figure 12: Detection AUROC of Mixed 10 setting
with different radius of FFT filter.

J Sensitivity to temperature

See Figure 13 and Figure 14. Notice that for the ImageNet vs. Artificial setting, the dimension of the output
is 1000. When the class number is big, temperature effect is enlarged a lot thus large temperature value
leads to a relatively fast decreasing in the AUROC result(A brief explanation: Since the maximum output
is much bigger than others, when calculating softmax, a large class number will lead to a big denominator
value in the softmax equation). And for those whose output dimension is under 20, we can see that the
AUROC results are not sensitive to temperature value.
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Figure 13: Detection AUROC of Geirhos 16 setting
with different temperature.
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Figure 14: Detection AUROC of Mixed 10 setting
with different temperature.
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