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ABSTRACT

Generative artificial intelligence (GenAI) has made significant progress in under-
standing world knowledge and generating content from human languages across
various modalities, like text-to-text large language models, text-to-image stable dif-
fusion, and text-to-video Sora. While in this paper, we investigate the capability of
GenAI for text-to-model generation, to see whether GenAI can comprehend hyper-
level knowledge embedded within AI itself parameters. Specifically, we study a
practical scenario termed train-once-for-all personalization, aiming to generate per-
sonalized models for diverse end-users and tasks using text prompts. Inspired by the
recent emergence of neural network diffusion, we present Tina, a text-conditioned
neural network diffusion for train-once-for-all personalization. Tina leverages a
diffusion transformer model conditioned on task descriptions embedded using a
CLIP model. Despite the astronomical number of potential personalized tasks (e.g.,
1.73×1013), by our design, Tina demonstrates remarkable in-distribution and out-
of-distribution generalization even trained on small datasets (∼ 1000). We further
verify whether and how Tina understands world knowledge by analyzing its capa-
bilities under zero-shot/few-shot image prompts, different numbers of personalized
classes, prompts of natural language descriptions, and predicting unseen entities.

1 INTRODUCTION

Tina: 
Text-to-Model Neural Network Diffusion

Meta Training

Give me a dog-cat
classifier, now!

Help me to classify
different cat breeds!

I want a vehicle
classifier, please.

Dog: 0.95
Cat : 0.05

Users

Server

Test

Truck  : 0.85
Car      : 0.10
Bicycle: 0.02
...

Ragdoll: 0.65
Berman: 0.15
Maine   : 0.10
...

A large dataset

Figure 1: Demonstration of train-once-for-all
personalization scenario. Users have text descrip-
tions of the desired personalized models.

Generative artificial intelligence (GenAI) has
been flourishing in different aspects of human
life, and people can simply generate content
from natural language text prompts (Brown
et al., 2020; Ramesh et al., 2022; OpenAI, 2024;
Rombach et al., 2022). Large language mod-
els (Brown et al., 2020; Touvron et al., 2023),
like GPT-4, have especially shown emergent
intelligence (Bubeck et al., 2023) in the knowl-
edge of language through text-to-text transfor-
mation (Radford et al.; 2019; Brown et al.,
2020; Touvron et al., 2023). Besides, recent
progress in text-to-image (e.g., stable diffu-
sion) (Nichol & Dhariwal, 2021; Rombach et al.,
2022; Ramesh et al., 2022; Zhang et al., 2023)
and text-to-video (e.g., Sora) (OpenAI, 2024;
Singer et al., 2023) diffusion models has shown the great power of AI in understanding the physical
world and generating high-quality images and videos that are virtually indistinguishable from real-
ity (Peebles & Xie, 2023; OpenAI, 2024). The text-prompted GenAI maps the human languages’
semantics to the world knowledge in different forms in language and vision. One step further, in this
paper, we propose and study whether the GenAI can understand hyper-level knowledge—the knowl-
edge inherently resides in the AI itself models’ parameters. Specifically, we study text-to-model
generation; akin to text-to-text, text-to-image, and text-to-video, text-to-model targets whether the
GenAI models can directly generate the model parameters given the human’s text prompts to meet
the personalization demand of diverse end users.
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We focus on a practical scenario called train-once-for-all personalization (Chen et al., 2023), which
means that the generic model is trained just once and can later be customized into a condensed
model on the fly for different end-users and requests, given their task descriptions. For example,
the CIFAR-100 dataset (Krizhevsky, 2009) contains 100 classes, but an end user may just need a
personalized model with a certain 10 classes according to a specific scenario (e.g., classifying items
in the kitchen). In other words, train-once-for-all personalization targets that train the model once and
customize the model to be well performed in a sub-distribution when deployed, and an example is in
Figure 1. But there are tremendous sub-distributions, for the CIFAR-100 example, the number of
personalized 10-way tasks is

(
100
10

)
= 1.73× 1013, even not taking permutations into consideration,

so it is challenging for the GenAI model to generalize. Inspired by recent progress in neural network
diffusion (Wang et al., 2024; Peebles et al., 2022), we propose Tina, a Text-Conditioned Neural
Network Diffusion for Train-Once-for-All Personalization. Tina is trained on model parameters
with the models’ task descriptions, and it can be generalized to unseen tasks, or even unseen classes
(entities), given the text prompts.

In Tina, a CLIP model (Radford et al., 2021) is used to embed the users’ task descriptions into
the diffusion model as the conditions. The diffusion model of Tina is the diffusion transformer
(DiT) (Peebles & Xie, 2023) that is shown to have high expressive power under scaling law in the
fields of image (Peebles & Xie, 2023) and video generation (OpenAI, 2024). We demonstrate that
DiT’s scaling law applies to model parameter generation as well: increasing the number of parameters
and data sizes enhances the model’s capability to generalize across more challenging tasks that
involve scaling the dimension of generated models. However, it is surprising to find that even though
the number of personalized tasks is astronomical (e.g., 1.73× 1013 for 10-way tasks), by our designs,
Tina can generalize on extremely small datasets (∼ 1000 data points) and support different lengths
of classification tasks (5-way or 8-way tasks, etc.) in training once. Our analysis shows that Tina
can reach both in-distribution and out-of-distribution personalization of generated models. Thanks to
the vision-language alignment of CLIP, Tina can also take images as prompts and generalize under
few-shot or even zero-shot settings. We also verify whether Tina understands world knowledge by
testing its abilities under prompts of natural language descriptions and predicting unseen entities. Our
contributions are as follows:

• We explore the potential of GenAI in generating personalized models followed by users’
text prompts, i.e., text-to-model generation. We open more applications of neural network
diffusion; to the best of our knowledge, it is the first paper that takes the text prompts as
conditions for neural network diffusion.

• We propose Tina, a well-performed text-conditioned neural network diffusion framework
for train-once-for-all personalization. Tina can generalize on unseen tasks and entities
even given small model datasets.

• In addition, we analyze the abilities and the boundaries of Tina and gain insights about
whether and how it generalizes and understands world knowledge.

2 METHODOLOGY

2.1 PROBLEM SETUP

2.1.1 DEFINITION OF SETUP

Following Chen et al. (2023), we consider image classification for train-once-for-all personalization
due to the natural personalization requirements of image classification. We note that our method is
not limited to classification tasks and can be extended to other tasks for personalization. Define a task
k as classification over a subset of classes Yk ⊂ Y . The goal of personalization is to learn a neural
network predictor fθk : X 7→ Yk, parameterized by θk. To handle many tasks at the same time, we
further assume we have the task description natural text tk for Yk, and it is generally the description
of the classes and styles of Yk. We want to build a neural network generator G(tk) where given tk,
it will output the model parameters θk. Specifically, consider using a large-scale dataset with many
classes covering Y to learn the personalized-friendly function fθk = Gϕ(tk) parameterized by ϕ. Gϕ

is learned on the large dataset to generate any personalized model directly from the task descriptions,
and the setup is called train-once-for-all personalization (Chen et al., 2023). Train-once-for-all
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personalization has wide applications in a server-user system, where the model generator Gϕ is
learned on the server for personalized cloud services to many future users. We refer to Chen et al.
(2023) for more detailed advantages and usages of train-once-for-all personalization.

2.1.2 STRONG BASELINES: CLASSIFIER SELECTION AND TAPER

Classifier Selection. For a generic network fθ, we consider that it consists of a feature extractor
parameterized by ψ with a linear classifier w = [w(1), . . . ,w(|Y|)] of |Y| vectors for output
predictions over all classes in Y . The generic model is trained on the large dataset, and we want
to personalize it into a few-way classification task k. One effective method is to build a personalized
classifier wk by selecting only the row vectors in w for the relevant classes. Therefore, the
personalized model for task k are θk = {ψ,wk}, and this approach is called classifier selection,
which serves as a strong baseline (Chen et al., 2023).

TAPER. We briefly introduce TAPER (Chen et al., 2023) proposed by the original paper on
train-once-for-all personalization and discuss its limitations. The main idea of TAPER is to train
several experts (bases) and learn a mixture network to fuse these experts into a personalized model.
It has three stages as follows.

• Stage 1: train a generic model on the large dataset.

• Stage 2: divide the dataset into several shards and finetune the generic model on each shard
respectively for specification. Each finetuned model can be seen as a domain expert.

• Stage 3: For a given personalized task, learn an MLP mixer (i.e., the generator G) whose
input is the text embedding of the task description and the output is the aggregation weights of
the expert models. Then, weighted aggregation is conducted to merge several expert models
into a personalized one. Also, the expert models can be finetuned during personalization.

TAPER requires finetuning the expert models on the target task, so it is not applicable to unseen tasks
without having task-specific data. Also, the MLP mixer only generates the aggregation weights instead
of the parameters, so it has limited generalization and expressiveness. While in our design of Tina,
we try to construct an end-to-end text-to-model system that can understand the hyper-knowledge
residing parameters and can generalize to unseen tasks, even unseen classes.

2.1.3 DATASET PREPARATION AND DESCRIPTION

We introduce how to conduct datasets for training Tina and elaborate on the differences in training
and inference between Tina and TAPER.

Training data preparation for Tina. Tina takes the personalized model parameters as training
data for diffusion training, and the dataset is conducted in two stages. i) Stage 1: Similar to TAPER,
we train a generic model on the large dataset to let the model have a generic capability on all classes.
ii) Stage 2: We craft the personalized tasks and finetune the generic model on the personalized
tasks to obtain the personalized models (p-Models) for Tina training. For each personalized task k,

...

...

Seen Tasks Unseen Tasks

Samples

Models

p-Models as Data
for Training Tina

Samples for
Training p-Models

In-Distribution
Samples for Testing
Generated p-Models

Out-of-Distribution
Samples for Testing
Generated p-Models

Figure 2: Description of the training and testing
data for Tina. p-Model is short for personalized
models. The blue blocks are for training, and the
green blocks are for testing.

we select the corresponding |Yk| classes out of
|Y| classes to craft the data for p-Model, and
then finetune to get a p-Model as a data sample
for Tina. Each data sample for Tina contains
the “(task description, p-Model)” pair.

Testing data preparation. The overall demon-
stration of data partitions can be found in Fig-
ure 2. The blue blocks refer to the training data,
and the green blocks are the testing data. For
testing, there are two kinds of evaluation metrics:
i) In-distribution (ID, the light green blocks):
the personalized tasks are seen during training
of the generative model G, and G generates the
p-Models tested on the testset of each seen task.
ii) Out-of-distribution (OOD, the dark green
blocks): the tasks are unseen during the gener-
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Diffusion Transformer

Random Noise

Text Condition
Task Description:
e.g., {Classify "Ragdoll,
Berman, Maine"}

Augmentation

CLIP Text
Encoder

...

Diffusion Transformer

Decoding

Generated p-Model

User Text Prompt
Task Description:
e.g., {Classify "Husky,
Shiba, Labrador"}

CLIP Text
Encoder

...

CLIP 
Image
Encoder

User Image
Prompt
Few-shot Images
as condition

(b) Test(a) Train

p-Model

Tokenizing

Augmentation

p-Model'

Add Noise

Noised p-Model'

Padding
......

...

Padding
...

Tokenizing

Padding
.........

...

Padding
.........

...

...

Decoding

Predicted p-Model'

...

Figure 3: Framework overview of Tina. (a) Training stage. The p-Models are firstly augmented
by our classifier augmentation strategy and then noised according to the diffusion step. The p-Models
are tokenized into chunks of vectors, and the classification sequence padding is optionally used if the
classification length is shorter than the default. The CLIP text encoder is used to encode the users’
text prompts during training. (b) Testing stage. Random noises are tokenized and denoised into
parameters of p-Models. Thanks to the vision-language alignment of CLIP, Tina takes both text and
visual prompts as the diffusion conditions.

ator G’s training, and G directly generates the p-Models from the task prompts (the text descriptions).
We note that the original TAPER cannot be tested on the OOD tasks since it requires the target per-
sonalized training data for finetuning the expert models. To remedy this, we derive TAPER-Mixer to
only train the mixer without finetuning the experts and verify its OOD generalization on unseen tasks.

2.2 PROPOSED TINA : TEXT-CONDITIONED NEURAL NETWORK DIFFUSION MODEL

2.2.1 FRAMEWORK OVERVIEW

We present Tina, a text-conditioned neural network diffusion model for train-once-for-all
personalization. The framework overview is in Figure 3. Generally, Tina consists of DiT and
CLIP encoders for generating personalized models from text prompts. During training, we use the
CLIP text encoder for encoding texts, and due to the alignment of image and text in CLIP, during
inference, Tina can also take images as prompts by utilizing the CLIP image encoder. Additionally,
we devise an effective data augmentation approach to enable training Tina under limited samples.
We also propose a classification sequence padding strategy to enable Tina can generate models
with different lengths of classes for further personalization.

2.2.2 ARCHITECTURE AND TRAINING OBJECTIVE

We use diffusion models as the generative model and follow the main architecture of G.pt (Peebles
et al., 2022) that uses a diffusion transformer as the backbone. Analogous to the optimization process
that takes random initialization as inputs and outputs the trained models, the diffusion process takes
the noise as inputs and gradually denoises to recover the original distributions. Previous works have
shown the rationale of neural network diffusion (Peebles et al., 2022; Wang et al., 2024; Yuan et al.,
2024). We choose DiT as the backbone because it can be easily scaled up and is shown to have great
generalization and expressiveness. We use signal prediction for the diffusion process and inherit
the architecture of GPT-2 (Radford et al., 2019) as the transformer. The used text encoder is the
pretrained ViT-B/32 in CLIP (Radford et al., 2021).

Training objective. Denote the training set of Tina as K, where each piece of data is a (task descrip-
tion, p-Model) tuple, notated as (tk, θk) for task k ∈ K. We denote the CLIP text encoder as T , and
given the task description tk, the text embedding is T (tk). The text encoder is frozen during training.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Tina Training

1: Input: Number of training iteration Niter, p-Model
dataset K = {(tk, θk)}Kk=1, Tina, diffusion pro-
cess length J , diffusion cumulative variance sched-
ule ᾱ.

2: Initialize: Learnable parameters ϕ for G
3: for i = 1, 2, ..., Niter do
4: # Sample a mini-batch of data
5: (tk, θk) ∼ K
6: # Noise p-Model parameters
7: j ∼ U({1, ..., J})
8: θjk ∼ N (

√
ᾱjθk, (1− ᾱj)I)

9: # Compute the predictions
10: θ̂k ← Gϕ(T (tk), θ

j
k, j)

11: # Compute the loss
12: loss← ||θ̂k − θk||22
13: # Update DiT’s parameters
14: ϕi+1 ← update(loss;ϕi)
15: end for

Our DiT model Gϕ takes two vectors as in-
put: the text embedding T (tk) as conditions and
the noised p-Model parameter vector θjk, where
j ∈ [J ] denotes the timestep in the diffusion
forward noising process. The learning objective
of diffusion is to minimize the simplified varia-
tional lower bound, which reduces to predicting
the denoised p-Model parameters:

min
ϕ

L(ϕ) =
∑
k∈K

∑
j∈J

||θk−Gϕ(T (tk), θ
j
k, j)||

2
2,

(1)
where the timestep j is embedded in DiT by
frequency-based encoding (Mildenhall et al.,
2021). The detailed training procedure is in
Algorithm 1. We use DDPM sampling (Nichol
& Dhariwal, 2021); add Gaussian noise depicted
by the ᾱ to θk and gradually denoising it.

2.2.3 DESIGN DETAILS

We elaborate the design details of Tina.

Parameter tokenization. For a p-Model’s parameters θk, we first flatten all the parameters into
a 1-D vector and chunk/tokenize the parameters within each layer. If the chunk size is M and the
number of parameters in a certain layer is N , so for this layer, there will be ceil(N/M) tokens. For
some layers smaller than M , the whole layer is a token.

Text embedding. Assume the personalized task is a classification task that has c = |Yk| classes.
The task description tk is an ordered list of the classes’ text descriptions, of which the simplest form
is the class entity, e.g., "telephone" and "rabbit". The generated p-Model is expected to have the
correct predictions in the same order with tk. In other words, we need Tina to learn the correct
classifier orders as the text prompts, which is sequence-to-sequence modeling. Therefore, unlike
TAPER, which averages the class embeddings into one, we make every class description as a token
by CLIP text encoder and concatenate them in order with position encoding.

Encoding and decoding of tokens. We use linear layers as encoders for mapping the parameter
tokens and text embedding tokens to the hidden size of DiT. Each token has a different linear
layer without weight sharing. The decoders are similar to encoders, which use linear layers, and
the encoders transform the transformer’s hidden size back to the p-Model’s parameter dimension.
Between the encoders and decoders, there are transformer attention layers akin to GPT-2.

Data augmentation. In Peebles et al. (2022), the permutation invariance property (Entezari et al.,
2022; Ainsworth et al., 2023; Li et al., 2024b) is utilized for data augmentation by randomly permuting
the neurons without changing the function. However, in our scenario, we find this augmentation will
even impede training. We hypothesize that the personalized models are finetuned from the same
generic model, so they may lie in the same or close loss landscape basins; as a result, permutation
augmentation will disturb network representations and impair Tina training. Further, we develop an
effective classifier augmentation strategy to speed up Tina training under limited data by randomly
permuting the order of classes in the task description and also the order of corresponding classifier
vectors during training. This data augmentation improves sample diversity and helps the DiT better
learn the description-to-classifier sequence modeling in a position-aware manner.

Parameter inheritance. In Peebles et al. (2022), the authors release a pretrained checkpoint of
G.pt, which is also DiT for parameter generation. G.pt is pretrained on large datasets of optimization
checkpoints; though it has different conditions, designs, and scenarios from ours, we explore
whether we can inherit some parameters from the pretrained checkpoints to speed up and boost
training. Considering the model sizes and architectures are different, we use a strategy similar to
bert2BERT (Chen et al., 2015; Chen et al.; Qin et al., 2022) for inheriting parameters.

Classification sequence padding. We study how to incorporate more personalized settings where
diverse users request for tasks with different numbers of classes. In language models (Devlin et al.,

5
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2018; Touvron et al., 2023), padding is used to enable sequence-to-sequence learning with different
input and output lengths. Inspired by this, we use the padding technique to enable the description-to-
classifier sequence of different classification lengths. Specifically, if the user’s number of classes is
smaller than the maximal length, we pad missing classes with tokens ‘<->’ in the task description
list and mask the corresponding classifier vectors with zero-like tensors. We denote this strategy as
classification sequence padding, and Tina can learn to adapt to any number of classes within the
maximal length.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUPS

Datasets and p-Models. We use three datasets to conduct experiments: Mini-ImageNet (Deng
et al., 2009; Vinyals et al., 2016), CIFAR-100 (Krizhevsky, 2009), and Caltech-101 (Fei-Fei et al.,
2004). Mini-ImageNet is a subset of the ImageNet dataset, primarily used for few-shot learning
tasks. CIFAR-100 is a popular benchmark dataset for image classification tasks. Each class contains
600 images, divided evenly into 20 superclasses and 100 classes. Caltech-101: A dataset for object
recognition featuring diverse images with varied resolutions and quality. It includes 101 categories,
each containing 40 to 800 images, offering a wide range of objects and scenes compared to CIFAR-
100 and Mini-ImageNet. For the images with different resolutions, we resize them into 32 × 32 for
unified modeling. The personalized tasks are crafted by selecting 10 classes out of the 100/101 total
classes. If not mentioned otherwise, the number of p-Models (i.e., personalized tasks) for training
Tina is 1000.

We use two architectures for personalized models: a simple CNN (dubbed as CNN) and ResNet-20
(dubbed as ResNet). The CNN architecture follows Peebles et al. (2022), which consists of 2 layers,
and the number of parameters is approximately 5K. We take all the parameters of CNN as the input
and output of Tina. But for ResNet-20, the number of parameters is nearly 272k, which is too large
for Tina’s generation. Thus, we explore partial parameter generation following Wang et al. (2024).
We only personalize the classifier layers for parameter generation, nearly 640 parameters.

For more details about data preparation and p-Models, please refer to Appendix A in the appendix.

Compared baselines. We follow the baselines used in the original paper of train-once-for-all
personalization (Chen et al., 2023). As described in subsection 2.1.3, we use the generic model trained
in stage 1 as a baseline, showing the performance without any personalization. Further, we compare
the classifier selection method described in subsection 2.1.2, which serves as a strong baseline for
personalization (Chen et al., 2023). The vanilla TAPER (Chen et al., 2023) requires finetuning the
expert models on the target tasks and cannot generalize on out-of-distribution personalization where
only target text descriptions are available. For fair comparisons, we adopt TAPER-Mixer, which
adopts the mixer of TAPER for generating the aggregation weights, and the MLP-based mixer can
generalize on unseen tasks.

Evaluation metrics. For Table 1, we compare in-distribution personalization and out-of-distribution
personalization as elaborated in subsection 2.1.3. For other tables and figures, we report the out-of-
distribution personalization as p-Acc. It is notable that for every setting, we test the personalization
performances across over 100 tasks (i.e., 100 independent trials) and take the average scores presented
in the tables and figures, and each task includes more than 1000 testing image samples. Therefore,
the evaluation measurement is statistical, representative, and fair for the compared methods.

Hyperparameters. The detailed hyperparameters can be found in subsection A.5 in the appendix.

3.2 RESULTS UNDER DIFFERENT DATASETS

In Table 1, we evaluate the performance of our proposed method, Tina, against several baseline
methods including Generic Model, Classifier Selection, and TAPER-Mixer across various datasets
and model architectures for the task of train-once-for-all personalization. It is found that the Generic
Model has inadequate performance, validating the need for personalization techniques. For the
personalization methods, the results demonstrate that Tina consistently outperforms all baseline
methods across both in-distribution and out-of-distribution personalization scenarios. Though Tina

6
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Table 1: Main results across different datasets and models. The best results are in bold.
Dataset Mini-ImageNet CIFAR-100 Caltech-101 Avg

p-Models. CNN ResNet CNN ResNet CNN ResNet CNN ResNet

In-distribution Personalization

Generic Model 19.76 39.32 28.72 51.24 29.14 47.95 25.87 46.17
Classifier Selection 51.74 71.49 64.83 84.01 56.07 74.75 57.55 76.75
TAPER-Mixer 52.16 65.50 67.71 75.12 58.48 77.92 59.45 72.85

Tina 54.08 74.99 68.35 86.46 58.69 78.36 60.37 79.94

Out-of-distribution Personalization

Generic Model 18.55 39.80 29.88 52.24 29.14 50.56 25.86 47.53
Classifier Selection 51.02 72.47 64.15 83.94 56.44 76.03 57.20 77.48
TAPER-Mixer 51.64 67.03 66.85 72.30 58.93 79.65 59.14 72.99

Tina 53.31 75.34 67.14 86.63 59.27 79.69 59.91 80.55

32 64 128 1024 2048
Hidden Sizes of Tina
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(a) Scaling the parameters of DiT.
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(b) Parameter inheritance.
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(c) Training images as prompts.
Figure 4: Tina capability analysis w.r.t. different parameterization and training schemes. (a)
Scaling the parameters of DiT in Tina. CNN-5K (14K) means the p-Model is a CNN with 5K
(14K) parameters. From 152M (hidden size 32) to 789M (hidden size 2048), scaling helps in the
emergence of intelligence. (b) Parameter inheritance from pretrained G.pt helps speed up training
in the early. (c) Training Tina with image-prompted data versus text-prompted data. The
text-prompted has faster convergence.

is a text-to-model foundation model, it is worth noting that Tina shows intelligence of personalization
under limited data (nearly 1000 samples). Specifically, for in-distribution personalization, Tina
achieves significant improvements with an average score of 79.94, surpassing the next best method,
Classifier Selection, by a margin of 3.19. Similarly, for out-of-distribution personalization, Tina
leads with an average score of 80.55, which is a notable increase over the second-best performing
method by 2.78. It is notable that TAPER-Mixer shows performance gains over Classifier Selection
in CNN but has marginal results in ResNet. Also, TAPER-Mixer has inferior performance compared
with Tina, showing the advantages of Tina as a generative model in parameter generation. TAPER-
Mixer only learns to merge the expert models, while Tina learns to directly generate the parameters.

Table 2: Results on larger p-Models (ViT-
B/32).

Dataset CIFAR-100 Caltech-101

In-distribution Personalization

Classifier Selection 95.07 96.33
TAPER-Mixer 95.25 96.32

Tina 95.45 97.15
Out-of-distribution Personalization

Classifier Selection 94.78 96.08
TAPER-Mixer 94.96 96.15

Tina 95.15 96.72

Results on larger and more complex p-Models.
We verify whether Tina is effective for larger and
more complex p-Models in Table 2. We use ViT-
B/32 pretrained by CLIP and Tina generates the
personalized layers in ViT as described for ResNet.
The results are promising that our Tina can reach
97.15’s accuracy in personalization when using the
SOTA backbone ViT-B/32 pretrained by CLIP, and
Tina also consistently outperforms the baselines. It
showcases the scalability and potential of Tina to
be adopted in trending and SOTA architectures and
reach SOTA performances in personalization.

3.3 IN-DEPTH ANALYSIS OF TINA

Tina shows great potential for text-to-model generation for personalization. We have made several
in-depth analyses to better understand the capabilities and boundaries of Tina, and we will show
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Figure 6: Tina capability analysis w.r.t. different prompt schemes. (a) Train text-prompted Tina
and verify the zero-shot and few-shot abilities of using images as prompts. (b) The accuracies of
p-Models generated by Tina vary with different numbers of classes. Classification sequence
padding is used, and the maximal sequence length is 10. (c) Train class-name-conditioned Tina and
verify its zero-shot ability on the natural language descriptions generated by GPT-4.

insights into how Tina learns hyper-level world knowledge as well as its limitations for future
research. If not mentioned otherwise, we use CIFAR-100 as the dataset for analyses.
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Figure 5: Scaling the input dimensions
and training data for Tina.

Scaling studies for Tina. Scaling law was found for
transformer-based foundation models that scaling the pa-
rameters, data, computes can bring intelligence emergence.
In Figure 4 (a), we scale the parameters of Tina by chang-
ing the hidden sizes ranging from 32 (152M parameters) to
2048 (789M), and we test two sizes of p-Model. It is found
that when Tina is small, it fails to generalize, especially
when the p-Model has a higher parameter dimension. The
intelligence emerges when scaling Tina at large sizes
(e.g., 1024 or 2048 hidden sizes), but the scaling effect
is saturated if reaching the upper bound performance of
personalization. We also scale the input, also the gener-
ated, dimensions (i.e., p-Model sizes) and the training data
in Figure 5. It is found that a larger input dimension is
harder to learn and requires larger sizes of training data to
converge and generalize. The generalization of Tina can
benefit from larger training data, but it has diminishing marginal returns. Generally, larger p-Models,
larger training samples, and larger model sizes make Tina reach higher p-Acc, and it demonstrates
the increasing expressive power of Tina by scaling, which is consistent with previous DiT works
(Peebles & Xie, 2023; Peebles et al., 2022; OpenAI, 2024). The scaling property indicates the great
potential of Tina for more complex and challenging text-to-model scenarios.

Parameter inheritance. We verify whether Tina can benefit from pretrained parameters. We inherit
the parameters from G.pt’s (Peebles et al., 2022) checkpoints by the bert2BERT-like method (Chen
et al.). From Figure 4 (b), it is found that parameter inheritance from pretrained models can help
Tina to converge faster, but the final p-Accs are similar.

Training images as prompts. In the original design of Tina, the texts are used for the prompts
encoded by the CLIP text encoder. We train a Tina with image prompts using CLIP image encoder,
and the results are in Figure 4 (c). For each class, we randomly select one single image as the prompts.
It is found that text-prompted Tina converges faster than the image-prompted, though the final
p-Accs are similar. This is intuitive to understand since texts are known to have higher knowledge
density than images (Jia et al., 2021; Radford et al., 2021), that the class text has richer knowledge
representations than a single image.

Testing images as prompts. We train text-prompted Tina and verify its zero-shot and few-shot
abilities on image prompts, and the results are in Figure 6 (a). Due to the alignment of texts and
images in CLIP, Tina shows zero-shot ability on image prompts. By few-shot finetuning on image
prompts, Tina can reach comparable performances to the text-prompted model. We note that the
image-prompted ability is important in practical personalization scenarios, because some users may

8
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Table 3: Zero-shot transfer of Tina to unseen classes. We test the generalization capability of
Tina to unseen classes that have similar textual similarity with the seen ones.

Settings 0% unseen classes 20% unseen classes 40% unseen classes 60% unseen classes 100% unseen classes

TAPER-Mixer 60.27 51.94 42.48 31.45 0.0

Tina 62.51 55.36 49.17 42.78 30.93

have few images and want a personalized model for those. The images are too few to train a model
from scratch, but thanks to the generative power of Tina, we can generate a p-Model given image
prompts by utilizing Tina’s vision-language-parameter-aligned knowledge.

Varying the number of personalized classes. Without changing architecture, Tina can adapt to any
personalized classes within the maximal supported length due to the padding design. In Figure 6 (b),
we test the p-Models with different numbers of classes, generated by one Tina. The maximal classi-
fication length is 10. It is shown that the generated p-Models reach higher p-Accs when the number of
classes is fewer, which is consistent with common sense that fewer classes are easier to personalize.

How Tina understands world knowledge I: natural language descriptions as prompts. In our
implementation of Tina, we adopt a simple prompting that uses the class names as the text prompts.
We verify whether Tina actually learns the knowledge in the case where the prompts are replaced by
the natural language descriptions at test time. We generate the language descriptions of classes with
the assistance of GPT-4 (OpenAI & the co authors, 2024), and we make sure that the descriptions do
not include the original class entities. The exemplars are in Table 6 of the appendix. From Figure 6
(c), the results reveal that Tina has zero-shot generalization ability when the prompts are unseen
language descriptions, though the p-Accs are lower than the ones of the class-named prompts. It
shows that Tina is not just memorizing the class names but also generalizing and understanding the
knowledge behind the names and the nuances inherent in the text semantics.

How Tina understands world knowledge II: generalization to unseen classes/entities. We divide
the CIFAR-100 dataset into two disjoint shards of classes and train a Tina on one shard, then verify
its generalization on the unseen classes of another shard. Results in Table 3 showcase that Tina has
the intelligence to generalize on unseen classes, while TAPER-Mixer fails when meeting 100% unseen
classes. As a generative model, Tina can understand the hyper-level world knowledge embedded
in model parameters as well as text semantics and generate models for predicting unseen entities.

3.4 ABLATION OF DESIGN CHOICES OF TINA

Table 4: Ablation study for different design choices of
Tina.

Designs/Datasets Mini-Imagenet CIFAR-100 Caltech-101 Avg.

w/o classifier aug. 32.45 49.61 41.61 41.22
w/ permutation aug. 9.88 10.14 10.59 10.20
merge text embed. as one 10.04 10.35 10.78 10.39

Tina (completed) 53.31 67.14 59.27 59.91

We make an ablation study for dif-
ferent design choices of Tina. The
ablated designs are the ones differ-
ent from previous literature, such as
our design of classifier augmentation,
G.pt’s design of permutation augmen-
tation (Peebles et al., 2022), and TA-
PER’s design of merge text embedding as one (Chen et al., 2023). The results are in Ta-
ble 4. Our classifier augmentation can boost the performance even under small training datasets.
Permutation augmentation has negative effects on generating personalized models, and we hypothe-
size that for Tina’s training data, the p-Models finetuned from the same generic model are located
in a common loss basin, where permutations will disturb the shared representations. In addition,
merging the text embeddings into one will hinder the DiT from learning the sequential classifications,
making Tina bad in generalization.

Table 5: Ablation study of Tina on the im-
pact of text prompts. The model is CNN and
the dataset is CIFAR-100.

Testing Prompt

Training
Prompt

Class name Description

ID OOD ID OOD

Class name 67.27 67.21 46.93 46.77
Description 42.79 42.58 67.29 67.08

Ablation of text prompts. We have made an in-
depth ablation study on the impact of text prompts,
as in Table 5. It is found that if training and testing
use the same kind of text prompts, the performances
are similar regardless of class-name prompting or
description prompting. However, if the prompt strate-
gies are different in training and testing, the results
will degrade, and training in class name prompts has
better transferability and generalization.
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Analysis about whether Tina merely memorizes and reproduces parameters. In Table 7 of
Appendix, we additionally make an in-depth ablation study about whether Tina merely memorizes
and reproduces parameters. We use Euclidean distances of parameters and ensemble learning ability
to verify, and the results show that Tina is not merely memorizing but generalizing.

4 RELATED WORKS

Diffusion models. Originating from non-equilibrium thermodynamics (Jarzynski, 1997; Sohl-
Dickstein et al., 2015), diffusion models have evolved significantly. DDPM and DDIM pioneered
forward-and-reverse processes in text-to-image generation (Nichol & Dhariwal, 2021; Song et al.,
2020). Guided-based diffusion models (Dhariwal & Nichol, 2021) surpassed GAN-based methods in
image generation quality. Subsequent models like GLIDE (Nichol et al., 2021), Imagen (Saharia et al.,
2022), DALL·E 2 (Ramesh et al., 2022), and stable diffusion (Rombach et al., 2022) further advanced
image generation and art creation. The diffusion transformer (DiT) (Peebles & Xie, 2023) introduced
a scaling law, with OpenAI’s Sora (OpenAI, 2024) being a notable application in text-to-video
generation, employing DiT architecture at a billion-scale.

Parameter generation. Learning to optimize explores neural networks learning update rules for
others (Andrychowicz et al., 2016; Amos, 2022; Metz et al., 2022; Chandra et al., 2022). Hypernet-
work (Ha et al., 2016) is a meta learning approach that uses networks to modify neural network pa-
rameters, differing from our approach of mapping language space directly to parameter space. Hyper-
networks are used in federated learning (Shamsian et al., 2021), few-shot learning (Zhmoginov et al.,
2022), and model editing (Mitchell et al., 2022). A concurrent work ModelGPT (Tang et al., 2024) cus-
tomizes models by large language models and hypernetworks, while Tina uses conditional neural net-
work diffusion for a different task—train-once-for-all personalization. Neural network diffusion (Pee-
bles et al., 2022; Wang et al., 2024) is recently proposed to mimic optimization rules via diffusion for
parameter generation, but previous works haven’t explored sufficient use cases of such techniques.

For more detailed related works (e.g., the works about personalization), please refer to Appendix C.

5 DISCUSSIONS

Limitations. Despite the merits of Tina, it has some current limitations. One bottleneck is the input
dimension; due to our computation limits, Tina currently supports lightweight models as inputs, and
it requires huge computation resources to fully generate large models with millions of parameters. On
the one hand, a larger input dimension needs exponentially larger Tina parameters, so more GPUs.
On the other hand, a larger input dimension needs more data to converge or generalize, requiring
more compute hours. As a remedy, we tried to train a variational autoencoder (VAE) for encoding the
p-Model parameters into a low-dimension latent space as in Wang et al. (2024), but the VAE cannot
generalize, suggesting more advanced techniques are needed. Another limitation is the generality of
Tina, that one single Tina cannot generate personalized models across different sizes and different
modalities; in the future, large-scaling pretraining for Tina may be promising to reach this goal.

Broader impacts. Tina is the preliminary work of text-to-model generation and will have broader
impacts on the machine learning community, especially in the field of generative AI and model person-
alization. Though in this initial version of Tina, we only showcase its great potential in image classi-
fication tasks, Tina is prospective in a wide range of applications and tasks, such as natural language
processing, audio recognition, and recommender system. Also, Tina has opened more potential direc-
tions for neural network diffusion, and we believe it can inspire more interesting works in the future.

6 CONCLUSION

In this paper, we present Tina, a text-to-model neural network diffusion model for train-once-for-all
personalization. Tina has shown its great capability in generating personalized models from text
prompts, and it can generalize to in-distribution as well as out-of-distribution tasks, zero-shot/few-shot
image prompts, natural language prompts, and unseen classes. Tina also supports personalization
under different numbers of classes. This paper explores the potential of text-to-model generative AI
and opens new applications for neural network diffusion in end-user personalization.
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Appendix

A IMPLEMENTATION DETAILS

A.1 DATASET PREPARATION

Mini-ImageNet. The Mini-ImageNet dataset (Vinyals et al., 2016) is a sub-dataset of ImageNet
(Deng et al., 2009), which is widely used in few-shot learning. It selects 100 categories from
ImageNet1K. The trainset contains 600 labeled images for each category, a total 60,000 images, and
the testset contains 100 labeled images for each category, a total of 10,000 pieces.

CIFAR-100. Each image in CIFAR-100 (Krizhevsky, 2009) has two labels: superclass and subclass.
There are 500 training images and 100 testing images per subclass. CIFAR-100 has 20 superclasses,
and each superclass has 5 subclasses.

Caltech-101. Caltech-101 (Fei-Fei et al., 2004) is an objects image dataset with 101 categories.
Approximately 40 to 800 images per category, most categories have around 50 images, 8677 images
in total. We divide it into a trainset and a testset according to the ratio of 8:2.

When creating the p-Model datasets, we strive to maintain a consistent frequency of occurrences
for each class, while simultaneously varying the combinations of different classes in various orders.
For each dataset, we randomly permute the order of all classes, divide them into ten classes, and
train on the respective classes to construct p-Models. This approach allows us to generate 10 distinct
class models for each dataset. We utilize various random seeds to control the generation of class
combinations, ensuring we acquire sufficient p-Models. We randomly selected 150 data from the
original training data as the out-of-distribution testset.

For CIFAR-100, it has two classification methods: superclass and subclass. In order to increase the
diversity and semantics of p-Model data, we use a more complex way to set up the classes included
in each model. (1) The classes trained by each model come from different superclasses. This ensures
a wide range of semantic variations. (2) Part of the classes trained by each model come from the
same superclass. The selection of these classes is done randomly. (3) The classes trained by each
model only come from two different superclasses. In the trainset and testset, we distribute these three
division methods in quantity according to 3:2:1.

A.2 EXAMPLE OF CLASS DESCRIPTION FROM GPT-4

For the word of each class, we use GPT-4 to provide a more detailed and standardized description
and definition. Some examples are shown in Table 6. The prompts are:

"I will give you a list containing various nouns. Please add some short, accurate, and common
descriptions to these nouns that can accurately define these nouns, and then return to me
a JSON file where the key is the name and the value is the corresponding description. An
example of the description is: "goblet": "a drinking glass with a base and stem", "anemones
fish": "live associated with sea anemones", "chiffonier": "a tall elegant chest of drawers".
The list to be processed is as follows:"

Table 6: Natural language descriptions of the class names from GPT4.
class description of the class from GPT4

"boy" "a male child or young man"
"girl" "a female child or young woman"

"apple" "a round fruit with red, green, or yellow skin and a crisp, sweet flesh"
"pear" "a sweet, juicy fruit with a thin skin and a rounded base tapering to a stalk"

"orange" "a round, juicy citrus fruit with a tough, bright orange rind"
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A.3 DATA PREPARATION FOR EXPERIMENTS OF UNSEEN CLASSES

We divide the 100 classes in CIFAR-100 evenly into two groups/shards. The classes belonging to one
group serve as the training model data, while the classes in the other group are intentionally excluded
from appearing during the training process. When making these divisions, we take care to distribute
categories with similar characteristics into separate groups. For instance, we separate the apple and
the orange, both being common fruits, into different groups. Similarly, the bear and the lion, both
large carnivorous mammals, are divided, and the boy and the man, both representing the male gender,
are also separated accordingly.

A.4 DETAILED IMPLEMENTATIONS OF METHODS

We first train the model on the entire dataset for 50 epochs to obtain a stage-one model.

Classifier Selection: Based on the stage-one model, for each classification task, we only retain the vec-
tor representing the corresponding class on the classifier and set the vectors for all other classes to zero.

TAPER-Mixer: We set up two base models and split the dataset into two shards based on the
classification labels. Each base model is initialized using the parameters of the stage-one model
and fine-tuned on one of the sharded datasets for 5 epochs. In stage 3, we use the class order of
the p-Model in the trainset to train the mixer for 5 epochs, and during the testing phase, the mixer
remains frozen.

Tina: For each p-Model data, we initialize it using the parameters of the stage-one generic model as
a starting point. At the same time, each class is sequentially reorganized as labels ranging from 0 to 9
for training. We fine-tune the generic model for 10 epochs to obtain the p-Models. For ResNet-20, we
only fine-tune the parameters of the classifier, while keeping the remaining network parameters frozen.

A.5 HYPERPARAMETERS

In all experiments, we use the same hyperparameters for training. For the model structure, we set the
hidden size to 2048, and the number of the encoder and decoder is 1. Each encoder and decoder has
12 layers, and each self-attention layer has 16 attention heads. For the training process, we divide
the model parameters into chunks by layer, and the size of each chunk is 576. We set batch size 64,
learning rate 4e−4, and the gradient clipping coefficient to 0.1.

A.6 ENVIRONMENTS AND RESOURCES

All our experiments are conducted on CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHZ. We
employ two Quadro RTX 8000 for data-parallel distributed training. When Tina generates a CNN
neural network with 5,000 parameters, each GPU requires 20,000MB of memory, and training for
300 epochs takes approximately 5 hours.

B MORE RESULTS

In Table 7, we additionally make an in-depth ablation study about whether Tina merely memorizes
and reproduces parameters. The study includes the following aspects.

• Euclidean Distances: It is found that the generated models have obvious Euclidean distances
from each other and also from the fine-tuned models.

• Ensemble Learning Ability: Ensemble learning often demonstrates higher accuracy than
individual models, which can be indicative of the diversity in the internal representations of
different neural networks, meaning that the manifold representations of the model parameters
are not identical. Therefore, we make the generated models and the fine-tuned one ensemble
to see whether it benefits. The results show that the ensemble accuracies are higher than the
averaged accuracy and even higher than the best individual accuracy.

• Taking the above experimental results into consideration, it is evident that Tina is not merely
memorizing parameters but generalizing.
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Table 7: Analysis about whether Tinamerely memorizes and reproduces parameters. The model
is CNN, and the dataset is CIFAR-100. We verify Tina on OOD (unseen) tasks. Euclidean distances
are calculated to reflect the parameter discrepancies directly. Also, we use model ensemble to verify
whether the p-Models generated by Tina are functionally different and have diverse representations.
Tina is conditioned on the class names as prompts during training. Here, we showcase two training
tasks. “Finetune” refers to the oracle model finetuned on the target personalized dataset, “Tina name”
refers to Tina’s generated models during inference prompted on class names, “Tina des.” refers
to Tina’s generated models during inference prompted on class descriptions. Average accuracy
(“Avg.”) refers to the average of individual accuracies. Ensemble accuracy (“Ensemble Acc.”) refers
to ensembling the four models (1 “Finetune”, 2 “Tina name”s, and 1 “Tina des.”) during inference.

Individual Acc. Euclidean Distance

Finetune Tina name 1 Tina name 2 Tina des. Avg. Ensemble Acc. Tina name-Finetune Tina des.-Finetune Tina name-Tina des.

Task 1 75.3 74.9 74.9 58.9 71.0 76.2 4.11 11.41 10.72
Task 2 51.2 51.3 51.0 34.1 46.9 52.9 3.41 11.95 11.35

C DETAILED RELATED WORKS

Diffusion models The origin of diffusion models is the study of non-equilibrium thermodynam-
ics (Jarzynski, 1997; Sohl-Dickstein et al., 2015). In recent years, DDPM (Nichol & Dhariwal, 2021)
and DDIM (Song et al., 2020) have refined diffusion models to a higher level by transforming the
paradigm into forward-and-reverse processes in text-to-image generation. Later on, guided-based
diffusion models (Dhariwal & Nichol, 2021) found a better architecture to improve the image gen-
eration quality that could beat the GAN-based methods (Goodfellow et al., 2014; 2020). Then,
GLIDE (Nichol et al., 2021), Imagen (Saharia et al., 2022), DALL·E 2 (Ramesh et al., 2022), and
stable diffusion (Rombach et al., 2022) emerged and flourished in the field of image generation and
art creation. In the work of diffusion transformer (DiT) (Peebles & Xie, 2023), the authors found that
if the basic architecture of diffusion models is changed to transformers, the scaling law emerges, that
scaling the number of parameters can reach the increasing quality of image generation. Based on
DiT, in Feb 2024, OpenAI launched Sora (OpenAI, 2024), a text-to-video model that can understand
and simulate the physical world in motion. In Sora, the DiT architecture is used and scaled to the
billions level.

Parameter generation The field of learning to optimize studies how one neural network can
learn the update rules (gradients) for optimizing another network (Andrychowicz et al., 2016; Amos,
2022; Metz et al., 2022; Chandra et al., 2022). Besides, the studies of hypernetworks (Ha et al.,
2016) focus on how to directly output or modify neural networks’ parameters by a hypernetwork.
Hypernetworks usually take models’ parameters as input and generate parameters (Shamsian et al.,
2021; Mitchell et al., 2022), which is different from our paper, which directly maps language
space into the parameter space. Hypernetworks were used to generate local models for federated
learning (Shamsian et al., 2021), edge-cloud collaboration, few-shot learning (Zhmoginov et al.,
2022), and model editing (Mitchell et al., 2022). A concurrent work ModelGPT (Tang et al.,
2024) also uses text prompts to generate customized models by using large language models as
task descriptors. However, ModelGPT didn’t target the train-once-for-all personalization scenario,
and it uses conventional hypernetwork and meta learning methods while our Tina adopts novel
conditional neural network diffusion. Recently, empowered by the strong expressiveness of diffusion
models, neural network diffusion (Peebles et al., 2022; Wang et al., 2024) was proposed to mimic the
optimization rule by diffusion for generating the model parameters. The first paper is G.pt (Peebles
et al., 2022), which uses DiT to learn to generate the model given a targeted loss or accuracy, and it
mimics the optimization process while achieving faster inference compared with vanilla optimization.
However, G.pt may have limited use cases; it can only generate the models for the training tasks
(i.e., the in-distribution tasks in our paper’s terminology), and the accuracies are upper-bounded by
the accuracies of checkpoint models in the training datasets. p-diff (Wang et al., 2024) formally
formulates the neural network diffusion problem and proposes to diffuse and generate the batch
normalization layers for better accuracies, but the improvement may be marginal, and the diffusion
design is not conditioned. It also meets the dilemma of G.pt, which lacks a specific scenario and use
case. Recently, GPD (Yuan et al., 2024) uses the diffusion model for few-shot learning in smart city
applications, which showcases the applications of neural network diffusion. However, GPD takes the
smart city’s knowledge graphs as prompts and is tailored for the specific smart city application that
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cannot be easily extended to other fields. Our Tina takes language texts as prompts, which is more
flexible and can be extended to a wider range of applications for the personalization of user demands.

Personalization Instead of training a generic model to provide many users with the same model
service, personalization of deep learning models acknowledges users’ characteristics and diversity
and learns each a customized model. Personalization techniques were introduced in medical
AI (Goecks et al., 2020; Awwalu et al., 2015; Li et al., 2022b), recommendation systems (Choi et al.,
2006; Cui et al., 2020), large language models (Kirk et al., 2024; Li et al., 2024a), and especially
federated learning (Chen & Chao, 2022; Li et al., 2021). Personalized federated learning studies
how to exploit the common knowledge of users and then use it to explore further personalization
on users’ local datasets under privacy constraints (Chen & Chao, 2022), and techniques like proximal
descent (Li et al., 2020; 2021), network decoupling (Chen & Chao, 2022; Gao et al., 2023), and
clustering (Ghosh et al., 2020; Li et al., 2022a) are used. Recently, the scenario of train-once-for-all
personalization (Chen et al., 2023) was proposed to bridge the gap between edge-side and server-side
personalization. Train-once-for-all personalization aims to utilize server-side computation and
generic models for fast and effective personalized adaptation to meet the edge users’ demands. The
original method TAPER (Chen et al., 2023) finetunes the generic model into several base models
and learns MLP-based hypernetworks as mixers to fuse the base models into the personalized one
given users’ task descriptions. However, the MLP mixer has limited generalization capability, and
it cannot be applied to unseen classes, whereas our Tina learns the text-to-model world knowledge
and can be generalized to out-of-distribution samples, modalities, and domains.
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