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Abstract

Current state-of-the-art detection algorithms operating on 2D natural images utilize the
relation modeling capability of vision transformers to increase detection performance. How-
ever, the feasibility of adapting vision transformers for the 3D medical object detection
task remains largely unexplored. To this end, we attempt to leverage vision transform-
ers for organs-at-risk detection and propose a novel feature extraction backbone, dubbed
SwinFPN, which exploits the concept of shifted window-based self-attention. We com-
bine SwinFPN with Retina U-Net’s head networks and report superior detection per-
formances. Code for SwinFPN will be available in our medical vision transformer li-
brary https://github.com/bwittmann/transoar.
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Figure 1: Detection pipeline. A complete overview.

1. Introduction

Radiation therapy represents an effective cancer treatment method that applies high doses of
radiation locally to a target volume to damage the DNA of cancer cells beyond repair. How-
ever, an extensive patient-specific planning phase is required in which, among other things,
organs-at-risk are contoured on CT scans. For this purpose, artificial intelligence-based
methods for automated segmentation processing CT scans directly have been proposed.
Even though these direct segmentation approaches achieve reasonable results, a prelimi-
nary detection step could drastically simplify the segmentation task and hence improve
segmentation performances (Navarro et al., 2022).
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Recently, nnDetection (Baumgartner et al., 2021), a self-configuring framework for 3D med-
ical object detection, achieved competitive results on prominent benchmarks. The nnDe-
tection framework is built around the one-stage detector Retina U-Net (Jaeger et al., 2020),
which is similar to RetinaNet (Lin et al., 2017) and exploits a segmentation proxy task for
additional, voxel-wise supervision.

Since the concept of relation modeling should be highly beneficial, especially to capture
relative positional dependencies among the regular structured organs-at-risk, we propose
a novel vision transformer-based backbone, dubbed SwinFPN, aiming to increase Retina
U-Net’s detection performance.
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Figure 2: SwinFPN backbone. Regions marked in red utilize 3D Swin transformer blocks.
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2. Methodology and Experiments

SwinFPN’s detailed architecture is depicted in Figure 2. In general, SwinFPN is represented
by a lightweight feature pyramid network consisting of a down-sampling branch (CO - C5),
an up-sampling branch, and a final output projection (PO - P5). Lateral connections between
the down- and up-sampling branches adjust the number of channels of the multi-level feature
maps used for detection and classification to the desired value Cy,; = 192. After the
feature map C1, the standard down-sampling block consisting of two convolutional blocks
is augmented with two consecutive 3D Swin transformer (Liu et al., 2021) blocks. Both 3D
Swin transformer blocks, which are placed between the two convolutional blocks, exploit
the window-based self-attention mechanism with a window size of 7 x 7 x 7. In addition, the
windows are shifted by (3,3,3) voxels in the second 3D Swin transformer block to enable
cross-window information exchange. The feature maps P5, P4, P3, P2, and PO are finally
forwarded to the head networks, as displayed in Figure 1.

The dataset used for the task of 3D organs-at-risk detection consists of CT scans from the
VISCERAL anatomy benchmark (Jimenez-del Toro et al., 2016). During pre-processing,
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all CT scans were cropped to the thorax and abdomen region and resized to the shape
160 x 160 x 256.

AP and mAP results of experiments with different backbone configurations combined with
Retina U-Net’s head networks are listed in Table 1. We compare SwinFPN to a standard
FPN by simply deactivating the additional 3D Swin transformer blocks. Since SwinFPN
possesses a larger amount of trainable parameters, we conduct additional experiments to
ensure that the increased detection performance is not just a result of increased model
capacity. To this end, we adjust the standard FPN by increasing C,,: from 192 to 384
(FPN-384) and by adding additional convolutional blocks (FPN-192%).

One can conclude that SwinFPN performs superior compared to the different standard FPN
configurations, even though its increase in parameters remains the lowest.

Table 1: Quantitative results. Comparing SwinFPN to standard FPN configurations.

Backbone | Params Al | mAPeoco T | mAPS ., T | mAPM 1 | mAPL 1 | APso T | AP75 1
FPN-192 44.1M - 40.64 18.91 40.31 59.22 80.67 37.19
FPN-384 68.5M  +24.4M 41.06 22.17 39.33 59.41 80.71 37.13
FPN-192* 65.2M  421.1M 41.43 20.40 40.08 60.98 80.45 36.29

SwinFPN-192 | 63.1M  +19.0M | 41.83 | 21.00 | 3996 | 62.00 | 82.94 | 40.11

* standard down-sampling block is augmented with an additional conv. block after C1.

3. Conclusion

This work lays the foundation for vision transformer-based 3D medical object detectors.
It demonstrates that it is possible to leverage the global relation modeling mechanism
for the task of medical object detection with minor adjustments. Although we present
initial, promising results, large-scale annotated CT datasets or tailor-made unsupervised
pre-training strategies would be necessary to completely exploit the potential of vision
transformers.
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