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ABSTRACT

Sparse Mixture-of-Experts (MoE) allows scaling of language and vision models
efficiently by activating only a small subset of experts per input. While this re-
duces computation, the large number of parameters still incurs substantial memory
overhead during inference. Post-training quantization has been explored to address
this issue. Because uniform quantization suffers from significant accuracy loss at
low bit-widths, mixed-precision methods have been recently explored; however,
they often require substantial computation for bit-width allocation and overlook the
varying sensitivity of model performance to the quantization of different experts.
We propose a theoretically grounded expert-wise mixed-precision strategy that
assigns bit-width to each expert primarily based on their change in router’s l2 norm
during training. Experts with smaller changes are shown to capture less frequent
but critical features, and model performance is more sensitive to the quantization
of these experts, thus requiring higher precision. Furthermore, to avoid allocating
experts to lower precision that inject high quantization noise, experts with large
maximum intra-neuron variance are also allocated higher precision. Experiments
on large-scale MoE models, including Switch Transformer and Mixtral, show that
our method achieves higher accuracy than existing approaches, while also reducing
inference cost and incurring only negligible overhead for bit-width assignment.

1 INTRODUCTION

The sparse Mixture of Experts (MoE) architecture allows the construction of larger pre-trained
language and vision models without increasing training costs (Shazeer et al., 2017; Lepikhin et al.,
2021; Riquelme et al., 2021; Fedus et al., 2022; Allingham et al., 2022). In this architecture, the
transformer block’s feed-forward network (FFN) is replaced by multiple FFN modules, each referred
to as an expert. Each expert is paired with a trainable router, which selectively activates a small
subset of experts for each input token. Compared to dense models (Fedus et al., 2022; Chowdhury
et al., 2023), MoE enables faster convergence and reduces the amount of training data required.
Additionally, MoE maintains similar inference FLOPs to dense models despite having a larger
parameter count (Riquelme et al., 2021; Zhou et al., 2022).

Despite these advantages, MoE incurs substantial memory costs during inference due to their large
size, limiting their deployment. Since experts learn diverse features during pre-training, not all are
equally relevant for a specific downstream task, some recent pruning strategies attempt to mitigate
memory usage by eliminating task-irrelevant experts (Chen et al., 2022a; Koishekenov et al., 2023;
Chowdhury et al., 2024). However, the effectiveness of pruning diminishes in complex tasks, where a
larger set of experts remains essential.

Post-training weight quantization (PTWQ) focuses on quantizing weights after training and has
emerged as another promising technique for reducing the memory footprint of large language models
(LLMs) (Shao et al., 2024; Hubara et al., 2021; Lin et al., 2024; Frantar et al., 2023; Badri & Shaji,
2023). Several works have applied quantization to large MoE models by uniformly reducing all expert
weights to a fixed bit-width (Kim et al., 2022; 2023b; Frantar & Alistarh, 2024). However, this uniform
approach overlooks the varying importance of different experts, resulting in substantial performance
degradation under extremely low-bit settings (e.g., sub-3-bit quantization). Although various mixed-
precision quantization methods have recently been developed for other model architectures and could
potentially be applied to MoEs, e.g., block-wise mixed precision of MoEs Li et al. (2024), these
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do not leverage the varying relevance of experts in MoE models. An expert-wise mixed-precision
approach, in which bit-width varies across experts based on their sensitivity, offers greater potential
to preserve accuracy under low-bit constraints. Yet, this direction remains largely unexplored. To
our knowledge, only two recent works (Li et al., 2024; Huang et al., 2025a) have explored this
approach, using metrics such as expert usage frequency and mean routing weights to estimate experts’
sensitivity. However, these heuristics are suboptimal and lack theoretical justification (Chowdhury
et al., 2024). This raises a fundamental question:

What metric provably categorizes experts in the mixed-precision quantization of an MoE layer?

This paper addressed the question both theoretically and empirically. Our theoretical analysis reveals
that allocating higher bit-width to a group of experts with a smaller change in the router’s l2 norm
during training, corresponding to experts that learn less frequently used but important features, while
allocating the rest of the experts in lower bit-width can significantly reduce model size without hurting
performance. Moreover, allocating some of the experts with high maximum intra-neuron variance
to higher bit allows further compression. Extensive empirical evaluations support these findings,
demonstrating that large state-of-the-art (SOTA) MoE models (e.g., Switch Transformer, Mixtral)
can be quantized to ultra-low-bit regimes (e.g., below 3-bit) without sacrificing accuracy. Our major
contributions are summarized as follows:

1. A theoretically grounded metric, the change in a router’s l2 norm during training, for
expert-wise mixed-precision quantization. We theoretically analyze the training dynamics and
generalization behavior of a simplified two-layer MoE model fine-tuned on classification tasks. This
model is a SOTA theoretical model in understanding training and generalization of MoEs and general
neural networks. We prove that experts capturing less prevalent features exhibit smaller changes in
their router’s l2 norm during training. We further prove that these experts exhibit lower activation
levels. Hence, the model’s generalization performance is more sensitive to the quantization of these
experts, requiring them to have higher precision. Unlike the prior work (Chowdhury et al., 2024)
that uses the router’s l2 norm to distinguish between relevant and irrelevant experts for pruning, our
analysis offers a finer-grained view that identifies varying levels of expert importance, enabling a
principled approach to diverse expert-wise bit-width allocation for mixed-precision quantization.

2. Empirical Validation of Expert-wise Mixed Precision on large MoE models, including Switch
Transformer and Mixtral. Our results show that assigning precision based on changes in the router’s
l2 norm during fine-tuning outperforms alternative heuristics, such as expert activation frequency
and activation weights. Moreover, for large pretrained models like Mixtral, where fine-tuning is
computationally expensive, we demonstrate that using the router’s l2 norm from the pretrained
model alone, without any fine-tuning, achieves test accuracy comparable to the existing expert-wise
mixed-precision strategies (Table 1) while reducing inference computation (Figure 3). Importantly,
our approach incurs negligible computational overhead to determine expert bit-widths, while the
alternative methods require significant GPU computation.

2 RELATED WORKS

Quantization of large models. Parallel to PTWQ, some other methods focus on minimizing
quantization error through quantization aware (re-)training (QAT), but these methods are every
expensive and not suitable for large models (Wang et al., 2022; Liao et al., 2024; Gu et al., 2024).
Mixed-precision strategies have also been explored, where bit-widths vary across different model
components (e.g., MLP blocks, attention heads) (Dong et al., 2020; Li et al., 2024; Huang et al.,
2025b; Dettmers et al., 2024). However, variation of bit-widths within the same layer remains
underexplored.

MoE compression. To compress MoE models, some approaches focus on expert pruning, either
targeting specific downstream tasks during fine-tuning (Chen et al., 2022a; Koishekenov et al., 2023;
Chowdhury et al., 2024), or removing irrelevant experts from the pre-trained model (Zhang et al.,
2024; Xie et al., 2024). However, the effectiveness of pruning diminishes for complex tasks. PTWQ
has also been applied to compress large MoE models, with most methods focusing on uniform
quantization of experts (Kim et al., 2022; 2023a;b; Yi et al., 2025; Frantar & Alistarh, 2024), which
often results in degraded performance under ultra low-bit settings. Two very recent works have
explored expert-wise mixed-precision quantization for MoE models (Li et al., 2024; Huang et al.,
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2025a), but they either rely on suboptimal metrics or require extensive memory and computational
resources to determine the expert-specific bit-width distribution.

Optimization and generalization analysis of neural networks. Several works have established
optimization and generalization guarantees for neural networks (NNs) using neural tangent kernel
(NTK)-based approaches (Jacot et al., 2018; Lee et al., 2019; Du et al., 2019; Allen-Zhu et al., 2019;
Li et al., 2022). However, such analyses can not capture realistic training dynamics as they require
the weights remain close to initialization throughout training. More recent studies have focused on
the feature learning dynamics of NNs to derive generalization guarantees (Karp et al., 2021; Brutzkus
& Globerson, 2021; Li et al., 2023; Zhang et al., 2023; Chowdhury et al., 2023), offering better
alignment with practical neural network behavior. These analyses are typically restricted to shallow
networks, and our work falls within this framework.

3 EXPERT-WISE MIXED-PRECISION QUANTIZATION OF MOE

3.1 THE BASICS OF MIXTURE-OF-EXPERTS ARCHITECTURE

Figure 1: A schematic of Mixture-of-Experts with
our proposed approach. Experts with smaller
router norm changes in higher bit. Experts with
large max intra-neuron variance are reordered.

In MoE models, the standard feed-forward net-
works (FFNs) in transformer MLP blocks are
replaced with multiple parallel FFN experts. A
gating network of routers assigns input tokens
to specific experts.

Consider an example MoE block that includes k
experts, each of which is a two-layer FFN. Let
x = [x(1)⊤ , x(2)⊤ , ..., x(n)⊤ ] ∈ Rnd denote the
input sequence, consisting of n tokens, each
of dimension d. For each token x(j) ∈ Rd

with j ∈ [n], the MoE block produces a d′-
dimensional output token, forming the output se-
quence xout = [x

(1)⊤

out , x
(2)⊤

out , ..., x
(n)⊤

out ] ∈ Rnd′
.

The output x(j)
out ∈ Rd′

corresponding to the in-
put x(j) is given by,

x
(j)
out =

∑
s∈[k]

fs(x
(j)) where, fs(x(j)) =

{
W

(s)
2 σ

(
W

(s)
1 x(j)

)
G

(s)
j if G(s)

j > 0

0⃗d′ if G(s)
j = 0

(1)

Here fs(x
(j)) ∈ Rd′

denotes the contribution of the s-th expert. W (s)
1 ∈ Rm×d and W

(s)
2 ∈ Rd′×m

represent the weights of the first and second layer, respectively. The activation function σ(·) is applied
element-wise to the hidden layer output. 0⃗d′ denotes the zero vector in Rd′

.

The Gating Network. For each token x(j) (j ∈ [n]) and each expert s (s ∈ [k]), the gating network
computes a gating value G

(s)
j ∈ [0, 1]. The network includes k trainable router vectors ws ∈ Rd

(s ∈ [k]), one per expert.

In token-choice routing(Fedus et al., 2022), given an input token x(j) ∈ Rd, the routing network
computes a set of routing scores {⟨ws, x

(j)⟩}ks=1 for all k experts. The top-l experts with the highest
scores (where l ≪ k) are selected, and their corresponding gating values are computed via a softmax
over the top-l scores, while the remaining experts receive a gating value of zero. In contrast, in
expert-choice routing (Zhou et al., 2022), each expert s computes routing scores {⟨ws, x

(j)⟩}nj=1 over
all n tokens and selects the top-l tokens with the highest scores. The gating values for the selected
tokens are computed via a softmax over the top-l scores, and the rest are assigned zero.

3.2 THE POST-TRAINING WEIGHT QUANTIZATION (PTWQ)

PTWQ methods compress neural network weights by representing them as low-bit fixed-point integers.
During inference, these quantized weights are dequantized back to floating-point values. Given a
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weight matrix W ∈ Rin×out, and a target bit-width b, the de-quantized weights Ŵ are computed as,

Ŵ = ∆ ·
(⌊
W/∆+ z · 1in×out⌉− z · 1in×out) (2)

where ∆ := (max(W )−min(W ))/(2b−1) is the quantization bin size, and z := −⌊min(W )/∆⌉−
2b−1 is the zero-point of the quantized weights. 1in×out is an all-ones matrix with dimension (in×out),
and ⌊·⌉ is the element-wise rounding to the nearest integer.

Most PTWQ methods select ∆ and z by minimizing either the loss in activation on calibration data
(e.g., GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2024)). An alternative line of work aims to
minimize the reconstruction error directly, without calibration data (e.g., HQQ (Badri & Shaji, 2023)).

3.3 THE PROPOSED MIXED-PRECISION QUANTIZATION METHOD

Our quantization approach proceeds in two main steps: (1) ordering the experts based on the change
in the router’s norm and the maximum intra-neuron variance, defined in Defs. 3.1 and 3.2 and (2)
assigning bit-widths (two-level or three-level quantization) according to the ordering.

STEP 1: Expert Ordering. We first introduce two metrics used in ordering the experts.

Definition 3.1. For expert s ∈ [k], let w(0)
s and w

(T )
s be its router vectors in the initial and trained

models, respectively. We define change in router’s l2 norm as follows,

Λ(T )
s := ∥w(T )

s ∥ − ∥w(0)
s ∥. (3)

Definition 3.2. Let W (s,T )
1 be the first-layer weight matrix of expert s in the trained model, containing

m neurons with weights in Rd. The maximum intra-neuron variance evaluates the maximum
variance of weight entries in each neuron, i.e.,

MaxVar(T )
s := max

r∈[m]

1

d

d∑
i=1

(
W

(s,T )
1 [r, i]− 1

d

d∑
i=1

W
(s,T )
1 [r, i]

)2
. (4)

where W
(s,T )
1 [r, i] denotes the i-th element of the r-th row of the matrix W

(s,T )
1 .

We first rank experts by the change of router’s l2 norm Λ
(T )
s , where those with smaller Λ(T )

s are
placed higher, which later correspond to higher precision. This ordering is theoretically justified in
Section 4, and the intuition is that the model performance is more sensitive to the quantization of
those experts s with smaller Λ(T )

s .

Then, to assign the experts in higher precision that inject high quantization noise to the model, we
adjust the ordering by promoting experts with larger maximum intra-neuron variance to higher ranks.
Specifically, if a lower-ranked expert s has its MaxVar(T )

s at least ζ (ζ > 1)1 times greater than
MaxVar

(T )
s′ of an expert s′, where s′ ranks higher than s in the ordering by router norm change, we

move s to be above s′ in the adjusted ordering. This process is repeated until no further changes are
needed. The intuition is that larger intra-neuron variance arises either from wider weight ranges or
from more skewed weight concentrations, both of which induce higher quantization noise compared
to experts with smaller intra-neuron variance under the same bit-width assignment.

Special Case: For pre-trained models where the initial router vectors w(0)
s are unavailable, we use

the router’s l2 norm itself as a surrogate for Λ(T )
s , since initial weights are typically small-variance

random initializations. MaxVar(T )
s is computed directly from the pre-trained model as well.

STEP 2: Bit Assignment. Based on the obtained ordering, we can assign two-level or three-level
quantization as follows.

Two-level assignment. Given bh > bl and target average bit-width bavg, we quantize the top
κ =

bavg−bl
bh−bl

fraction of experts to bh and the rest to bl.

1We use ζ = 3 in experiments, since the variance of any bounded distribution is at most three times that of a
uniform distribution with the same range. This adjustment affects only 4–5% of experts in experiments.
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Three-level assignment. With bit-widths bh > bm > bl and target bavg, we assign higher-ranked
experts to bh, mid-ranked experts to bm, and lower-ranked experts to bl. In general, multiple
assignment strategies are possible according to the ranking order while still achieving the same bavg.
We select the best strategy based on the intuition to balance between maximizing the number of
experts assigned to the highest precision and minimizing those assigned to the lowest precision,
depending on the value of bavg relative to the three levels.

Specifically, when bavg is in (bh − (bh − bl)/3, bh), i.e., close to bh, we maximize the number of
experts assigned to bh. When bavg is in [bh − 2(bh − bl)/3, bh − (bh − bl)/3], we again maximize
the number of experts in bh, but subject to the constraint that the number in bl does not exceed those
in bm. When bavg is in (bl, bh − 2(bh − bl)/3), we minimize the number of experts in bl.

4 GENERALIZATION GUARANTEES FOR THE ROUTER-NORM-BASED
EXPERT-WISE MIXED-PRECISION QUANTIZATION OF MOE

4.1 SUMMARY OF THEORETICAL INSIGHTS

Before formally presenting our theoretical setup and results, we first summarize the key theoretical
insights. We consider a setting where an MoE model is fine-tuned for a binary classification problem.
Each input sequence contains a single task-relevant token that determines the label, while the
remaining tokens are task-irrelevant. For each class, there are two distinct task-relevant tokens: one
is more prevalent, appearing in a (1− α) fraction of the data, while the other appears in an α fraction
(α < 1

4 ). Although based on the simplified setup, our theoretical insights are validated empirically on
practical MoE models in different language tasks. Our major theoretical takeaways include:

1. Experts specialized in learning less-prevalent tokens undergo smaller changes in their
router’s l2 norm than experts that learn more-prevalent tokens. We show that different experts
specialize in different task-relevant tokens. The routers associated with experts that exclusively learn
the less-prevalent token exhibit a smaller l2 norm change after fine-tuning, compared to routers for
experts that learn more-prevalent tokens. This observation suggests that the router norm change can
serve as a useful indicator for distinguishing between these two types of experts.

2. Experts that learn less-prevalent tokens produce weaker activations, and the model’s
generalization performance is more sensitive to the quantization of these experts. We prove
that experts are primarily activated by the task-relevant tokens they learn. Experts that learn less-
prevalent tokens generate significantly weaker activations than experts that learn more-prevalent
tokens. Therefore, the model performance is more sensitive to the quantization of the former ones.

3. Quantizing experts with smaller router ℓ2 norm changes to higher precision, while rest of
the experts in lower precision achieves the same generalization as full-precision quantization.
Because the model’s generalization is more sensitive to the quantization of the experts learning
less-prevalent tokens, and as they can be identified via router’s ℓ2 norm change, quantizing them to bh
allows safe reduction of other experts’ precision by log2

(
1−α
α

)
bits without hurting generalization.

4.2 DATA MODEL AND ASSUMPTIONS

The MoE model and binary classification task. We consider a neural network that contains a single
MoE block, fine-tuned on a binary supervised classification task, where each input sequence x is
labeled with y ∈ {+1,−1}. The MoE block generates one-dimensional output tokens, i.e., d′ = 1

for x(j)
out in (1), and the model output is computed by aggregating all the output tokens, i.e., for an

input sequence x, the model’s output is

f(x) :=
∑
j∈[n]

x
(j)
out =

∑
j∈[n]

∑
s∈[k]

fs(x
(j)) (5)

Let f (T )(·) denote the model after T steps of finetuning. x is correctly classified if yf (T )(x) > 0.
For each expert s ∈ [k], the second layer weights are fixed2 during training and defined as W (s)

2 :=

2Fixing the output layer for analytical convenience is standard in the literature and has been adopted in prior
works on training dynamic analysis of neural networks (Li & Liang, 2018; Brutzkus et al., 2018; Arora et al.,
2019; Zhang et al., 2023; Chowdhury et al., 2023)
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a(s) · 11×m, where a(s) ∈ {+1,−1}. We refer to each expert as positively connected to the final
output if a(s) = 1, and negatively connected if a(s) = −1. Let S+, S− ⊂ [k] denote the set of
positively and negatively connected experts, respectively. The activation function σ(·) is rectified
linear unit (ReLU). The routing mechanism follows expert-choice routing, where each expert selects
l tokens, satisfying l ≤ L for some constant L.

Although our theoretical analysis is based on a two-layer MoE model, it already captures the key
components, including routers, experts, and nonlinear activation, and the learning problem is already
highly non-convex. In fact, the two-layer network model is SOTA for theoretical analysis of training
dynamics and generalization in MoEs (Chen et al., 2022b; Chowdhury et al., 2023), and in general
deep neural networks (Li et al., 2023; Zhang et al., 2023; Allen-Zhu & Li, 2023; Bu et al., 2024).

Two-precision-level quantization. To simplify the theoretical analysis, we consider two precision
levels and only the first layer weights of each expert s, i.e., W (s,T )

1 , are quantized. The top κ-fraction
of experts in S+ and the top κ-fraction in S−, each with the smallest values of Λ(T )

s , are quantized to
the higher bit-width bh, while the remaining experts in both sets are quantized to the lower bit-width
bl. The quantization is applied in a column-wise fashion: for each expert s and its corresponding
bit-width, the bin size ∆ is computed independently for each column of W (s,T )

1 . Without loss of
generality, we assume the zero-point z = 0.

The data model. Let P ⊂ Rd denote a set of orthonormal vectors with |P| ≤ d = Ω(L8). Two
vectors o1 and o2 in P , and their negatives −o1 and −o2 are called task relevant, denoted by set
Pr = {±o1,±o2}, while all vectors in P\{o1, o2} are task-irrelevant.

Each sequence and label pair (x, y) follows a distribution D, where x contains exactly one token
from Pr, which determines y: sequences containing ±o1 are labeled as class 1 (i.e., y = +1),
and those containing ±o2 are labeled as class 2 (i.e., y = −1). The remaining tokens in x are
drawn independently from the task-irrelevant set P\{o1, o2}, each with probability O(1/d). With
probability α, where the constant α is in (0, 1/4), a sequence contains the less prevalent task-relevant
tokens o1 or o2, and with probability 1− α , it contains the more prevalent tokens −o1 or −o2.

Our data model is similar to Bu et al. (2024) except that our task-irrelevant vectors are drawn from an
orthonormal set instead of a Gaussian distribution. The assumption of orthonormal task-irrelevant
vectors have been widely deployed in theoretical analysis (Brutzkus & Globerson, 2021; Shi et al.,
2022; Allen-Zhu & Li, 2022; Chen et al., 2022b; Zhang et al., 2023; Li et al., 2023).

We next introduce some useful notations in presenting our theoretical results. After t training
iterations, we define the activation of expert s in response to a task-relevant token as follows:
Definition 4.1. For expert s ∈ [k], the activation of expert s by a task-relevant vector is defined as

σ(s,t)
v := 1⃗⊤σ(W

(s,t)⊤
1 v), v ∈ Pr, (6)

where W
(s,t)
1 is the first-layer weights of expert s at iteration t, and 1⃗ is an all-ones vector in Rm.

Intuitively, a lower activation of an expert for a task-relevant vector leads to a smaller gap between
the output of this expert and the output of another expert not selecting the token, leading to weaker
predictions against quantization noise.

The same as Chowdhury et al. (2024), we define an expert’s proficiency measure to quantify the
router’s ability to select task-relevant tokens from a sequence. Specifically,
Definition 4.2. The proficiency of expert s after t training iterations in selecting a task-relevant
vector v is measured by the probability that it assigns a gating value of at least 1/l to token v, i.e.,

p(s,t)v := P[G(s,t)
j ≥ 1/l | x(j) = v for some j ∈ [n]], v ∈ Pr (7)

Alignment of the pretrained model. In a pretrained model (t = 0), we say the router for expert s is
aligned to task-relevant vector v (v ∈ Pr) if p(s,0)v = Ω(1), i.e., it selects v with a nontrivial gating
value for a constant fraction of samples containing v. We assume that in the pretrained model, routers
of the experts in S+ are aligned to either o1 or −o1, and routers of the experts in S− are aligned to
either o2 or −o2. This assumption reflect the common intuition that a pretrained MoE model learns
to specialize experts for different subtasks or feature types,

6
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Let Sv (v ∈ Pr) denote the set of experts whose routers are aligned with v in the pretrained model.
Let γ = max(

|So1
|

|S+| ,
|So2

|
|S−| ) denote the maximum fraction of routers that are aligned to less-prevalent

task-relevant vectors in S+ and S−.

4.3 MAIN THEORETICAL RESULTS

Lemma 4.3. Suppose the pretrained model is fine-tuned for T = Θ(l2
√
log l/α) iterations, the

returned f (T ) has the following properties,

(i) the routers’ alignment to task-relevant vectors are enhanced during training, specifically,

p(s,T )
v = 1, p

(s,T )
−v = 0, ∀s ∈ Sv, ∀v ∈ Pr = {±o1,±o2} (8)

(ii) the l2 norm change of the routers aligned with the more prevalent −o1 and −o2 are higher than
those aligned with the less prevalent o1 and o2, specifically,

Λ
(T )
s′ > Λ(T )

s , ∀s ∈ Soi , ∀s′ ∈ S−oi , i = 1, 2 (9)

and (iii) the expert activation by −o1 and −o2 are higher than that by o1 and o2, specifically,

σ(s,T )
oi = Ω(ml

√
log l), σ

(s′,T )
−oi = Ω

(
(1− α)

α
ml
√
log l

)
,

σ
(s′,T )
−oi

σ
(s,T )
oi

≥ 1− 2α

2α
(10)

Lemma 4.3 summarizes key properties of the fine-tuned model that can be leveraged for expert-wise
mixed-precision implementation. First, (8) shows that if the router of an expert s is aligned with
a task-relevant vector v in the pretrained model, that is, p(s,0)v = Ω(1), then after fine-tuning, the
alignment becomes stronger: p(s,T )

v = 1. Moreover, the expert s suppresses −v by assigning zero
or negligible gating value to the negative token −v, i.e., p(s,T )

−v = 0. This implies that each expert
becomes specialized in a single task-relevant vector after fine-tuning.

Second, (9) shows that the change in the router’s l2-norm is larger for experts aligned with more
prevalent features, and smaller for those aligned with less prevalent ones. This property allows us to
distinguish two types of experts based on their router norm changes. Third, (10) demonstrates that
experts aligned with less prevalent vectors produce weaker activations than those aligned with more
prevalent ones, resulting from the less frequent occurrence of these tokens in the data. The ratio of
their activations is at least (1− 2α)/(2α). Thus, the model’s generalization is expected to be more
sensitive to the quantization of the experts aligning with less prevalent vector, and hence these experts
need higher precision. Lemma 4.3 is verified by synthetic data in Figs. 4 and 5 in Appendix A.

We next formally establish Theorem 4.4 that characterizes the generalization guarantee of the
quantized model f (T )

Q after applying the two-level mixed-precision quantization method in Section

3.3 to the fine-tuned model f (T ). Let Var(s,T )
r denote the variance of the r-th column of W (s,T )

1 .

Theorem 4.4. Suppose the number of fine-tuning iterations satisfies T = Θ(l2
√
log l/α), and

maxr∈[m] Var(s,T )
r = Θ(1) for every expert s. If κ ≥ γ, and the two quantization levels satisfy

bh ≥ log2(1 + Ω(d
√

log(kmd2)/l2 log l)) (11)

and
bl ≥ log2(1 +

α

1− α
Ω(d

√
log(kmd2)/l2 log l)), (12)

then with high probability the quantized model has guaranteed generalization, i.e.,

P[∀(x, y) ∼ D : yf
(T )
Q (x) > 0] = 1. (13)

Remark 4.5. Theorem 4.4 states that if the maximum intra-neuron variance of all the experts are
close to each other, i.e., ∀s ∈ [k],MaxVar(T )

s = Θ(1), sorting the experts in ascending order of their
router norm change Λ

(T )
s , and quantizing the top κ-fraction (κ ≥ γ) of experts in this sorted list to

bh bits and the remaining experts to bl bits, where bh and bl satisfy conditions (11) and (12), allows
the quantized model to preserve the generalization of the full-precision model. Each low-precision

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

expert can use log2
(
1−α
α

)
fewer bits than its high-precision counterpart. This is verified by synthetic

data in Fig. 6 in Appendix A.

Note that all the experts aligned with less prevalent vectors are among the top κ-fraction (by Lemma
4.3 (ii)) and exhibit smaller activation values (by Lemma 4.3 (iii)). Therefore, they require higher
precision. In contrast, the experts quantized to lower precision are those aligned with more prevalent
vectors and have larger activations, and hence can be quantized aggressively.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTS ON FINETUNED SWITCH-TRANSFORMER MODEL

Here, we present quantization results on Switch Transformer (Fedus et al., 2022) finetuned on
CNN/Daily Mail (CNNDM) text summarization task (See et al., 2017). All non-MoE weights are
quantized to 8 bits. We apply HQQ (Badri & Shaji, 2023) for quantizing the model3. See section B in
appendix for more implementation details.

Figure 2: Expert-wise mixed-
precision of Switch Transformer on
CNNDM. Bit choices: 2, 3

Two-level expert-wise mixed-precision: As shown in Figure 2,
uniform 3-bit expert quantization nearly preserves generaliza-
tion, while uniform 2-bit severely degrades the generalization.
We therefore use mixed-precision with two bit levels: 3 and 2.

Our method outperforms existing expert-wise mixed-
precision methods: We benchmark against two prior expert-
wise mixed-precision strategies: (i) activation frequency (aver-
age tokens routed per expert) and (ii) activation weights (aver-
age gating weights on a calibration set) (Li et al., 2024; Huang
et al., 2025a), where higher-frequency/weight experts are as-
signed higher precision. In contrast, our router-norm-change
ordering itself preserves generalization down to 2.5 average
bits/expert, outperforming both baselines. Moreover, additional
reordering by the maximum intra-neuron variance affects 3.7% of experts and extends preservation to
2.125 bits.

5.2 EXPERIMENTS ON PRETRAINED MIXTRAL MODELS

We quantize the pretrained Mixtral 8x7B (46.7B parameters) and Mixtral 8x22B (140.6B parameters)
models (Jiang et al., 2024) using GPTQ (Frantar et al., 2023) to evaluate on eight zero-shot benchmark
LLM tasks. All non-MoE parameters are assigned to 3 bits. See section B in the appendix for more
implementation details.

Baselines. We compare against the state-of-the-art expert-wise method, Pre-loading Mixed-precision
Quantization (PMQ) (Huang et al., 2025a), which assigns bit-widths by minimizing Frobenius-norm
output errors (per expert and bit level) weighted by activation frequency and gating scores. As PMQ
outperforms the activation frequency and activation weights based methods, the comparison with
these method are in Appendix (see Figure 7, 8 in Appendix). We also evaluate non-expert-wise
approaches, including layer-wise (Hessian (Dong et al., 2020), BSP (Li et al., 2024)) and group-wise
(Slim-LLM (Huang et al., 2025b)) methods. Our method has advantages as follows.

Three-level expert-wise mixed precision. We consider three-level bit-assignment of (1,2,3) bits. As
shown in Table 1, the uniform 3-bit expert quantization almost maintains generalization, but uniform
2-bit quantization significantly degrades performance.

High accuracy with robust scaling. Our method surpasses PMQ above 2.0 average bits in terms
of accuracy for Mixtral 8x7B4. Extending to Mixtral-8x22B (140.6B parameters), our method

3We use eight V100 GPUs for fine-tuning and one NVIDIA A5000 GPU (48GB) for quantized inference.
4Compressing below 2.0 bits/expert is too aggressive, since the compressed model size (≤13.1 GB) falls

below the equivalent dense model (13.6 GB), which is generally trained with far more data and has better
generalization.
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again outperforms PMQ, demonstrating robustness to model scale. It also outperforms non-expert-
wise methods (e.g., Hessian (layer-wise) (Dong et al., 2020), BSP (layer-wise) (Li et al., 2024),

Figure 3: Inference time of dif-
ferent expert-wise methods.

and Slim-LLM (group-wise) (Huang et al., 2025b)) by large margins.

Low inference cost. Figure 3 shows inference time on Wikitext2
(Merity et al., 2016). For the same average bits/expert, our method is
faster than PMQ because PMQ assigns higher precision to frequently
activated experts, whereas our method allocates higher precision to
less frequent experts, reducing computation.

Negligible assignment overhead. Unlike PMQ, which requires
evaluating all experts across bit levels on a calibration set (e.g.,
110 GB GPU memory and 2227s for Mixtral-8x7B; 350 GB and
6000s for Mixtral-8x22B), our method only sorts experts by router
norm with minor reordering. This requires no GPU and negligible
computation, enabling scalable compression of large MoE models.

Table 1: Task-wise accuracy (%) of different methods on the 8 benchmark LLM tasks.

Model Method
Avg.

bits/exp.
Memory

(GB) PIQA ARC-e ARC-c BoolQ HellaS. Wino. MathQA MMLU Avg.

Mixtral
8x7B

Full-precision 16 (FP) 96.8 83.68 83.50 59.64 85.05 83.99 76.4 41.61 67.85 72.72

Uniform 3 19.3 82.32 80.05 57.42 86.09 81.51 75.14 39.43 64.84 70.85
2 13.1 76.44 67.68 43.60 72.51 72.93 65.27 28.58 42.79 58.73

Router norm
+ Max var

(Ours)

2.75 17.7 81.83 80.47 56.31 85.57 81.05 74.98 38.29 61.55 70.01
2.625 16.9 81.45 78.62 54.86 85.60 80.57 74.66 36.75 59.78 69.04
2.5 16.1 80.79 78.41 54.44 85.14 79.36 74.35 36.28 58.23 68.38
2.375 15.3 80.20 75.38 51.19 84.92 78.69 73.80 33.47 56.07 66.72
2.25 14.5 80.41 72.90 50.09 84.04 77.46 73.95 31.96 55.53 65.79
2.125 13.8 78.94 74.45 51.02 80.12 76.56 70.17 31.29 51.56 64.26
2.0 13.1 77.26 71.17 46.84 80.61 74.17 69.93 30.18 50.34 62.56
1.75 11.7 75.03 69.53 42.92 73.64 70.03 68.35 27.04 44.82 58.95

PMQ

2.75 17.7 82.05 78.87 56.48 84.80 81.15 75.30 38.39 61.79 69.85
2.625 16.9 81.56 78.41 52.99 83.67 80.04 74.66 38.26 59.76 68.67
2.5 16.1 80.63 76.94 53.33 83.15 80.02 74.98 37.15 54.05 67.53
2.375 15.3 80.47 73.32 50.00 81.93 78.54 74.66 35.18 53.34 65.93
2.25 14.5 80.14 72.14 49.32 83.15 77.62 74.19 33.70 51.00 65.16
2.125 13.8 79.00 75.51 49.91 72.26 76.76 72.30 34.07 50.53 63.79
2.0 13.1 76.93 71.93 46.59 78.65 74.88 73.24 31.83 48.60 62.83
1.75 11.7 76.66 69.19 44.28 79.63 70.85 71.19 29.88 42.52 60.53

Hessian
2.5 17.0 80.21 76.38 51.20 81.11 78.05 72.97 35.27 56.21 67.18
2.25 15.3 79.21 72.41 46.70 79.15 76.38 71.25 31.97 50.60 63.47
2.0 13.6 75.32 67.26 45.01 70.29 71.90 69.11 31.07 40.85 58.85

BSP 2.5 17.0 68.23 54.97 28.38 68.16 55.61 62.19 24.07 27.74 49.07

Slim-LLM 2.0 13.6 61.70 49.07 28.24 66.18 44.10 57.54 23.62 25.43 44.49

Mixtral
8x22B

Full-precision 16 (FP) 281.2 85.12 84.01 60.12 86.23 84.50 77.40 42.10 68.20 76.31

Uniform 3 57.5 81.45 76.68 53.07 78.53 74.23 68.19 36.21 55.46 65.48
2 38.6 55.98 31.31 22.78 57.92 29.23 50.12 21.64 23.24 36.53

Router norm
+Max var

(Ours)

2.5 46.7 80.14 71.25 47.27 73.49 65.11 64.40 30.62 48.16 60.10
2.25 43.0 79.27 69.61 46.25 72.23 64.75 65.43 29.45 46.33 59.17
2.0 38.6 78.56 64.18 41.30 68.26 61.91 61.25 27.14 40.09 55.34
1.75 35.2 75.14 63.22 37.12 65.96 52.95 59.59 25.19 32.36 51.44

PMQ

2.5 46.7 79.49 70.62 46.84 74.28 68.64 65.35 29.88 50.40 60.69
2.25 43.0 78.78 69.15 42.41 55.14 62.29 61.96 28.91 44.16 55.35
2.0 38.6 76.55 66.16 39.85 69.48 60.11 59.83 27.00 39.43 54.80
1.75 35.2 72.20 56.90 32.59 59.33 49.43 57.38 24.82 30.30 47.87

5.3 ABLATION STUDY

We determine the importance of the two stages of the experts’ ranking: the router norm based ranking
and the maximum intra-neuron variance (i.e., MaxVar) based reordering by providing an ablation
study among (i) only MaxVar based ranking, (ii) only router norm based ranking, and (ii) router
norm based ranking + MaxVar based reordering described in section 3.3. We conduct the study on
Mixtral 8x7B for the eight zero-shot benchmark LLM tasks. We report the average accuracy across
the tasks for both the two-level assignment (bit choices: 2, 3), and three-level assignment (bit choices:
1, 2, 3) in Table 2.
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As we can see, for the two-level assignment, only router norm based ranking performs better than only
MaxVar based ranking for most of the average bit points. However, for the three-level assignment,
there is an abrupt drop in performance in the only router-norm-based ranking as some of the unusually
large MaxVar experts are placed in 1 bit (see our MaxVar visualization of Mixtral 8x7B in Appendix
E), which injects an unbearable amount of quantization noise into the model. Reordering these
experts (only 11 out of 256 for ζ = 3) to higher rank completely removes this issue and significantly
outperforms the only MaxVar based method and other competitive baselines provided in Table 1 of
the paper. We provide an empirical justification for our selection of ζ in Appendix C.

Table 2: Average accuracy (%) of different expert ranking methods

Method
Two-level assignment (bit choices: 2, 3) Three-level assignment (bit choices: 1, 2, 3)

Avg. bits/expert Avg. bits/expert
2.75 2.625 2.5 2.375 2.25 2.125 2.75 2.5 2.25 2.0 1.75

MaxVar 69.51 68.51 66.01 64.24 63.88 60.65 69.37 67.90 63.97 60.44 58.11
Router norm 69.92 68.35 67.01 64.97 63.84 61.54 54.23 49.78 48.12 44.96 42.92

Router norm + MaxVar (Our method) 69.50 68.40 67.17 65.31 64.26 61.43 70.01 68.38 65.79 62.56 58.95

5.4 JUSTIFICATION FOR USING FINAL ROUTER NORM AS A SURROGATE FOR CHANGE IN NORM
OF PRETRAINED MOE MODELS

As stated in section 3.3, for the experiments on zero-shot evaluation of pre-trained models, we propose
to use the final router norm (w(T )

s ) to approximate the change in the router’s norm (Λ(T )
s ), when the

randomly initialized model is not publicly available for computing the initial router norm (w(0)
s ).

The rationale behind the approximation comes from the fact that the initial routers are generally
initialized randomly with small variance (e.g., parameters of DeepSeekMoE are initialized randomly
with variance 0.000036 (Dai et al., 2024)), which leads to a very small difference between the two
methods. We provide a theoretical justification of our claim in Appendix G. Here, we provide an
empirical justification for the claim by reinitializing the routers of the pre-trained switch transformer
randomly from N (0, σ2) with σ = 0.0005. We finetune the re-initialized model on the CNN/Daily
Mail dataset and compare the rank correlation between the two expert ranking methods measured via
Spearman’s ρ and Kendall’s τ (ρ, τ ≈ 1 implies high correlation). The results are provided in Table
3. The high rank correlation implies that the rank orders using both methods are very similar.

Table 3: Correlation between final router norm and change in norm across different layers

Enc-1 Enc-3 Enc-5 Enc-7 Enc-9 Enc-11 Dec-1 Dec-3 Dec-5 Dec-7 Dec-9 Dec-11
Spearman’s ρ 0.9997 0.9994 0.9995 0.9992 0.9989 0.9990 0.9990 0.9997 0.9995 0.9997 0.9998 0.9999
Kendall’s τ 0.9950 0.9900 0.9920 0.9871 0.9851 0.9861 0.9871 0.9960 0.9920 0.9950 0.9960 0.9980

We provide the quantization results for both of the methods in Table 4. As expected, due to the high
correlation of the rank order between the final norm and the change in norm based method, the scores
of both methods are very similar.

Table 4: Quantization results for final router norm and change in router norm based method

Initial router Original pretrained Random router

Method Full-precision Full-precision Change in norm Final norm

Avg. bits/expert 32 (FP) 32 (FP) 2.75 2.5 2.25 2.75 2.5 2.25
Rouge-2 score 19.87 19.46 18.79 18.60 18.37 18.81 18.59 18.38

6 CONCLUSION

This paper proposes an expert-wise mixed-precision quantization method for MoE models that
allocates higher bit-widths to experts with smaller router norms and lower bit-widths otherwise. It can
use pretrained router norms as an alterative to avoid costly fine-tuning while maintaining accuracy.
The approach is theoretically supported and empirically effective on large MoE models. It reduces
memory and inference costs, promoting energy efficiency and a smaller carbon footprint. Future
work will combine the method to layer-wise and block-wise quantization.
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7 REPRODUCIBILITY STATEMENT

We provide the complete setup for our theoretical analysis in section 4.2. We include additional details
related to our analysis in Appendix H. We provide the proof of Lemma 4.3 in Appendix I, and the proof
of Theorem 4.4 in Appendix K. We provide the details of our experimental setup, including model
architecture, parameter size, values of the hyperparameters related to the implemented quantization
methods, and the evaluation datasets in Appendix B. We include the code of our experiments in the
supplementary materials.
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A VERIFICATION OF THEORETICAL RESULTS ON SYNTHETIC DATA

Figure 4: Router vector pro-
jection along the class-1 task-
relevant feature o1.

Figure 5: Ratio of activations of
experts learning more and less
prevalent tokens, respectively
(class-1)

Figure 6: Change of bit differ-
ence between higher bit experts
and lower bit experts with α

We validate our theoretical claims using synthetic data generated as described in Section 4.2. Tokens
are drawn from an orthonormal matrix obtained via QR decomposition of a d× d Gaussian matrix
with d = 200. We set k = 20, m = 800, n = 100, and l = 5. Model weights are initialized from a
zero-mean Gaussian distribution with variance 0.0001 and trained with a learning rate of 0.2.

Figure 4 shows the projection of the router vectors onto the direction of O1, a class-1 task-relevant
vector, for the experts in S+. The experts are sorted in ascending order based on the change in router
norm. Routers exhibiting larger norm changes tend to have a significant component along the more
dominant −O1 direction, consistent with Lemma 4.3(ii). Figure 5 presents the minimum ratio of
activation of −O1-aligned experts by −o1 to that of O1-aligned experts by o1, minimized over all
such expert pairs. This ratio is compared against the theoretical lower bound of (1 − 2α)/2α, as
established in Lemma 4.3(iii).

We quantize the weights as described in Section 4.2, using equation (2). Experts with large compo-
nents along the −o1 and −o2 directions are quantized to a lower bit-width bl, unless a high maximum
row variance is observed, in which case they are quantized to a higher bit-width bh. The value of bh is
determined empirically as the minimum bit-width required to achieve zero test error when all experts
are uniformly quantized to bh. We then choose bl as the minimum bit-width that still maintains zero
test error in the mixed-precision setting. Figure 6 shows that the gap bh − bl increases as α decreases,
aligning with the theoretical bound log2((1− 2α)/2α) discussed in Remark 4.5.

B DETAILS ON THE QUANTIZED MODELS AND EVALUATION TASKS

B.1 SWITCH TRANSFORMER

We fine-tune a pre-trained Switch Transformer (Fedus et al., 2022), which contains 64 experts per
MoE block on CNN/Daily Mail (CNNDM) text summarization task (See et al., 2017). The model
follows an encoder-decoder architecture with 12 transformer blocks each in the encoder and decoder;
every even-numbered block is an MoE block, resulting in 12 MoE blocks total. The model has about
2 billion parameters, with 90% residing in MoE blocks. All non-MoE weights are quantized to 8 bits.
We apply HQQ (Badri & Shaji, 2023) for quantizing the model. Weights in each row of the weight
matrices are quantized together.

B.2 MIXTRAL

We quantize the pretrained Mixtral 8x7B and Mixtral 8x22B models (Jiang et al., 2024), which adopt
a decoder-only architecture. The Mixtral 8x7B contains 32 transformer blocks, and the Mixtral 8x22B
contains 56 transformer blocks. All blocks are MoE blocks of 8 experts. Mixtral 8x7B contains
46.7B parameters, with 97% residing in the MoE blocks. Mixtral 8x22B contains 140.6B parameters,
with 99% residing in the MoE blocks. We quantize the non-MoE parameters to 4 bits and apply
GPTQ (Frantar et al., 2023) for model quantization with group size 128, and 1% damping. We
use 128 samples of length 2048 from Wikitext2 as the GPTQ calibration data. Model performance
is evaluated on eight zero-shot benchmark LLM tasks: PIQA (Bisk et al., 2020), ARC-Challenge
and ARC-Easy (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019),
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WinoGrande (Keisuke et al., 2019), MathQA (Amini et al., 2019), and MMLU (Hendrycks et al.,
2021), using the EleutherAI LM Harness (Gu et al., 2024).

C JUSTIFICATION FOR THE SELECTION OF ζ

As stated in section 3.3, we select ζ = 3, since the variance of any bounded distribution is at most
three times that of a uniform distribution with the same range. Our selection of ζ alters the initial
router norm based order by a very small amount (only 11 out of 256 experts are reordered in Mixtral
8x7B, and only 28 out of 768 experts are reordered in Switch Transformer for our selection of ζ).
Indeed, our selection of ζ only reorders the experts that have unusually large MaxVar values in an
MoE layer (see our MaxVar visualization of Mixtral 8x7B in Appendix E). We conduct a sweep of ζ
for Mixtral 8x7B on the eight benchmark downstream tasks and report the average accuracy in Table
5. As we can see, the performance picks around ζ = 3.0, which justifies our selection.

Table 5: Avg. accuracy (%) for different values of ζ

Avg. bits/expert ζ
1.0 2.0 2.5 3.0 4.0 5.0

2.0 60.44 61.56 62.28 62.56 61.32 61.74

D MORE RESULTS ON MIXTRAL 8X7B

Figure 7: Expert-wise mixed-precision results for Mixtral 8x7B on eight benchmark LLM tasks;
expert bit-choices: 2, 3. Only 4.3% of the experts are reordered to higher ranks in maximum intra-
neuron based reordering.

Figure 8: Expert-wise mixed-precision results for Mixtral 8x7B on eight benchmark LLM tasks;
expert bit-choices: 1, 2. Only 4.3% of the experts are reordered to higher ranks in maximum intra-
neuron based reordering.
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E VISUALIZATION OF MaxVar FOR MIXTRAL 8X7B

Figure 9: Visualization of the maximum intra-neuron variance of the experts in Mixtral 8x7B. Only a
handful of experts (11 out of 256, colored in red) have unusually large MaxVar values.
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F VERIFICATION OF THEORETICAL INSIGHTS IN PRACTICAL MOE MODELS

For accurate verification of our theoretical insights, we first need to identify the task-relevant tokens
of different experts, which is hard to determine in practical MoE models. This is because, for some
experts, many tokens can be task-relevant, but each of them may appear less frequently in data. On
the contrary, for some experts, only a few tokens can be relevant, but each of them may appear very
frequently in data. We consider the tokens with high gating values as the task-relevant tokens of each
expert.

Larger router norm experts exhibit higher activation. We verify our claim that larger router norm
experts exhibit higher activation in practical MoE models. To verify that claim, we plot the average
activations of tokens with top gating values (sampled from the WikiText2 dataset) for each expert in
the first five layers of Mixtral 8x7B. The results are provided in Figure 10.

(a) Layer 0 (b) Layer 1

(c) Layer 2 (d) Layer 3

(e) Layer 4

Figure 10: Average activation over tokens with top gating values of different experts of Mixtral 8x7B.
The top one/two router norm experts exhibit larger activations.
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As we can see, the largest router norm expert (in some cases, the largest two) always exhibits
significantly large average activation compared to other experts, except for the second layer. In
this case, the lowest one has unusually high activation. However, from our maximum intra-neuron
variance, i.e., MaxVar visualization given in Appendix E, we can see that this expert has an unusually
large MaxVar value than other experts. Therefore, this expert will be placed on higher bit regardless
of its position in the router norm order according to our method.

Finally, we visualize the top gating value tokens (sampled from the WikiText2 dataset) through
their corresponding model input embeddings for the first MoE block (closest to the model input
embeddings) of Mixtral 8x7B. The visualization of the first few tokens with top gating values
(highlighted in yellow) of the smallest, and the first two largest router norm experts are provided in
Figure 11, along with their adjacent tokens.

(a) Expert 7 (smallest router norm)

(b) Expert 1 (second largest router norm)

(c) Expert 6 (largest router norm)

Figure 11: Token visualization of the smallest and the largest two router norm experts

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

As we can see, the lowest router norm expert (Expert-7) activates on subwords of unusual names/nouns
(e.g., batrachichni, prolacertiform, Chizad, Oxaziridine, Morocco, Amalgamation, Stragglers,
hectares, Tenochtitlán). Each of them is rare in data, but can be critical in the context. This verifies
our intuition that the lower router norm experts learn critical but infrequent tokens. On the other
hand, the largest router norm expert (Expert-6) activates on many common full words of the English
language, such as pronouns (e.g., that), prepositions (e.g., to, in, on), etc. The second largest router
norm expert (Expert-1) activates on sentences implying war or military operations, which are common
in many documents. This verifies our claim that the larger router norm experts learn more frequent
tokens.

G THEORETICAL JUSTIFICATION FOR USING FINAL ROUTER NORM AS A
SURROGATE FOR CHANGE IN NORM OF PRETRAINED MOE MODELS

As stated in section 3.3, for the experiments on zero-shot evaluation of pre-trained models, we
propose to use the final router norm (||w(T )

s ||) to approximate the change in the router’s norm
(Λ(T )

s := ||w(T )
s ||−||w(T )

0 ||), as the randomly initialized model is not publicly available for computing
the initial router norm (||w(0)

s ||). The rationale behind the approximation comes from the fact
that the initial routers are generally initialized randomly with small variance (e.g., parameters of
DeepSeekMoE are initialized randomly with variance 0.000036 (Dai et al., 2024)). In that case, the
initial router norm differences among the routers are too small to alter the change of router norm
based order when approximated by final router norm.

Specifically, for any two routers (router 1 and router 2), if router 1’s change in norm is larger than
router 2’s change in norm, i.e., Λ(T )

1 > Λ
(T )
2 , then

Λ
(T )
1 − Λ

(T )
2 > 0

⇒ (||w(T )
1 || − ||w(0)

1 ||)− (||w(T )
2 || − ||w(0)

2 ||) > 0

⇒ (||w(T )
1 || − ||w(T )

2 ||)− (||w(0)
1 || − ||w(0)

2 ||) > 0

Now, due to the small-variance initialization,
∣∣||w(0)

1 || − ||w(0)
2 ||

∣∣ is a very small quantity. Therefore,
it is highly likely that ||w(T )

1 || − ||w(T )
2 || > 0, as long as Λ(T )

1 − Λ
(T )
2 is not too close to zero.

Based on the above intuition, we provide a formal theorem to justify the claim:
Theorem G.1. Let the routers of the initial model be randomly initialized from N (0, σ2) with
σ = O(1/d). Then, with probability at least 1 − 1

d2 , for any two routers s1, s2 ∈ [k] such that
Λ
(T )
s1 − Λ

(T )
s2 = Ω(1/

√
d) we have ||w(T )

s1 || > ||w(T )
s2 ||.

Proof. As, Λ(T )
s1 −Λ

(T )
s2 = Ω(1/

√
d), we have, ||w(T )

s1 ||−||w(T )
s2 || ≥

(
||w(0)

s1 || − ||w(0)
s2 ||

)
+Ω(1/

√
d).

Now, with probability 1−
1

d2
, we have

∣∣∣||w(0)
s1 || − ||w(0)

s2 ||
∣∣∣ = O(σ

√
d) = O(1/

√
d) for our selection

of σ which completes the proof.

The theorem confirms that, for small-variance initialization (i.e., σ = O(1/d)), the final norm based
order preserves the change in norm based order for any two routers unless they are very close to each
other (i.e., Λ(T )

s1 − Λ
(T )
s2 = O(1/

√
d)).
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H PRELIMINARIES

For any fine-tuning iteration t, the equation (5) can be represented as,

f (t)(x) =

k∑
s=1

f (t)
s (x) where, f (t)

s (x) = a(s)
∑

j∈J
(t)
s (x)

G
(s,t)
j

m∑
r=1

ReLU
(
⟨w(s,t)

r , x(j)⟩
)

(14)

Here, J (t)
s (x) ⊂ [n] is the set of indices of the tokens of the input sequence x that are routed to the

expert s ∈ [k] at time t, and w
(s,t)
r is the r-th column of W (s,t)

1 . Note that
∣∣∣J (t)

s (x)
∣∣∣ = l.

As we analyze the expert-choice routing, for any j ∈ J
(t)
s (x), the gating value G

(s,t)
j is evaluated as,

G
(s,t)
j =

exp(⟨w(t)
s , x(j)⟩)∑

i∈J
(t)
s (x)

exp(⟨w(t)
s , x(i)⟩)

(15)

We analyzed the case where the model is fine-tuned to minimize the Hinge loss

l̂(t)(x, y) = max(1− yf (t)(x), 0) (16)

while the gradients are evaluated on

l(t)(x, y) = 1− yf (t)(x) (17)

similar to the setting of Zhang et al. (2023).

For any input (x, y), the gradient for the column r ∈ [m] of W (s,t)
1 is evaluated as,

∂l(t)(x, y)

∂w
(s,t)
r

= −ya(s)
∑

j∈J
(t)
s (x)

G
(s,t)
j x(j)1⟨w(s,t)

r ,x(j)⟩≥0
(18)

and the gradient for the router ws is evaluated as,

∂l(t)(x, y)

∂w
(t)
s

= −ya(s)
∑

j∈J
(t)(x)
s

σ
(s,t)
j G

(s,t)
j

∑
i∈J

(t)
s (x)\j

G
(s,t)
i (x(j) − x(i)) (19)

where, σ(s,t)
j :=

∑m
r=1 ReLU(⟨w(s,t)

r , x(j)⟩).
We consider that the model is fine-tuned via Stochastic Gradient Descent algorithm (SGD) with batch
size B, where the expert weights are updated with learning rate ηe and the router weights are updated
with learning rate ηr. The batch gradient for the column r ∈ [m] of W (s,t)

1 is evaluated as,

∂l

∂w
(s,t)
r

=
1

B

∑
x∈Bt

∂l(t)(x, y)

∂w
(s,t)
r

(20)

and the batch gradient for the router ws is evaluated as,

∂l

∂w
(t)
s

=
1

B

∑
x∈Bt

∂l(t)(x, y)

∂w
(t)
s

(21)

Notations:

1. Õ(·) and Ω̃(·) hides the factor log(poly(d)) with a sufficiently large polynomial poly(·)

2. With high probability (abbreviated as w.h.p.) refers to the probability 1−
1

poly(d)
.
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Definitions:

For any q ∈ P\{o1, o2}, we define the activation of the expert s ∈ [k] by q as,

σ
(s,t)
q :=

∑m
r=1 ReLU(⟨w(s,t)

r , q⟩).

For any v ∈ Pr, we define a complementary expert proficiency measure for the expert s at time t as,

p̄
(s,t)
v := P

[
(x, y) ∼ D : ∃j ∈ J

(t)
s such that x(j) = v

∣∣∃j ∈ [n] such that x(j) = v
]
.

Note that p(s,t)v ≥ p̄
(s,t)
v .

Without the loss of generality, we assume that for any s ∈ Sv , p̄(s,0)−v = O(1/d).

We define,

• G
(s,t)
v : Gating value of the token x(j) = v for some j ∈ [n] and v ∈ Pr at expert s and

iteration t

• G
(s,t)
q : Gating value of the token x(j) = q for some j ∈ [n] and q ∈ P\{o1, o2} at expert s

and iteration t

• l
(s,t)
q :=

∣∣∣{j ∈ J
(t)
s (x) : x(j) = q}

∣∣∣, is the number of copies of the task-irrelevant vector
q ∈ P\{o1, o2} in the set of top l tokens for the input sequence x at expert s and iteration t

We define C1 := max
{∣∣∣∣∣∣w(0)

s

∣∣∣∣∣∣}
s∈[k]

, and C2 := max
{∣∣∣∣∣∣w(s,0)

r

∣∣∣∣∣∣}
s∈[k],r∈[m]

.

Without the loss of generality, we analyze the case that l ≥ e2C1 .

Therefore, ∀s ∈ [k],
∣∣∣∣∣∣w(0)

s

∣∣∣∣∣∣ ≤ 1

2
log l.

We define, γv :=
|Sv|
|S+|

for v ∈ {±o1} and γv :=
|Sv|
|S−|

for v ∈ {±o2}.

Therefore, γ = max{γv}v∈{o1,o2}.

Without the loss of generality, we assume that ∀v ∈ Pr, γv = Ω(1).

We define, Cp := min{⟨w(0)
s , q − q′⟩}s∈[k],q∈P∪{−o1,−o2},q′∈P∪{−o1,−o2}\{q}.

We assume that Cp > 0.

We assume that for any v ∈ Pr and any s ∈ Sv , |{r∈[m]:⟨w(s,0)
r ,v⟩≥0}|
m = Ω(1),

and
∣∣|S+| − |S−|

∣∣ = O(
√
k).

Components of the routers’ gradients.

For any input (x, y) ∼ D, the router’s gradient component of the expert s ∈ [k] along any task-
relevant vector v ∈ Pr and along any task-irrelevant vector q ∈ P\{o1, o2} at iteration t are evaluated
as follows:

〈
∂l(x, y)

∂w
(t)
s

, q

〉
=



0
if ̸ ∃j ∈ J (t)

s (x)

s.t. x(j) = q

ya(s)l
(s,t)
q G

(s,t)
q

∑
j∈J

(t)
s (x)\{i:x(i)=q}

G
(s,t)
j (σ

(s,t)
j − σ(s,t)

q )
if ∃j ∈ J (t)

s (x)

s.t. x(j) = q

(22)
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〈
∂l(x, y)

∂w
(t)
s

, v

〉
=



0 if ̸ ∃j ∈ J
(t)
s (x)

s.t. x(j) = v

and x(j) = −v

ya(s)G
(s,t)
v (x)

∑
j∈J

(t)
s (x)/{i:x(i)=v} G

(s,t)
j

(
σ
(s,t)
j − σ

(s,t)
v

)
if ∃j ∈ J

(t)
s (x)

s.t. x(j) = v

ya(s)G
(s,t)
−v (x)

∑
j∈J

(t)
s (x)/{i:x(i)=−v} G

(s,t)
j

(
σ
(s,t)
−v − σ

(s,t)
j

)
if ∃j ∈ J

(t)
s (x)

s.t. x(j) = −v
(23)

Components of the experts’ column gradients.

For any input (x, y) ∼ D, the gradient component of the column r ∈ [m] of W (s,t)
1 along any

task-relevant vector v ∈ Pr and along any task-irrelevant vector q ∈ P\{o1, o2} at iteration t are
evaluated as follows:

〈
∂l(x, y)

∂w
(s,t)
r

, q

〉
=



0 if ⟨w(s,t)
r , q⟩ < 0

0 if ⟨w(s,t)
r , q⟩ ≥ 0 but, ̸ ∃j ∈ J

(t)
s (x) s.t. x(j) = q

−ya(s)l
(s,t)
q G

(s,t)
q if ⟨w(s,t)

r , q⟩ ≥ 0 and, ∃j ∈ J
(t)
s (x) s.t. x(j) = q

(24)

〈
∂l(x, y)

∂w
(s,t)
r

, v

〉
=



0 if ⟨w(s,t)
r , v⟩ < 0 but ̸ ∃j ∈ J

(t)
s (x) s.t. x(j) = −v

ya(s)G
(s,t)
−v (x) if ⟨w(s,t)

r , v⟩ < 0 and ∃j ∈ J
(t)
s (x) s.t. x(j) = −v

0 if ⟨w(s,t)
r , v⟩ ≥ 0 but ̸ ∃j ∈ J

(t)
s (x) s.t. x(j) = v

−ya(s)G
(s,t)
v (x) if ⟨w(s,t)

r , v⟩ ≥ 0 and ∃j ∈ J
(t)
s (x) s.t. x(j) = v

(25)

I PROOF OF LEMMA 4.3

Proof sketch. Lemma 4.3 provides the results for training dynamic analysis of the analyzed model.
Primarily, our training dynamic analysis provides insights about the learning characteristics of the
experts learning different task-relevant tokens. Moreover, the analysis provides necessary bounds of
the router norm changes and expert activations required for the mixed-precision quantization analysis,
along with the generalization guarantee of the trained model. We categorize the training into two
phases:

(i) The expert alignment phase
(ii) The router-expert co-learning phase

(i) The expert alignment phase. Given the relative alignments of the routers to different task-relevant
tokens, the expert alignment phase confirms that, regardless of the initial alignment of the columns of
the expert-weights (i.e., the columns of W (s)

1 ) they sufficiently align with the task-relevant tokens to
which their respective routers are initially aligned to. Therefore, the batch gradients during the SGD
updates for the router weights maintain large components along the initial alignment direction after
this phase. We quantify the number of iterations required to complete this phase of training, along
with the bounds of expert activations by different task-relevant tokens after this phase (see Lemma
J.5 and Lemma J.6).
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(ii) The router-expert co-learning phase. After the expert alignment phase, due to the large batch-
gradient components of the routers along the initial task-relevant token directions, they become further
aligned to these directions in the subsequent updates of SGD. This allows the expert weights to be
more aligned with the task-relevant token directions of their respective routers, further increasing the
routers’ batch-gradient components along these directions. Therefore, the routers and the experts
co-learn the task-relevant tokens at least by a quadratic rate. Hence, the model generalizes after this
phase of training. However, due to the larger frequency of more-prevalent tokens, the experts learning
them receive larger updates in their router and expert weights, allowing larger norm change and
expert activations after training, compared to other experts. As shown in Lemma 4.3, we quantify the
sufficient number of iterations required to complete the training, along with the router norm changes
and expert activation bounds for different experts.

Lemma I.1 (Full version of Lemma 4.3). Suppose the expert learning rate ηe, the router learning

rate ηr = O

(
ηeCp

ml2C2
2

)
, the batch size B = Ω̃(d2), and the pre-trained model is trained for

T = Θ

(
l2C2

αηe

√
log l

Cp

)
(26)

iterations. Then, the returned f (T ) has the following properties:

(i) For all s ∈ Sv and v ∈ Pr = {±o1,±o2}, we have

p(s,T )
v = 1, p̄

(s,T )
−v = 0, and

∀x(j) = v for some j ∈ [n], G
(s,T )
j >

1

2
.

(ii) For all s ∈ Soi and s′ ∈ S−oi , i = 1, 2, we have

Λ
(T )
s′ > Λ(T )

s .

(iii) For all s ∈ Soi and s′ ∈ S−oi , i = 1, 2, we have

σ(s,T )
oi = Ω

(
mlC2

√
log l

Cp

)
,

σ
(s′,T )
−oi = Ω

(
(1− α)

α
mlC2

√
log l

Cp

)
,

σ
(s′,T )
−oi

σ
(s,T )
oi

≥ 1− 2α

2α
.

(iv) For all q ∈ P \ {o1, o2}, s ∈ Sv , v ∈ Pr = {±o1,±o2}, and v′ ∈ Pr \ {±v}, we have

σ(s,T )
q = O(mC2), σ

(s,T )
v′ = O(mC2).

Proof. (i) Let us consider s ∈ So1 . From Lemma J.5, we can show that, for T ′ = O(
lC2

αηe
),

∀0 ≤ t ≤ T ′, and for any q ∈ P\{o1, o2}, ⟨w(t)
s , o1 − q⟩ < log l.

Therefore, using Lemma J.4 and Lemma J.5, by selecting B = Ω̃(d2) we have,

⟨
∂l

∂w
(T ′)
s

, o1⟩ ≤ −Ω(
αmC2

l
). Therefore, ⟨

∂l

∂w
(T ′)
s

,−o1⟩ ≥ Ω(
αmC2

l
).

On the other hand, from Lemma J.5,
∣∣∣∣⟨ ∂l

∂w
(T ′)
s

, q⟩
∣∣∣∣ = O(

mC2

d
).

Therefore, p(s,T
′+1)

o1 ≥ p
(s,T ′)
o1 , and p̄

(s,T ′+1)
−o1 ≤ p̄

(s,T ′)
−o1 .
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Again, as ⟨
∂l

∂w
(T ′)
s

, o1⟩ ≥ −O(mC2), for our selection of ηr, we have ⟨w(T ′+1)
s , o1 − q⟩ ≤ 2 log l.

Therefore,

⟨
∂l

∂w
(T ′+1)
s

, o1⟩ ≤ −Ω(
α2mηe

l2
) − Ω(

αmC2

l
), and hence ⟨

∂l

∂w
(T ′+1)
s

,−o1⟩ ≥ Ω(
α2mηe

l2
) +

Ω(
αmC2

l
).

On the other hand,

⟨
∂l

∂w
(T ′+1)
s

, q⟩ ≤ O(
mηe

d
) +O(

mC2

d
), and ⟨

∂l

∂w
(T ′+1)
s

, q⟩ ≥ −O(
mηe

d2
)−O(

mC2

d
).

Therefore, for any t s.t. ∀T ′ ≤ t′ ≤ t− 1, if for all q ∈ P\{o1, o2} it holds that ⟨w(t′)
s , o1 − q⟩ ≤

2 log l, by induction we can show that, p(s,T )
o1 ≥ p

(s,t′)
o1 , and p̄

(s,T )
−o1 ≤ p̄

(s,t′)
−o1 .

In that case, we have,

⟨
∂l

∂w
(t)
s

, o1⟩ ≤ −Ω(
α2mηe

l2
t)− Ω(

αmC2

l
), and hence ⟨

∂l

∂w
(t)
s

,−o1⟩ ≥ Ω(
α2mηe

l2
t) + Ω(

αmC2

l
).

On the other hand,

⟨
∂l

∂w
(t)
s

, q⟩ ≤ O(
mηe

d
t) +O(

mC2

d
), and ⟨

∂l

∂w
(t)
s

, q⟩ ≥ −O(
mηe

d2
t)−O(

mC2

d
).

Therefore, ⟨w(t)
s , o1 − q⟩ ≥ ⟨w(T ′)

s , o1 − q⟩+Ω(
α2mηe

l2
ηr(t− T ′)2) + Ω(

αmC2

l
ηr(t− T ′)).

Now, we can show that, ⟨w(T ′)
s − w

(0)
s , q − o1⟩ ≤ O(Cp). Also,

∣∣∣⟨w(0)
s , o1 − q⟩

∣∣∣ ≤ 1
√
2
log l.

Therefore, we need T = O(
l2C2

αηe

√
log l

Cp
) steps to ensure that, for all task-irrelevant pattern q,

⟨w(T )
s , o1 − q⟩ > log l. In that case, for any t ≥ T ′, p(s,t)o1 = 1 and ∀x(j) = o1, G(s,t)

j ≥
1

2
.

Now, if there exists a q′ ∈ P\{o1, o2} s.t., ⟨w(T−1)
s , o1 − q′⟩ > 2 log l, then for any q ∈ P\{o1, o2}

for which ⟨w(T−1)
s , o1 − q⟩ ≤ log l, we have,

⟨w(T−1)
s , o1 − q′⟩ = ⟨w(T−1)

s , o1 − q⟩+ ⟨w(T−1)
s , q − q′⟩ ≤ (1 +

1
√
2
) log l +O(

l2

d
log l) as,

⟨w(T−1)
s , q − q′⟩ ≤

1
√
2
log l +O(

l2

d
log l). This creates contradiction.

Therefore, ∀T ′ ≤ t′ ≤ T , we have for all task-irrelevant pattern q, ⟨w(t′)
s , o1 − q⟩ ≤ 2 log l.

Now, ⟨w(T )
s , o1⟩ >

3

2
log l. Therefore, ⟨w(T )

s ,−o1⟩ < −
3

2
log l.

Therefore, for any q ∈ P\{o1, o2}, ⟨w(T ′)
s ,−o1 − q⟩ < −

3

2
log l − ⟨w(T )

s , q⟩.

On the other hand,
∣∣∣⟨w(T )

s − w
(0)
s , q⟩

∣∣∣ = O(
l2 log l

α2d
). Therefore, ⟨w(T )

s , o3 − q⟩ < 0, which implies

p̄
(s,T )
−o1 = 0.

Similarly, for any v ∈ Pr\{o1}, and any s ∈ Sv, we can show that p(s,T )
v = 1, p̄(s,T )

−v = 0, and

∀x(j) = v for some j ∈ [n], G(s,T )
j ≥

1

2
.
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(ii) Let s ∈ So1 and s′ ∈ S−o1 . From the proof of statement (i), we know that, we have for any

q, q′ ∈ P\{o1, o2} such that, for any t s.t. t ≤ T ,
∣∣∣⟨w(t)

s , q′ − q⟩ − ⟨w(0)
s , q′ − q⟩

∣∣∣ = O(
l2

d
log l).

Similarly,
∣∣∣⟨w(t)

s′ , q
′ − q⟩ − ⟨w(0)

s′ , q′ − q⟩
∣∣∣ = O(

l2

α2d
log l).

Now, for any t, for any task-irrelevant pattern q,
⟨w(t+1)

s , o1 − q⟩ ≤ ⟨w(0)
s , o1 − q⟩+O(αmC2ηrt) +O(α2mηeηrt

2).

Therefore, at least up to t = O(T/l) iteration, for all q ∈ P\{o1, o2}, ⟨w(t)
s1 , o1 − q⟩ ≤ 3 log l, which

implies ∀t > T1 = Ω(T/l), for all q ∈ P\{o1, o2}, ⟨w(t)
s , o1 − q⟩ > 3 log l, and hence, ∀x(j) = o1,

G
(s,t)
j (1−G

(s,t)
j ) ≤

1

l2
.

Therefore, for any t > T1, for any task-irrelevant pattern q,

⟨w(t+1)
s , o1⟩ ≤ ⟨w(T1)

s , o1⟩+O(
α

l2
mC2ηr(t− T1)) +O(

α2

l2
mηeηr(t− T1)

2) which implies,

for all task-irrelevant pattern q, ⟨w(T )
s , o1⟩ ≤ ⟨w(T1)

s , o1⟩+O(log l).

Now, as there exists a task-irrelevant pattern q such that, ⟨w(T1)
s , o1 − q⟩ ≤ 3 log l, we have,

⟨w(T )
s , o1⟩ − ⟨w(0)

s , o1⟩ < 4 log l.

Now, for any t, we have,∣∣∣∣⟨ ∂l

∂w
(t)
s

, o2⟩
∣∣∣∣ ≤ O(

mηe

d
t) +O(mηe) +O(mC2).

Therefore,
∣∣∣⟨w(T )

s − w
(0)
s , o2⟩

∣∣∣ ≤ O(
√
Cp). Similarly,

∣∣∣⟨w(T )
s′ − w

(0)
s′ , o2⟩

∣∣∣ ≤ O(
√
Cp).

On the other hand, as shown in the proof of (i), for any q ∈ P\{o1, o2},
∣∣∣⟨w(T )

s , q⟩ − ⟨w(0)
s , q⟩

∣∣∣ =
O(

l2 log l

α2d
). Therefore, Λ(T )

s < 4 log l.

Now, if Λ(T )
s′ > Λ

(T )
s does not hold, then

∣∣∣∣∣∣w(T )
s′

∣∣∣∣∣∣ < 4.5 log l.

Therefore, ⟨w(T )
s′ ,−o1⟩ < 4.5 log l which implies, for any q ∈ P\{o1, o2}, ⟨w(T )

s′ ,−o1−q⟩ < 5 log l

as,
∣∣∣⟨w(T )

s′ , q⟩ − ⟨w(0)
s′ , q⟩

∣∣∣ = O(
l2

α2d
log l).

However, if for all q ∈ P\{o1, o2}, ⟨w(T )
s′ ,−o1 − q⟩ < 5 log l, then ∀x(j) = −o1, and ∀t ≤

T, (1−G
(s′,t)
j )G

(s′,t)
j ≥

1

3l4
.

Now, using the same procedure as in the proof of (i), after T ′′ ≤
αT

1− α
steps, we have for all

q ∈ P\{o1, o2}, ⟨w(T ′′)
s′ ,−o1⟩ >

3

2
log l, which implies, ∀T ′′ ≤ t ≤ T ,

⟨w(t+1)
s′ ,−o1⟩ ≥

3

2
log l +Ω(

(1− α)

l4
mC2ηr(t− T ′′)) + Ω(

(1− α)2

l4
mηeηr(t− T ′′)2).

Therefore, ⟨w(T )
s′ ,−o1⟩ ≥

3

2
log l +Ω(

(1− α)2

α2l2
log l) which implies Λ(T )

s′ > Λ
(T )
s .

(iii) Let us assume s ∈ So1 and s′ ∈ S−o1 . Then, ∀r ∈ [m] such that ⟨w(s,0)
r , o1⟩ ≥ 0, from the proof

of (i) we have for any t, p(s,t)o1 ≥ p
(s1,0)
o1 which implies, ∀t ≤ T , ⟨

∂l

∂w
(s,t)
r

, o1⟩ ≤ −Ω(
α

l
) + Õ(

1

l
√
B
)

which implies, ∀r ∈ [m] such that ⟨w(s,0)
r , o1⟩ ≥ 0, ∀t ≤ T ,

⟨w(s,t+1)
r , o1⟩ ≥ ⟨w(s,t)

r , o1⟩+Ω(
αηe

l
) for the choice of B = Ω̃(d2).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Therefore, ∀r ∈ [m] such that ⟨w(s,0)
r , o1⟩ ≥ 0,

⟨w(s,T )
r , o1⟩ ≥ ⟨w(s,0)

r , o1⟩ + Ω(
αηe

l
)T = Ω(lC2

√
log l

Cp
), which implies σ

(s,T )
o1 =

Ω(mlC2

√
log l/Cp).

Again, using the same procedure as in the proof of (i), after T ′′ ≤
αT

1− α
, we have, ∀x(j) =

−o1, G
(s′,T ′′)
j >

1

2
and ∀r ∈ [m] such that ⟨w(s′,0)

r ,−o1⟩ ≥ 0, we have ⟨w(s′,T ′′)
r ,−o1⟩ =

Ω(lC2

√
log l

Cp
).

Therefore, we have, ∀r ∈ [m] such that ⟨w(s′,0)
r ,−o1⟩ ≥ 0,

⟨w(s′,T )
r ,−o1⟩ = Ω

(
(1− α)

α
l2C2

√
log l

Cp

)
, which implies σ(s′,T )

−o1 = Ω

(
1− α

α
ml2C2

√
log l

Cp

)
.

Similarly, for s ∈ So2 and s′ ∈ S−o2 , we can show that σ(s,T )
o2 = Ω(mlC2

√
log l/Cp) and σ

(s′,T )
−o2 =

Ω

(
1− α

α
ml2C2

√
log l

Cp

)
.

Now, suppose, T = K
l2C2

αηe

√
log l

Cp
, where K is the constant satisfies equation (26).

Then, for any r ∈ [m] of s ∈ So1 such that ⟨w(s,0)
r , o1⟩ ≥ 0, we have ⟨w(s,T )

r , o1⟩ ≤ C2 +

K

2
l2C2

√
log l

Cp
.

Again, for any r ∈ [m] of s ∈ So1 such that ⟨w(s,0)
r , o1⟩ < 0, we have ⟨w(s,T )

r , o1⟩ < 0.

Similarly, for any r ∈ [m] of s′ ∈ S−o1 s.t. ⟨w(s′,0)
r ,−o1⟩ ≥ 0, we have

⟨w(s′,T )
r ,−o1⟩ ≥ Ω(lC2

√
log l

Cp
) +

K

2
l2C2

√
log l

Cp
. Therefore, σ(s′,T )

−o1 /σ
(s,T )
o1 ≥ (1− 2α)/2α.

Similarly, we can show that for any s ∈ So2 and s′ ∈ S−o2 , σ(s′,T )
−o2 /σ

(s,T )
o2 ≥ (1− 2α)/2α.

(iv) Now, ∀s ∈ [k], ∀q ∈ P\{o1, o2} and ∀r ∈ [m] such that ⟨w(s,0)
r , q⟩ ≥ 0, ∀t, ⟨

∂l

∂w
(s,t)
r

, q⟩ ≥

−O(
1

d
)− Õ(

1
√
B
).

Therefore, ⟨w(s,T ′)
r , q⟩ ≤ ⟨w(s,0)

r , q⟩+O(
1

d
ηeT

′) = C2+O(
l2

αd

√
log l

Cp
C2) = O(C2) which implies

σ
(s,T )
q = O(mC2).

Again, ∀s ∈ S+, ∀t and, ∀r ∈ [m] such that ⟨w(s,0)
r , o2⟩ ≥ 0 we have, ⟨

∂l

∂w
(s,t)
r

, o2⟩ ≥ 0, and

for all r ∈ [m] s.t. ⟨w(s,0)
r ,−o2⟩ ≥ 0, ⟨

∂l

∂w
(s,t)
r

,−o2⟩ ≥ 0 which implies ⟨w(s,T ′)
r , o2⟩ ≤ C2 and

⟨w(s,T ′)
r ,−o2⟩ ≤ C2. Therefore, σ(s,T )

o2 = O(mC2) and σ
(s,T )
−o2 = O(mC2).

Similarly, we can show that ∀s ∈ S−, σ(s,T )
o1 = O(mC2) and σ

(s,T )
−o1 = O(mC2).
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J LEMMAS USED TO PROVE LEMMA 4.3

Lemma J.1. Let, S ⊂ D such that p := P [(x, y) ∼ D : (x, y) ∈ S]. Then, w.h.p. over any randomly

sampled batch Bt of size B at the iteration t,
∣∣∣∣∣∣Bt ∩ S

∣∣−Bp

∣∣∣∣ = Õ
(√

B
)

.

Proof. Let us define a random variable X associated with any sample (x, y) ∼ D such that,

X :=

{
1 if (x, y) ∈ S

0 if (x, y) ̸∈ S

Therefore, X ∼ Ber(p).

Now, for any randomly sampled batch Bt := {(x1, y1), (x2, y2), ..., (xB , yB)} of size B, we can
denote the B i.i.d. random variables following the same distribution as X by X1, X2, ..., XB

corresponding to the B samples of the batch, respectively.

Therefore,
∣∣Bt ∩ S

∣∣ =∑B
i=1 Xi.

Now, E
[∣∣Bt ∩ S

∣∣] =∑B
i=1 E [Xi] = Bp.

Therefore, using the Hoeffding’s inequality, P
[∣∣∣∣∣∣Bt ∩ S

∣∣−Bp

∣∣∣∣ = Õ
(√

B
)]

≥ 1−
1

poly(d)
which

completes the proof.

Lemma J.2. For any expert s ∈ Sv with v, v′ ∈ {o1, o2} such that v ̸= v′, any q ∈ P\{o1, o2}, and
any r ∈ [m], w.h.p. over a randomly sampled batch of size B we can ensure that,

(i)
∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩
∣∣∣∣ ≤ O

(
mC2

d

)
+ Õ

(
mC2√

B

)

(ii)
∣∣∣∣⟨ ∂l

∂w
(s,0)
r

, q⟩
∣∣∣∣ ≤ O

(
1

d

)
+ Õ

(
1

√
B

)

(iii)
∣∣∣∣⟨ ∂l

∂w
(0)
s

, v⟩
∣∣∣∣ ≤ O (αmC2) +O

(
(1− α)

d
mC2

)
+ Õ

(
mC2√

B

)

(iv) ⟨
∂l

∂w
(s,0)
r

, v⟩ ≤ −Ω

(
α

l

)
+ Õ

(
1

l
√
B

)
if ⟨w(s,0)

r , v⟩ ≥ 0,

⟨
∂l

∂w
(s,0)
r

, v⟩ ≤ O

(
(1− α)

d

)
+ Õ

(
1

√
B

)
if ⟨w(s,0)

r , v⟩ < 0,

⟨
∂l

∂w
(s,0)
r

, v⟩ ≥ −
α

2
− Õ

(
1

√
B

)
if ⟨w(s,0)

r , v⟩ ≥ 0, and

⟨
∂l

∂w
(s,0)
r

, v⟩ ≥ 0 if ⟨w(s,0)
r , v⟩ < 0

(v)
∣∣∣∣⟨ ∂l

∂w
(0)
s

, v′⟩
∣∣∣∣ ≤ O (mC2) + Õ

(
mC2√

B

)

(vi) ⟨
∂l

∂w
(s,0)
r

, v′⟩ ≥ 0 if ⟨w(s,0)
r , v′⟩ ≥ 0,

⟨
∂l

∂w
(s,0)
r

, v′⟩ ≥ −O ((1− α))− Õ

(
1

√
B

)
if ⟨w(s,0)

r , v′⟩ < 0,
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⟨
∂l

∂w
(s,0)
r

, v′⟩ ≤ O (α) + Õ

(
1

√
B

)
, if ⟨w(s,0)

r , v′⟩ ≥ 0, and

⟨
∂l

∂w
(s,0)
r

, v′⟩ ≤ 0 if ⟨w(s,0)
r , v′⟩ < 0

Proof. For any v ∈ Pr and any q ∈ P\{o1, o2},∣∣∣σ(s,0)
v − σ

(s,0)
q

∣∣∣ = ∣∣∣∑r∈[m] ReLU(⟨w(s,0)
r , v⟩)−

∑
r∈[m] ReLU(⟨w(s,0)

r , q⟩)
∣∣∣ = O(mC2).

Similarly, for any q, q′ ∈ P\{o1, o2} such that q ̸= q′,
∣∣∣σ(s,0)

q − σ
(s,0)
q′

∣∣∣ = O(mC2).

We denote B0 as the randomly sampled batch before the first update of SGD.

(i) ⟨
∂l

∂w
(0)
s

, q⟩ =
1

B

∑
x∈B0

⟨
∂l(x, y)

∂w
(0)
s

, q⟩

Let us define the set S̄J(0)
s

q := {(x, y) ∼ D : ∃j ∈ J
(0)
s s.t. x(j) = q} and,

p
(s,0)
q := P

[
(x, y) ∼ D : (x, y) ∈ S̄

J(0)
s

q

]
Here, p(s,0)q = O(

1

d
)

Therefore, ⟨
∂l

∂w
(0)
s

, q⟩ =
1

B

∑
x∈B0∩S̄

J
(0)
s

q

⟨
∂l(x, y)

∂w
(0)
s

, q⟩+
1

B

∑
x∈B0∩D\S̄J

(0)
s

q

⟨
∂l(x, y)

∂w
(0)
s

, q⟩

Now, from equation (22), for any (x, y) ∈ D\S̄J(0)
s

q , ⟨
∂l(x, y)

∂w
(0)
s

, q⟩ = 0

Therefore, ⟨
∂l

∂w
(0)
s

, q⟩ =
1

B

∑
x∈B0∩S̄

J
(0)
s

q

⟨
∂l(x, y)

∂w
(0)
s

, q⟩

Now, for any (x, y), l(s,0)q G
(s,0)
q ≤ 1

Therefore, as |σ(s,0)
v − σ

(s,0)
q | = O(mC2) and for any q′P\{o1, o2} such that q ̸= q′, |σ(s,0)

q −

σ
(s,0)
q′ | = O(mC2), from equation (22),

∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩
∣∣∣∣ ≤

∣∣∣B0 ∩ S̄
J(0)
s

q

∣∣∣
B

O(mC2)

Now, from Lemma J.1, w.h.p.,

∣∣∣B0 ∩ S̄
J(0)
s

q

∣∣∣
B

≤ p
(s,0)
q + Õ

(
1

√
B

)
which implies,∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩
∣∣∣∣ ≤ O

(
mC2

d

)
+ Õ

(
mC2√

B

)
.

(ii) Using equation (24) and the fact that for any (x, y) ∼ D, l(s,t)q G
(s,t)
q ≤ 1 and by following the

same procedure as in the proof of the statement (i) we can complete the proof.

(iii) Let us define the set, S̄J(0)
s

v := {(x, y) ∼ D : ∃j ∈ J
(0)
s s.t. x(j) = v}.
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Now,

P
[
(x, y) ∼ D : (x, y) ∈ S̄

J(0)
s

v

]
= P

[
(x, y) ∼ D : (x, y) ∈ S̄

J(0)
s

v

∣∣∣∣y = +1 and ∃j ∈ [n] s.t. x(j) = v

]
× P

[
(x, y) ∼ D : y = +1 and ∃j ∈ [n] s.t. x(j) = v

]
≤

α

2

On the other hand, p̄(s,0)−v = O(1/d).

Now, using equation (23), by following the same procedure as in the proof of statement (i), we can
complete the proof.

(iv) Let us define the set, SJ(0)
s

v :=

{
(x, y) ∼ D : ∃j ∈ J

(0)
s s.t. x(j) = v and G

(s,0)
v ≥

1

l

}
.

Now,

P
[
(x, y) ∼ D : (x, y) ∈ S

J(0)
s

v

]
= P

[
(x, y) ∼ D : (x, y) ∈ S

J(0)
s

v

∣∣∣∣y = +1 and ∃j ∈ [n] s.t. x(j) = v

]
× P

[
(x, y) ∼ D : y = +1 and ∃j ∈ [n] s.t. x(j) = v

]
= p(s,0)v

α

2
= Ω(α)

[
As, p(s,0)v = Ω(1)

]
On the other hand, p̄(s,0)−v = O(1/d).

Now, using equation (25) and by following the same procedure as in the proof of the statement (i) we
can complete the proof.

(v) Using equation (23) and by following the same procedure as in the statements (iii) and (i) we can
complete the proof.

(vi) Using equation (25) and following the same procedure as in the proof of statement (ii) and (iv)
we can complete the proof.

Lemma J.3. For any expert s ∈ Sv with v, v′ ∈ {−o1,−o2} such that v ̸= v′, any q ∈ P\{o1, o2},
and any r ∈ [m], w.h.p. over a randomly sampled batch of size B we can ensure that,

(i)
∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩
∣∣∣∣ ≤ O

(
mC2

d

)
+ Õ

(
mC2√

B

)

(ii)
∣∣∣∣⟨ ∂l

∂w
(s,0)
r

, q⟩
∣∣∣∣ ≤ O

(
1

d

)
+ Õ

(
1

√
B

)

(iii)
∣∣∣∣⟨ ∂l

∂w
(0)
s

, v⟩
∣∣∣∣ ≤ O ((1− α)mC2) +O

(
α

d
mC2

)
+ Õ

(
mC2√

B

)

(iv) ⟨
∂l

∂w
(s,0)
r

, v⟩ ≤ −Ω

(
(1− α)

l

)
+ Õ

(
1

l
√
B

)
if ⟨w(s,0)

r , v⟩ ≥ 0,

⟨
∂l

∂w
(s,0)
r

, v⟩ ≤ O

(
α

d

)
+ Õ

(
1

√
B

)
if ⟨w(s,0)

r , v⟩ < 0,
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⟨
∂l

∂w
(s,0)
r

, v⟩ ≥ −
(1− α)

2
− Õ

(
1

√
B

)
if ⟨w(s,0)

r , v⟩ ≥ 0, and

⟨
∂l

∂w
(s,0)
r

, v⟩ ≥ 0 if ⟨w(s,0)
r , v⟩ < 0

(v)
∣∣∣∣⟨ ∂l

∂w
(0)
s

, v′⟩
∣∣∣∣ ≤ O (mC2) + Õ

(
mC2√

B

)

(vi) ⟨
∂l

∂w
(s,0)
r

, v′⟩ ≥ 0 if ⟨w(s,0)
r , v′⟩ ≥ 0,

⟨
∂l

∂w
(s,0)
r

, v′⟩ ≥ −O (α)− Õ

(
1

√
B

)
if ⟨w(s,0)

r , v′⟩ < 0,

⟨
∂l

∂w
(s,0)
r

, v′⟩ ≤ O ((1− α)) + Õ

(
1

√
B

)
, if ⟨w(s,0)

r , v′⟩ ≥ 0, and

⟨
∂l

∂w
(s,0)
r

, v′⟩ ≤ 0 if ⟨w(s,0)
r , v′⟩ < 0

Proof. Using the same procedure as in Lemma J.2, we can complete the proof.

Lemma J.4. For any expert s ∈ [k], any v ∈ Pr, and at any iteration t, if every q ∈ P \{o1, o2} that
satisfies the condition ⟨w(t)

s , q⟩ < ⟨w(t)
s , v⟩ also satisfies the condition ⟨w(t)

s , v⟩ − ⟨w(t)
s , q⟩ ≤ 2 log l,

then for any j ∈ J
(t)
s where x(j) = v and G

(s,t)
j ≥ 1/l, we have, G(s,t)

j (1−G
(s,t)
j ) ≥ 1

4l

Proof. If for all q ∈ P\{o1, o2} with ⟨w(t)
s , q⟩ < ⟨w(t)

s , v⟩ we have, ⟨w(t)
s , v⟩ − ⟨w(t)

s , q⟩ ≤ 2 log l,
then ∀(x, y) ∼ D s.t. ∃j ∈ J

(t)
s (x) with x(j) = v and G

(s,t)
j (x) ≥ G

(s,t)
i (x), ∀i ∈ J

(t)
s (x) and

i ̸= j we have, G(s,t)
j (x)(1−G

(s,t)
j (x)) ≥ min{

(l − 1)

l2

(1 +
(l − 1)

l2
)2
,
(l − 1)

l2
} =

(l − 1)

l2

(1 +
(l − 1)

l2
)2

.

Now,

(l − 1)

l2

(1 +
(l − 1)

l2
)2

=
l2(l − 1)

(l2 + l − 1)2
.

Now, let there exists a constant C > 0 such that
l2(l − 1)

(l2 + l − 1)2
≥

C

l
⇔ l4(1− C)− l3(1 + 2C) +

Cl2 + 2Cl − C ≥ 0.

Now, Cl2 + 2Cl − C > 0 as l ≥ 2. Therefore, l3(1 + 2C) ≤ l4(1 − C) satisfies
l4(1− C)− l3(1 + 2C) + Cl2 + 2Cl − C ≥ 0.

Now, l3(1 + 2C) ≤ l4(1 − C) ⇔ C ≤
l − 1

l + 2
. Now,

l − 1

l + 2
≥

1

4
as l ≥ 2. Hence, picking C =

1

4

satisfies that
l2(l − 1)

(l2 + l − 1)2
≥

1

4l
which implies G(s,t)

j (x)(1−G
(s,t)
j (x)) ≥

1

4l
.

Lemma J.5. For any expert s ∈ Sv such that v ∈ {o1, o2}, and ∀q ∈ P\{o1, o2}, by selecting

ηr = O

(
ηeCp

ml2C2
2

)
and B = Ω̃

(
d2
)
, we can ensure that after T ′ = O

(
lC2

αηe

)
iterations,

(i) σ
(s,T ′)
v = Ω(mC2), σ

(s,T ′)
−v = O(mC2), σ

(s,T ′)
q = O(mC2)

(ii) p
(s,T ′)
v ≥ p

(s,0)
v and, p̄(s,T

′)
−v ≤ p̄

(s,0)
−v
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Proof. Suppose v = o1. From the statement (i) of the Lemma J.2, w.h.p. over a randomly sampled

batch,
∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩
∣∣∣∣ ≤ O(

mC2

d
) + Õ(

mC2√
B

)

Therefore,
∣∣∣⟨w(1)

s , q⟩ − ⟨w(0)
s , q⟩

∣∣∣ ≤ O(
mC2

d
ηr) + Õ(

mC2√
B

ηr).

On the other hand, from the statement (iii) of the Lemma J.2, w.h.p. over a randomly sampled batch,∣∣∣∣⟨ ∂l

∂w
(0)
s

, o1⟩
∣∣∣∣ ≤ O(αmC2) +O

(
(1− α)

d
mC2

)
+ Õ(

mC2√
B

)

Therefore,
∣∣∣⟨w(1)

s , o1⟩ − ⟨w(0)
s , o1⟩

∣∣∣ ≥ O(αmC2ηr) +O

(
(1− α)

d
mC2ηr

)
+ Õ(

mC2√
B

ηr).

Now, by selecting ηr = O(
Cp

αmC2
) and B = Ω̃

(
1

α2

)
, for ⟨w(0)

s , q⟩ < ⟨w(0)
s , o1⟩ we get ,

⟨w(1)
s , o1⟩ − ⟨w(1)

s , q⟩ = Ω(Cp) which ensures that p(s,1)o1 ≥ p
(s,0)
o1 .

Similarly, we can show that, ⟨w(1)
s , o1 − q⟩ ≤ 2 log l and p̄

(s,1)
−o1 ≤ p̄

(s,0)
−o1 .

Now, for any r ∈ [m] such that ⟨w(s,0)
r , o1⟩ ≥ 0, from the statement (iv) of the Lemma J.2,

w.h.p. ⟨
∂l

∂w
(s,0)
r

, o1⟩ ≤ −Ω

(
α

l

)
+ Õ(

1

l
√
B
)), and for any r ∈ [m] such that ⟨w(s,0)

r , o1⟩ < 0,

⟨
∂l

∂w
(s,0)
r

, o1⟩ ≤ O(
(1− α)

d
) + Õ(1/

√
B), which implies, for ⟨w(s,0)

r , o1⟩ ≥ 0,

⟨w(s,1)
r , o1⟩ ≥ ⟨w(s,0)

r , o1⟩+Ω

(
αηe

l

)
− Õ(

ηe

l
√
B
), and for ⟨w(s,0)

r , o1⟩ < 0, ⟨w(s,1)
r , o1⟩ < 0.

Hence, σ(s,1)
o1 ≥ σ

(s,0)
o1 +Ω(

αmηe

l
)− Õ(

mηe

l
√
B
).

Similarly, using statement (ii), (iii), and (iv) of Lemma J.2, we can show that,

σ
(s,1)
o1 ≤ σ

(s,0)
o1 +O(αmηe) + Õ(

m
√
B
ηe),

σ
(s,1)
−o1 ≤ σ

(s,0)
−o1 +O

(
1− α

d
mηe

)
+ Õ

(
1

√
B
mηe

)
, σ(s,1)

3 ≥ σ
(s,0)
3 ,

∣∣∣σ(s,1)
q − σ

(s,0)
q

∣∣∣ ≤ O(
m

d
ηe) + Õ(

mηe√
B
).

Therefore, by selecting B = Ω̃(d2) we get,

⟨
∂l

∂w
(1)
s

, q⟩ ≤ O(
mηe

d
) +O(

mC2

d
), ⟨

∂l

∂w
(1)
s

, q⟩ ≥ −O(
mηe

d2
)−O(

mC2

d
),

⟨
∂l

∂w
(1)
s

, o1⟩ ≤ O(αmC2)− Ω(
α2mηe

l
), ⟨

∂l

∂w
(1)
s

, o1⟩ ≥ −O(αmC2)−O(α2mηe),

⟨
∂l

∂w
(1)
s

,−o1⟩ ≤ O(αmC2) +O(α2mηe), ⟨
∂l

∂w
(1)
s

,−o1⟩ ≥ −O(αmC2) + Ω(
α2mηe

l
),

(Condition 1) Suppose, there exists a T ′ such that ∀0 ≤ t ≤ T ′, p(s,t)o1 ≥ p
(s,0)
o1 , p̄(s,t)−o1 ≤ p̄

(s,0)
−o1 .
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Now, if condition 1 holds then, σ(s,T )
o1 ≥ σ

(s,0)
−o1 +Ω(

αmηe

l
T ), which implies we need T ′ = O(

lC2

αηe
)

steps to ensure that, σ(s,T )
o1 = Ω(mC2). Also, as σ

(s,T )
−o1 ≤ σ

(s,0)
−o1 + O

(
1− α

d
mηeT

)
, we have,

σ
(s,T )
−o1 = O(mC2). Similarly, σ(s,T )

q = O(mC2).

Again, if condition 1 holds, then using Lemma J.2 and equation (22), and equation (25) we can show
that, ∀0 ≤ t ≤ T ′, we have,

⟨
∂l

∂w
(t)
s

, q⟩ ≤ O(
mηe

d
t) +O(

mC2

d
), ⟨

∂l

∂w
(t)
s

, q⟩ ≥ −O(
mηe

d2
t)−O(

mηe

d
)−O(

mC2

d
),

⟨
∂l

∂w
(1)
s

, o1⟩ ≤ O(αmC2)− Ω(
α2mηe

l
t), ⟨

∂l

∂w
(t)
s

, o1⟩ ≥ −O(αmC2)−O(α2mηet),

⟨
∂l

∂w
(t)
s

,−o1⟩ ≤ O(αmC2) +O(α2mηet), ⟨
∂l

∂w
(t)
s

,−o1⟩ ≥ −O(αmC2) + Ω(
α2mηe

l
t).

Therefore, by selecting ηr = O(
Cp

αmC2

1

T ′) = O(
Cpηe

αmlC2
2

), we can ensure that, condition 1 holds for

our selection of T ′.

Similarly, we can prove the case of v = o2.

Lemma J.6. For any expert s ∈ Sv such that v ∈ { − o1,−o2}, and ∀q ∈ P\{o1, o2}, by selecting

ηr = O

(
ηeCp

ml2C2
2

)
and B = Ω̃

(
d2
)
, we can ensure that after T ′ = O

(
lC2

(1− α)ηe

)
iterations,

(i) σ
(s,T ′)
v = Ω(mC2), σ

(s,T ′)
−v = O(mC2), σ

(s,T ′)
q = O(mC2)

(ii) p
(s,T ′)
v ≥ p

(s,0)
v and, p̄(s,T

′)
−v ≤ p̄

(s,0)
−v

Proof. The proof is similar to the proof of Lemma J.5.

K PROOF OF THEOREM 4.4

Proof sketch. The results of Theorem 4.4 are provided by the post-training quantization analysis.
Given the experts’ activation bounds of the trained model, we estimate how much the activations
produced by the quantized weights are allowed to deviate from their original values yet correctly
classify the sequences. As the activations of the experts that learned more prevalent tokens are larger
compared to the experts that learned less prevalent tokens, the former are allowed to deviate more
than the latter. We use the maximum allowable deviations of expert activations for the two groups of
experts (i.e., the experts that learned less prevalent tokens, and the experts that learned more prevalent
tokens) to estimate corresponding quantization bin sizes via equation (2). Finally, we evaluate the
sufficient bit-widths of the two groups of experts from their corresponding maximum allowable bin
sizes.
Theorem K.1 (Full version of Theorem 4.4). Suppose the number of fine-tuning iterations satisfies

T = Θ(
l2C2

αηe

√
log l

Cp
), and maxr∈[m] Var(s,T )

r = Θ(1) for every expert s. If κ ≥ γ, and the two

quantization levels satisfy

bh ≥ log2(1 + Ω(d
√

Cp log(kmd2)/l2C2
2 log l)) (27)

and
bl ≥ log2(1 +

α

1− α
Ω(d

√
Cp log(kmd2)/l2C2

2 log l)), (28)
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then w.h.p. the quantized model has guaranteed generalization, i.e.,

P[∀(x, y) ∼ D : yf
(T )
Q (x) > 0] = 1. (29)

Proof. For any r ∈ [m] of s ∈ [k], we denote the quantized representation of

w
(s,T )
r =

[
w

(s,T )
r1 , w

(s,T )
r2 , ..., w

(s,T )
rd

]T
by, w(s,T ;Q)

r =
[
w

(s,T ;Q)
r1 , w

(s,T ;Q)
r2 , ..., w

(s,T ;Q)
rd

]T
=
[
w

(s,T )
r1 +∆w

(s,T ;Q)
r1 , w

(s,T )
r2 +∆w

(s,T ;Q)
r2 , ..., w

(s,T )
rd +∆w

(s,T ;Q)
rd

]T
.

Here, for any i ∈ [d],∆w
(s,T ;Q)
ri is the quantization-noise generated from the quantization of the

weight w(s,T )
ri .

Now, over the randomness of the pre-trained model, for any r ∈ [m] of any s ∈ [k], for any

i ∈ [d],∆w
(s,T ;Q)
ri ∼ Unif

[
−
∆

(s)
r

2
,
∆

(s)
r

2

]
, where ∆

(s)
r is the quantization bin size of the column

r ∈ [m] of the expert s ∈ [k]. Here we assume that, for i1, i2 ∈ [d] s.t. i1 ̸= i2, ∆w
(s,T ;Q)
ri1

and

∆w
(s,T ;Q)
ri2

are independent to each other. Similarly, we assume that for any r1, r2 ∈ [m] s.t. r1 ̸= r2,

∆w
(s,T ;Q)
r1i1

, ∆w
(s,T ;Q)
r2i2

, ∆w
(s,T ;Q)
r1i2

and, ∆w
(s,T ;Q)
r2i1

, are independent to each other. We further

assume that, for any s1, s2 ∈ [k] s.t. s1 ̸= s2, ∆w
(s1,T ;Q)
r1i1

, ∆w
(s2,T ;Q)
r2i2

, ∆w
(s1,T ;Q)
r1i2

, ∆w
(s2,T ;Q)
r2i1

,

∆w
(s2,T ;Q)
r1i1

, ∆w
(s2,T ;Q)
r1i2

, ∆w
(s1,T ;Q)
r2i1

and, ∆w
(s1,T ;Q)
r2i2

, are independent to each other.

Now, from statement (i) of Lemma I.1, for any s1 ∈ So1 , p(s1,T )
o1 = 1 and ∀x(j) = o1 for some

j ∈ [n], G(s1,T )
j ≥

1

2
. Furthermore, from statement (iii) of Lemma I.1, σ(s1,T )

o1 = Ω(mlC2

√
log l

Cp
).

Therefore, for any (x, y) ∼ D such that ∃j ∈ [n] with x(j) = o1,

∑
s1∈So1

f
(T )
s1 (x) = Ω(γo1mlC2

√
log l

Cp
).

On the other hand, from statement (i) of Lemma I.1, for any s3 ∈ S−o1 , p(s3,T )
o1 = 0.

Therefore, for any (x, y) ∼ D such that ∃j ∈ [n] with x(j) = o1,

∑
s∈S+

f
(T )
s (x) = Ω(γo1kmlC2

√
log l

Cp
).

Again, from statement (iv) of Lemma I.1, for any q ∈ P\{o1, o2}, ∀s ∈ [k], σ
(s,T )
q = O(mC2), and

∀s ∈ S−, σ
(s,T )
o1 = O(mC2).

Therefore, for any (x, y) ∼ D such that ∃j ∈ [n] with x(j) = o1,

∑
s∈S+

f
(T )
s (x) −

∑
s∈S−

f
(T )
s = Ω(γo1kmlC2

√
log l

Cp
) − O(klmC2), which implies for any

(x, y) ∼ D such that ∃j ∈ [n] with x(j) = o1, yf (T )(x) > 0.

Therefore, to ensure that for any (x, y) ∼ D such that ∃j ∈ [n] with x(j) = o1, yf (T )
Q (x) > 0,

we need ⟨w(s1,T )
r − w

(s1,T ;Q)
r , o1⟩ ≤ O(lC2

√
log l

Cp
), for all r ∈ [m] of all s1 ∈ So1 that satisfy

⟨w(s1,0)
r , o1⟩ ≥ 0.
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Now, for an r ∈ [m] of an s1 ∈ So1 ,

P

[∣∣∣⟨w(s1,T )
r − w

(s1,T ;Q)
r , o1⟩

∣∣∣ ≥ Ω(lC2

√
log l

Cp
)

]
≤ exp

(
−
Ω(l2C2

2 log l/Cp)

d∆
(s1)2
r

)
.

Therefore, for all r ∈ [m] of all s1 ∈ So1 , we need ∆
(s1)
r ≤ O(lC2

√
log l

Cpd log(γo1kmd2)
) to ensure

that, for all r ∈ [m] of all s1 ∈ So1 , we have,

P

[
⟨w(s1,T )

r − w
(s1,T ;Q)
r , o1⟩ ≤ O(lC2

√
log l

Cp
)

]
≥ 1−

1

d2
.

Similarly, for all r ∈ [m] of all s2 ∈ So2 , we need ∆
(s2)
r ≤ O(lC2

√
log l

Cpd log(γo2kmd2)
) to ensure

that, for all r ∈ [m] of all s2 ∈ So2 , we have

P

[
⟨w(s2,T )

r − w
(s2,T ;Q)
r , o2⟩ ≤ O(lC2

√
log l

Cp
)

]
≥ 1−

1

d2
,

for all r ∈ [m] of all s3 ∈ S−o1 , we need ∆
(s3)
r ≤ O(

(1− α)

α
l2C2

√
log l

Cpd log(γ−o1kmd2)
) to

ensure that, for all r ∈ [m] of all s3 ∈ S−o1 , we have

P

[
⟨w(s3,T )

r − w
(s3,T ;Q)
r ,−o1⟩ ≤ O(

(1− α)

α
l2C2

√
log l

Cp
)

]
≥ 1−

1

d2
, and

for all r ∈ [m] of all s4 ∈ S−o2 , we need ∆
(s4)
r ≤ O(

(1− α)

α
l2C2

√
log l

Cpd log(γ−o2kmd2)
) to

ensure that, for all r ∈ [m] of all s4 ∈ S−o2 , we have

P

[
⟨w(s4,T )

r − w
(s4,T ;Q)
r ,−o2⟩ ≤ O(

(1− α)

α
l2C2

√
log l

Cp
)

]
≥ 1−

1

d2
.

Now, for all r ∈ [m] of all s ∈ S−, if ∆(s)
r = max

{
∆

(s1)
r ,∆

(s3)
r

}
, we have

∀(x, y) ∼ D such that ∃j ∈ [n] with x(j) = ±o1,

P

[
−
∑

s∈S−
f
(T )
Qs

(x) = O(
√
kmlC2

√
log l

Cp
)

]
≥ 1−

1

d2
.

Here, f (T )
Qs

(x) is the quantized output for the expert s.

Similarly, for all r ∈ [m] of all s ∈ S1, if ∆(s)
r = max

{
∆

(s2)
r ,∆

(s4)
r

}
, we have

∀(x, y) ∼ D such that ∃j ∈ [n] with x(j) = ±o2,

P

[∑
s∈S+

f
(T )
Qs

(x) = O(
√
kmlC2

√
log l

Cp
)

]
≥ 1−

1

d2
.

Therefore, for all s1 ∈ So1 , s2 ∈ So2 , s3 ∈ S−o1 , s4 ∈ S−o2 , for all r ∈ [m], we need

∆
(s1)
r = O(lC2

√
log l

Cpd log(γo1kmd2)
),∆

(s2)
r = O(lC2

√
log l

Cpd log(γo2kmd2)
), and

∆
(s3)
r = O(

(1− α)

α
l2C2

√
log l

Cpd log(γ−o1kmd2)
),

∆
(s4)
r = O(

(1− α)

α
l2C2

√
log l

Cpd log(γ−o2kmd2)
).
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Now, as for all s ∈ [k], maxr∈[m] Var(w(s,T )
r ) = Θ(1). On the other hand, for any s ∈ [k] and

any r ∈ [m], using the Von-Szokefalvi-Nagy inequality, Var(w(s,T )
r ) ≥

β
(s,T )2

r

2d
. Therefore, for all

s ∈ [k], maxr∈[m] β
(s,T )
r = Θ(

√
d).

Let us denote the bit-width of the expert s1 ∈ So1 , s2 ∈ So2 , s3 ∈ S−o1 , and s4 ∈ S−o2 by
bs1 , bs2 , bs3 , and bs4 , respectively.

Therefore, we need

bs1 = log2

(
1 +

maxr∈[m] β
(s1,T )
r

minr∈[m] ∆
(s1)
r

)
≥ log2

(
1 + Ω

(
d

lC2

√
Cp log(γo1kmd2)

log l

))
.

Similarly, we need bs2 ≥ log2

(
1 + Ω

(
d

lC2

√
Cp log(γo2kmd2)

log l

))
,

bs3 ≥ log2

(
1 + Ω

(
αd

(1− α)l2C2

√
Cp log(γ−o1kmd2)

log l

))
,

and bs4 ≥ log2

(
1 + Ω

(
αd

(1− α)l2C2

√
Cp log(γ−o2kmd2)

log l

))
.

Now, from statement (ii) of Lemma I.1, by selecting κ ≥ γ, we can ensure that ∀s1 ∈ So1 , and
∀s2 ∈ So2 , bs1 , bs2 = bh.

As γo1 , γo2 , γ−o1 , γ−o2 are Ω(1), we need

bh ≥ log2(1 + Ω(d
√
Cp log(kmd2)/l2C2

2 log l)), and

bl ≥ log2(1 +
α

1− α
Ω(d

√
Cp log(kmd2)/l2C2

2 log l)), to ensure that,

P[∀(x, y) ∼ D : yf
(T )
Q (x) > 0] = 1
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