

EFFICIENT QUANTIZATION OF MIXTURE-OF-EXPERTS WITH THEORETICAL GENERALIZATION GUARANTEES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Sparse Mixture-of-Experts (MoE) allows scaling of language and vision models
 012 efficiently by activating only a small subset of experts per input. While this re-
 013 duces computation, the large number of parameters still incurs substantial memory
 014 overhead during inference. Post-training quantization has been explored to address
 015 this issue. Because uniform quantization suffers from significant accuracy loss at
 016 low bit-widths, mixed-precision methods have been recently explored; however,
 017 they often require substantial computation for bit-width allocation and overlook the
 018 varying sensitivity of model performance to the quantization of different experts.
 019 We propose a theoretically grounded expert-wise mixed-precision strategy that
 020 assigns bit-width to each expert primarily based on their *change in router's l_2 norm*
 021 during training. Experts with smaller changes are shown to capture less frequent
 022 but critical features, and model performance is more sensitive to the quantization
 023 of these experts, thus requiring higher precision. Furthermore, to avoid allocating
 024 experts to lower precision that inject high quantization noise, experts with large
 025 *maximum intra-neuron variance* are also allocated higher precision. Experiments
 026 on large-scale MoE models, including Switch Transformer and Mixtral, show that
 027 our method achieves higher accuracy than existing approaches, while also reducing
 028 inference cost and incurring only negligible overhead for bit-width assignment.

1 INTRODUCTION

031 The sparse Mixture of Experts (MoE) architecture allows the construction of larger pre-trained
 032 language and vision models without increasing training costs (Shazeer et al., 2017; Lepikhin et al.,
 033 2021; Riquelme et al., 2021; Fedus et al., 2022; Allingham et al., 2022). In this architecture, the
 034 transformer block's feed-forward network (FFN) is replaced by multiple FFN modules, each referred
 035 to as an *expert*. Each expert is paired with a trainable *router*, which selectively activates a small
 036 subset of experts for each input token. Compared to dense models (Fedus et al., 2022; Chowdhury
 037 et al., 2023), MoE enables faster convergence and reduces the amount of training data required.
 038 Additionally, MoE maintains similar inference FLOPs to dense models despite having a larger
 039 parameter count (Riquelme et al., 2021; Zhou et al., 2022).

040 Despite these advantages, MoE incurs substantial memory costs during inference due to their large
 041 size, limiting their deployment. Since experts learn diverse features during pre-training, not all are
 042 equally relevant for a specific downstream task, some recent pruning strategies attempt to mitigate
 043 memory usage by eliminating task-irrelevant experts (Chen et al., 2022a; Koishkenov et al., 2023;
 044 Chowdhury et al., 2024). However, the effectiveness of pruning diminishes in complex tasks, where a
 045 larger set of experts remains essential.

046 Post-training weight quantization (PTWQ) focuses on quantizing weights after training and has
 047 emerged as another promising technique for reducing the memory footprint of large language models
 048 (LLMs) (Shao et al., 2024; Hubara et al., 2021; Lin et al., 2024; Frantar et al., 2023; Badri & Shaji,
 049 2023). Several works have applied quantization to large MoE models by uniformly reducing all expert
 050 weights to a fixed bit-width (Kim et al., 2022; 2023b; Frantar & Alistarh, 2024). However, this uniform
 051 approach overlooks the varying importance of different experts, resulting in substantial performance
 052 degradation under extremely low-bit settings (e.g., sub-3-bit quantization). Although various mixed-
 053 precision quantization methods have recently been developed for other model architectures and could
 potentially be applied to MoEs, e.g., block-wise mixed precision of MoEs Li et al. (2024), these

054 do not leverage the varying relevance of experts in MoE models. An *expert-wise* mixed-precision
 055 approach, in which bit-width varies across experts based on their sensitivity, offers greater potential
 056 to preserve accuracy under low-bit constraints. Yet, this direction remains largely unexplored. To
 057 our knowledge, only two recent works (Li et al., 2024; Huang et al., 2025a) have explored this
 058 approach, using metrics such as expert usage frequency and mean routing weights to estimate experts'
 059 sensitivity. However, these heuristics are suboptimal and lack theoretical justification (Chowdhury
 060 et al., 2024). This raises a fundamental question:

061 *What metric provably categorizes experts in the mixed-precision quantization of an MoE layer?*

063 This paper addressed the question both theoretically and empirically. Our theoretical analysis reveals
 064 that allocating higher bit-width to a group of experts with a **smaller change in the router's l_2 norm**
 065 during training, corresponding to experts that learn less frequently used but important features, while
 066 allocating the rest of the experts in lower bit-width can significantly reduce model size without hurting
 067 performance. Moreover, allocating some of the experts with high *maximum intra-neuron variance*
 068 to higher bit allows further compression. Extensive empirical evaluations support these findings,
 069 demonstrating that large state-of-the-art (SOTA) MoE models (e.g., Switch Transformer, Mixtral)
 070 can be quantized to ultra-low-bit regimes (e.g., below 3-bit) without sacrificing accuracy. Our major
 071 contributions are summarized as follows:

072 **1. A theoretically grounded metric, the change in a router's l_2 norm during training, for**
073 expert-wise mixed-precision quantization. We theoretically analyze the training dynamics and
 074 generalization behavior of a simplified two-layer MoE model fine-tuned on classification tasks. This
 075 model is a SOTA theoretical model in understanding training and generalization of MoEs and general
 076 neural networks. We prove that experts capturing less prevalent features exhibit smaller changes in
 077 their router's l_2 norm during training. We further prove that these experts exhibit lower activation
 078 levels. Hence, the model's generalization performance is more sensitive to the quantization of these
 079 experts, requiring them to have higher precision. Unlike the prior work (Chowdhury et al., 2024)
 080 that uses the router's l_2 norm to distinguish between relevant and irrelevant experts for pruning, our
 081 analysis offers a finer-grained view that identifies varying levels of expert importance, enabling a
 082 principled approach to diverse expert-wise bit-width allocation for mixed-precision quantization.

083 **2. Empirical Validation of Expert-wise Mixed Precision on large MoE models, including Switch**
084 Transformer and Mixtral. Our results show that assigning precision based on changes in the router's
 085 l_2 norm during fine-tuning outperforms alternative heuristics, such as expert activation frequency
 086 and activation weights. Moreover, for large pretrained models like Mixtral, where fine-tuning is
 087 computationally expensive, we demonstrate that using the router's l_2 norm from the pretrained
 088 model alone, without any fine-tuning, achieves test accuracy comparable to the existing expert-wise
 089 mixed-precision strategies (Table 1) while reducing inference computation (Figure 3). Importantly,
 090 our approach incurs negligible computational overhead to determine expert bit-widths, while the
 091 alternative methods require significant GPU computation.

092 2 RELATED WORKS

094 **Quantization of large models.** Parallel to PTWQ, some other methods focus on minimizing
 095 quantization error through quantization aware (re-)training (QAT), but these methods are every
 096 expensive and not suitable for large models (Wang et al., 2022; Liao et al., 2024; Gu et al., 2024).
 097 Mixed-precision strategies have also been explored, where bit-widths vary across different model
 098 components (e.g., MLP blocks, attention heads) (Dong et al., 2020; Li et al., 2024; Huang et al.,
 099 2025b; Dettmers et al., 2024). However, variation of bit-widths within the same layer remains
 100 underexplored.

101 **MoE compression.** To compress MoE models, some approaches focus on expert pruning, either
 102 targeting specific downstream tasks during fine-tuning (Chen et al., 2022a; Koishkenov et al., 2023;
 103 Chowdhury et al., 2024), or removing irrelevant experts from the pre-trained model (Zhang et al.,
 104 2024; Xie et al., 2024). However, the effectiveness of pruning diminishes for complex tasks. PTWQ
 105 has also been applied to compress large MoE models, with most methods focusing on uniform
 106 quantization of experts (Kim et al., 2022; 2023a;b; Yi et al., 2025; Frantar & Alistarh, 2024), which
 107 often results in degraded performance under ultra low-bit settings. Two very recent works have
 108 explored expert-wise mixed-precision quantization for MoE models (Li et al., 2024; Huang et al.,

108 2025a), but they either rely on suboptimal metrics or require extensive memory and computational
 109 resources to determine the expert-specific bit-width distribution.
 110

111 **Optimization and generalization analysis of neural networks.** Several works have established
 112 optimization and generalization guarantees for neural networks (NNs) using neural tangent kernel
 113 (NTK)-based approaches (Jacot et al., 2018; Lee et al., 2019; Du et al., 2019; Allen-Zhu et al., 2019;
 114 Li et al., 2022). However, such analyses can not capture realistic training dynamics as they require
 115 the weights remain close to initialization throughout training. More recent studies have focused on
 116 the feature learning dynamics of NNs to derive generalization guarantees (Karp et al., 2021; Brutzkus
 117 & Globerson, 2021; Li et al., 2023; Zhang et al., 2023; Chowdhury et al., 2023), offering better
 118 alignment with practical neural network behavior. These analyses are typically restricted to shallow
 119 networks, and our work falls within this framework.
 120

3 EXPERT-WISE MIXED-PRECISION QUANTIZATION OF MOE

3.1 THE BASICS OF MIXTURE-OF-EXPERTS ARCHITECTURE

121 In MoE models, the standard feed-forward net-
 122 works (FFNs) in transformer MLP blocks are
 123 replaced with multiple parallel FFN *experts*. A
 124 gating network of *routers* assigns input tokens
 125 to specific experts.
 126

127 Consider an example MoE block that includes k
 128 experts, each of which is a two-layer FFN. Let
 129 $x = [x^{(1)\top}, x^{(2)\top}, \dots, x^{(n)\top}] \in \mathbb{R}^{nd}$ denote the
 130 input sequence, consisting of n tokens, each
 131 of dimension d . For each token $x^{(j)} \in \mathbb{R}^d$
 132 with $j \in [n]$, the MoE block produces a d' -
 133 dimensional output token, forming the output se-
 134 quence $x_{out} = [x_{out}^{(1)\top}, x_{out}^{(2)\top}, \dots, x_{out}^{(n)\top}] \in \mathbb{R}^{nd'}$.
 135 The output $x_{out}^{(j)} \in \mathbb{R}^{d'}$ corresponding to the in-
 136 put $x^{(j)}$ is given by,
 137

$$138 x_{out}^{(j)} = \sum_{s \in [k]} f_s(x^{(j)}) \text{ where, } f_s(x^{(j)}) = \begin{cases} W_2^{(s)} \sigma(W_1^{(s)} x^{(j)}) G_j^{(s)} & \text{if } G_j^{(s)} > 0 \\ \vec{0}_{d'} & \text{if } G_j^{(s)} = 0 \end{cases} \quad (1)$$

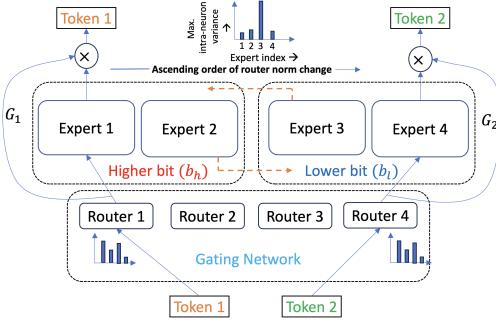
139 Here $f_s(x^{(j)}) \in \mathbb{R}^{d'}$ denotes the contribution of the s -th expert. $W_1^{(s)} \in \mathbb{R}^{m \times d}$ and $W_2^{(s)} \in \mathbb{R}^{d' \times m}$
 140 represent the weights of the first and second layer, respectively. The activation function $\sigma(\cdot)$ is applied
 141 element-wise to the hidden layer output. $\vec{0}_{d'}$ denotes the zero vector in $\mathbb{R}^{d'}$.
 142

143 **The Gating Network.** For each token $x^{(j)}$ ($j \in [n]$) and each expert s ($s \in [k]$), the gating network
 144 computes a *gating value* $G_j^{(s)} \in [0, 1]$. The network includes k trainable router vectors $w_s \in \mathbb{R}^d$
 145 ($s \in [k]$), one per expert.
 146

147 In *token-choice routing* (Fedus et al., 2022), given an input token $x^{(j)} \in \mathbb{R}^d$, the routing network
 148 computes a set of *routing scores* $\{\langle w_s, x^{(j)} \rangle\}_{s=1}^k$ for all k experts. The top- l experts with the highest
 149 scores (where $l \ll k$) are selected, and their corresponding *gating values* are computed via a softmax
 150 over the top- l scores, while the remaining experts receive a gating value of zero. In contrast, in
 151 *expert-choice routing* (Zhou et al., 2022), each expert s computes routing scores $\{\langle w_s, x^{(j)} \rangle\}_{j=1}^n$ over
 152 all n tokens and selects the top- l tokens with the highest scores. The gating values for the selected
 153 tokens are computed via a softmax over the top- l scores, and the rest are assigned zero.
 154

3.2 THE POST-TRAINING WEIGHT QUANTIZATION (PTWQ)

155 PTWQ methods compress neural network weights by representing them as low-bit fixed-point integers.
 156 During inference, these quantized weights are dequantized back to floating-point values. Given a
 157



158 Figure 1: A schematic of Mixture-of-Experts with
 159 our proposed approach. Experts with smaller
 160 router norm changes in higher bit. Experts with
 161 large max intra-neuron variance are reordered.
 162

$$163 G_j^{(s)} = \sum_{i=1}^k \exp(\langle w_s, x^{(j)} \rangle) / \sum_{i=1}^k \exp(\langle w_s, x^{(j)} \rangle) \quad (2)$$

164 Here $w_s \in \mathbb{R}^d$ is the router vector for expert s . The softmax operation is applied over the top- l scores.
 165

166 **3.2 THE POST-TRAINING WEIGHT QUANTIZATION (PTWQ)**
 167

168 PTWQ methods compress neural network weights by representing them as low-bit fixed-point integers.
 169 During inference, these quantized weights are dequantized back to floating-point values. Given a
 170

162 weight matrix $W \in \mathbb{R}^{in \times out}$, and a target bit-width b , the de-quantized weights \hat{W} are computed as,
 163

$$164 \hat{W} = \Delta \cdot (\lfloor W/\Delta + z \cdot 1^{in \times out} \rfloor - z \cdot 1^{in \times out}) \quad (2)$$

165 where $\Delta := (\max(W) - \min(W))/(2^b - 1)$ is the quantization bin size, and $z := -\lfloor \min(W)/\Delta \rfloor - 2^{b-1}$ is the zero-point of the quantized weights. $1^{in \times out}$ is an all-ones matrix with dimension $(in \times out)$,
 166 and $\lfloor \cdot \rfloor$ is the element-wise rounding to the nearest integer.
 167

168 Most PTWQ methods select Δ and z by minimizing either the loss in activation on calibration data
 169 (e.g., GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2024)). An alternative line of work aims to
 170 minimize the reconstruction error directly, without calibration data (e.g., HQQ (Badri & Shaji, 2023)).
 171

172 3.3 THE PROPOSED MIXED-PRECISION QUANTIZATION METHOD

173 Our quantization approach proceeds in two main steps: (1) **ordering the experts** based on *the change*
 174 *in the router's norm and the maximum intra-neuron variance*, defined in Defs. 3.1 and 3.2 and (2)
 175 **assigning bit-widths** (two-level or three-level quantization) according to the ordering.
 176

177 **STEP 1: Expert Ordering.** We first introduce two metrics used in ordering the experts.

178 **Definition 3.1.** For expert $s \in [k]$, let $w_s^{(0)}$ and $w_s^{(T)}$ be its router vectors in the initial and trained
 179 models, respectively. We define **change in router's l_2 norm** as follows,
 180

$$182 \Lambda_s^{(T)} := \|w_s^{(T)}\| - \|w_s^{(0)}\|. \quad (3)$$

183 **Definition 3.2.** Let $W_1^{(s,T)}$ be the first-layer weight matrix of expert s in the trained model, containing
 184 m neurons with weights in \mathbb{R}^d . The **maximum intra-neuron variance** evaluates the maximum
 185 variance of weight entries in each neuron, i.e.,
 186

$$187 \text{MaxVar}_s^{(T)} := \max_{r \in [m]} \frac{1}{d} \sum_{i=1}^d \left(W_1^{(s,T)}[r, i] - \frac{1}{d} \sum_{i=1}^d W_1^{(s,T)}[r, i] \right)^2. \quad (4)$$

188 where $W_1^{(s,T)}[r, i]$ denotes the i -th element of the r -th row of the matrix $W_1^{(s,T)}$.
 189

190 We first rank experts by the change of router's l_2 norm $\Lambda_s^{(T)}$, where those with smaller $\Lambda_s^{(T)}$ are
 191 placed higher, which later correspond to higher precision. This ordering is theoretically justified in
 192 Section 4, and the intuition is that the model performance is more sensitive to the quantization of
 193 those experts s with smaller $\Lambda_s^{(T)}$.
 194

195 Then, to assign the experts in higher precision that inject high quantization noise to the model, we
 196 adjust the ordering by promoting experts with larger maximum intra-neuron variance to higher ranks.
 197 Specifically, if a lower-ranked expert s has its $\text{MaxVar}_s^{(T)}$ at least ζ ($\zeta > 1$)¹ times greater than
 198 $\text{MaxVar}_{s'}^{(T)}$ of an expert s' , where s' ranks higher than s in the ordering by router norm change, we
 199 move s to be above s' in the adjusted ordering. This process is repeated until no further changes are
 200 needed. The intuition is that larger intra-neuron variance arises either from wider weight ranges or
 201 from more skewed weight concentrations, both of which induce higher quantization noise compared
 202 to experts with smaller intra-neuron variance under the same bit-width assignment.
 203

204 **Special Case:** For pre-trained models where the initial router vectors $w_s^{(0)}$ are unavailable, we use
 205 the router's l_2 norm itself as a surrogate for $\Lambda_s^{(T)}$, since initial weights are typically small-variance
 206 random initializations. $\text{MaxVar}_s^{(T)}$ is computed directly from the pre-trained model as well.
 207

208 **STEP 2: Bit Assignment.** Based on the obtained ordering, we can assign two-level or three-level
 209 quantization as follows.
 210

211 **Two-level assignment.** Given $b_h > b_l$ and target average bit-width b_{avg} , we quantize the top
 212 $\kappa = \frac{b_{\text{avg}} - b_l}{b_h - b_l}$ fraction of experts to b_h and the rest to b_l .
 213

214 ¹We use $\zeta = 3$ in experiments, since the variance of any bounded distribution is at most three times that of a
 215 uniform distribution with the same range. This adjustment affects only 4–5% of experts in experiments.

216 **Three-level assignment.** With bit-widths $b_h > b_m > b_l$ and target b_{avg} , we assign higher-ranked
 217 experts to b_h , mid-ranked experts to b_m , and lower-ranked experts to b_l . In general, multiple
 218 assignment strategies are possible according to the ranking order while still achieving the same b_{avg} .
 219 We select the best strategy based on the intuition to balance between maximizing the number of
 220 experts assigned to the highest precision and minimizing those assigned to the lowest precision,
 221 depending on the value of b_{avg} relative to the three levels.

222 Specifically, when b_{avg} is in $(b_h - (b_h - b_l)/3, b_h)$, i.e., close to b_h , we maximize the number of
 223 experts assigned to b_h . When b_{avg} is in $[b_h - 2(b_h - b_l)/3, b_h - (b_h - b_l)/3]$, we again maximize
 224 the number of experts in b_h , but subject to the constraint that the number in b_l does not exceed those
 225 in b_m . When b_{avg} is in $(b_l, b_h - 2(b_h - b_l)/3)$, we minimize the number of experts in b_l .
 226

227 4 GENERALIZATION GUARANTEES FOR THE ROUTER-NORM-BASED 228 EXPERT-WISE MIXED-PRECISION QUANTIZATION OF MOE 229

230 4.1 SUMMARY OF THEORETICAL INSIGHTS 231

232 Before formally presenting our theoretical setup and results, we first summarize the key theoretical
 233 insights. We consider a setting where an MoE model is fine-tuned for a binary classification problem.
 234 Each input sequence contains a single task-relevant token that determines the label, while the
 235 remaining tokens are task-irrelevant. For each class, there are two distinct task-relevant tokens: one
 236 is more prevalent, appearing in a $(1 - \alpha)$ fraction of the data, while the other appears in an α fraction
 237 ($\alpha < \frac{1}{4}$). Although based on the simplified setup, our theoretical insights are validated empirically on
 238 practical MoE models in different language tasks. Our major theoretical takeaways include:

239 **1. Experts specialized in learning less-prevalent tokens undergo smaller changes in their
 240 router's l_2 norm than experts that learn more-prevalent tokens.** We show that different experts
 241 specialize in different task-relevant tokens. The routers associated with experts that exclusively learn
 242 the less-prevalent token exhibit a smaller l_2 norm change after fine-tuning, compared to routers for
 243 experts that learn more-prevalent tokens. This observation suggests that the router norm change can
 244 serve as a useful indicator for distinguishing between these two types of experts.

245 **2. Experts that learn less-prevalent tokens produce weaker activations, and the model's
 246 generalization performance is more sensitive to the quantization of these experts.** We prove
 247 that experts are primarily activated by the task-relevant tokens they learn. Experts that learn less-
 248 prevalent tokens generate significantly weaker activations than experts that learn more-prevalent
 249 tokens. Therefore, the model performance is more sensitive to the quantization of the former ones.

250 **3. Quantizing experts with smaller router l_2 norm changes to higher precision, while rest of
 251 the experts in lower precision achieves the same generalization as full-precision quantization.**
 252 Because the model's generalization is more sensitive to the quantization of the experts learning
 253 less-prevalent tokens, and as they can be identified via router's l_2 norm change, quantizing them to b_h
 254 allows safe reduction of other experts' precision by $\log_2(\frac{1-\alpha}{\alpha})$ bits without hurting generalization.
 255

256 4.2 DATA MODEL AND ASSUMPTIONS 257

258 **The MoE model and binary classification task.** We consider a neural network that contains a single
 259 MoE block, fine-tuned on a binary supervised classification task, where each input sequence x is
 260 labeled with $y \in \{+1, -1\}$. The MoE block generates one-dimensional output tokens, i.e., $d' = 1$
 261 for $x_{out}^{(j)}$ in (1), and the model output is computed by aggregating all the output tokens, i.e., for an
 262 input sequence x , the model's output is

$$263 f(x) := \sum_{j \in [n]} x_{out}^{(j)} = \sum_{j \in [n]} \sum_{s \in [k]} f_s(x^{(j)}) \quad (5)$$

$$264$$

265 Let $f^{(T)}(\cdot)$ denote the model after T steps of finetuning. x is correctly classified if $yf^{(T)}(x) > 0$.
 266 For each expert $s \in [k]$, the second layer weights are fixed² during training and defined as $W_2^{(s)} :=$
 267

268 ²Fixing the output layer for analytical convenience is standard in the literature and has been adopted in prior
 269 works on training dynamic analysis of neural networks (Li & Liang, 2018; Brutzkus et al., 2018; Arora et al.,
 2019; Zhang et al., 2023; Chowdhury et al., 2023)

$a^{(s)} \cdot 1^{1 \times m}$, where $a^{(s)} \in \{+1, -1\}$. We refer to each expert as positively connected to the final output if $a^{(s)} = 1$, and negatively connected if $a^{(s)} = -1$. Let $S_+, S_- \subset [k]$ denote the set of positively and negatively connected experts, respectively. The activation function $\sigma(\cdot)$ is rectified linear unit (ReLU). The routing mechanism follows expert-choice routing, where each expert selects l tokens, satisfying $l \leq L$ for some constant L .

Although our theoretical analysis is based on a two-layer MoE model, it already captures the key components, including routers, experts, and nonlinear activation, and the learning problem is already highly non-convex. In fact, the two-layer network model is SOTA for theoretical analysis of training dynamics and generalization in MoEs (Chen et al., 2022b; Chowdhury et al., 2023), and in general deep neural networks (Li et al., 2023; Zhang et al., 2023; Allen-Zhu & Li, 2023; Bu et al., 2024).

Two-precision-level quantization. To simplify the theoretical analysis, we consider two precision levels and only the first layer weights of each expert s , i.e., $W_1^{(s,T)}$, are quantized. The top κ -fraction of experts in S_+ and the top κ -fraction in S_- , each with the smallest values of $\Lambda_s^{(T)}$, are quantized to the higher bit-width b_h , while the remaining experts in both sets are quantized to the lower bit-width b_l . The quantization is applied in a column-wise fashion: for each expert s and its corresponding bit-width, the bin size Δ is computed independently for each column of $W_1^{(s,T)}$. Without loss of generality, we assume the zero-point $z = 0$.

The data model. Let $\mathcal{P} \subset \mathbb{R}^d$ denote a set of orthonormal vectors with $|\mathcal{P}| \leq d = \Omega(L^8)$. Two vectors o_1 and o_2 in \mathcal{P} , and their negatives $-o_1$ and $-o_2$ are called *task relevant*, denoted by set $\mathcal{P}_r = \{\pm o_1, \pm o_2\}$, while all vectors in $\mathcal{P} \setminus \{o_1, o_2\}$ are *task-irrelevant*.

Each sequence and label pair (x, y) follows a distribution \mathcal{D} , where x contains exactly one token from \mathcal{P}_r , which determines y : sequences containing $\pm o_1$ are labeled as class 1 (i.e., $y = +1$), and those containing $\pm o_2$ are labeled as class 2 (i.e., $y = -1$). The remaining tokens in x are drawn independently from the task-irrelevant set $\mathcal{P} \setminus \{o_1, o_2\}$, each with probability $O(1/d)$. With probability α , where the constant α is in $(0, 1/4)$, a sequence contains the **less prevalent** task-relevant tokens o_1 or o_2 , and with probability $1 - \alpha$, it contains the **more prevalent** tokens $-o_1$ or $-o_2$.

Our data model is similar to Bu et al. (2024) except that our task-irrelevant vectors are drawn from an orthonormal set instead of a Gaussian distribution. The assumption of orthonormal task-irrelevant vectors have been widely deployed in theoretical analysis (Brutzkus & Globerson, 2021; Shi et al., 2022; Allen-Zhu & Li, 2022; Chen et al., 2022b; Zhang et al., 2023; Li et al., 2023).

We next introduce some useful notations in presenting our theoretical results. After t training iterations, we define the activation of expert s in response to a task-relevant token as follows:

Definition 4.1. For expert $s \in [k]$, the activation of expert s by a task-relevant vector is defined as

$$\sigma_v^{(s,t)} := \vec{1}^\top \sigma(W_1^{(s,t)\top} v), \quad v \in \mathcal{P}_r, \quad (6)$$

where $W_1^{(s,t)}$ is the first-layer weights of expert s at iteration t , and $\vec{1}$ is an all-ones vector in \mathbb{R}^m .

Intuitively, a lower activation of an expert for a task-relevant vector leads to a smaller gap between the output of this expert and the output of another expert not selecting the token, leading to weaker predictions against quantization noise.

The same as Chowdhury et al. (2024), we define an expert's *proficiency measure* to quantify the router's ability to select task-relevant tokens from a sequence. Specifically,

Definition 4.2. The proficiency of expert s after t training iterations in selecting a task-relevant vector v is measured by the probability that it assigns a gating value of at least $1/l$ to token v , i.e.,

$$p_v^{(s,t)} := \mathbb{P}[G_j^{(s,t)} \geq 1/l \mid x^{(j)} = v \text{ for some } j \in [n]], \quad v \in \mathcal{P}_r \quad (7)$$

Alignment of the pretrained model. In a pretrained model ($t = 0$), we say the router for expert s is *aligned* to task-relevant vector v ($v \in \mathcal{P}_r$) if $p_v^{(s,0)} = \Omega(1)$, i.e., it selects v with a nontrivial gating value for a constant fraction of samples containing v . We assume that in the pretrained model, routers of the experts in S_+ are aligned to either o_1 or $-o_1$, and routers of the experts in S_- are aligned to either o_2 or $-o_2$. This assumption reflects the common intuition that a pretrained MoE model learns to specialize experts for different subtasks or feature types,

324 Let S_v ($v \in \mathcal{P}_r$) denote the set of experts whose routers are aligned with v in the pretrained model.
 325 Let $\gamma = \max\left(\frac{|S_{o_1}|}{|S_+|}, \frac{|S_{o_2}|}{|S_-|}\right)$ denote the maximum fraction of routers that are aligned to less-prevalent
 326 task-relevant vectors in S_+ and S_- .
 327

328 329 4.3 MAIN THEORETICAL RESULTS

330 **Lemma 4.3.** *Suppose the pretrained model is fine-tuned for $T = \Theta(l^2\sqrt{\log l}/\alpha)$ iterations, the*
 331 *returned $f^{(T)}$ has the following properties,*
 332

333 *(i) the routers' alignment to task-relevant vectors are enhanced during training, specifically,*

$$334 \quad p_v^{(s,T)} = 1, \quad p_{-v}^{(s,T)} = 0, \quad \forall s \in S_v, \forall v \in \mathcal{P}_r = \{\pm o_1, \pm o_2\} \quad (8)$$

336 *(ii) the l_2 norm change of the routers aligned with the more prevalent $-o_1$ and $-o_2$ are higher than*
 337 *those aligned with the less prevalent o_1 and o_2 , specifically,*
 338

$$339 \quad \Lambda_{s'}^{(T)} > \Lambda_s^{(T)}, \quad \forall s \in S_{o_i}, \forall s' \in S_{-o_i}, i = 1, 2 \quad (9)$$

340 *and (iii) the expert activation by $-o_1$ and $-o_2$ are higher than that by o_1 and o_2 , specifically,*
 341

$$342 \quad \sigma_{o_i}^{(s,T)} = \Omega(ml\sqrt{\log l}), \quad \sigma_{-o_i}^{(s',T)} = \Omega\left(\frac{(1-\alpha)}{\alpha} ml\sqrt{\log l}\right), \quad \frac{\sigma_{-o_i}^{(s',T)}}{\sigma_{o_i}^{(s,T)}} \geq \frac{1-2\alpha}{2\alpha} \quad (10)$$

345 Lemma 4.3 summarizes key properties of the fine-tuned model that can be leveraged for expert-wise
 346 mixed-precision implementation. First, (8) shows that if the router of an expert s is aligned with
 347 a task-relevant vector v in the pretrained model, that is, $p_v^{(s,0)} = \Omega(1)$, then after fine-tuning, the
 348 alignment becomes stronger: $p_v^{(s,T)} = 1$. Moreover, the expert s suppresses $-v$ by assigning zero
 349 or negligible gating value to the negative token $-v$, i.e., $p_{-v}^{(s,T)} = 0$. This implies that each expert
 350 becomes specialized in a single task-relevant vector after fine-tuning.
 351

352 Second, (9) shows that the change in the router's l_2 -norm is larger for experts aligned with more
 353 prevalent features, and smaller for those aligned with less prevalent ones. This property allows us to
 354 distinguish two types of experts based on their router norm changes. Third, (10) demonstrates that
 355 experts aligned with less prevalent vectors produce weaker activations than those aligned with more
 356 prevalent ones, resulting from the less frequent occurrence of these tokens in the data. The ratio of
 357 their activations is at least $(1-2\alpha)/(2\alpha)$. Thus, the model's generalization is expected to be more
 358 sensitive to the quantization of the experts aligning with less prevalent vector, and hence these experts
 359 need higher precision. Lemma 4.3 is verified by synthetic data in Figs. 4 and 5 in Appendix A.

360 We next formally establish Theorem 4.4 that characterizes the generalization guarantee of the
 361 quantized model $f_Q^{(T)}$ after applying the two-level mixed-precision quantization method in Section
 362 3.3 to the fine-tuned model $f^{(T)}$. Let $\text{Var}_r^{(s,T)}$ denote the variance of the r -th column of $W_1^{(s,T)}$.
 363

364 **Theorem 4.4.** *Suppose the number of fine-tuning iterations satisfies $T = \Theta(l^2\sqrt{\log l}/\alpha)$, and*
 365 *$\max_{r \in [m]} \text{Var}_r^{(s,T)} = \Theta(1)$ for every expert s . If $\kappa \geq \gamma$, and the two quantization levels satisfy*

$$366 \quad b_h \geq \log_2(1 + \Omega(d\sqrt{\log(kmd^2)/l^2 \log l})) \quad (11)$$

367 *and*

$$369 \quad b_l \geq \log_2\left(1 + \frac{\alpha}{1-\alpha}\Omega(d\sqrt{\log(kmd^2)/l^2 \log l})\right), \quad (12)$$

370 *then with high probability the quantized model has guaranteed generalization, i.e.,*
 371

$$372 \quad \mathbb{P}[\forall (x, y) \sim \mathcal{D} : yf_Q^{(T)}(x) > 0] = 1. \quad (13)$$

374 **Remark 4.5.** Theorem 4.4 states that if the maximum intra-neuron variance of all the experts are
 375 close to each other, i.e., $\forall s \in [k], \text{MaxVar}_s^{(T)} = \Theta(1)$, sorting the experts in ascending order of their
 376 router norm change $\Lambda_s^{(T)}$, and quantizing the top κ -fraction ($\kappa \geq \gamma$) of experts in this sorted list to
 377 b_h bits and the remaining experts to b_l bits, where b_h and b_l satisfy conditions (11) and (12), allows
 378 the quantized model to preserve the generalization of the full-precision model. Each low-precision

378 expert can use $\log_2 \left(\frac{1-\alpha}{\alpha} \right)$ fewer bits than its high-precision counterpart. This is verified by synthetic
 379 data in Fig. 6 in Appendix A.
 380

381 Note that all the experts aligned with less prevalent vectors are among the top κ -fraction (by Lemma
 382 4.3 (ii)) and exhibit smaller activation values (by Lemma 4.3 (iii)). Therefore, they require higher
 383 precision. In contrast, the experts quantized to lower precision are those aligned with more prevalent
 384 vectors and have larger activations, and hence can be quantized aggressively.
 385

386 5 EXPERIMENTAL RESULTS

388 5.1 EXPERIMENTS ON FINETUNED SWITCH-TRANSFORMER MODEL

390 Here, we present quantization results on Switch Transformer (Fedus et al., 2022) finetuned on
 391 CNN/Daily Mail (CNNDM) text summarization task (See et al., 2017). All non-MoE weights are
 392 quantized to 8 bits. We apply HQQ (Badri & Shaji, 2023) for quantizing the model³. See section B in
 393 appendix for more implementation details.

394 **Two-level expert-wise mixed-precision:** As shown in Figure 2,
 395 uniform 3-bit expert quantization nearly preserves generalization,
 396 while uniform 2-bit severely degrades the generalization.
 397 We therefore use mixed-precision with two bit levels: 3 and 2.

398 **Our method outperforms existing expert-wise mixed-precision methods:** We benchmark against two prior expert-
 399 wise mixed-precision strategies: (i) activation frequency (aver-
 400 age tokens routed per expert) and (ii) activation weights (aver-
 401 age gating weights on a calibration set) (Li et al., 2024; Huang
 402 et al., 2025a), where higher-frequency/weight experts are as-
 403 signed higher precision. In contrast, our router-norm-change
 404 ordering itself preserves generalization down to 2.5 average
 405 bits/expert, outperforming both baselines. Moreover, additional
 406 reordering by the maximum intra-neuron variance affects 3.7% of experts and extends preservation to
 407 2.125 bits.
 408

410 5.2 EXPERIMENTS ON PRETRAINED MIXTRAL MODELS

412 We quantize the pretrained Mixtral 8x7B (46.7B parameters) and Mixtral 8x22B (140.6B parameters)
 413 models (Jiang et al., 2024) using GPTQ (Frantar et al., 2023) to evaluate on eight zero-shot benchmark
 414 LLM tasks. All non-MoE parameters are assigned to 3 bits. See section B in the appendix for more
 415 implementation details.

416 **Baselines.** We compare against the state-of-the-art expert-wise method, *Pre-loading Mixed-precision*
 417 *Quantization* (PMQ) (Huang et al., 2025a), which assigns bit-widths by minimizing Frobenius-norm
 418 output errors (per expert and bit level) weighted by activation frequency and gating scores. As PMQ
 419 outperforms the activation frequency and activation weights based methods, the comparison with
 420 these method are in Appendix (see Figure 7, 8 in Appendix). We also evaluate non-expert-wise
 421 approaches, including layer-wise (Hessian (Dong et al., 2020), BSP (Li et al., 2024)) and group-wise
 422 (Slim-LLM (Huang et al., 2025b)) methods. Our method has advantages as follows.

423 **Three-level expert-wise mixed precision.** We consider three-level bit-assignment of (1,2,3) bits. As
 424 shown in Table 1, the uniform 3-bit expert quantization almost maintains generalization, but uniform
 425 2-bit quantization significantly degrades performance.

426 **High accuracy with robust scaling.** Our method surpasses PMQ above 2.0 average bits in terms
 427 of accuracy for Mixtral 8x7B⁴. Extending to Mixtral-8x22B (140.6B parameters), our method

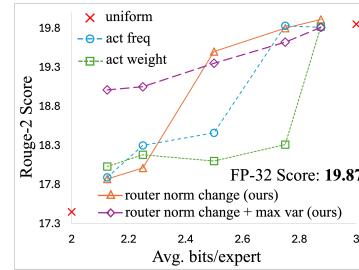


Figure 2: Expert-wise mixed-precision of Switch Transformer on CNNDM. Bit choices: 2, 3

³We use eight V100 GPUs for fine-tuning and one NVIDIA A5000 GPU (48GB) for quantized inference.

⁴Compressing below 2.0 bits/expert is too aggressive, since the compressed model size (≤ 13.1 GB) falls below the equivalent dense model (13.6 GB), which is generally trained with far more data and has better generalization.

again outperforms PMQ, demonstrating robustness to model scale. It also outperforms non-expert-wise methods (e.g., Hessian (layer-wise) (Dong et al., 2020), BSP (layer-wise) (Li et al., 2024), and Slim-LLM (group-wise) (Huang et al., 2025b)) by large margins.

Low inference cost. Figure 3 shows inference time on Wikitext2 (Merity et al., 2016). For the same average bits/expert, our method is faster than PMQ because PMQ assigns higher precision to frequently activated experts, whereas our method allocates higher precision to less frequent experts, reducing computation.

Negligible assignment overhead. Unlike PMQ, which requires evaluating all experts across bit levels on a calibration set (e.g., 110 GB GPU memory and 2227s for Mixtral-8x7B; 350 GB and 6000s for Mixtral-8x22B), our method only sorts experts by router norm with minor reordering. This requires no GPU and negligible computation, enabling scalable compression of large MoE models.

Table 1: Task-wise accuracy (%) of different methods on the 8 benchmark LLM tasks.

Model	Method	Avg. bits/exp.	Memory (GB)	PIQA	ARC-e	ARC-c	BoolQ	HellaS.	Wino.	MathQA	MMLU	Avg.
Mixtral 8x7B	Full-precision	16 (FP)	96.8	83.68	83.50	59.64	85.05	83.99	76.4	41.61	67.85	72.72
	Uniform	3	19.3	82.32	80.05	57.42	86.09	81.51	75.14	39.43	64.84	70.85
		2	13.1	76.44	67.68	43.60	72.51	72.93	65.27	28.58	42.79	58.73
	Router norm + Max var (Ours)	2.75	17.7	81.83	80.47	56.31	85.57	81.05	74.98	38.29	61.55	70.01
		2.625	16.9	81.45	78.62	54.86	85.60	80.57	74.66	36.75	59.78	69.04
		2.5	16.1	80.79	78.41	54.44	85.14	79.36	74.35	36.28	58.23	68.38
		2.375	15.3	80.20	75.38	51.19	84.92	78.69	73.80	33.47	56.07	66.72
		2.25	14.5	80.41	72.90	50.09	84.04	77.46	73.95	31.96	55.53	65.79
		2.125	13.8	78.94	74.45	51.02	80.12	76.56	70.17	31.29	51.56	64.26
		2.0	13.1	77.26	71.17	46.84	80.61	74.17	69.93	30.18	50.34	62.56
		1.75	11.7	75.03	69.53	42.92	73.64	70.03	68.35	27.04	44.82	58.95
Mixtral 8x22B	PMQ	2.75	17.7	82.05	78.87	56.48	84.80	81.15	75.30	38.39	61.79	69.85
		2.625	16.9	81.56	78.41	52.99	83.67	80.04	74.66	38.26	59.76	68.67
		2.5	16.1	80.63	76.94	53.33	83.15	80.02	74.98	37.15	54.05	67.53
		2.375	15.3	80.47	73.32	50.00	81.93	78.54	74.66	35.18	53.34	65.93
		2.25	14.5	80.14	72.14	49.32	83.15	77.62	74.19	33.70	51.00	65.16
		2.125	13.8	79.00	75.51	49.91	72.26	76.76	72.30	34.07	50.53	63.79
		2.0	13.1	76.93	71.93	46.59	78.65	74.88	73.24	31.83	48.60	62.83
		1.75	11.7	76.66	69.19	44.28	79.63	70.85	71.19	29.88	42.52	60.53
	Hessian	2.5	17.0	80.21	76.38	51.20	81.11	78.05	72.97	35.27	56.21	67.18
		2.25	15.3	79.21	72.41	46.70	79.15	76.38	71.25	31.97	50.60	63.47
	BSP	2.5	17.0	68.23	54.97	28.38	68.16	55.61	62.19	24.07	27.74	49.07
	Slim-LLM	2.0	13.6	61.70	49.07	28.24	66.18	44.10	57.54	23.62	25.43	44.49
Mixtral 8x22B	Full-precision	16 (FP)	281.2	85.12	84.01	60.12	86.23	84.50	77.40	42.10	68.20	76.31
	Uniform	3	57.5	81.45	76.68	53.07	78.53	74.23	68.19	36.21	55.46	65.48
		2	38.6	55.98	31.31	22.78	57.92	29.23	50.12	21.64	23.24	36.53
	Router norm +Max var (Ours)	2.5	46.7	80.14	71.25	47.27	73.49	65.11	64.40	30.62	48.16	60.10
		2.25	43.0	79.27	69.61	46.25	72.23	64.75	65.43	29.45	46.33	59.17
		2.0	38.6	78.56	64.18	41.30	68.26	61.91	61.25	27.14	40.09	55.34
		1.75	35.2	75.14	63.22	37.12	65.96	52.95	59.59	25.19	32.36	51.44
	PMQ	2.5	46.7	79.49	70.62	46.84	74.28	68.64	65.35	29.88	50.40	60.69
		2.25	43.0	78.78	69.15	42.41	55.14	62.29	61.96	28.91	44.16	55.35
		2.0	38.6	76.55	66.16	39.85	69.48	60.11	59.83	27.00	39.43	54.80
		1.75	35.2	72.20	56.90	32.59	59.33	49.43	57.38	24.82	30.30	47.87

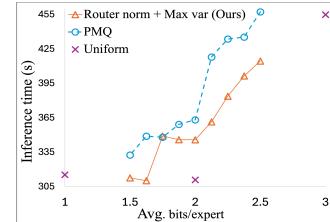


Figure 3: Inference time of different expert-wise methods.

5.3 ABLATION STUDY

We determine the importance of the two stages of the experts’ ranking: the *router norm* based ranking and the *maximum intra-neuron variance* (i.e., MaxVar) based reordering by providing an ablation study among (i) only MaxVar based ranking, (ii) only *router norm* based ranking, and (ii) *router norm* based ranking + MaxVar based reordering described in section 3.3. We conduct the study on Mixtral 8x7B for the eight zero-shot benchmark LLM tasks. We report the average accuracy across the tasks for both the two-level assignment (bit choices: 2, 3), and three-level assignment (bit choices: 1, 2, 3) in Table 2.

486 As we can see, for the two-level assignment, only router norm based ranking performs better than only
 487 MaxVar based ranking for most of the average bit points. However, for the three-level assignment,
 488 there is an abrupt drop in performance in the only router-norm-based ranking as some of the unusually
 489 large MaxVar experts are placed in 1 bit (see our MaxVar visualization of Mixtral 8x7B in Appendix
 490 E), which injects an unbearable amount of quantization noise into the model. Reordering these
 491 experts (only 11 out of 256 for $\zeta = 3$) to higher rank completely removes this issue and significantly
 492 outperforms the only MaxVar based method and other competitive baselines provided in Table 1 of
 493 the paper. We provide an empirical justification for our selection of ζ in Appendix C.

494
495 Table 2: Average accuracy (%) of different expert ranking methods

Method	Two-level assignment (bit choices: 2, 3)						Three-level assignment (bit choices: 1, 2, 3)				
	Avg. bits/expert						Avg. bits/expert				
	2.75	2.625	2.5	2.375	2.25	2.125	2.75	2.5	2.25	2.0	1.75
MaxVar	69.51	68.51	66.01	64.24	63.88	60.65	69.37	67.90	63.97	60.44	58.11
Router norm	69.92	68.35	67.01	64.97	63.84	61.54	54.23	49.78	48.12	44.96	42.92
Router norm + MaxVar (Our method)	69.50	68.40	67.17	65.31	64.26	61.43	70.01	68.38	65.79	62.56	58.95

501
502 5.4 JUSTIFICATION FOR USING FINAL ROUTER NORM AS A SURROGATE FOR CHANGE IN NORM
503 OF PRETRAINED MOE MODELS

504 As stated in section 3.3, for the experiments on zero-shot evaluation of pre-trained models, we propose
 505 to use the final router norm ($w_s^{(T)}$) to approximate the change in the router’s norm ($\Lambda_s^{(T)}$), when the
 506 randomly initialized model is not publicly available for computing the initial router norm ($w_s^{(0)}$).
 507 The rationale behind the approximation comes from the fact that the initial routers are generally
 508 initialized randomly with small variance (e.g., parameters of DeepSeekMoE are initialized randomly
 509 with variance 0.000036 (Dai et al., 2024)), which leads to a very small difference between the two
 510 methods. We provide a theoretical justification of our claim in Appendix G. Here, we provide an
 511 empirical justification for the claim by reinitializing the routers of the pre-trained switch transformer
 512 randomly from $\mathcal{N}(0, \sigma^2)$ with $\sigma = 0.0005$. We finetune the re-initialized model on the CNN/Daily
 513 Mail dataset and compare the rank correlation between the two expert ranking methods measured via
 514 Spearman’s ρ and Kendall’s τ ($\rho, \tau \approx 1$ implies high correlation). The results are provided in Table
 515 3. The high rank correlation implies that the rank orders using both methods are very similar.

516
517 Table 3: Correlation between final router norm and change in norm across different layers

	Enc-1	Enc-3	Enc-5	Enc-7	Enc-9	Enc-11	Dec-1	Dec-3	Dec-5	Dec-7	Dec-9	Dec-11
Spearman’s ρ	0.9997	0.9994	0.9995	0.9992	0.9989	0.9990	0.9990	0.9997	0.9995	0.9997	0.9998	0.9999
Kendall’s τ	0.9950	0.9900	0.9920	0.9871	0.9851	0.9861	0.9871	0.9960	0.9920	0.9950	0.9960	0.9980

521 We provide the quantization results for both of the methods in Table 4. As expected, due to the high
 522 correlation of the rank order between the final norm and the change in norm based method, the scores
 523 of both methods are very similar.

524
525 Table 4: Quantization results for final router norm and change in router norm based method

Initial router	Original pretrained						Random router					
	Method	Full-precision		Full-precision	Change in norm		Final norm					
		Avg. bits/expert	Rouge-2 score		32 (FP)	19.87	32 (FP)	19.46	2.75	2.5	2.25	2.75
									18.79	18.60	18.37	18.81
									18.59	18.38		

532
533 6 CONCLUSION
534

535 This paper proposes an expert-wise mixed-precision quantization method for MoE models that
 536 allocates higher bit-widths to experts with smaller router norms and lower bit-widths otherwise. It can
 537 use pretrained router norms as an alterative to avoid costly fine-tuning while maintaining accuracy.
 538 The approach is theoretically supported and empirically effective on large MoE models. It reduces
 539 memory and inference costs, promoting energy efficiency and a smaller carbon footprint. Future
 work will combine the method to layer-wise and block-wise quantization.

540 7 REPRODUCIBILITY STATEMENT
541

542 We provide the complete setup for our theoretical analysis in section 4.2. We include additional details
543 related to our analysis in Appendix H. We provide the proof of Lemma 4.3 in Appendix I, and the proof
544 of Theorem 4.4 in Appendix K. We provide the details of our experimental setup, including model
545 architecture, parameter size, values of the hyperparameters related to the implemented quantization
546 methods, and the evaluation datasets in Appendix B. We include the code of our experiments in the
547 supplementary materials.

548
549 REFERENCES
550

551 Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
552 deep learning. In *2021 IEEE 62nd Annual Symposium on Foundations of Computer Science*
553 (*FOCS*), pp. 977–988. IEEE, 2022.

554 Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-
555 distillation in deep learning. In *The Eleventh International Conference on Learning Representations*,
556 2023. URL <https://openreview.net/forum?id=Uuf2q9TfXGA>.

558 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
559 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019.

560 James Urquhart Allingham, Florian Wenzel, Zelda E Mariet, Basil Mustafa, Joan Puigcerver, Neil
561 Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Lakshminarayanan, Jasper Snoek, Dustin Tran,
562 Carlos Riquelme Ruiz, and Rodolphe Jenatton. Sparse moes meet efficient ensembles. *Transactions*
563 *on Machine Learning Research*, 2022. ISSN 2835-8856. URL [https://openreview.net/](https://openreview.net/forum?id=i0ZM36d2qU)
564 [forum?id=i0ZM36d2qU](https://openreview.net/forum?id=i0ZM36d2qU). Expert Certification, Expert Certification.

566 Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
567 Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
568 formalisms. In *Proceedings of the 2019 Conference of the North American Chapter of the*
569 *Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and*
570 *Short Papers)*, pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computational
571 Linguistics. doi: 10.18653/v1/N19-1245. URL <https://aclanthology.org/N19-1245>.

572 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
573 optimization and generalization for overparameterized two-layer neural networks. In *International*
574 *conference on machine learning*, pp. 322–332. PMLR, 2019.

576 Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
577 November 2023. URL https://mobiusml.github.io/hqq_blog/.

578 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
579 about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial*
580 *Intelligence*, 2020.

582 Alon Brutzkus and Amir Globerson. An optimization and generalization analysis for max-pooling
583 networks. In *Uncertainty in Artificial Intelligence*, pp. 1650–1660. PMLR, 2021.

585 Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-
586 parameterized networks that provably generalize on linearly separable data. In *International*
587 *Conference on Learning Representations*, 2018.

588 Dake Bu, Wei Huang, Taiji Suzuki, Ji Cheng, Qingfu Zhang, Zhiqiang Xu, and Hau-San Wong.
589 Provably neural active learning succeeds via prioritizing perplexing samples. In *Proceedings of the*
590 *41st International Conference on Machine Learning*, pp. 4642–4695, 2024.

592 Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Dixin Jiang, Haoyi Zhou, Jianxin Li, and Furu
593 Wei. Task-specific expert pruning for sparse mixture-of-experts. *arXiv preprint arXiv:2206.00277*,
2022a.

594 Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
 595 mixture-of-experts layer in deep learning. In *Advances in Neural Information Processing Systems*,
 596 pp. 23049–23062, 2022b.

597

598 Mohammed Nowaz Rabbani Chowdhury, Shuai Zhang, Meng Wang, Sijia Liu, and Pin-Yu Chen.
 599 Patch-level routing in mixture-of-experts is provably sample-efficient for convolutional neural
 600 networks. In *International Conference on Machine Learning*, pp. 6074–6114. PMLR, 2023.

601

602 Mohammed Nowaz Rabbani Chowdhury, Meng Wang, Kaoutar El Maghraoui, Naigang Wang, Pin-Yu
 603 Chen, and Christopher Carothers. A provably effective method for pruning experts in fine-tuned
 604 sparse mixture-of-experts. In *International Conference on Machine Learning*, pp. 8815–8847.
 605 PMLR, 2024.

606

607 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 608 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *NAACL*,
 609 2019.

610

611 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 612 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 613 *arXiv:1803.05457v1*, 2018.

614

615 Damai Dai, Chengqi Deng, Chenggang Zhao, Rx Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
 616 Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
 617 of-experts language models. In *Proceedings of the 62nd Annual Meeting of the Association for
 Computational Linguistics (Volume 1: Long Papers)*, pp. 1280–1297, 2024.

618

619 Tim Dettmers, Ruslan A. Svirchevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
 620 Ashkboos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. SpQR: A sparse-quantized
 621 representation for near-lossless LLM weight compression. In *The Twelfth International Confer-
 622 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Q1u25ahSuy>.

623

624 Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
 625 Hawq-v2: Hessian aware trace-weighted quantization of neural networks. *Advances in neural
 626 information processing systems*, 33:18518–18529, 2020.

627

628 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
 629 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–1685.
 630 PMLR, 2019.

631

632 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 633 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 2022.

634

635 Elias Frantar and Dan Alistarh. Qmoe: Sub-1-bit compression of trillion param-
 636 eter models. In P. Gibbons, G. Pekhimenko, and C. De Sa (eds.), *Proceed-
 637 ings of Machine Learning and Systems*, volume 6, pp. 439–451, 2024. URL
 638 [https://proceedings.mlsys.org/paper_files/paper/2024/file/
 c74b624843218d9b6713fcf299d6d5e4-Paper-Conference.pdf](https://proceedings.mlsys.org/paper_files/paper/2024/file/c74b624843218d9b6713fcf299d6d5e4-Paper-Conference.pdf).

639

640 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan-Adrian Alistarh. Optq: Accurate post-
 641 training quantization for generative pre-trained transformers. In *11th International Conference on
 642 Learning Representations*, 2023.

643

644 Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Hajishirzi.
 645 Olmes: A standard for language model evaluations. *arXiv preprint arXiv:2406.08446*, 2024.

646

647 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 648 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International
 Conference on Learning Representations (ICLR)*, 2021.

648 Wei Huang, Yue Liao, Jianhui Liu, Ruifei He, Haoru Tan, Shiming Zhang, Hongsheng Li, Si Liu, and
 649 XIAOJUAN QI. Mixture compressor for mixture-of-experts LLMs gains more. In *The Thirteenth*
 650 *International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=hheFYjOsWO>.

651

652 Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini,
 653 Michele Magno, Shiming Zhang, and XIAOJUAN QI. Slim-LLM: Salience-driven mixed-precision
 654 quantization for large language models. In *Forty-second International Conference on Machine*
 655 *Learning*, 2025b. URL <https://openreview.net/forum?id=PO9bBEPNWy>.

656

657 Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
 658 quantization with small calibration sets. In *International Conference on Machine Learning*, pp.
 659 4466–4475. PMLR, 2021.

660

661 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 662 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

663

664 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 665 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 666 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

667

668 Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
 669 learning in neural networks beyond kernels. In *Advances in Neural Information Processing Systems*,
 670 pp. 24883–24897, 2021.

671

672 Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An
 673 adversarial winograd schema challenge at scale. 2019.

674

675 Young Jin Kim, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. Who says elephants can't
 676 run: Bringing large scale moe models into cloud scale production. In *Proceedings of The Third*
 677 *Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)*, pp. 36–43, 2022.

678

679 Young Jin Kim, Raffy Fahim, and Hany Hassan Awadalla. Mixture of quantized experts (moqe):
 680 Complementary effect of low-bit quantization and robustness. *arXiv preprint arXiv:2310.02410*,
 681 2023a.

682

683 Young Jin Kim, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. Finequant: Unlocking
 684 efficiency with fine-grained weight-only quantization for llms. *arXiv preprint arXiv:2308.09723*,
 685 2023b.

686

687 Yeskendir Koishkenov, Alexandre Berard, and Vassilina Nikoulina. Memory-efficient nllb-200:
 688 Language-specific expert pruning of a massively multilingual machine translation model. In *The*
 689 *61st Annual Meeting Of The Association For Computational Linguistics*, 2023.

690

691 Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
 692 Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
 693 under gradient descent. *Advances in neural information processing systems*, 32, 2019.

694

695 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 696 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with
 697 conditional computation and automatic sharding. In *International Conference on Learning Representations*,
 698 2021. URL <https://openreview.net/forum?id=qrw7XHTmYb>.

699

700 Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee of
 701 training graph convolutional networks with graph topology sampling. In *International Conference*
 702 *on Machine Learning*, pp. 1304–13051. PMLR, 2022.

703

704 Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision
 705 transformers: Learning, generalization, and sample complexity. In *The Eleventh International*
 706 *Conference on Learning Representations*, 2023.

707

708 Pingzhi Li, Xiaolong Jin, Yu Cheng, and Tianlong Chen. Examining post-training quantization for
 709 mixture-of-experts: A benchmark. *arXiv preprint arXiv:2406.08155*, 2024.

702 Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
 703 descent on structured data. *Advances in neural information processing systems*, 31, 2018.

704

705 Baohao Liao, Christian Herold, Shahram Khadivi, and Christof Monz. Apiq: Finetuning of 2-bit
 706 quantized large language model. In *Proceedings of the 2024 Conference on Empirical Methods in*
 707 *Natural Language Processing*, pp. 20996–21020, 2024.

708

709 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 710 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 711 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 712 87–100, 2024.

713

714 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 715 models, 2016.

716

717 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
 718 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
 719 *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.

720

721 Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with
 722 pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for*
 723 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1073–1083, 2017.

724

725 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 726 Peng Gao, Yu Qiao, and Ping Luo. Omnipoint: Omnidirectionally calibrated quantization for large
 727 language models. In *ICLR*, 2024.

728

729 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 730 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 731 *International Conference on Learning Representations*, 2017.

732

733 Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
 734 networks: Emergence from inputs and advantage over fixed features. In *International Conference*
 735 *on Learning Representations*, 2022.

736

737 Naigang Wang, Chi-Chun Charlie Liu, Swagath Venkataramani, Sanchari Sen, Chia-Yu Chen, Kaoutar
 738 El Maghraoui, Vijayalakshmi Viji Srinivasan, and Leland Chang. Deep compression of pre-trained
 739 transformer models. *Advances in Neural Information Processing Systems*, 35:14140–14154, 2022.

740

741 Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
 742 An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
 743 router. *arXiv preprint arXiv:2410.12013*, 2024.

744

745 Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei Xu. Edgemoe:
 746 Empowering sparse large language models on mobile devices. *IEEE Transactions on Mobile*
 747 *Computing*, 2025.

748

749 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 750 really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for*
 751 *Computational Linguistics*, 2019.

752

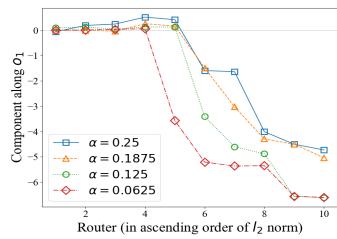
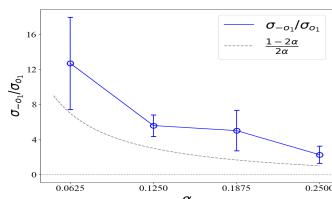
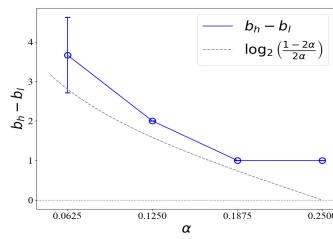
753 Shuai Zhang, Meng Weng, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model
 754 sparse learning is provably efficient for graph neural networks. In *International Conference on*
 755 *Learning Representations*, 2023.

756

757 Zeliang Zhang, Xiaodong Liu, Hao Cheng, Chenliang Xu, and Jianfeng Gao. Diversifying
 758 the expert knowledge for task-agnostic pruning in sparse mixture-of-experts. *arXiv preprint*
 759 *arXiv:2407.09590*, 2024.

760

761 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y Zhao, Andrew M. Dai,
 762 Zhifeng Chen, Quoc V Le, and James Laudon. Mixture-of-experts with expert choice routing. In
 763 Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural*
 764 *Information Processing Systems*, 2022.

756 A VERIFICATION OF THEORETICAL RESULTS ON SYNTHETIC DATA
757765
766 Figure 4: Router vector pro-
767 jection along the class-1 task-
768 relevant feature o_1 .
769765
766 Figure 5: Ratio of activations of
767 experts learning more and less
768 prevalent tokens, respectively
769 (class-1)765
766 Figure 6: Change of bit differ-
767 ence between higher bit experts
768 and lower bit experts with α
769

770 We validate our theoretical claims using synthetic data generated as described in Section 4.2. Tokens
771 are drawn from an orthonormal matrix obtained via QR decomposition of a $d \times d$ Gaussian matrix
772 with $d = 200$. We set $k = 20$, $m = 800$, $n = 100$, and $l = 5$. Model weights are initialized from a
773 zero-mean Gaussian distribution with variance 0.0001 and trained with a learning rate of 0.2.

774 Figure 4 shows the projection of the router vectors onto the direction of O_1 , a class-1 task-relevant
775 vector, for the experts in S_+ . The experts are sorted in ascending order based on the change in router
776 norm. Routers exhibiting larger norm changes tend to have a significant component along the more
777 dominant $-O_1$ direction, consistent with Lemma 4.3(ii). Figure 5 presents the minimum ratio of
778 activation of $-O_1$ -aligned experts by $-o_1$ to that of O_1 -aligned experts by o_1 , minimized over all
779 such expert pairs. This ratio is compared against the theoretical lower bound of $(1 - 2\alpha)/2\alpha$, as
780 established in Lemma 4.3(iii).

781 We quantize the weights as described in Section 4.2, using equation (2). Experts with large compo-
782 nents along the $-o_1$ and $-o_2$ directions are quantized to a lower bit-width b_l , unless a high maximum
783 row variance is observed, in which case they are quantized to a higher bit-width b_h . The value of b_h is
784 determined empirically as the minimum bit-width required to achieve zero test error when all experts
785 are uniformly quantized to b_h . We then choose b_l as the minimum bit-width that still maintains zero
786 test error in the mixed-precision setting. Figure 6 shows that the gap $b_h - b_l$ increases as α decreases,
787 aligning with the theoretical bound $\log_2((1 - 2\alpha)/2\alpha)$ discussed in Remark 4.5.

789 B DETAILS ON THE QUANTIZED MODELS AND EVALUATION TASKS
790791 B.1 SWITCH TRANSFORMER
792

793 We fine-tune a pre-trained Switch Transformer (Fedus et al., 2022), which contains 64 experts per
794 MoE block on CNN/Daily Mail (CNNDM) text summarization task (See et al., 2017). The model
795 follows an encoder-decoder architecture with 12 transformer blocks each in the encoder and decoder;
796 every even-numbered block is an MoE block, resulting in 12 MoE blocks total. The model has about
797 2 billion parameters, with 90% residing in MoE blocks. All non-MoE weights are quantized to 8 bits.
798 We apply HQQ (Badri & Shaji, 2023) for quantizing the model. Weights in each row of the weight
799 matrices are quantized together.

800 B.2 MIXTRAL
801

802 We quantize the pretrained Mixtral 8x7B and Mixtral 8x22B models (Jiang et al., 2024), which adopt
803 a decoder-only architecture. The Mixtral 8x7B contains 32 transformer blocks, and the Mixtral 8x22B
804 contains 56 transformer blocks. All blocks are MoE blocks of 8 experts. Mixtral 8x7B contains
805 46.7B parameters, with 97% residing in the MoE blocks. Mixtral 8x22B contains 140.6B parameters,
806 with 99% residing in the MoE blocks. We quantize the non-MoE parameters to 4 bits and apply
807 GPTQ (Frantar et al., 2023) for model quantization with group size 128, and 1% damping. We
808 use 128 samples of length 2048 from WikiText2 as the GPTQ calibration data. Model performance
809 is evaluated on eight zero-shot benchmark LLM tasks: PIQA (Bisk et al., 2020), ARC-Challenge
810 and ARC-Easy (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019),

810 WinoGrande (Keisuke et al., 2019), MathQA (Amini et al., 2019), and MMLU (Hendrycks et al.,
 811 2021), using the EleutherAI LM Harness (Gu et al., 2024).

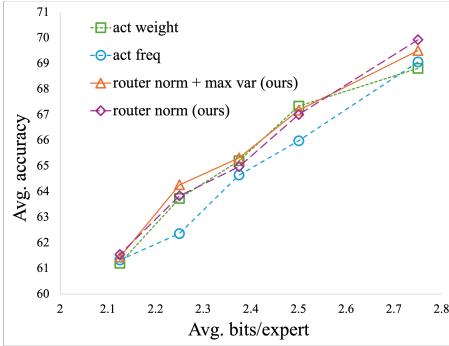
813 C JUSTIFICATION FOR THE SELECTION OF ζ

816 As stated in section 3.3, we select $\zeta = 3$, since the variance of any bounded distribution is at most
 817 three times that of a uniform distribution with the same range. Our selection of ζ alters the initial
 818 router norm based order by a very small amount (only 11 out of 256 experts are reordered in Mixtral
 819 8x7B, and only 28 out of 768 experts are reordered in Switch Transformer for our selection of ζ).
 820 Indeed, our selection of ζ only reorders the experts that have unusually large MaxVar values in an
 821 MoE layer (see our MaxVar visualization of Mixtral 8x7B in Appendix E). We conduct a sweep of ζ
 822 for Mixtral 8x7B on the eight benchmark downstream tasks and report the average accuracy in Table
 823 5. As we can see, the performance picks around $\zeta = 3.0$, which justifies our selection.

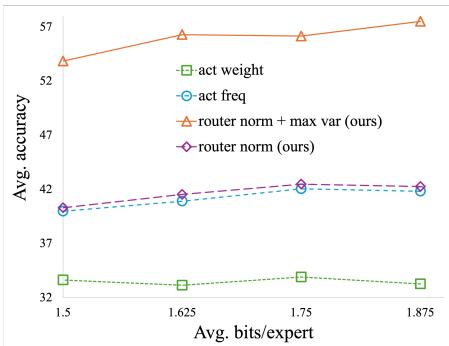
824 Table 5: Avg. accuracy (%) for different values of ζ

826 Avg. bits/expert	ζ					
	1.0	2.0	2.5	3.0	4.0	5.0
828 2.0	60.44	61.56	62.28	62.56	61.32	61.74

830 D MORE RESULTS ON MIXTRAL 8X7B



845 Figure 7: Expert-wise mixed-precision results for Mixtral 8x7B on eight benchmark LLM tasks;
 846 expert bit-choices: 2, 3. Only 4.3% of the experts are reordered to higher ranks in maximum intra-
 847 neuron based reordering.



860 Figure 8: Expert-wise mixed-precision results for Mixtral 8x7B on eight benchmark LLM tasks;
 861 expert bit-choices: 1, 2. Only 4.3% of the experts are reordered to higher ranks in maximum intra-
 862 neuron based reordering.

E VISUALIZATION OF MaxVar FOR MIXTRAL 8x7B

Figure 9: Visualization of the maximum intra-neuron variance of the experts in Mixtral 8x7B. Only a handful of experts (11 out of 256, colored in red) have unusually large MaxVar values.

917

F VERIFICATION OF THEORETICAL INSIGHTS IN PRACTICAL MOE MODELS

For accurate verification of our theoretical insights, we first need to identify the task-relevant tokens of different experts, which is hard to determine in practical MoE models. This is because, for some experts, many tokens can be task-relevant, but each of them may appear less frequently in data. On the contrary, for some experts, only a few tokens can be relevant, but each of them may appear very frequently in data. We consider the tokens with high *gating values* as the task-relevant tokens of each expert.

Larger router norm experts exhibit higher activation. We verify our claim that larger router norm experts exhibit higher activation in practical MoE models. To verify that claim, we plot the average activations of tokens with top gating values (sampled from the WikiText2 dataset) for each expert in the first five layers of Mixtral 8x7B. The results are provided in Figure 10.

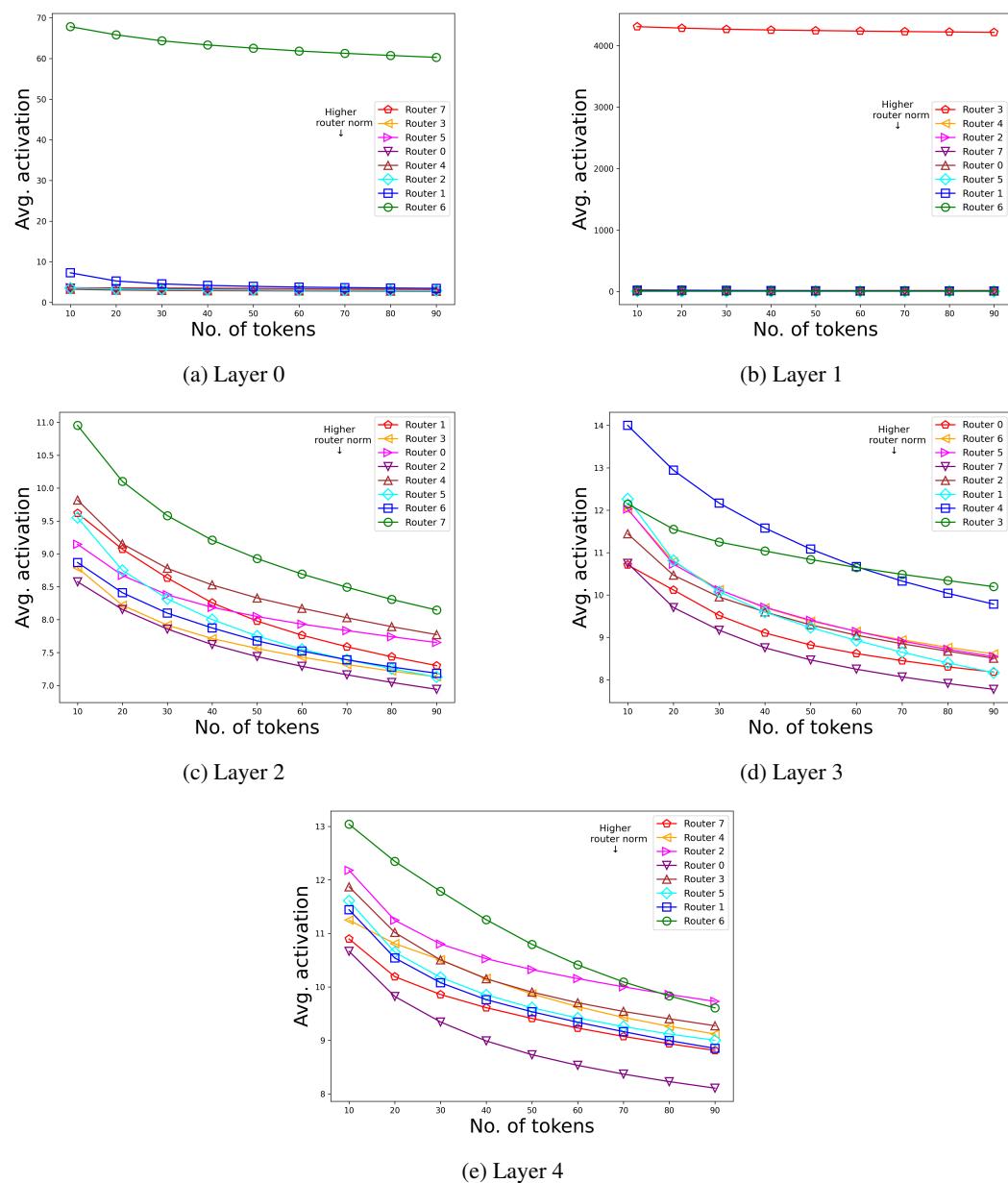


Figure 10: Average activation over tokens with top gating values of different experts of Mixtral 8x7B. The top one/two router norm experts exhibit larger activations.

972 As we can see, the largest router norm expert (in some cases, the largest two) always exhibits
 973 significantly large average activation compared to other experts, except for the second layer. In
 974 this case, the lowest one has unusually high activation. However, from our maximum intra-neuron
 975 variance, i.e., MaxVar visualization given in Appendix E, we can see that this expert has an unusually
 976 large MaxVar value than other experts. Therefore, this expert will be placed on higher bit regardless
 977 of its position in the router norm order according to our method.

978 Finally, we visualize the top gating value tokens (sampled from the WikiText2 dataset) through
 979 their corresponding model input embeddings for the first MoE block (closest to the model input
 980 embeddings) of Mixtral 8x7B. The visualization of the first few tokens with top gating values
 981 (highlighted in yellow) of the smallest, and the first two largest router norm experts are provided in
 982 Figure 11, along with their adjacent tokens.

983

984

985 . The trackways , called batrachichini , are usually found in strata deposited around
 986 opholism is now considered a prolacertiform reptile . <0x0A><0x0A><0x0A> Later
 987 <0x0A><0x0A> Chaz Benekos (Chizad) — guitar (1994 –
 988 = <0x0A><0x0A><0x0A><0x0A><0x0A> Oxazididine derivatives were first reported in the mid
 989 , Malta , Mauritania , Morocco , Oman , Portugal , San Marino ,
 990 <0x0A><0x0A><0x0A><0x0A><0x0A> = Amalgamation = <0x0A><0x0A><0x0A><0x0A><0x0A> On
 991 Battalion near Yongsan . Stragglers from this position continued to stream in the next few
 992 omes and Geer recruited guitarist Chizad , bassist Mawk , drummer B.
 993 was to occupy French North Africa : Morocco , Algeria , and Tunisia .
 994 the Zrinski Battalion was amalgamated with several other HV special forces units into the
 995 C Company , but Jenson collected stragglers from it and seized high ground astride this main
 996 <0x0A><0x0A><0x0A><0x0A><0x0A> = Oxazididine = <0x0A><0x0A><0x0A><0x0A><0x0A> An
 997 @-@ twenty French aircraft based in Morocco attacked Gibraltar . " On the same day
 998 7 @@@ 740 hectares (577 @. 4
 999 , 2005 , American Society of Magazine Editors unveiled its list of the top
 1000 o Comunitario de San Lorenzo Tenochtitlán near Texistepec . It stands

1001 (a) Expert 7 (smallest router norm)

1002 <0x0A><0x0A><0x0A> The battles of the American Civil War and at Lissa were very influential on the designs
 1003 urbed weather associated with a broad low @-@ pressure area south
 1004 undred Days , his defeat at the Battle of Waterloo , the pursuit of his army and himself ,
 1005 . <0x0A><0x0A><0x0A><0x0A><0x0A> = Soundtrack = <0x0A><0x0A><0x0A><0x0A><0x0A> Selected
 1006 services used be provided by the Metropolitan Waterworks and Sewerage System , which served
 1007 main guns . <0x0A><0x0A><0x0A> By World War II , the guns used Type 91 armour
 1008 1941 , with Operation Barbarossa looming , Felix was amended to Operation
 1009 12 August . As it passed through Waterloo Place , on the edge of the Bogsie
 1010 @-@ raids on Great Britain during World War II and Eliot 's declining health . The
 1011 German invasion of the USSR , Operation Barbarossa began , and the USSR became an al
 1012 05-06-07-08-09-0A><0x0A> Kota Saludong " (The Kingdom of
 1013 of catching enemy commerce raiders , HMS Warspite , which was completed in 188
 1014 <0x0A><0x0A><0x0A><0x0A><0x0A> = = Fire control and sensors = = <0x0A><0x0A><0x0A><0x0A>
 1015 uiapo is referred as the " Old Downtown " where tiangges , markets , bot
 1016 <0x0A> Independiente was certified platinum by the Argentine Chamber of Phonograms and Videogram
 1017 religious community was dispersed during the English Civil War between Parliamentarians and Royalists but reformed , ending
 1018

1019 (b) Expert 1 (second largest router norm)

1020 hill occupied by D Company was in reality the western tip of a large mountain mass that
 1021 original estimates were 5 @-@ 10 hPa
 1022 as a " progression " as the Doctor was in " a different phase of his life now " and
 1023 phoons was 66 % greater than normal . The Philippine
 1024 character development , although he felt that it was blunted by the knowledge that the series
 1025 Lolita . Nevertheless , Hentzi believed that the film 's themes of materialism and conform
 1026 17 . Charles E. Wagner of the Exhibitor 's Trade Review
 1027 legs into the ringpost , as he did to Spanky and Gowen , and inter
 1028 " You 've got my belt " . Due to a knee injury to Mir , the title unification
 1029 years later , the former French colony made its début at the 1964 Summer Olympics in Tokyo
 1030 video received a premier on MTV 's Headbangers Ball on June
 1031) was a Jewish sage who lived in the time of the Mishna a prominent supp
 1032 graded it to Tropical Storm Parma on October 2
 1033 de Park area . The commission was established to arbitrate claims emanating from British seiz
 1034 , affecting 98 % of the population . Annually ,
 1035 surrounding them that are most likely mucous coatings . They

1036 (c) Expert 6 (largest router norm)

1037

1038 Figure 11: Token visualization of the smallest and the largest two router norm experts

1026 As we can see, the lowest router norm expert (Expert-7) activates on subwords of unusual names/nouns
 1027 (e.g., **batrachichni**, **prolacertiform**, **Chizad**, **Oxaziridine**, **Morocco**, **Amalgamation**, **Stragglers**,
 1028 **hectares**, **Tenochtitlán**). Each of them is rare in data, but can be critical in the context. This verifies
 1029 our intuition that the lower router norm experts learn critical but infrequent tokens. On the other
 1030 hand, the largest router norm expert (Expert-6) activates on many common full words of the English
 1031 language, such as pronouns (e.g., **that**), prepositions (e.g., **to**, **in**, **on**), etc. The second largest router
 1032 norm expert (Expert-1) activates on sentences implying war or military operations, which are common
 1033 in many documents. This verifies our claim that the larger router norm experts learn *more frequent*
 1034 tokens.

1035

1036 G THEORETICAL JUSTIFICATION FOR USING FINAL ROUTER NORM AS A 1037 SURROGATE FOR CHANGE IN NORM OF PRETRAINED MOE MODELS

1038

1039 As stated in section 3.3, for the experiments on zero-shot evaluation of pre-trained models, we
 1040 propose to use the final router norm ($\|w_s^{(T)}\|$) to approximate the change in the router’s norm
 1041 ($\Lambda_s^{(T)} := \|w_s^{(T)}\| - \|w_0^{(T)}\|$), as the randomly initialized model is not publicly available for computing
 1042 the initial router norm ($\|w_s^{(0)}\|$). The rationale behind the approximation comes from the fact
 1043 that the initial routers are generally initialized randomly with small variance (e.g., parameters of
 1044 DeepSeekMoE are initialized randomly with variance 0.000036 (Dai et al., 2024)). In that case, the
 1045 initial router norm differences among the routers are too small to alter the change of router norm
 1046 based order when approximated by final router norm.

1047 Specifically, for any two routers (router 1 and router 2), if router 1’s change in norm is larger than
 1048 router 2’s change in norm, i.e., $\Lambda_1^{(T)} > \Lambda_2^{(T)}$, then

$$\begin{aligned} 1049 \Lambda_1^{(T)} - \Lambda_2^{(T)} &> 0 \\ 1050 \Rightarrow (\|w_1^{(T)}\| - \|w_1^{(0)}\|) - (\|w_2^{(T)}\| - \|w_2^{(0)}\|) &> 0 \\ 1051 \Rightarrow (\|w_1^{(T)}\| - \|w_2^{(T)}\|) - (\|w_1^{(0)}\| - \|w_2^{(0)}\|) &> 0 \end{aligned}$$

1052 Now, due to the small-variance initialization, $\|w_1^{(0)}\| - \|w_2^{(0)}\|$ is a very small quantity. Therefore,
 1053 it is highly likely that $\|w_1^{(T)}\| - \|w_2^{(T)}\| > 0$, as long as $\Lambda_1^{(T)} - \Lambda_2^{(T)}$ is not too close to zero.

1054 Based on the above intuition, we provide a formal theorem to justify the claim:

1055 **Theorem G.1.** *Let the routers of the initial model be randomly initialized from $\mathcal{N}(0, \sigma^2)$ with
 1056 $\sigma = O(1/d)$. Then, with probability at least $1 - \frac{1}{d^2}$, for any two routers $s_1, s_2 \in [k]$ such that
 1057 $\Lambda_{s_1}^{(T)} - \Lambda_{s_2}^{(T)} = \Omega(1/\sqrt{d})$ we have $\|w_{s_1}^{(T)}\| > \|w_{s_2}^{(T)}\|$.*

1058 *Proof.* As, $\Lambda_{s_1}^{(T)} - \Lambda_{s_2}^{(T)} = \Omega(1/\sqrt{d})$, we have, $\|w_{s_1}^{(T)}\| - \|w_{s_2}^{(T)}\| \geq \left(\|w_{s_1}^{(0)}\| - \|w_{s_2}^{(0)}\|\right) + \Omega(1/\sqrt{d})$.

1059 Now, with probability $1 - \frac{1}{d^2}$, we have $\left|\|w_{s_1}^{(0)}\| - \|w_{s_2}^{(0)}\|\right| = O(\sigma\sqrt{d}) = O(1/\sqrt{d})$ for our selection
 1060 of σ which completes the proof. \square

1061 The theorem confirms that, for small-variance initialization (i.e., $\sigma = O(1/d)$), the final norm based
 1062 order preserves the change in norm based order for any two routers unless they are very close to each
 1063 other (i.e., $\Lambda_{s_1}^{(T)} - \Lambda_{s_2}^{(T)} = O(1/\sqrt{d})$).

1080 **H PRELIMINARIES**
 1081

1082 For any fine-tuning iteration t , the equation (5) can be represented as,
 1083

$$1084 \quad f^{(t)}(x) = \sum_{s=1}^k f_s^{(t)}(x) \quad \text{where, } f_s^{(t)}(x) = a^{(s)} \sum_{j \in J_s^{(t)}(x)} G_j^{(s,t)} \sum_{r=1}^m \text{ReLU}(\langle w_r^{(s,t)}, x^{(j)} \rangle) \quad (14)$$

1085 Here, $J_s^{(t)}(x) \subset [n]$ is the set of indices of the tokens of the input sequence x that are routed to the
 1086 expert $s \in [k]$ at time t , and $w_r^{(s,t)}$ is the r -th column of $W_1^{(s,t)}$. Note that $|J_s^{(t)}(x)| = l$.
 1087

1088 As we analyze the expert-choice routing, for any $j \in J_s^{(t)}(x)$, the gating value $G_j^{(s,t)}$ is evaluated as,
 1089

$$1090 \quad G_j^{(s,t)} = \frac{\exp(\langle w_s^{(t)}, x^{(j)} \rangle)}{\sum_{i \in J_s^{(t)}(x)} \exp(\langle w_s^{(t)}, x^{(i)} \rangle)} \quad (15)$$

1091 We analyzed the case where the model is fine-tuned to minimize the Hinge loss
 1092

$$1093 \quad \hat{l}^{(t)}(x, y) = \max(1 - y f^{(t)}(x), 0) \quad (16)$$

1094 while the gradients are evaluated on
 1095

$$1096 \quad l^{(t)}(x, y) = 1 - y f^{(t)}(x) \quad (17)$$

1097 similar to the setting of Zhang et al. (2023).
 1098

1099 For any input (x, y) , the gradient for the column $r \in [m]$ of $W_1^{(s,t)}$ is evaluated as,
 1100

$$1101 \quad \frac{\partial l^{(t)}(x, y)}{\partial w_r^{(s,t)}} = -y a^{(s)} \sum_{j \in J_s^{(t)}(x)} G_j^{(s,t)} x^{(j)} \mathbf{1}_{\langle w_r^{(s,t)}, x^{(j)} \rangle \geq 0} \quad (18)$$

1102 and the gradient for the router w_s is evaluated as,
 1103

$$1104 \quad \frac{\partial l^{(t)}(x, y)}{\partial w_s^{(t)}} = -y a^{(s)} \sum_{j \in J_s^{(t)}(x)} \sigma_j^{(s,t)} G_j^{(s,t)} \sum_{i \in J_s^{(t)}(x) \setminus j} G_i^{(s,t)} (x^{(j)} - x^{(i)}) \quad (19)$$

1105 where, $\sigma_j^{(s,t)} := \sum_{r=1}^m \text{ReLU}(\langle w_r^{(s,t)}, x^{(j)} \rangle)$.
 1106

1107 We consider that the model is fine-tuned via Stochastic Gradient Descent algorithm (SGD) with batch
 1108 size B , where the expert weights are updated with learning rate η_e and the router weights are updated
 1109 with learning rate η_r . The batch gradient for the column $r \in [m]$ of $W_1^{(s,t)}$ is evaluated as,
 1110

$$1111 \quad \frac{\partial l}{\partial w_r^{(s,t)}} = \frac{1}{B} \sum_{x \in \mathcal{B}_t} \frac{\partial l^{(t)}(x, y)}{\partial w_r^{(s,t)}} \quad (20)$$

1112 and the batch gradient for the router w_s is evaluated as,
 1113

$$1114 \quad \frac{\partial l}{\partial w_s^{(t)}} = \frac{1}{B} \sum_{x \in \mathcal{B}_t} \frac{\partial l^{(t)}(x, y)}{\partial w_s^{(t)}} \quad (21)$$

1115 **Notations:**
 1116

1. $\tilde{O}(\cdot)$ and $\tilde{\Omega}(\cdot)$ hides the factor $\log(\text{poly}(d))$ with a sufficiently large polynomial $\text{poly}(\cdot)$
2. With high probability (abbreviated as *w.h.p.*) refers to the probability $1 - \frac{1}{\text{poly}(d)}$.

1134

Definitions:

1135

1136 For any $q \in \mathcal{P} \setminus \{o_1, o_2\}$, we define the activation of the expert $s \in [k]$ by q as,

1137

$$\sigma_q^{(s,t)} := \sum_{r=1}^m \text{ReLU}(\langle w_r^{(s,t)}, q \rangle).$$

1139

1140 For any $v \in \mathcal{P}_r$, we define a complementary expert proficiency measure for the expert s at time t as,

1141

$$\bar{p}_v^{(s,t)} := \mathbb{P} \left[(x, y) \sim \mathcal{D} : \exists j \in J_s^{(t)} \text{ such that } x^{(j)} = v \mid \exists j \in [n] \text{ such that } x^{(j)} = v \right].$$

1142

1143 Note that $p_v^{(s,t)} \geq \bar{p}_v^{(s,t)}$.

1144

1145 Without the loss of generality, we assume that for any $s \in S_v$, $\bar{p}_{-v}^{(s,0)} = O(1/d)$.

1146

1147 We define,

1148

- $G_v^{(s,t)}$: Gating value of the token $x^{(j)} = v$ for some $j \in [n]$ and $v \in \mathcal{P}_r$ at expert s and iteration t

1151

- $G_q^{(s,t)}$: Gating value of the token $x^{(j)} = q$ for some $j \in [n]$ and $q \in \mathcal{P} \setminus \{o_1, o_2\}$ at expert s and iteration t

1154

- $l_q^{(s,t)} := \left| \{j \in J_s^{(t)}(x) : x^{(j)} = q\} \right|$, is the number of copies of the task-irrelevant vector $q \in \mathcal{P} \setminus \{o_1, o_2\}$ in the set of top l tokens for the input sequence x at expert s and iteration t

1158

1159 We define $C_1 := \max \left\{ \left\| w_s^{(0)} \right\| \right\}_{s \in [k]}$, and $C_2 := \max \left\{ \left\| w_r^{(s,0)} \right\| \right\}_{s \in [k], r \in [m]}$.

1160

1161 Without the loss of generality, we analyze the case that $l \geq e^{2C_1}$.

1162

1163 Therefore, $\forall s \in [k]$, $\left\| w_s^{(0)} \right\| \leq \frac{1}{2} \log l$.

1164

1165 We define, $\gamma_v := \frac{|S_v|}{|S_+|}$ for $v \in \{\pm o_1\}$ and $\gamma_v := \frac{|S_v|}{|S_-|}$ for $v \in \{\pm o_2\}$.

1166

1167 Therefore, $\gamma = \max \{ \gamma_v \}_{v \in \{o_1, o_2\}}$.

1168

1169 Without the loss of generality, we assume that $\forall v \in \mathcal{P}_r$, $\gamma_v = \Omega(1)$.

1170

1171 We define, $C_p := \min \{ \langle w_s^{(0)}, q - q' \rangle \}_{s \in [k], q \in \mathcal{P} \cup \{-o_1, -o_2\}, q' \in \mathcal{P} \cup \{-o_1, -o_2\} \setminus \{q\}}$.

1172

1172 We assume that $C_p > 0$.

1173

1174 We assume that for any $v \in \mathcal{P}_r$ and any $s \in S_v$, $\frac{|\{r \in [m] : \langle w_r^{(s,0)}, v \rangle \geq 0\}|}{m} = \Omega(1)$,
1175 and $\|S_+| - |S_-|\| = O(\sqrt{k})$.

1176

Components of the routers' gradients.

1177

1178 For any input $(x, y) \sim \mathcal{D}$, the router's gradient component of the expert $s \in [k]$ along any task-
1179 relevant vector $v \in \mathcal{P}_r$ and along any task-irrelevant vector $q \in \mathcal{P} \setminus \{o_1, o_2\}$ at iteration t are evaluated
1180 as follows:

1181

$$\left\langle \frac{\partial l(x, y)}{\partial w_s^{(t)}}, q \right\rangle = \begin{cases} 0 & \text{if } \nexists j \in J_s^{(t)}(x) \\ & \text{s.t. } x^{(j)} = q \\ ya^{(s)} l_q^{(s,t)} G_q^{(s,t)} \sum_{j \in J_s^{(t)}(x) \setminus \{i : x^{(i)} = q\}} G_j^{(s,t)} (\sigma_j^{(s,t)} - \sigma_q^{(s,t)}) & \text{if } \exists j \in J_s^{(t)}(x) \\ & \text{s.t. } x^{(j)} = q \end{cases} \quad (22)$$

$$\begin{aligned}
& \left\langle \frac{\partial l(x, y)}{\partial w_s^{(t)}}, v \right\rangle = \begin{cases} 0 & \text{if } \nexists j \in J_s^{(t)}(x) \\ & \text{s.t. } x^{(j)} = v \\ & \text{and } x^{(j)} = -v \end{cases} \\
& \left\langle \frac{\partial l(x, y)}{\partial w_s^{(t)}}, v \right\rangle = \begin{cases} ya^{(s)} G_v^{(s,t)}(x) \sum_{j \in J_s^{(t)}(x) / \{i: x^{(i)} = v\}} G_j^{(s,t)} \left(\sigma_j^{(s,t)} - \sigma_v^{(s,t)} \right) & \text{if } \exists j \in J_s^{(t)}(x) \\ & \text{s.t. } x^{(j)} = v \end{cases} \\
& \left\langle \frac{\partial l(x, y)}{\partial w_s^{(t)}}, v \right\rangle = \begin{cases} ya^{(s)} G_{-v}^{(s,t)}(x) \sum_{j \in J_s^{(t)}(x) / \{i: x^{(i)} = -v\}} G_j^{(s,t)} \left(\sigma_{-v}^{(s,t)} - \sigma_j^{(s,t)} \right) & \text{if } \exists j \in J_s^{(t)}(x) \\ & \text{s.t. } x^{(j)} = -v \end{cases} \quad (23)
\end{aligned}$$

Components of the experts' column gradients.

For any input $(x, y) \sim \mathcal{D}$, the gradient component of the column $r \in [m]$ of $W_1^{(s,t)}$ along any task-relevant vector $v \in \mathcal{P}_r$ and along any task-irrelevant vector $q \in \mathcal{P} \setminus \{o_1, o_2\}$ at iteration t are evaluated as follows:

$$\left\langle \frac{\partial l(x, y)}{\partial w_r^{(s, t)}}, q \right\rangle = \begin{cases} 0 & \text{if } \langle w_r^{(s, t)}, q \rangle < 0 \\ 0 & \text{if } \langle w_r^{(s, t)}, q \rangle \geq 0 \text{ but, } \exists j \in J_s^{(t)}(x) \text{ s.t. } x^{(j)} = q \\ -ya^{(s)}l_q^{(s, t)}G_q^{(s, t)} & \text{if } \langle w_r^{(s, t)}, q \rangle \geq 0 \text{ and, } \exists j \in J_s^{(t)}(x) \text{ s.t. } x^{(j)} = q \end{cases} \quad (24)$$

$$\begin{aligned}
& \left\langle \frac{\partial l(x, y)}{\partial w_r^{(s, t)}}, v \right\rangle = \begin{cases} 0 & \text{if } \langle w_r^{(s, t)}, v \rangle < 0 \text{ but } \nexists j \in J_s^{(t)}(x) \text{ s.t. } x^{(j)} = -v \\ ya^{(s)}G_{-v}^{(s, t)}(x) & \text{if } \langle w_r^{(s, t)}, v \rangle < 0 \text{ and } \exists j \in J_s^{(t)}(x) \text{ s.t. } x^{(j)} = -v \\ 0 & \text{if } \langle w_r^{(s, t)}, v \rangle \geq 0 \text{ but } \nexists j \in J_s^{(t)}(x) \text{ s.t. } x^{(j)} = v \\ -ya^{(s)}G_v^{(s, t)}(x) & \text{if } \langle w_r^{(s, t)}, v \rangle \geq 0 \text{ and } \exists j \in J_s^{(t)}(x) \text{ s.t. } x^{(j)} = v \end{cases} \quad (25)
\end{aligned}$$

I PROOF OF LEMMA 4.3

Proof sketch. Lemma 4.3 provides the results for training dynamic analysis of the analyzed model. Primarily, our training dynamic analysis provides insights about the learning characteristics of the experts learning different task-relevant tokens. Moreover, the analysis provides necessary bounds of the router norm changes and expert activations required for the mixed-precision quantization analysis, along with the generalization guarantee of the trained model. We categorize the training into two phases:

- (i) The expert alignment phase
- (ii) The router-expert co-learning phase

(i) The expert alignment phase. Given the relative alignments of the routers to different task-relevant tokens, the expert alignment phase confirms that, regardless of the initial alignment of the columns of the expert-weights (i.e., the columns of $W_1^{(s)}$) they sufficiently align with the task-relevant tokens to which their respective routers are initially aligned to. Therefore, the batch gradients during the SGD updates for the router weights maintain large components along the initial alignment direction after this phase. We quantify the number of iterations required to complete this phase of training, along with the bounds of expert activations by different task-relevant tokens after this phase (see Lemma J.5 and Lemma J.6).

(ii) **The router-expert co-learning phase.** After the expert alignment phase, due to the large batch-gradient components of the routers along the initial task-relevant token directions, they become further aligned to these directions in the subsequent updates of SGD. This allows the expert weights to be more aligned with the task-relevant token directions of their respective routers, further increasing the routers' batch-gradient components along these directions. Therefore, the routers and the experts co-learn the task-relevant tokens at least by a quadratic rate. Hence, the model generalizes after this phase of training. However, due to the larger frequency of more-prevalent tokens, the experts learning them receive larger updates in their router and expert weights, allowing larger norm change and expert activations after training, compared to other experts. As shown in Lemma 4.3, we quantify the sufficient number of iterations required to complete the training, along with the router norm changes and expert activation bounds for different experts.

Lemma I.1 (Full version of Lemma 4.3). *Suppose the expert learning rate η_e , the router learning rate $\eta_r = O\left(\frac{\eta_e C_p}{ml^2 C_2^2}\right)$, the batch size $B = \tilde{\Omega}(d^2)$, and the pre-trained model is trained for*

$$T = \Theta\left(\frac{l^2 C_2}{\alpha \eta_e} \sqrt{\frac{\log l}{C_p}}\right) \quad (26)$$

iterations. Then, the returned $f^{(T)}$ has the following properties:

(i) For all $s \in S_v$ and $v \in \mathcal{P}_r = \{\pm o_1, \pm o_2\}$, we have

$$p_v^{(s,T)} = 1, \quad \bar{p}_{-v}^{(s,T)} = 0, \text{ and}$$

$$\forall x^{(j)} = v \text{ for some } j \in [n], \quad G_j^{(s,T)} > \frac{1}{2}.$$

(ii) For all $s \in S_{o_i}$ and $s' \in S_{-o_i}$, $i = 1, 2$, we have

$$\Lambda_{s'}^{(T)} > \Lambda_s^{(T)}.$$

(iii) For all $s \in S_{o_i}$ and $s' \in S_{-o_i}$, $i = 1, 2$, we have

$$\sigma_{o_i}^{(s,T)} = \Omega\left(mlC_2 \sqrt{\frac{\log l}{C_p}}\right),$$

$$\sigma_{-o_i}^{(s',T)} = \Omega\left(\frac{(1-\alpha)}{\alpha} mlC_2 \sqrt{\frac{\log l}{C_p}}\right),$$

$$\frac{\sigma_{-o_i}^{(s',T)}}{\sigma_{o_i}^{(s,T)}} \geq \frac{1-2\alpha}{2\alpha}.$$

(iv) For all $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $s \in S_v$, $v \in \mathcal{P}_r = \{\pm o_1, \pm o_2\}$, and $v' \in \mathcal{P}_r \setminus \{\pm v\}$, we have

$$\sigma_q^{(s,T)} = O(mC_2), \quad \sigma_{v'}^{(s,T)} = O(mC_2).$$

Proof. (i) Let us consider $s \in S_{o_1}$. From Lemma J.5, we can show that, for $T' = O\left(\frac{lC_2}{\alpha \eta_e}\right)$,

$\forall 0 \leq t \leq T'$, and for any $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\langle w_s^{(t)}, o_1 - q \rangle < \log l$.

Therefore, using Lemma J.4 and Lemma J.5, by selecting $B = \tilde{\Omega}(d^2)$ we have,

$\langle \frac{\partial l}{\partial w_s^{(T')}}, o_1 \rangle \leq -\Omega\left(\frac{\alpha m C_2}{l}\right)$. Therefore, $\langle \frac{\partial l}{\partial w_s^{(T')}}, -o_1 \rangle \geq \Omega\left(\frac{\alpha m C_2}{l}\right)$.

On the other hand, from Lemma J.5, $\left| \langle \frac{\partial l}{\partial w_s^{(T')}}, q \rangle \right| = O\left(\frac{m C_2}{d}\right)$.

Therefore, $p_{o_1}^{(s,T'+1)} \geq p_{o_1}^{(s,T')}$, and $\bar{p}_{-o_1}^{(s,T'+1)} \leq \bar{p}_{-o_1}^{(s,T')}$.

1296 Again, as $\langle \frac{\partial l}{\partial w_s^{(T')}}, o_1 \rangle \geq -O(mC_2)$, for our selection of η_r , we have $\langle w_s^{(T'+1)}, o_1 - q \rangle \leq 2 \log l$.
 1297
 1298

Therefore,

$$\langle \frac{\partial l}{\partial w_s^{(T'+1)}}, o_1 \rangle \leq -\Omega\left(\frac{\alpha^2 m \eta_e}{l^2}\right) - \Omega\left(\frac{\alpha m C_2}{l}\right), \text{ and hence } \langle \frac{\partial l}{\partial w_s^{(T'+1)}}, -o_1 \rangle \geq \Omega\left(\frac{\alpha^2 m \eta_e}{l^2}\right) + \Omega\left(\frac{\alpha m C_2}{l}\right).$$

1303 On the other hand,

$$\langle \frac{\partial l}{\partial w_s^{(T'+1)}}, q \rangle \leq O\left(\frac{m \eta_e}{d}\right) + O\left(\frac{m C_2}{d}\right), \text{ and } \langle \frac{\partial l}{\partial w_s^{(T'+1)}}, q \rangle \geq -O\left(\frac{m \eta_e}{d^2}\right) - O\left(\frac{m C_2}{d}\right).$$

1307 Therefore, for any t s.t. $\forall T' \leq t' \leq t-1$, if for all $q \in \mathcal{P} \setminus \{o_1, o_2\}$ it holds that $\langle w_s^{(t')}, o_1 - q \rangle \leq 2 \log l$, by induction we can show that, $p_{o_1}^{(s,T)} \geq p_{o_1}^{(s,t')}$, and $\bar{p}_{-o_1}^{(s,T)} \leq \bar{p}_{-o_1}^{(s,t')}$.

1310 In that case, we have,

$$\langle \frac{\partial l}{\partial w_s^{(t)}}, o_1 \rangle \leq -\Omega\left(\frac{\alpha^2 m \eta_e}{l^2} t\right) - \Omega\left(\frac{\alpha m C_2}{l}\right), \text{ and hence } \langle \frac{\partial l}{\partial w_s^{(t)}}, -o_1 \rangle \geq \Omega\left(\frac{\alpha^2 m \eta_e}{l^2} t\right) + \Omega\left(\frac{\alpha m C_2}{l}\right).$$

1313 On the other hand,

$$\langle \frac{\partial l}{\partial w_s^{(t)}}, q \rangle \leq O\left(\frac{m \eta_e}{d} t\right) + O\left(\frac{m C_2}{d}\right), \text{ and } \langle \frac{\partial l}{\partial w_s^{(t)}}, q \rangle \geq -O\left(\frac{m \eta_e}{d^2} t\right) - O\left(\frac{m C_2}{d}\right).$$

1317 Therefore, $\langle w_s^{(t)}, o_1 - q \rangle \geq \langle w_s^{(T')}, o_1 - q \rangle + \Omega\left(\frac{\alpha^2 m \eta_e}{l^2} \eta_r (t - T')^2\right) + \Omega\left(\frac{\alpha m C_2}{l} \eta_r (t - T')\right)$.

1319 Now, we can show that, $\langle w_s^{(T')} - w_s^{(0)}, q - o_1 \rangle \leq O(C_p)$. Also, $\left| \langle w_s^{(0)}, o_1 - q \rangle \right| \leq \frac{1}{\sqrt{2}} \log l$.

1322 Therefore, we need $T = O\left(\frac{l^2 C_2}{\alpha \eta_e} \sqrt{\frac{\log l}{C_p}}\right)$ steps to ensure that, for all task-irrelevant pattern q ,

1325 $\langle w_s^{(T)}, o_1 - q \rangle > \log l$. In that case, for any $t \geq T'$, $p_{o_1}^{(s,t)} = 1$ and $\forall x^{(j)} = o_1$, $G_j^{(s,t)} \geq \frac{1}{2}$.

1327 Now, if there exists a $q' \in \mathcal{P} \setminus \{o_1, o_2\}$ s.t., $\langle w_s^{(T-1)}, o_1 - q' \rangle > 2 \log l$, then for any $q \in \mathcal{P} \setminus \{o_1, o_2\}$
 1328 for which $\langle w_s^{(T-1)}, o_1 - q \rangle \leq \log l$, we have,

1330 $\langle w_s^{(T-1)}, o_1 - q' \rangle = \langle w_s^{(T-1)}, o_1 - q \rangle + \langle w_s^{(T-1)}, q - q' \rangle \leq (1 + \frac{1}{\sqrt{2}}) \log l + O\left(\frac{l^2}{d} \log l\right)$ as,

1332 $\langle w_s^{(T-1)}, q - q' \rangle \leq \frac{1}{\sqrt{2}} \log l + O\left(\frac{l^2}{d} \log l\right)$. This creates contradiction.

1334 Therefore, $\forall T' \leq t' \leq T$, we have for all task-irrelevant pattern q , $\langle w_s^{(t')}, o_1 - q \rangle \leq 2 \log l$.

1336 Now, $\langle w_s^{(T)}, o_1 \rangle > \frac{3}{2} \log l$. Therefore, $\langle w_s^{(T)}, -o_1 \rangle < -\frac{3}{2} \log l$.

1339 Therefore, for any $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\langle w_s^{(T')}, -o_1 - q \rangle < -\frac{3}{2} \log l - \langle w_s^{(T)}, q \rangle$.

1341 On the other hand, $\left| \langle w_s^{(T)} - w_s^{(0)}, q \rangle \right| = O\left(\frac{l^2 \log l}{\alpha^2 d}\right)$. Therefore, $\langle w_s^{(T)}, o_3 - q \rangle < 0$, which implies
 1342 $\bar{p}_{-o_1}^{(s,T)} = 0$.

1344 Similarly, for any $v \in \mathcal{P}_r \setminus \{o_1\}$, and any $s \in S_v$, we can show that $p_v^{(s,T)} = 1$, $\bar{p}_{-v}^{(s,T)} = 0$, and

1346 $\forall x^{(j)} = v$ for some $j \in [n]$, $G_j^{(s,T)} \geq \frac{1}{2}$.

1347
 1348
 1349

1350 (ii) Let $s \in S_{o_1}$ and $s' \in S_{-o_1}$. From the proof of statement (i), we know that, we have for any
 1351 $q, q' \in \mathcal{P} \setminus \{o_1, o_2\}$ such that, for any t s.t. $t \leq T$, $|\langle w_s^{(t)}, q' - q \rangle - \langle w_s^{(0)}, q' - q \rangle| = O(\frac{l^2}{d} \log l)$.
 1352

1353 Similarly, $|\langle w_{s'}^{(t)}, q' - q \rangle - \langle w_{s'}^{(0)}, q' - q \rangle| = O(\frac{l^2}{\alpha^2 d} \log l)$.
 1354

1355 Now, for any t , for any task-irrelevant pattern q ,

$$1356 \langle w_s^{(t+1)}, o_1 - q \rangle \leq \langle w_s^{(0)}, o_1 - q \rangle + O(\alpha m C_2 \eta_r t) + O(\alpha^2 m \eta_e \eta_r t^2).$$

1357 Therefore, at least up to $t = O(T/l)$ iteration, for all $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\langle w_{s_1}^{(t)}, o_1 - q \rangle \leq 3 \log l$, which
 1358 implies $\forall t > T_1 = \Omega(T/l)$, for all $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\langle w_s^{(t)}, o_1 - q \rangle > 3 \log l$, and hence, $\forall x^{(j)} = o_1$,
 1359 $G_j^{(s,t)}(1 - G_j^{(s,t)}) \leq \frac{1}{l^2}$.
 1360

1361 Therefore, for any $t > T_1$, for any task-irrelevant pattern q ,

$$1362 \langle w_s^{(t+1)}, o_1 \rangle \leq \langle w_s^{(T_1)}, o_1 \rangle + O(\frac{\alpha}{l^2} m C_2 \eta_r (t - T_1)) + O(\frac{\alpha^2}{l^2} m \eta_e \eta_r (t - T_1)^2) \text{ which implies,}$$

1363 for all task-irrelevant pattern q , $\langle w_s^{(T)}, o_1 \rangle \leq \langle w_s^{(T_1)}, o_1 \rangle + O(\log l)$.
 1364

1365 Now, as there exists a task-irrelevant pattern q such that, $\langle w_s^{(T_1)}, o_1 - q \rangle \leq 3 \log l$, we have,

$$1366 \langle w_s^{(T)}, o_1 \rangle - \langle w_s^{(0)}, o_1 \rangle < 4 \log l.$$

1367 Now, for any t , we have,

$$1368 \left| \langle \frac{\partial l}{\partial w_s^{(t)}}, o_2 \rangle \right| \leq O(\frac{m \eta_e}{d} t) + O(m \eta_e) + O(m C_2).$$

1369 Therefore, $|\langle w_s^{(T)} - w_s^{(0)}, o_2 \rangle| \leq O(\sqrt{C_p})$. Similarly, $|\langle w_{s'}^{(T)} - w_{s'}^{(0)}, o_2 \rangle| \leq O(\sqrt{C_p})$.
 1370

1371 On the other hand, as shown in the proof of (i), for any $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $|\langle w_s^{(T)}, q \rangle - \langle w_s^{(0)}, q \rangle| =$
 1372 $O(\frac{l^2 \log l}{\alpha^2 d})$. Therefore, $\Lambda_s^{(T)} < 4 \log l$.
 1373

1374 Now, if $\Lambda_{s'}^{(T)} > \Lambda_s^{(T)}$ does not hold, then $\|w_{s'}^{(T)}\| < 4.5 \log l$.
 1375

1376 Therefore, $\langle w_{s'}^{(T)}, -o_1 \rangle < 4.5 \log l$ which implies, for any $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\langle w_{s'}^{(T)}, -o_1 - q \rangle < 5 \log l$
 1377 as, $|\langle w_{s'}^{(T)}, q \rangle - \langle w_{s'}^{(0)}, q \rangle| = O(\frac{l^2}{\alpha^2 d} \log l)$.
 1378

1379 However, if for all $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\langle w_{s'}^{(T)}, -o_1 - q \rangle < 5 \log l$, then $\forall x^{(j)} = -o_1$, and $\forall t \leq$
 1380 T , $(1 - G_j^{(s',t)})G_j^{(s',t)} \geq \frac{1}{3l^4}$.
 1381

1382 Now, using the same procedure as in the proof of (i), after $T'' \leq \frac{\alpha T}{1 - \alpha}$ steps, we have for all
 1383 $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\langle w_{s'}^{(T'')}, -o_1 \rangle > \frac{3}{2} \log l$, which implies, $\forall T'' \leq t \leq T$,
 1384 $\langle w_{s'}^{(t+1)}, -o_1 \rangle \geq \frac{3}{2} \log l + \Omega(\frac{(1 - \alpha)}{l^4} m C_2 \eta_r (t - T'')) + \Omega(\frac{(1 - \alpha)^2}{l^4} m \eta_e \eta_r (t - T'')^2)$.
 1385

1386 Therefore, $\langle w_{s'}^{(T)}, -o_1 \rangle \geq \frac{3}{2} \log l + \Omega(\frac{(1 - \alpha)^2}{\alpha^2 l^2} \log l)$ which implies $\Lambda_{s'}^{(T)} > \Lambda_s^{(T)}$.
 1387

1388 (iii) Let us assume $s \in S_{o_1}$ and $s' \in S_{-o_1}$. Then, $\forall r \in [m]$ such that $\langle w_r^{(s,0)}, o_1 \rangle \geq 0$, from the proof
 1389 of (i) we have for any t , $p_{o_1}^{(s,t)} \geq p_{o_1}^{(s_1,0)}$ which implies, $\forall t \leq T$, $\langle \frac{\partial l}{\partial w_r^{(s,t)}}, o_1 \rangle \leq -\Omega(\frac{\alpha}{l}) + \tilde{O}(\frac{1}{l \sqrt{B}})$
 1390 which implies, $\forall r \in [m]$ such that $\langle w_r^{(s,0)}, o_1 \rangle \geq 0$, $\forall t \leq T$,
 1391 $\langle w_r^{(s,t+1)}, o_1 \rangle \geq \langle w_r^{(s,t)}, o_1 \rangle + \Omega(\frac{\alpha \eta_e}{l})$ for the choice of $B = \tilde{\Omega}(d^2)$.
 1392

1404 Therefore, $\forall r \in [m]$ such that $\langle w_r^{(s,0)}, o_1 \rangle \geq 0$,
1405 $\langle w_r^{(s,T)}, o_1 \rangle \geq \langle w_r^{(s,0)}, o_1 \rangle + \Omega(\frac{\alpha \eta_e}{l})T = \Omega(lC_2 \sqrt{\frac{\log l}{C_p}})$, which implies $\sigma_{o_1}^{(s,T)} = \Omega(mlC_2 \sqrt{\log l / C_p})$.
1406
1407
1408
1409
1410 Again, using the same procedure as in the proof of (i), after $T'' \leq \frac{\alpha T}{1 - \alpha}$, we have, $\forall x^{(j)} =$
1411 $-o_1$, $G_j^{(s',T'')} > \frac{1}{2}$ and $\forall r \in [m]$ such that $\langle w_r^{(s',0)}, -o_1 \rangle \geq 0$, we have $\langle w_r^{(s',T'')}, -o_1 \rangle =$
1412 $\Omega(lC_2 \sqrt{\frac{\log l}{C_p}})$.
1413
1414
1415
1416
1417 Therefore, we have, $\forall r \in [m]$ such that $\langle w_r^{(s',0)}, -o_1 \rangle \geq 0$,
1418 $\langle w_r^{(s',T)}, -o_1 \rangle = \Omega\left(\frac{(1 - \alpha)}{\alpha} l^2 C_2 \sqrt{\frac{\log l}{C_p}}\right)$, which implies $\sigma_{-o_1}^{(s',T)} = \Omega\left(\frac{1 - \alpha}{\alpha} ml^2 C_2 \sqrt{\frac{\log l}{C_p}}\right)$.
1419
1420
1421 Similarly, for $s \in S_{o_2}$ and $s' \in S_{-o_2}$, we can show that $\sigma_{o_2}^{(s,T)} = \Omega(mlC_2 \sqrt{\log l / C_p})$ and $\sigma_{-o_2}^{(s',T)} =$
1422 $\Omega\left(\frac{1 - \alpha}{\alpha} ml^2 C_2 \sqrt{\frac{\log l}{C_p}}\right)$.
1423
1424
1425 Now, suppose, $T = K \frac{l^2 C_2}{\alpha \eta_e} \sqrt{\frac{\log l}{C_p}}$, where K is the constant satisfies equation (26).
1426
1427
1428 Then, for any $r \in [m]$ of $s \in S_{o_1}$ such that $\langle w_r^{(s,0)}, o_1 \rangle \geq 0$, we have $\langle w_r^{(s,T)}, o_1 \rangle \leq C_2 +$
1429 $\frac{K}{2} l^2 C_2 \sqrt{\frac{\log l}{C_p}}$.
1430
1431
1432 Again, for any $r \in [m]$ of $s \in S_{o_1}$ such that $\langle w_r^{(s,0)}, o_1 \rangle < 0$, we have $\langle w_r^{(s,T)}, o_1 \rangle < 0$.
1433
1434 Similarly, for any $r \in [m]$ of $s' \in S_{-o_1}$ s.t. $\langle w_r^{(s',0)}, -o_1 \rangle \geq 0$, we have
1435 $\langle w_r^{(s',T)}, -o_1 \rangle \geq \Omega(lC_2 \sqrt{\frac{\log l}{C_p}}) + \frac{K}{2} l^2 C_2 \sqrt{\frac{\log l}{C_p}}$. Therefore, $\sigma_{-o_1}^{(s',T)} / \sigma_{o_1}^{(s,T)} \geq (1 - 2\alpha) / 2\alpha$.
1436
1437
1438 Similarly, we can show that for any $s \in S_{o_2}$ and $s' \in S_{-o_2}$, $\sigma_{-o_2}^{(s',T)} / \sigma_{o_2}^{(s,T)} \geq (1 - 2\alpha) / 2\alpha$.
1439
1440 **(iv)** Now, $\forall s \in [k]$, $\forall q \in \mathcal{P} \setminus \{o_1, o_2\}$ and $\forall r \in [m]$ such that $\langle w_r^{(s,0)}, q \rangle \geq 0$, $\forall t$, $\langle \frac{\partial l}{\partial w_r^{(s,t)}}, q \rangle \geq$
1441 $-O(\frac{1}{d}) - \tilde{O}(\frac{1}{\sqrt{B}})$.
1442
1443
1444
1445 Therefore, $\langle w_r^{(s,T')}, q \rangle \leq \langle w_r^{(s,0)}, q \rangle + O(\frac{1}{d} \eta_e T') = C_2 + O(\frac{l^2}{ad} \sqrt{\frac{\log l}{C_p}} C_2) = O(C_2)$ which implies
1446
1447 $\sigma_q^{(s,T)} = O(mC_2)$.
1448
1449 Again, $\forall s \in S_+$, $\forall t$ and, $\forall r \in [m]$ such that $\langle w_r^{(s,0)}, o_2 \rangle \geq 0$ we have, $\langle \frac{\partial l}{\partial w_r^{(s,t)}}, o_2 \rangle \geq 0$, and
1450
1451 for all $r \in [m]$ s.t. $\langle w_r^{(s,0)}, -o_2 \rangle \geq 0$, $\langle \frac{\partial l}{\partial w_r^{(s,t)}}, -o_2 \rangle \geq 0$ which implies $\langle w_r^{(s,T')}, o_2 \rangle \leq C_2$ and
1452
1453 $\langle w_r^{(s,T')}, -o_2 \rangle \leq C_2$. Therefore, $\sigma_{o_2}^{(s,T)} = O(mC_2)$ and $\sigma_{-o_2}^{(s,T)} = O(mC_2)$.
1454
1455 Similarly, we can show that $\forall s \in S_-$, $\sigma_{o_1}^{(s,T)} = O(mC_2)$ and $\sigma_{-o_1}^{(s,T)} = O(mC_2)$.
1456
1457

□

1458 **J LEMMAS USED TO PROVE LEMMA 4.3**

1460 **Lemma J.1.** *Let, $S \subset \mathcal{D}$ such that $p := \mathbb{P}[(x, y) \sim \mathcal{D} : (x, y) \in S]$. Then, w.h.p. over any randomly*
 1461 *sampled batch \mathcal{B}_t of size B at the iteration t , $\left| |\mathcal{B}_t \cap S| - Bp \right| = \tilde{O}(\sqrt{B})$.*

1464 *Proof.* Let us define a random variable X associated with any sample $(x, y) \sim \mathcal{D}$ such that,

1466
$$X := \begin{cases} 1 & \text{if } (x, y) \in S \\ 0 & \text{if } (x, y) \notin S \end{cases}$$

1468 Therefore, $X \sim \text{Ber}(p)$.

1471 Now, for any randomly sampled batch $\mathcal{B}_t := \{(x_1, y_1), (x_2, y_2), \dots, (x_B, y_B)\}$ of size B , we can
 1472 denote the B i.i.d. random variables following the same distribution as X by X_1, X_2, \dots, X_B
 1473 corresponding to the B samples of the batch, respectively.

1475 Therefore, $|\mathcal{B}_t \cap S| = \sum_{i=1}^B X_i$.

1477 Now, $\mathbb{E}[|\mathcal{B}_t \cap S|] = \sum_{i=1}^B \mathbb{E}[X_i] = Bp$.

1479 Therefore, using the Hoeffding's inequality, $\mathbb{P}\left[\left| |\mathcal{B}_t \cap S| - Bp \right| = \tilde{O}(\sqrt{B})\right] \geq 1 - \frac{1}{\text{poly}(d)}$ which
 1480 completes the proof. \square

1484 **Lemma J.2.** *For any expert $s \in S_v$ with $v, v' \in \{o_1, o_2\}$ such that $v \neq v'$, any $q \in \mathcal{P} \setminus \{o_1, o_2\}$, and
 1485 any $r \in [m]$, w.h.p. over a randomly sampled batch of size B we can ensure that,*

1487 (i) $\left| \left\langle \frac{\partial l}{\partial w_s^{(0)}}, q \right\rangle \right| \leq O\left(\frac{mC_2}{d}\right) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\right)$

1490 (ii) $\left| \left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, q \right\rangle \right| \leq O\left(\frac{1}{d}\right) + \tilde{O}\left(\frac{1}{\sqrt{B}}\right)$

1493 (iii) $\left| \left\langle \frac{\partial l}{\partial w_s^{(0)}}, v \right\rangle \right| \leq O(\alpha mC_2) + O\left(\frac{(1-\alpha)}{d} mC_2\right) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\right)$

1496 (iv) $\left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \right\rangle \leq -\Omega\left(\frac{\alpha}{l}\right) + \tilde{O}\left(\frac{1}{l\sqrt{B}}\right)$ if $\langle w_r^{(s,0)}, v \rangle \geq 0$,

1499 $\left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \right\rangle \leq O\left(\frac{(1-\alpha)}{d}\right) + \tilde{O}\left(\frac{1}{\sqrt{B}}\right)$ if $\langle w_r^{(s,0)}, v \rangle < 0$,

1501 $\left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \right\rangle \geq -\frac{\alpha}{2} - \tilde{O}\left(\frac{1}{\sqrt{B}}\right)$ if $\langle w_r^{(s,0)}, v \rangle \geq 0$, and

1503 $\left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \right\rangle \geq 0$ if $\langle w_r^{(s,0)}, v \rangle < 0$

1505 (v) $\left| \left\langle \frac{\partial l}{\partial w_s^{(0)}}, v' \right\rangle \right| \leq O(mC_2) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\right)$

1509 (vi) $\left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \right\rangle \geq 0$ if $\langle w_r^{(s,0)}, v' \rangle \geq 0$,

1511 $\left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \right\rangle \geq -O((1-\alpha)) - \tilde{O}\left(\frac{1}{\sqrt{B}}\right)$ if $\langle w_r^{(s,0)}, v' \rangle < 0$,

$$\begin{aligned}
1512 \quad & \left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \right\rangle \leq O(\alpha) + \tilde{O}\left(\frac{1}{\sqrt{B}}\right), \text{ if } \langle w_r^{(s,0)}, v' \rangle \geq 0, \text{ and} \\
1513 \quad & \left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \right\rangle \leq 0 \text{ if } \langle w_r^{(s,0)}, v' \rangle < 0 \\
1514 \\
1515 \\
1516
\end{aligned}$$

1517
1518
1519
1520
1521
1522
1523
1524

1525 *Proof.* For any $v \in \mathcal{P}_r$ and any $q \in \mathcal{P} \setminus \{o_1, o_2\}$,

$$1526 \quad \left| \sigma_v^{(s,0)} - \sigma_q^{(s,0)} \right| = \left| \sum_{r \in [m]} \text{ReLU}(\langle w_r^{(s,0)}, v \rangle) - \sum_{r \in [m]} \text{ReLU}(\langle w_r^{(s,0)}, q \rangle) \right| = O(mC_2).$$

1527 Similarly, for any $q, q' \in \mathcal{P} \setminus \{o_1, o_2\}$ such that $q \neq q'$, $\left| \sigma_q^{(s,0)} - \sigma_{q'}^{(s,0)} \right| = O(mC_2)$.

1528 We denote \mathcal{B}_0 as the randomly sampled batch before the first update of SGD.

$$1529 \quad \text{(i)} \quad \left\langle \frac{\partial l}{\partial w_s^{(0)}}, q \right\rangle = \frac{1}{B} \sum_{x \in \mathcal{B}_0} \left\langle \frac{\partial l(x, y)}{\partial w_s^{(0)}}, q \right\rangle$$

1530 Let us define the set $\bar{S}_q^{J_s^{(0)}} := \{(x, y) \sim \mathcal{D} : \exists j \in J_s^{(0)} \text{ s.t. } x^{(j)} = q\}$ and,

$$1531 \quad p_q^{(s,0)} := \mathbb{P} \left[(x, y) \sim \mathcal{D} : (x, y) \in \bar{S}_q^{J_s^{(0)}} \right]$$

1532 Here, $p_q^{(s,0)} = O\left(\frac{1}{d}\right)$

$$1533 \quad \text{Therefore, } \left\langle \frac{\partial l}{\partial w_s^{(0)}}, q \right\rangle = \frac{1}{B} \sum_{x \in \mathcal{B}_0 \cap \bar{S}_q^{J_s^{(0)}}} \left\langle \frac{\partial l(x, y)}{\partial w_s^{(0)}}, q \right\rangle + \frac{1}{B} \sum_{x \in \mathcal{B}_0 \cap \mathcal{D} \setminus \bar{S}_q^{J_s^{(0)}}} \left\langle \frac{\partial l(x, y)}{\partial w_s^{(0)}}, q \right\rangle$$

1534 Now, from equation (22), for any $(x, y) \in \mathcal{D} \setminus \bar{S}_q^{J_s^{(0)}}$, $\left\langle \frac{\partial l(x, y)}{\partial w_s^{(0)}}, q \right\rangle = 0$

$$1535 \quad \text{Therefore, } \left\langle \frac{\partial l}{\partial w_s^{(0)}}, q \right\rangle = \frac{1}{B} \sum_{x \in \mathcal{B}_0 \cap \bar{S}_q^{J_s^{(0)}}} \left\langle \frac{\partial l(x, y)}{\partial w_s^{(0)}}, q \right\rangle$$

1536 Now, for any (x, y) , $l_q^{(s,0)} G_q^{(s,0)} \leq 1$

1537 Therefore, as $|\sigma_v^{(s,0)} - \sigma_q^{(s,0)}| = O(mC_2)$ and for any $q' \in \mathcal{P} \setminus \{o_1, o_2\}$ such that $q \neq q'$, $|\sigma_q^{(s,0)} - \sigma_{q'}^{(s,0)}| = O(mC_2)$, from equation (22), $\left| \left\langle \frac{\partial l}{\partial w_s^{(0)}}, q \right\rangle \right| \leq \frac{|\mathcal{B}_0 \cap \bar{S}_q^{J_s^{(0)}}|}{B} O(mC_2)$

1538 Now, from Lemma J.1, *w.h.p.*, $\frac{|\mathcal{B}_0 \cap \bar{S}_q^{J_s^{(0)}}|}{B} \leq p_q^{(s,0)} + \tilde{O}\left(\frac{1}{\sqrt{B}}\right)$ which implies,

$$1539 \quad \left| \left\langle \frac{\partial l}{\partial w_s^{(0)}}, q \right\rangle \right| \leq O\left(\frac{mC_2}{d}\right) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\right).$$

1540 **(ii)** Using equation (24) and the fact that for any $(x, y) \sim \mathcal{D}$, $l_q^{(s,t)} G_q^{(s,t)} \leq 1$ and by following the same procedure as in the proof of the statement (i) we can complete the proof.

1541 **(iii)** Let us define the set, $\bar{S}_v^{J_s^{(0)}} := \{(x, y) \sim \mathcal{D} : \exists j \in J_s^{(0)} \text{ s.t. } x^{(j)} = v\}$.

1566 Now,

$$\begin{aligned}
 & \mathbb{P} \left[(x, y) \sim \mathcal{D} : (x, y) \in \bar{S}_v^{J_s^{(0)}} \right] \\
 &= \mathbb{P} \left[(x, y) \sim \mathcal{D} : (x, y) \in \bar{S}_v^{J_s^{(0)}} \middle| y = +1 \text{ and } \exists j \in [n] \text{ s.t. } x^{(j)} = v \right] \\
 &\quad \times \mathbb{P} \left[(x, y) \sim \mathcal{D} : y = +1 \text{ and } \exists j \in [n] \text{ s.t. } x^{(j)} = v \right] \\
 &\leq \frac{\alpha}{2}
 \end{aligned}$$

1576 On the other hand, $\bar{p}_{-v}^{(s,0)} = O(1/d)$.

1578 Now, using equation (23), by following the same procedure as in the proof of statement (i), we can
1579 complete the proof.

1581 **(iv)** Let us define the set, $S_v^{J_s^{(0)}} := \left\{ (x, y) \sim \mathcal{D} : \exists j \in J_s^{(0)} \text{ s.t. } x^{(j)} = v \text{ and } G_v^{(s,0)} \geq \frac{1}{l} \right\}$.

1584 Now,

$$\begin{aligned}
 & \mathbb{P} \left[(x, y) \sim \mathcal{D} : (x, y) \in S_v^{J_s^{(0)}} \right] \\
 &= \mathbb{P} \left[(x, y) \sim \mathcal{D} : (x, y) \in S_v^{J_s^{(0)}} \middle| y = +1 \text{ and } \exists j \in [n] \text{ s.t. } x^{(j)} = v \right] \\
 &\quad \times \mathbb{P} \left[(x, y) \sim \mathcal{D} : y = +1 \text{ and } \exists j \in [n] \text{ s.t. } x^{(j)} = v \right] \\
 &= p_v^{(s,0)} \frac{\alpha}{2} = \Omega(\alpha) \quad \left[\text{As, } p_v^{(s,0)} = \Omega(1) \right]
 \end{aligned}$$

1594 On the other hand, $\bar{p}_{-v}^{(s,0)} = O(1/d)$.

1596 Now, using equation (25) and by following the same procedure as in the proof of the statement (i) we
1597 can complete the proof.

1599 **(v)** Using equation (23) and by following the same procedure as in the statements (iii) and (i) we can
1600 complete the proof.

1601 **(vi)** Using equation (25) and following the same procedure as in the proof of statement (ii) and (iv)
1602 we can complete the proof.

1603 \square
1604
1605 **Lemma J.3.** For any expert $s \in S_v$ with $v, v' \in \{-o_1, -o_2\}$ such that $v \neq v'$, any $q \in \mathcal{P} \setminus \{o_1, o_2\}$,
1606 and any $r \in [m]$, w.h.p. over a randomly sampled batch of size B we can ensure that,

$$\begin{aligned}
 & (i) \quad \left| \left\langle \frac{\partial l}{\partial w_s^{(0)}}, q \right\rangle \right| \leq O \left(\frac{mC_2}{d} \right) + \tilde{O} \left(\frac{mC_2}{\sqrt{B}} \right) \\
 & (ii) \quad \left| \left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, q \right\rangle \right| \leq O \left(\frac{1}{d} \right) + \tilde{O} \left(\frac{1}{\sqrt{B}} \right) \\
 & (iii) \quad \left| \left\langle \frac{\partial l}{\partial w_s^{(0)}}, v \right\rangle \right| \leq O((1 - \alpha)mC_2) + O \left(\frac{\alpha}{d} mC_2 \right) + \tilde{O} \left(\frac{mC_2}{\sqrt{B}} \right) \\
 & (iv) \quad \left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \right\rangle \leq -\Omega \left(\frac{(1 - \alpha)}{l} \right) + \tilde{O} \left(\frac{1}{l\sqrt{B}} \right) \text{ if } \langle w_r^{(s,0)}, v \rangle \geq 0, \\
 & \quad \left\langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \right\rangle \leq O \left(\frac{\alpha}{d} \right) + \tilde{O} \left(\frac{1}{\sqrt{B}} \right) \text{ if } \langle w_r^{(s,0)}, v \rangle < 0,
 \end{aligned}$$

$$\begin{aligned}
& \langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \rangle \geq -\frac{(1-\alpha)}{2} - \tilde{O}\left(\frac{1}{\sqrt{B}}\right) \text{ if } \langle w_r^{(s,0)}, v \rangle \geq 0, \text{ and} \\
& \langle \frac{\partial l}{\partial w_r^{(s,0)}}, v \rangle \geq 0 \text{ if } \langle w_r^{(s,0)}, v \rangle < 0 \\
(v) \quad & \left| \langle \frac{\partial l}{\partial w_s^{(0)}}, v' \rangle \right| \leq O(mC_2) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\right) \\
(vi) \quad & \langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \rangle \geq 0 \text{ if } \langle w_r^{(s,0)}, v' \rangle \geq 0, \\
& \langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \rangle \geq -O(\alpha) - \tilde{O}\left(\frac{1}{\sqrt{B}}\right) \text{ if } \langle w_r^{(s,0)}, v' \rangle < 0, \\
& \langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \rangle \leq O((1-\alpha)) + \tilde{O}\left(\frac{1}{\sqrt{B}}\right), \text{ if } \langle w_r^{(s,0)}, v' \rangle \geq 0, \text{ and} \\
& \langle \frac{\partial l}{\partial w_r^{(s,0)}}, v' \rangle \leq 0 \text{ if } \langle w_r^{(s,0)}, v' \rangle < 0
\end{aligned}$$

Proof. Using the same procedure as in Lemma J.2, we can complete the proof. \square

Lemma J.4. For any expert $s \in [k]$, any $v \in \mathcal{P}_r$, and at any iteration t , if every $q \in \mathcal{P} \setminus \{o_1, o_2\}$ that satisfies the condition $\langle w_s^{(t)}, q \rangle < \langle w_s^{(t)}, v \rangle$ also satisfies the condition $\langle w_s^{(t)}, v \rangle - \langle w_s^{(t)}, q \rangle \leq 2 \log l$, then for any $j \in J_s^{(t)}$ where $x^{(j)} = v$ and $G_j^{(s,t)} \geq 1/l$, we have, $G_j^{(s,t)}(1 - G_j^{(s,t)}) \geq \frac{1}{4l}$

Proof. If for all $q \in \mathcal{P} \setminus \{o_1, o_2\}$ with $\langle w_s^{(t)}, q \rangle < \langle w_s^{(t)}, v \rangle$ we have, $\langle w_s^{(t)}, v \rangle - \langle w_s^{(t)}, q \rangle \leq 2 \log l$, then $\forall (x, y) \sim \mathcal{D}$ s.t. $\exists j \in J_s^{(t)}(x)$ with $x^{(j)} = v$ and $G_j^{(s,t)}(x) \geq G_i^{(s,t)}(x)$, $\forall i \in J_s^{(t)}(x)$ and $i \neq j$ we have, $G_j^{(s,t)}(x)(1 - G_j^{(s,t)}(x)) \geq \min\left\{\frac{(l-1)}{l^2}, \frac{(l-1)}{l^2}\right\} = \frac{(l-1)}{(1 + \frac{(l-1)}{l^2})^2}$.

$$\text{Now, } \frac{(l-1)}{l^2} = \frac{l^2(l-1)}{(l^2 + l - 1)^2}.$$

Now, let there exists a constant $C > 0$ such that $\frac{l^2(l-1)}{(l^2 + l - 1)^2} \geq \frac{C}{l} \Leftrightarrow l^4(1 - C) - l^3(1 + 2C) + Cl^2 + 2Cl - C \geq 0$.

Now, $Cl^2 + 2Cl - C > 0$ as $l \geq 2$. Therefore, $l^3(1 + 2C) \leq l^4(1 - C)$ satisfies $l^4(1 - C) - l^3(1 + 2C) + Cl^2 + 2Cl - C \geq 0$.

Now, $l^3(1 + 2C) \leq l^4(1 - C) \Leftrightarrow C \leq \frac{l-1}{l+2}$. Now, $\frac{l-1}{l+2} \geq \frac{1}{4}$ as $l \geq 2$. Hence, picking $C = \frac{1}{4}$ satisfies that $\frac{l^2(l-1)}{(l^2 + l - 1)^2} \geq \frac{1}{4l}$ which implies $G_j^{(s,t)}(x)(1 - G_j^{(s,t)}(x)) \geq \frac{1}{4l}$. \square

Lemma J.5. For any expert $s \in S_v$ such that $v \in \{o_1, o_2\}$, and $\forall q \in \mathcal{P} \setminus \{o_1, o_2\}$, by selecting $\eta_r = O\left(\frac{\eta_e C_p}{ml^2 C_2^2}\right)$ and $B = \tilde{\Omega}(d^2)$, we can ensure that after $T' = O\left(\frac{lC_2}{\alpha\eta_e}\right)$ iterations,

$$(i) \quad \sigma_v^{(s,T')} = \Omega(mC_2), \sigma_{-v}^{(s,T')} = O(mC_2), \sigma_q^{(s,T')} = O(mC_2)$$

$$(ii) \quad p_v^{(s,T')} \geq p_v^{(s,0)} \text{ and, } \bar{p}_{-v}^{(s,T')} \leq \bar{p}_{-v}^{(s,0)}$$

1674 *Proof.* Suppose $v = o_1$. From the statement (i) of the Lemma J.2, *w.h.p.* over a randomly sampled
 1675 batch, $\left| \langle \frac{\partial l}{\partial w_s^{(0)}}, q \rangle \right| \leq O\left(\frac{mC_2}{d}\right) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\right)$
 1676

1677 Therefore, $\left| \langle w_s^{(1)}, q \rangle - \langle w_s^{(0)}, q \rangle \right| \leq O\left(\frac{mC_2}{d}\eta_r\right) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\eta_r\right)$.
 1678

1679 On the other hand, from the statement (iii) of the Lemma J.2, *w.h.p.* over a randomly sampled batch,
 1680 $\left| \langle \frac{\partial l}{\partial w_s^{(0)}}, o_1 \rangle \right| \leq O(\alpha mC_2) + O\left(\frac{(1-\alpha)}{d}mC_2\right) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\right)$
 1681

1682 Therefore, $\left| \langle w_s^{(1)}, o_1 \rangle - \langle w_s^{(0)}, o_1 \rangle \right| \geq O(\alpha mC_2\eta_r) + O\left(\frac{(1-\alpha)}{d}mC_2\eta_r\right) + \tilde{O}\left(\frac{mC_2}{\sqrt{B}}\eta_r\right)$.
 1683

1684 Now, by selecting $\eta_r = O\left(\frac{C_p}{\alpha mC_2}\right)$ and $B = \tilde{\Omega}\left(\frac{1}{\alpha^2}\right)$, for $\langle w_s^{(0)}, q \rangle < \langle w_s^{(0)}, o_1 \rangle$ we get,
 1685 $\langle w_s^{(1)}, o_1 \rangle - \langle w_s^{(1)}, q \rangle = \Omega(C_p)$ which ensures that $p_{o_1}^{(s,1)} \geq p_{o_1}^{(s,0)}$.
 1686

1687 Similarly, we can show that, $\langle w_s^{(1)}, o_1 - q \rangle \leq 2 \log l$ and $\bar{p}_{-o_1}^{(s,1)} \leq \bar{p}_{-o_1}^{(s,0)}$.
 1688

1689 Now, for any $r \in [m]$ such that $\langle w_r^{(s,0)}, o_1 \rangle \geq 0$, from the statement (iv) of the Lemma J.2,
 1690 *w.h.p.* $\langle \frac{\partial l}{\partial w_r^{(s,0)}}, o_1 \rangle \leq -\Omega\left(\frac{\alpha}{l}\right) + \tilde{O}\left(\frac{1}{l\sqrt{B}}\right)$, and for any $r \in [m]$ such that $\langle w_r^{(s,0)}, o_1 \rangle < 0$,
 1691

1692 $\langle \frac{\partial l}{\partial w_r^{(s,0)}}, o_1 \rangle \leq O\left(\frac{(1-\alpha)}{d}\right) + \tilde{O}\left(1/\sqrt{B}\right)$, which implies, for $\langle w_r^{(s,0)}, o_1 \rangle \geq 0$,
 1693

1694 $\langle w_r^{(s,1)}, o_1 \rangle \geq \langle w_r^{(s,0)}, o_1 \rangle + \Omega\left(\frac{\alpha\eta_e}{l}\right) - \tilde{O}\left(\frac{\eta_e}{l\sqrt{B}}\right)$, and for $\langle w_r^{(s,0)}, o_1 \rangle < 0$, $\langle w_r^{(s,1)}, o_1 \rangle < 0$.
 1695

1696 Hence, $\sigma_{o_1}^{(s,1)} \geq \sigma_{o_1}^{(s,0)} + \Omega\left(\frac{\alpha m\eta_e}{l}\right) - \tilde{O}\left(\frac{m\eta_e}{l\sqrt{B}}\right)$.
 1697

1698 Similarly, using statement (ii), (iii), and (iv) of Lemma J.2, we can show that,
 1699

1700 $\sigma_{o_1}^{(s,1)} \leq \sigma_{o_1}^{(s,0)} + O(\alpha m\eta_e) + \tilde{O}\left(\frac{m}{\sqrt{B}}\eta_e\right)$,
 1701

1702 $\sigma_{-o_1}^{(s,1)} \leq \sigma_{-o_1}^{(s,0)} + O\left(\frac{1-\alpha}{d}m\eta_e\right) + \tilde{O}\left(\frac{1}{\sqrt{B}}m\eta_e\right)$, $\sigma_3^{(s,1)} \geq \sigma_3^{(s,0)}$,
 1703

1704 $\left| \sigma_q^{(s,1)} - \sigma_q^{(s,0)} \right| \leq O\left(\frac{m}{d}\eta_e\right) + \tilde{O}\left(\frac{m\eta_e}{\sqrt{B}}\right)$.
 1705

1706 Therefore, by selecting $B = \tilde{\Omega}(d^2)$ we get,
 1707

1708 $\langle \frac{\partial l}{\partial w_s^{(1)}}, q \rangle \leq O\left(\frac{m\eta_e}{d}\right) + O\left(\frac{mC_2}{d}\right)$, $\langle \frac{\partial l}{\partial w_s^{(1)}}, q \rangle \geq -O\left(\frac{m\eta_e}{d^2}\right) - O\left(\frac{mC_2}{d}\right)$,
 1709

1710 $\langle \frac{\partial l}{\partial w_s^{(1)}}, o_1 \rangle \leq O(\alpha mC_2) - \Omega\left(\frac{\alpha^2 m\eta_e}{l}\right)$, $\langle \frac{\partial l}{\partial w_s^{(1)}}, o_1 \rangle \geq -O(\alpha mC_2) - O(\alpha^2 m\eta_e)$,
 1711

1712 $\langle \frac{\partial l}{\partial w_s^{(1)}}, -o_1 \rangle \leq O(\alpha mC_2) + O(\alpha^2 m\eta_e)$, $\langle \frac{\partial l}{\partial w_s^{(1)}}, -o_1 \rangle \geq -O(\alpha mC_2) + \Omega\left(\frac{\alpha^2 m\eta_e}{l}\right)$,
 1713

1714 (Condition 1) Suppose, there exists a T' such that $\forall 0 \leq t \leq T'$, $p_{o_1}^{(s,t)} \geq p_{o_1}^{(s,0)}$, $\bar{p}_{-o_1}^{(s,t)} \leq \bar{p}_{-o_1}^{(s,0)}$.
 1715

1728 Now, if condition 1 holds then, $\sigma_{o_1}^{(s,T)} \geq \sigma_{-o_1}^{(s,0)} + \Omega\left(\frac{\alpha m \eta_e}{l} T\right)$, which implies we need $T' = O\left(\frac{lC_2}{\alpha \eta_e}\right)$
 1729 steps to ensure that, $\sigma_{o_1}^{(s,T)} = \Omega(mC_2)$. Also, as $\sigma_{-o_1}^{(s,T)} \leq \sigma_{-o_1}^{(s,0)} + O\left(\frac{1-\alpha}{d} m \eta_e T\right)$, we have,
 1730 $\sigma_{-o_1}^{(s,T)} = O(mC_2)$. Similarly, $\sigma_q^{(s,T)} = O(mC_2)$.
 1731

1732 Again, if condition 1 holds, then using Lemma J.2 and equation (22), and equation (25) we can show
 1733 that, $\forall 0 \leq t \leq T'$, we have,

$$\begin{aligned} 1738 \quad \langle \frac{\partial l}{\partial w_s^{(t)}}, q \rangle &\leq O\left(\frac{m \eta_e}{d} t\right) + O\left(\frac{mC_2}{d}\right), \quad \langle \frac{\partial l}{\partial w_s^{(t)}}, q \rangle \geq -O\left(\frac{m \eta_e}{d^2} t\right) - O\left(\frac{m \eta_e}{d}\right) - O\left(\frac{mC_2}{d}\right), \\ 1739 \quad \langle \frac{\partial l}{\partial w_s^{(1)}}, o_1 \rangle &\leq O(\alpha m C_2) - \Omega\left(\frac{\alpha^2 m \eta_e}{l} t\right), \quad \langle \frac{\partial l}{\partial w_s^{(t)}}, o_1 \rangle \geq -O(\alpha m C_2) - O(\alpha^2 m \eta_e t), \\ 1740 \quad \langle \frac{\partial l}{\partial w_s^{(t)}}, -o_1 \rangle &\leq O(\alpha m C_2) + O(\alpha^2 m \eta_e t), \quad \langle \frac{\partial l}{\partial w_s^{(t)}}, -o_1 \rangle \geq -O(\alpha m C_2) + \Omega\left(\frac{\alpha^2 m \eta_e}{l} t\right). \end{aligned}$$

1741 Therefore, by selecting $\eta_r = O\left(\frac{C_p}{\alpha m C_2} \frac{1}{T'}\right) = O\left(\frac{C_p \eta_e}{\alpha m l C_2^2}\right)$, we can ensure that, condition 1 holds for
 1742 our selection of T' .
 1743

1744 Similarly, we can prove the case of $v = o_2$. □
 1745

1746 **Lemma J.6.** *For any expert $s \in S_v$ such that $v \in \{-o_1, -o_2\}$, and $\forall q \in \mathcal{P} \setminus \{o_1, o_2\}$, by selecting
 1747 $\eta_r = O\left(\frac{\eta_e C_p}{m l^2 C_2^2}\right)$ and $B = \tilde{\Omega}(d^2)$, we can ensure that after $T' = O\left(\frac{l C_2}{(1-\alpha) \eta_e}\right)$ iterations,*
 1748

$$1749 \quad (i) \quad \sigma_v^{(s,T')} = \Omega(mC_2), \quad \sigma_{-v}^{(s,T')} = O(mC_2), \quad \sigma_q^{(s,T')} = O(mC_2)$$

$$1750 \quad (ii) \quad p_v^{(s,T')} \geq p_v^{(s,0)} \text{ and, } \bar{p}_{-v}^{(s,T')} \leq \bar{p}_{-v}^{(s,0)}$$

1751 *Proof.* The proof is similar to the proof of Lemma J.5. □
 1752

1753 K PROOF OF THEOREM 4.4

1754 **Proof sketch.** The results of Theorem 4.4 are provided by the post-training quantization analysis.
 1755 Given the experts' activation bounds of the trained model, we estimate how much the activations
 1756 produced by the quantized weights are allowed to deviate from their original values yet correctly
 1757 classify the sequences. As the activations of the experts that learned more prevalent tokens are larger
 1758 compared to the experts that learned less prevalent tokens, the former are allowed to deviate more
 1759 than the latter. We use the maximum allowable deviations of expert activations for the two groups of
 1760 experts (i.e., the experts that learned less prevalent tokens, and the experts that learned more prevalent
 1761 tokens) to estimate corresponding quantization bin sizes via equation (2). Finally, we evaluate the
 1762 sufficient bit-widths of the two groups of experts from their corresponding maximum allowable bin
 1763 sizes.
 1764

1765 **Theorem K.1 (Full version of Theorem 4.4).** *Suppose the number of fine-tuning iterations satisfies*

1766 $T = \Theta\left(\frac{l^2 C_2}{\alpha \eta_e} \sqrt{\frac{\log l}{C_p}}\right)$, and $\max_{r \in [m]} \text{Var}_r^{(s,T)} = \Theta(1)$ for every expert s . If $\kappa \geq \gamma$, and the two
 1767 quantization levels satisfy
 1768

$$1769 \quad b_h \geq \log_2(1 + \Omega(d \sqrt{C_p \log(kmd^2) / l^2 C_2^2 \log l})) \quad (27)$$

1770 *and*

$$1771 \quad b_l \geq \log_2\left(1 + \frac{\alpha}{1-\alpha} \Omega(d \sqrt{C_p \log(kmd^2) / l^2 C_2^2 \log l})\right), \quad (28)$$

1782 then w.h.p. the quantized model has guaranteed generalization, i.e.,
 1783

$$1784 \mathbb{P}[\forall (x, y) \sim \mathcal{D} : y f_Q^{(T)}(x) > 0] = 1. \quad (29)$$

1786 *Proof.* For any $r \in [m]$ of $s \in [k]$, we denote the quantized representation of
 1787 $w_r^{(s,T)} = [w_{r_1}^{(s,T)}, w_{r_2}^{(s,T)}, \dots, w_{r_d}^{(s,T)}]^T$ by, $w_r^{(s,T;Q)} = [w_{r_1}^{(s,T;Q)}, w_{r_2}^{(s,T;Q)}, \dots, w_{r_d}^{(s,T;Q)}]^T$
 1788
 1789 $= [w_{r_1}^{(s,T)} + \Delta w_{r_1}^{(s,T;Q)}, w_{r_2}^{(s,T)} + \Delta w_{r_2}^{(s,T;Q)}, \dots, w_{r_d}^{(s,T)} + \Delta w_{r_d}^{(s,T;Q)}]^T$.
 1790

1791 Here, for any $i \in [d]$, $\Delta w_{r_i}^{(s,T;Q)}$ is the quantization-noise generated from the quantization of the
 1792 weight $w_{r_i}^{(s,T)}$.
 1793

1794 Now, over the randomness of the pre-trained model, for any $r \in [m]$ of any $s \in [k]$, for any
 1795 $i \in [d]$, $\Delta w_{r_i}^{(s,T;Q)} \sim \text{Unif}\left[-\frac{\Delta_r^{(s)}}{2}, \frac{\Delta_r^{(s)}}{2}\right]$, where $\Delta_r^{(s)}$ is the quantization bin size of the column
 1796
 1797 $r \in [m]$ of the expert $s \in [k]$. Here we assume that, for $i_1, i_2 \in [d]$ s.t. $i_1 \neq i_2$, $\Delta w_{r_{i_1}}^{(s,T;Q)}$ and
 1798 $\Delta w_{r_{i_2}}^{(s,T;Q)}$ are independent to each other. Similarly, we assume that for any $r_1, r_2 \in [m]$ s.t. $r_1 \neq r_2$,
 1799 $\Delta w_{r_1}^{(s,T;Q)}, \Delta w_{r_2}^{(s,T;Q)}, \Delta w_{r_1}^{(s,T;Q)}$ and, $\Delta w_{r_2}^{(s,T;Q)}$, are independent to each other. We further
 1800 assume that, for any $s_1, s_2 \in [k]$ s.t. $s_1 \neq s_2$, $\Delta w_{r_1}^{(s_1,T;Q)}, \Delta w_{r_2}^{(s_2,T;Q)}, \Delta w_{r_1}^{(s_1,T;Q)}, \Delta w_{r_2}^{(s_2,T;Q)}$,
 1801 $\Delta w_{r_1}^{(s_2,T;Q)}, \Delta w_{r_2}^{(s_2,T;Q)}, \Delta w_{r_1}^{(s_1,T;Q)}$ and, $\Delta w_{r_2}^{(s_1,T;Q)}$, are independent to each other.
 1802
 1803

1804 Now, from statement (i) of Lemma I.1, for any $s_1 \in S_{o_1}$, $p_{o_1}^{(s_1,T)} = 1$ and $\forall x^{(j)} = o_1$ for some
 1805 $j \in [n]$, $G_j^{(s_1,T)} \geq \frac{1}{2}$. Furthermore, from statement (iii) of Lemma I.1, $\sigma_{o_1}^{(s_1,T)} = \Omega(mlC_2\sqrt{\frac{\log l}{C_p}})$.
 1806

1807 Therefore, for any $(x, y) \sim \mathcal{D}$ such that $\exists j \in [n]$ with $x^{(j)} = o_1$,

$$1808 \sum_{s_1 \in S_{o_1}} f_{s_1}^{(T)}(x) = \Omega(\gamma_{o_1} mlC_2\sqrt{\frac{\log l}{C_p}}).$$

1809 On the other hand, from statement (i) of Lemma I.1, for any $s_3 \in S_{-o_1}$, $p_{o_1}^{(s_3,T)} = 0$.
 1810

1811 Therefore, for any $(x, y) \sim \mathcal{D}$ such that $\exists j \in [n]$ with $x^{(j)} = o_1$,

$$1812 \sum_{s \in S_+} f_s^{(T)}(x) = \Omega(\gamma_{o_1} kmlC_2\sqrt{\frac{\log l}{C_p}}).$$

1813 Again, from statement (iv) of Lemma I.1, for any $q \in \mathcal{P} \setminus \{o_1, o_2\}$, $\forall s \in [k]$, $\sigma_q^{(s,T)} = O(mC_2)$, and
 1814 $\forall s \in S_-, \sigma_{o_1}^{(s,T)} = O(mC_2)$.
 1815

1816 Therefore, for any $(x, y) \sim \mathcal{D}$ such that $\exists j \in [n]$ with $x^{(j)} = o_1$,

$$1817 \sum_{s \in S_+} f_s^{(T)}(x) - \sum_{s \in S_-} f_s^{(T)} = \Omega(\gamma_{o_1} kmlC_2\sqrt{\frac{\log l}{C_p}}) - O(klmC_2), \text{ which implies for any}$$

$$1818 (x, y) \sim \mathcal{D} \text{ such that } \exists j \in [n] \text{ with } x^{(j)} = o_1, y f_Q^{(T)}(x) > 0.$$

1819 Therefore, to ensure that for any $(x, y) \sim \mathcal{D}$ such that $\exists j \in [n]$ with $x^{(j)} = o_1$, $y f_Q^{(T)}(x) > 0$,
 1820 we need $\langle w_r^{(s_1,T)} - w_r^{(s_1,T;Q)}, o_1 \rangle \leq O(lC_2\sqrt{\frac{\log l}{C_p}})$, for all $r \in [m]$ of all $s_1 \in S_{o_1}$ that satisfy
 1821 $\langle w_r^{(s_1,0)}, o_1 \rangle \geq 0$.
 1822

1836 Now, for an $r \in [m]$ of an $s_1 \in S_{o_1}$,
1837
$$\mathbb{P} \left[\left| \langle w_r^{(s_1, T)} - w_r^{(s_1, T; Q)}, o_1 \rangle \right| \geq \Omega(lC_2 \sqrt{\frac{\log l}{C_p}}) \right] \leq \exp \left(-\frac{\Omega(l^2 C_2^2 \log l / C_p)}{d \Delta_r^{(s_1)^2}} \right).$$

1838
1839
1840
1841 Therefore, for all $r \in [m]$ of all $s_1 \in S_{o_1}$, we need $\Delta_r^{(s_1)} \leq O(lC_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{o_1} kmd^2)}})$ to ensure
1842 that, for all $r \in [m]$ of all $s_1 \in S_{o_1}$, we have,
1843
$$\mathbb{P} \left[\langle w_r^{(s_1, T)} - w_r^{(s_1, T; Q)}, o_1 \rangle \leq O(lC_2 \sqrt{\frac{\log l}{C_p}}) \right] \geq 1 - \frac{1}{d^2}.$$

1844
1845
1846
1847
1848 Similarly, for all $r \in [m]$ of all $s_2 \in S_{o_2}$, we need $\Delta_r^{(s_2)} \leq O(lC_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{o_2} kmd^2)}})$ to ensure
1849 that, for all $r \in [m]$ of all $s_2 \in S_{o_2}$, we have
1850
$$\mathbb{P} \left[\langle w_r^{(s_2, T)} - w_r^{(s_2, T; Q)}, o_2 \rangle \leq O(lC_2 \sqrt{\frac{\log l}{C_p}}) \right] \geq 1 - \frac{1}{d^2},$$

1851
1852
1853
1854 for all $r \in [m]$ of all $s_3 \in S_{-o_1}$, we need $\Delta_r^{(s_3)} \leq O(\frac{(1-\alpha)}{\alpha} l^2 C_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{-o_1} kmd^2)}})$ to
1855 ensure that, for all $r \in [m]$ of all $s_3 \in S_{-o_1}$, we have
1856
$$\mathbb{P} \left[\langle w_r^{(s_3, T)} - w_r^{(s_3, T; Q)}, -o_1 \rangle \leq O(\frac{(1-\alpha)}{\alpha} l^2 C_2 \sqrt{\frac{\log l}{C_p}}) \right] \geq 1 - \frac{1}{d^2}, \text{ and}$$

1857
1858
1859
1860 for all $r \in [m]$ of all $s_4 \in S_{-o_2}$, we need $\Delta_r^{(s_4)} \leq O(\frac{(1-\alpha)}{\alpha} l^2 C_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{-o_2} kmd^2)}})$ to
1861 ensure that, for all $r \in [m]$ of all $s_4 \in S_{-o_2}$, we have
1862
$$\mathbb{P} \left[\langle w_r^{(s_4, T)} - w_r^{(s_4, T; Q)}, -o_2 \rangle \leq O(\frac{(1-\alpha)}{\alpha} l^2 C_2 \sqrt{\frac{\log l}{C_p}}) \right] \geq 1 - \frac{1}{d^2}.$$

1863
1864
1865
1866 Now, for all $r \in [m]$ of all $s \in S_-$, if $\Delta_r^{(s)} = \max \left\{ \Delta_r^{(s_1)}, \Delta_r^{(s_3)} \right\}$, we have
1867
$$\forall (x, y) \sim \mathcal{D} \text{ such that } \exists j \in [n] \text{ with } x^{(j)} = \pm o_1,$$

1868
$$\mathbb{P} \left[-\sum_{s \in S_-} f_{Q_s}^{(T)}(x) = O(\sqrt{kml} C_2 \sqrt{\frac{\log l}{C_p}}) \right] \geq 1 - \frac{1}{d^2}.$$

1869
1870
1871
1872 Here, $f_{Q_s}^{(T)}(x)$ is the quantized output for the expert s .
1873
1874
1875 Similarly, for all $r \in [m]$ of all $s \in S_1$, if $\Delta_r^{(s)} = \max \left\{ \Delta_r^{(s_2)}, \Delta_r^{(s_4)} \right\}$, we have
1876
$$\forall (x, y) \sim \mathcal{D} \text{ such that } \exists j \in [n] \text{ with } x^{(j)} = \pm o_2,$$

1877
$$\mathbb{P} \left[\sum_{s \in S_+} f_{Q_s}^{(T)}(x) = O(\sqrt{kml} C_2 \sqrt{\frac{\log l}{C_p}}) \right] \geq 1 - \frac{1}{d^2}.$$

1878
1879
1880 Therefore, for all $s_1 \in S_{o_1}, s_2 \in S_{o_2}, s_3 \in S_{-o_1}, s_4 \in S_{-o_2}$, for all $r \in [m]$, we need
1881
$$\Delta_r^{(s_1)} = O(lC_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{o_1} kmd^2)}}), \Delta_r^{(s_2)} = O(lC_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{o_2} kmd^2)}}), \text{ and}$$

1882
1883
1884
$$\Delta_r^{(s_3)} = O(\frac{(1-\alpha)}{\alpha} l^2 C_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{-o_1} kmd^2)}}),$$

1885
1886
1887
$$\Delta_r^{(s_4)} = O(\frac{(1-\alpha)}{\alpha} l^2 C_2 \sqrt{\frac{\log l}{C_p d \log(\gamma_{-o_2} kmd^2)}}).$$

1888
1889

1890 Now, as for all $s \in [k]$, $\max_{r \in [m]} \text{Var}(w_r^{(s,T)}) = \Theta(1)$. On the other hand, for any $s \in [k]$ and
 1891 any $r \in [m]$, using the Von-Szokefalvi-Nagy inequality, $\text{Var}(w_r^{(s,T)}) \geq \frac{\beta_r^{(s,T)^2}}{2d}$. Therefore, for all
 1892 $s \in [k]$, $\max_{r \in [m]} \beta_r^{(s,T)} = \Theta(\sqrt{d})$.
 1893

1894

1895 Let us denote the bit-width of the expert $s_1 \in S_{o_1}, s_2 \in S_{o_2}, s_3 \in S_{-o_1}$, and $s_4 \in S_{-o_2}$ by
 1896 $b_{s_1}, b_{s_2}, b_{s_3}$, and b_{s_4} , respectively.
 1897

1898

1899 Therefore, we need
 1900

$$b_{s_1} = \log_2 \left(1 + \frac{\max_{r \in [m]} \beta_r^{(s_1, T)}}{\min_{r \in [m]} \Delta_r^{(s_1)}} \right) \geq \log_2 \left(1 + \Omega \left(\frac{d}{lC_2} \sqrt{\frac{C_p \log(\gamma_{o_1} kmd^2)}{\log l}} \right) \right).$$

1901

$$\text{Similarly, we need } b_{s_2} \geq \log_2 \left(1 + \Omega \left(\frac{d}{lC_2} \sqrt{\frac{C_p \log(\gamma_{o_2} kmd^2)}{\log l}} \right) \right),$$

1902

$$b_{s_3} \geq \log_2 \left(1 + \Omega \left(\frac{\alpha d}{(1-\alpha)l^2C_2} \sqrt{\frac{C_p \log(\gamma_{-o_1} kmd^2)}{\log l}} \right) \right),$$

1903

$$\text{and } b_{s_4} \geq \log_2 \left(1 + \Omega \left(\frac{\alpha d}{(1-\alpha)l^2C_2} \sqrt{\frac{C_p \log(\gamma_{-o_2} kmd^2)}{\log l}} \right) \right).$$

1904

1905 Now, from statement (ii) of Lemma I.1, by selecting $\kappa \geq \gamma$, we can ensure that $\forall s_1 \in S_{o_1}$, and
 1906 $\forall s_2 \in S_{o_2}, b_{s_1}, b_{s_2} = b_h$.
 1907

1908

1909 As $\gamma_{o_1}, \gamma_{o_2}, \gamma_{-o_1}, \gamma_{-o_2}$ are $\Omega(1)$, we need
 1910

1911

$$b_h \geq \log_2 (1 + \Omega(d \sqrt{C_p \log(kmd^2) / l^2 C_2^2 \log l})), \text{ and}$$

1912

$$b_l \geq \log_2 (1 + \frac{\alpha}{1-\alpha} \Omega(d \sqrt{C_p \log(kmd^2) / l^2 C_2^2 \log l})), \text{ to ensure that,}$$

1913

$$\mathbb{P}[\forall (x, y) \sim \mathcal{D} : y f_Q^{(T)}(x) > 0] = 1$$

1914

□

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943