Under review as a conference paper at ICLR 2026

UTILIZING EVOLUTION STRATEGIES TO TRAIN
TRANSFORMERS IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We explore the capability of evolution strategies to train an agent with a pol-
icy based on a transformer architecture in a reinforcement learning setting. We
performed experiments using OpenAl’s highly parallelizable evolution strategy
to train Decision Transformer in the MuJoCo Humanoid locomotion environment
and in the environment of Atari games, testing the ability of this black-box op-
timization technique to train even such relatively large and complicated models
(compared to those previously tested in the literature). The examined evolution
strategy proved to be, in general, capable of achieving strong results and man-
aged to produce high-performing agents, showcasing evolution’s ability to tackle
the training of even such complex models.

1 INTRODUCTION

The problem of reinforcement learning is considered one of the most difficult in the field of ma-
chine learning. There are many approaches to solving it (Sutton & Barto, 2018)). Some are based on
computing a gradient to optimize the objective, some are derivative-free. One such class of general
derivative-free optimization algorithms are evolutionary algorithms (De Jong| [2016). Their subclass
of evolution strategies (Rechenberg), (1973) has been proved to be a viable alternative to gradient
approaches for the (deep) reinforcement learning (Pagliuca et al.| 2020). Although the gradient
approaches generally have better sample utilization, the evolution strategies are greatly paralleliz-
able. Moreover, evolution strategies have better exploration of possible solutions and the agents
trained using these methods are usually more diverse than those trained by the gradient-based al-
gorithms. They can even incorporate techniques that vastly improve the exploration even more,
such as searching for novelty instead of, or in addition to just seeking better performance. This
yields novelty search (Lehman & Stanley, 2011aib) or quality-diversity (Pugh et al., [2016) algo-
rithms. An example of such algorithm for reinforcement learning, that is fairly simple, yet highly
efficient, is OpenAI-ES (Salimans et al., 2017).

Transformer architecture (Vaswani et al., [2017) is lately the go-to solution in the field of neural
networks and supervised learning for an ever-growing range of problems. And recently, there have
been attempts to reformulate reinforcement learning as a sequence modeling problem and to lever-
age the capabilities of the transformers in such tasks to obtain a new approach for solving this class
of problems, yielding models such as Decision Transformer (Chen et al., 2021} or Trajectory Trans-
former (Janner et al., 2021). The Decision Transformer was originally introduced as a model for
offline reinforcement learning using a supervised learning of sequence prediction, but the authors
claim it would function well even in the classical reinforcement learning tasks.

We decided to subject the combination of the evolution strategies and the Decision Transformers
to experiments, and test the ability of derivative-free algorithms to train this more complicated
and bigger — compared to the simple feedforward models that had been experimented with in the lit-
erature so far — transformer architecture. It might be the case, that for large and complicated models
it may be hard, or even almost impossible, to be trained from scratch using an evolutionary approach.
Therefore, we wanted to experiment with first pretraining the agent using a supervised learning of se-
quence prediction on data generated by a smaller, potentially weaker model, which can be trained
using any arbitrary reinforcement learning method. We are not searching for use cases where we gain
an edge over existing approaches by using Decision Transformers trained via evolution; rather we
aim to show that evolution works well even on complex models, and thus we need not hesitate to use

Under review as a conference paper at ICLR 2026

the complex models with, e.g., evolutionary reinforcement learning algorithms (Sigaud, 2023} [Li
et al., [2024), the hybrid state-of-the-art reinforcement learning algorithms that combine gradients
and evolution, performing better than the two individually.

The main contribution of this paper is demonstrating that evolution strategies can scale
to transformer-based reinforcement learning agents, showing that even a simple algorithm such as
OpenAlI-ES is capable of training large sequence models like the Decision Transformer. We pro-
vide insights into the interaction between gradient-based pretraining and evolutionary optimization,
explaining why pretrained models may hinder evolutionary training and highlighting the inherent
robustness of evolution-trained agents. With experiments in MuJoCo (Todorov et al. 2012) Hu-
manoid and Atari (Bellemare et al.| [2013), we empirically validate the robustness and versatility
of evolution strategies across both continuous-control and high-dimensional visual domains.

2 BACKGROUND

2.1 EVOLUTION STRATEGIES

Evolutionary algorithms are a large and quite a successful family of black-box derivative-free
optimization algorithms. One subclass of such nature-inspired optimization methods are evolu-
tion strategies. Introduced as a tool for dealing with high-dimensional continuous-valued do-
mains (Rechenberg, [1973), evolution strategies work with a population of individuals (real-valued
vectors). In each generation (iteration / population in the iteration), they derive a new set of individ-
uals by somehow mutating (perturbating) the original population; the new set is then evaluated (with
respect to a given objective function), and a new generation is formed based on these new evaluated
individuals taking into account their fitness (objective function value).

In order to use an evolution strategy as a reinforcement learning algorithm, we use agents repre-
sented by a neural network, or, more specifically, by a real-valued vector of the network weights,
as the individuals for the algorithm. Then the only thing needed is to set the fitness of each individ-
ual as the mean return, the mean cumulative reward of the individual agent from several episodes.
Various evolution strategy algorithms were proposed for this purpose (Pagliuca et al., 2020).

In this paper, we will be working with OpenAI-ES (Salimans et al., 2017). The population is rep-
resented by a distribution over the agent’s (neural network’s) parameters, the distribution being
a Gaussian, whose mean value is our current solution to the given problem and from which the off-
springs are sampled each generation. These are then evaluated and their evaluation is used to update
the parameters (in our case only the mean value) of the distribution so that we obtain a higher ex-
pected fitness for the future samples. This update is performed using an approximation of natural
gradient. In our case, when we derive the parameter updates from the Gaussian distribution with
the same variance for each parameter, as demonstrated in a paper by [Pierrot et al.[(2021)), it is ob-
tained by renormalizing (rescaling) the update with respect to uncertainty, in other words dividing
by the variance. The algorithm is also designed in such a way that it is highly parallelizable with in-
terprocess communication kept at bare minimum. For more details or for a discussion of the design
choices, we refer our readers to the original paper (Salimans et al., 2017).

2.2 TRANSFORMERS

Transformers have surged as a new sequence-to-sequence architecture (Vaswani et al.l 2017), as
an alternative to recurrent neural networks. Since then they have yielded great results in natural
language processing (NLP) tasks, fueling even the current surge of chatbots, and they even got
adapted, e.g., to image recognition (Dosovitskiy et al.,|2021). As a rule of thumb, they seem to have
a great generalization power; the greater the larger the model employed. However, they also require
a lot of training data to achieve these great results.

The transformers interlace classical feedforward layers with self-attention layers. And it is the self-
attention to which the transformers owe their success. For each element of an input sequence,
the self-attention constructs a “key”, a “query”, and a “value” using fully connected layers of neu-
rons. Then, to compute an ¢-th element of an output sequence, it takes a combination of all the val-
ues, each weighted proportionally to the product of the query belonging to the given (i-th) position

Under review as a conference paper at ICLR 2026

and a key corresponding to the value — hence combining the information from the whole input se-
quence to produce every single element of the output sequence, as shown by the following equation.

n
output; = Z softmax (query;‘r . all,keys)j - value;

j=1

We can use a mask and for every element hide the part of the sequence that is behind the element,
and so use just the information that came before in the sequence to derive the output. This is called
a causal masking, and such a transformer that uses this masking we then call a causal transformer.

In the problem of reinforcement learning, we want the agent to choose actions at individual
timesteps, such that it maximizes its return. This can be, however, viewed as a sequence model-
ing problem. Thus, the Decision Transformer was introduced (Chen et al.,|2021)).

Its main idea is that we want the agent’s policy to produce an action based on the whole history
(or the part which squeezes into the context window) of past observations and undertaken actions.
And to have some way to affect the agent’s performance, we add a conditioning on a return-to-go,
which is a return we want to obtain from a given step until the end of the episode.

The Decision Transformer consists of a causal transformer; embeddings for returns-to-go, observa-
tions (states of the environment), and actions; position encoder; and a linear decoder to transform
the output of the transformer into actions.

Every timestep, we feed the model with a sequence of past triplets return-to-go, observation, and ac-
tion performed, adding the current return-to-go and observation (and a placeholder for the yet un-
performed action). They get embedded by their respective embeddings, the positional encoding is
added, and everything is then fed through the transformer. We then decode the last output state
of the transformer to obtain the action to be carried out. Every part of the timestep triplet — return-
to-go, observation, and action belonging to the same timestep — shares one positional encoding, as
opposed to the classical transformer, where every input sequence element gets its own. Returns-to-go
are constructed in a recursive manner. The user has to supply the original one for the first timestep
(the desired performance of the model, in other words target return), while for all the following
timesteps the return-to-go is constructed by subtracting the last reward obtained from the return-to-
go belonging to the previous timestep.

2.3 OUR OPENAI-ES IMPLEMENTATION

Mainly due to different computational resources available to us, as well as the need to interchange
the models and the environments, we decided to create our own implementation of OpenAI-ES
Yet, in the process of creating this implementation we noticed some inconsistencies between
the original paper introducing the algorithm (Salimans et al., [2017) and their provided code. We
decided to adhere more to the paper when these dissimilarities occured and here we state our rea-
soning for the two most significant differences.

First and foremost, in the paper (Salimans et al., 2017), the use of a weight decay is mentioned as
a form of keeping the effect of newly added updates still significant enough. After every update, we
decay the weights of our model, which is the distribution mean. In the original implementation, L2-
regularization is used instead. This may be all right for some optimizers, as for, e.g., SGD or SGD
with momentum it is virtually the same as the weight decay (just rescaled by the learning rate).
However, as mentioned in a paper by [Loshchilov & Hutter| (2017), it is not the same, for example,
for ADAM optimizer, which is nonetheless exactly the one used in the original experiments. Our
implementation, on the other hand, remains true to the original paper and uses proper weight decay.
Nevertheless, we employ SGD with momentum in our experiments, as it demonstrated superior
efficacy in our setting during our experiments.

Second, during the update of the distribution parameters, a gradient estimate should be normalized
with respect to the uncertainty using a division by the standard deviation, so that it becomes a nat-
ural gradient estimate. Despite that, in the original OpenAl code, this is not done. There, this is

'Our code, together with all the data gathered during our experiments, can be found on the following link:
GitHub link (anonymized)

Under review as a conference paper at ICLR 2026

probably hidden in the value of a learning rate (which, as a result, differs from ours). However, then
the learning rate and the noise deviation are unnecessarily coupled hyperparameters.

3 EXPERIMENTS

We decided to test the capability of the transformers (in our case, Decision Transformers) to be
trained by evolution strategies in the setting of reinforcement learning.

We chose to use the OpenAlI-ES since in its core it is the simplest evolution strategy possible. It uses
a simple Gaussian distribution with its parameter covariance matrix being justa o -I, a rescaled iden-
tity matrix, hence no covariance is captured in this distribution, nor any difference in significance
(or sensitivity) of different network weights. It does not even update the value of o hyperparam-
eter during training. Therefore, if this evolution strategy works well, the others can only improve
its performance.

We provided our own implementation of the OpenAI-ES and began by a replication experiment
of the original paper, which also serves as a correctness check for our code. Here, we tested the al-
gorithm on a classical feedforward network in the MuJoCo (Todorov et al., [2012) Humanoid en-
vironment using OpenAl Gym (Brockman et al, 2016), whereupon we followed up by proceed-
ing to test the performance of the evolution strategy with the Decision Transformer in the same
environment. We then examined an idea of pretraining the transformer by a behavior cloning
of some smaller and easily trained — yet possibly weaker — model before training the transformer
by the evolution strategy. The last experiments we present are studying the particulars of training
an even larger model in a different environment with a higher-dimensional image input, which is
Hero, one of the Atari games from the Arcade Learning Environment (Bellemare et al., [2013]).

Because training larger models takes more time, and so training the Decision Transformer is par-
ticularly time-intensive, we chose the Humanoid environment as a representative of MuJoCo envi-
ronments, since it is the most complex and challenging among the standard ones. As for the Atari,
we selected the Hero game as an example of a medium-difficulty Atari game. We use Atari mainly
to demonstrate training behavior on an even more complex environment with a more complex visual
input, rather than to show that we can solve all its games.

In all the experiments with Decision Transformers, we used the same hyperparameter values for
the model as used in the original paper (Chen et al., [2021) for the respective environments. For
comparison, the model sizes are 166 144 parameters for the feedforward model from the original
OpenAlI-ES paper (Salimans et al., |2017), 825098 parameters for the Decision Transformer for
MuJoCo Humanoid environment and 2 486 272 parameters for Atari games environment.

For all the experiments, we conducted ten runs of the training. For every run of each of the ex-
periments, 300 workers were used utilizing 301 CPU cores (with one being a master handling syn-
chronization, evaluation, and saving the agent). Given the computational complexity of the task
and the fact that our goal is to demonstrate that the evolution is able to train the transformer,
we did not wait for the run to converge. Instead, at the beginning, we assigned each run a specific
number of iterations it could use to train the model. The desired returns passed to all the Decision
Transformer models at the beginning of each episode were 7000 for the Humanoid Decision Trans-
former and 8000 for the Atari Decision Transformer. Note, that in the original Decision Transformer
paper (Chen et al.l |2021)), for MuJoCo environments they rescale the rewards and returns-to-go di-
viding them by 1000. All the figures reporting fitness progression during the evolution training
in Humanoid environment work with these rescaled returns as well.

Unless stated otherwise in the individual experiment descriptions, all the other hyperparameter val-
ues can be found as default values in our codebase or in Table [2]in Appendix.

To have a baseline to compare our experiments with the Decision Transformer to, we use the feedfor-
ward model trained using the OpenAI-ES during our first experiment described in Section[3.1] How-
ever, to also have some initial comparison to the gradient-based methods, we wanted to try and train
the Decision Transformer using gradients. The problem with this is that the Decision Transformer
is originally intended as an offline reinforcement learning model. There exists a so-called Online
Decision Transformer (Zheng et al., 2022), but even it assumes starting with some pretraining. Al-
though its architecture slightly differs from the classical Decision Transformer — it mainly differs

Under review as a conference paper at ICLR 2026

Fitness

 —

25 50 75 100 125 150 175 200
Iteration

Figure 1: Median and quartiles of the best fitness values so far for all the main experiments done
in the Humanoid environment for ten runs each. “FF” shows the training of a classical feedforward
network using OpenAI-ES. “DT” shows the training of a Decision Transformer using OpenAI-ES.
“Pre” shows the training of a pretrained Decision Transformer using OpenAI-ES. (This experiment
differs from the previous two by the fact that its number of iterations was smaller since the model
was pretrained, which is the reason why its line ends in the middle of the plot.) Finally, the “TD3”
horizontal line shows the final average performance of the best Decision Transformer trained by TD3
in a given time.

in the action decoding layer, where a stochasticity is added — we tried to obtain the gradient baseline
by training it using its standard training loop, just without any initial pretraining on precollected
trajectories. However, the Online Decision Transformer proved to be unable to efficiently improve.
Hence, we moved our attention to classical online reinforcement algorithms, even though those re-
quired a certain degree of creativity to make them work, since the Decision Transformer does not
take only the last state as an input, but whole sequences of recent states, actions and the corre-
sponing returns-to-go. Thus, we utilized a TD3 (Fujimoto et al.| [2018)), a state of the art gradient
reinforcement learning algorithm, implemented by Stable Baselines3 library (Raffin et al., 2021}
We ran the training for 1500000 timesteps — with this number of timesteps on one CPU (envi-
ronment simulation) and one GPU (gradient training) it ran for roughly a similar wall-clock time
as our experiments with OpenAI-ES in Section Still, with more timesteps, the model would
probably continue to improve. We conducted five runs of this gradient training in Humanoid envi-
ronment and selected the final average performance of the best trained model as a baseline that is then
shown in Figure[l| As we can see, the evolution is currently the only standard online reinforcement
learning approach that can be applied to training the Decision Transformer without any adjustment,
the gradient-based ones are either non-functional or need to be modified first.

3.1 FEEDFORWARD - HUMANOID

As stated before, the first experiment serves as a replication experiment for the original OpenAI-ES
paper (Salimans et al.,|2017), as well as a sanity check of our implementation. It consists of training
a feedforward model using OpenAI-ES in Humanoid environment. The hyperparameters are thus
mostly directly copied from the original paper, with the exception of those affected by our imple-
mentation changes (e.g., a learning rate) which were set manually through experiments. We can see
in Figure[T] that our implementation is functional and is comparable in performance with the original
implementation. The progression of the training shown in the figure also serves as a benchmark
against which the results of other experiments can be compared.

3.2 DECISION TRANSFORMER - HUMANOID

In this experiment, we inspected the ability of the given evolution strategy to train a more compli-
cated model. We trained a Decision Transformer model using OpenAI-ES, again in the Humanoid
environment. Because the model is almost five times larger, we quadrupled the size of the population
the algorithm works with. The results are shown in Figure[I} There, we can see that the algorithm
is fully capable of training our larger model, achieving very good results using a constant number
of iterations (albeit at the expense of a longer wall-clock runtime).

Under review as a conference paper at ICLR 2026

10 10
—— Ours —— Ours

8 Half population 8 Half population

—— Standard, no VBN

—— Standard, with VBN

Fitness

25 50 75 100 125 150
Iteration

(a) Without pretraining

175 200

Fitness

Vil

20 40 60 80 100
Iteration

(b) With pretraining

Figure 2: Results of the ablation studies for training of Decision Transformers using OpenAI-ES
done in the Humanoid environment for ten runs each, aggregated into medians and quartiles. Fig-
ure [2a] shows the fitness progression of the best yet found model for a training without first pre-
training the model. “Ours” stands for our setting of hyperparameters; “Half population” is the same
except the size of the population is cut in half. Figure[2b|shows the best-yet fitness values for a train-
ing utilizing pretraining. “Ours” and “Half population” are analogous to Figure 2a} “Standard, no
VBN” has the same hyperparameters as when no pretraining was used, so the same as experiment
in Section but the virtual batch normalization is not used; “Standard, with VBN has exactly
the same hyperparameters as when training without the pretraining.

Because a larger population increases the time needed for the computation with the same available
resources, a question arises whether such increase in population is truly necessary. Therefore, we
also explored whether it is necessary to use such a substantial population or whether half of it would
be sufficient. The results of this ablation study can be seen in Figure Za] We can see that even
though the algorithm is sometimes still capable of training the model, more often than not it does
not succeed in doing so.

Last, we want to check whether the trained models respond to different returns-to-go passed
to the model at the beginning of each episode as the desired performance, the target return. Hence,
we simulated the trained model in the environment with various intitial return-to-go values. The re-
sults of these experiments can be found in Table[I] We can see there is no significant difference
between the results of the models with distinct returns-to-go passed.

Table 1: Median and quartiles of the average (unrescaled) returns of the trained models with different
initial return-to-go argument values

Return-to-go QI return Median return Q3 return

—1000 7466 8447 8721

0 7467 8440 8730

7000 7505 8370 8672
1000 000 7489 8354 8667

3.3 DECISION TRANSFORMER - HUMANOID - PRETRAINED

The core idea behind this experiment is that if we have a really large model with many parameters,
it might be quite hard for the algorithm to gain enough information from just sampling in a neigh-
borhood of a randomly initialized model. Hence what we might try to do is first pretrain the model
using behavior cloning towards some smaller, easily trained yet possibly weaker model and only
then utilizing the evolution strategy to further improve the large pretrained model.

Yet, this approach has its costs. First, the OpenAI-ES uses virtual batch normalization (VBN) (Sal-
imans et al., 2016). This changes the inputs to the model as the training progresses. So, either we
would have to use VBN even during the pretraining, or we cannot use the VBN during the following

Under review as a conference paper at ICLR 2026

8000
10000
7000 =
2
6000 g 8000
[
» 5000 23
@ © 6000
2 4000 £
* 3000 4000
S
2000 =
2000
1000 =
0 0
10 20 30 40 50 60 10 20 30 40 50 60
Iteration Iteration
(a) Evaluation results (b) Wall-clock time

Figure 3: Median and quartiles of fitness values and wall-clock time for OpenAI-ES used on a De-
cision Transformer model for Atari game Hero in ten runs of the experiment. Figure [3a] shows
us the best-yet evaluation results after every iteration of the algorithm. In Figure [3b] we can see
the wall-clock time the training needed each iteration in seconds.

training with the evolution strategy. We opted for the second possibility, as it is more general and al-
lows us to showcase a further training of any model we might have using the evolution strategy, even
though the first option would be more favorable for the algorithm, as the VBN improves its relia-
bility (Salimans et al., [2017)) — it should, however, be reportedly most important when the model is
mostly random at the beginning of the training.

Second, using the same values for learning rate and noise deviation hyperparameters as when train-
ing from scratch leads to a complete randomization of the model at the beginning of the training
and then the training proceeds as if from scratch. So, for the pretraining to have an effect, we have
to decrease both values (to 0.01 in our experiment). This, in turn, leads to a slower progression
of the training.

Hence, again in the Humanoid environment, we pretrained the Decision Transformer using a be-
havior cloning to a feedforward model trained using SAC algorithm (Haarnoja et al., [2018]), before
training it further using OpenAI-ES. The feedforward model and the pretrained Decision Trans-
former had a fitness value around 4. The results of the subsequent training of the pretrained Decision
Transformer using the evolution strategy are shown in Figure [T} Even though our approach is capa-
ble of training the model, the progression (the improvement) is visibly slower than in the previous
section without the pretraining — except for the initial phase.

Again, we explored the possibility of utilizing a smaller population for this training. As can be seen
in Figure[2b] this time, although the reliability of the training is again diminished, most of the time
the algorithm works surprisingly well compared to how it works with the full population. Still,
there was a single run in which the model did not manage to improve.

Next, we tried using standard (i.e. the same as in the previous experiment without the pretraining)
values for the learning rate and noise deviation hyperparameters both with and without the VBN,
as illustrated in Figure Without the VBN the training showed no progression at all, and with
the VBN the training started to show similar patterns towards the end of the training in a few cases
as the one from Section [3.2] yet still was maybe a bit slower.

3.4 DECISION TRANSFORMER - ATARI

As a final experiment, we tested the ability of OpenAI-ES to train an even larger Decision Trans-
former in Atari games environment, more specifically, in the game Hero. Again, since the model is
approximately three times bigger than in the previous experiments, we further doubled the popula-
tion size for the algorithm. Even though Figure [3a) shows that a gradual improvement of the model
really does occur, Figure [3breveals that it is accompanied by quite a significant increase in the time
required to process a single iteration. This is due to a slower model inference, as the model is
substantially larger, as well as longer episodes in the environment. (For the other experiments,

Under review as a conference paper at ICLR 2026

the wall-clock time is not as interesting but can nonetheless be found alongside all the remaining
collected data.) We did not include a gradient baseline for this experiment, as it primarily serves
to showcase the much longer training durations required for such large models.

In Figure [3b] we can see an interesting pattern with a spike at the beginning of the training, so let
us just note that it is something domain dependent. At the beginning, the agent performs random
actions, which leads it to repeatedly blow itself up, hence we get relatively short episodes. Then it
learns that planting the bombs randomly is not a good idea and stops ending the episodes prema-
turely. And then it gradually learns how to get further and further through the levels of the game,
but this comes at the cost of it occasionally blowing itself up again, yet this time it at least serves its
progression through the game.

4 DISCUSSION

As we can see by comparing the experiments in Figure |1} the larger Decision Transformer model
seems to have a fitness advantage during the training over the smaller feedforward model. But
what is more important, OpenAI-ES appears to be capable of training it without any substantial
problems, although the process takes longer. However, the training is less robust — during one
experiment run, the model failed to achieve any significant improvement. This might have been
caused simply by an inconvenient seed, when the perturbations tested during the training were not
suitable. Or this might be caused by one design choice of the algorithm, where for better runtime
the values for perturbations are pregenerated at the beginning of the training and so for the larger
models we might have to generate more values at the beginning. Or maybe we might simply need
to further increase the population size for greater robustness.

Regarding our specific usage of the algorithm on Decision Transformers, we need to settle one thing.
As we introduced in Section [2.2] Decision Transformer operates with return-to-go tokens, which
in the original paper (Chen et al.,|2021) serve as a desired return the agent should achieve in a re-
mainder of an episode. This works well when training in the original offline reinforcement learning
manner, but when using the evolution strategy to train the Decision Transformers in our online set-
ting, there is no pressure to take these tokens into account, and thus the tokens are then ignored, as
can be seen in Table [} Nonetheless, we believe that only a minor modification of the algorithm
may induce the agent to pay attention to these tokens. Let us propose an outline of such modifi-
cations for a possible future work. Each evaluation would consist of several subevaluations; each
subevaluation would be assigned a desired return sampled from a A(u, o), a normal distribution
centered at p with variance o. The value of p should be computed from the returns obtained during
the previous iteration in such a manner that it is within an interval between the best return ob-
tained and the mean return obtained during the last iteration, so an improvement is gradually made.
The variance o would be a hyperparameter, or it could possibly be a variation of the returns obtained
during the last iteration. The fitness of an individual would not be the mean of its returns obtained,
as is the case in OpenAI-ES, but rather a decreasing function of the absolute values of the differences
between the return obtained and the desired return in each subevaluation; ergo, the larger the differ-
ences, the smaller the fitness. This might be, e.g., the negative of a weighted sum of the differences.

Now, let us examine the experiments utilizing the pretraining described in Section[3.3] As we noted
in the section when explaining the hyperparameter values, the pretraining does not perform very
well. In order for us to be able to use the pretrained model as a base for further training — even if
we would be using VBN already during the pretraining — we have to substantially reduce the ability
of the algorithm to further improve the model, because we have to change the learning rate and noise
deviation hyperparameters to smaller values. Hence, we get slower learning and less exploration per
1teration.

Even when doing so, we can see in Figure 1| that the model first gets “broken” — its performance
worsens during first few iterations, the best-yet found does not improve — before it starts to improve
again. Nevertheless, the improvement comes in terms of iterations much sooner than when no
pretraing is utilized (and it somewhat works even with smaller population). Furthermore, we can
observe by inspecting rollouts of both the initial and final models that those two show similar gaits.
This similarity gets even more accentuated, when compared to the diversity in final behaviors that
are yielded from the experiment in Section[3.2] so when the algorithm is run without the pretraining.

Under review as a conference paper at ICLR 2026

Therefore, we can see that when initialized by the pretrained model the training clearly builds upon
the seeded model, despite its initial deterioration.

We hypothesize the reason for the above-mentioned deterioration at the beginning of the training
from pretrained model, as well as the need for the aforementioned change of hyperparameters is
the following: Gradient training — of which the behavior cloning is a representant — follows a differ-
ent overall goal than the evolution strategy. It strives for the best possible parameters of the model
it trains with regard to its loss function. In our case of behavior cloning, this means that we want
to get our model to behave exactly as the one we are cloning towards. Nonetheless, this tells us
nothing about how the model behaves when we perform a slight perturbation of parameters. Hence,
after the perturbation, the model is likely to no longer function properly — or at least as well — any-
more. So we can say that the model is brittle in a sense that even a slight change of parameters is
likely to somehow break the model. This is, however, in stark contrast to how the evolution strategy
operates and what it tries to achieve. The goal of the evolution strategy is not only that its current
model performs as well as possible, but that we get the best possible behavior in expectation when
sampling model parameters from its current distribution. Thus, we believe the models trained by
the evolution strategy might be considered more robust — that might help, e.g., in areas where we
train on precise hardware, but the model needs to be afterwards deployed on a cheaper hardware
with less precision, where the weights of the model need to be rounded. Ergo, the algorithm needs
to first, let us say, “robustify” the model and only then it can train it towards a better performance.
This would be supported by the findings of |Lehman et al.|(2018).

Regardless, in the end, the results shown in Section [3.2] suggest that the pretraining is not really
necessary. But then what explains why the problem stated at the beginning of Section does not
occur in practice? We think a possible answer is that the algorithm improves not only by shifting
model weights towards the better performing individuals of the population, but when there are no
really better individuals in the population, it does so mostly by shifting the weights away from
the worst performing individuals, as the majority of the population consists of worse individuals.
This might indicate why the algorithm does not really struggle with training larger and more complex
models, where it is even harder to stumble onto a working solution just by adding some noise
to the model parameters.

Finally, let us just briefly comment on Section [3.4] The OpenAI-ES is capable of training even
such larger models, but the larger the model the more computing power is required for the training
to be concluded in a timely manner. Compared to sizes of transformer models powering current
chatbots, the Decision Transformer used to learn the Atari game is miniscule, and even so it re-
quired a lot of wall-clock time to undertake just tens of iterations of the training on lower hundereds
of CPUs. Hence, training really large transformer would require a gargantuan number of CPUs —
but again, that is, at least in theory, not something unachievable. Another option is then to em-
ploy more advanced evolution strategy algorithms, possibly incorporating techniques improving
efficiency. Such techniques might include utilizing a surrogate model, as can be seen, e.g., in SERL
(Wang et al.| 2022). This remains to be further explored.

5 CONCLUSION

We have investigated the ability of OpenAI-ES (and, in extension, of similar evolution strategies)
to train larger and more complex models than the standard feedforward ones used in the literature
so far in the reinforcement learning. We have also suggested a method to help this training by
pretraining the model using behavior cloning towards some smaller, possibly weaker, yet easier
to train model. However, the evolution strategy proved to be capable of training large models,
whereas the pretraining showed multiple flaws during the experiments. Still, it helped us shed
light onto the field of hybridizing gradients and evolution strategies, as we have discussed based
on our experiments. It helped us understand why the sequential combination of first training using
gradients and then proceeding to train using similar distribution-based evolution strategies might
not work well. And it also allowed us to hypothesize that the distributional evolution strategies
like OpenAI-ES may yield robust models, which are less prone, e.g., to rounding the weights due
to low-precision hardware they might be deployed on.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility of the results presented in this paper, we publish the complete codebase
as well as all the data from the undertaken experiments on GitHub, which will be linked in the non-
anonymized version of the paper. (The code is also enclosed in the supplementary materials to the
submission, the data are too large and take too much storage space.)

REFERENCES

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
06 2013. ISSN 1076-9757. doi: 10.1613/jair.3912. URL http://dx.doi.org/10.1613/
Jair.3912l

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl Gym. arXiv, 06 2016. doi: 10.48550/arXiv.1606.01540.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via
sequence modeling. arXiv preprint arXiv:2106.01345, 2021. doi: 10.48550/arXiv.2106.01345.

Kenneth A. De Jong. Evolutionary Computation. The MIT Press, 2016. ISBN
9780262529600. URL |https://mitpress.mit.edu/9780262529600/
evolutionary-computation/!|

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1587-1596. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.
press/v80/fujimotol8a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. ArXiv, 2018. doi: 10.
48550/arXiv.1801.01290. URL https://arxiv.org/abs/1801.01290.

Yang YU Hong QIAN. Derivative-free reinforcement learning: a review. Frontiers of Computer
Science, 15(6):156336, 2021. doi: 10.1007/s11704-020-0241-4. URL https://journal.
hep.com.cn/fcs/EN/abstract/article_29276.shtml.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as
one big sequence modeling problem. In Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 1273-1286. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper_files/paper/2021/file/
099febb0b444c23836c4ab5d07346082b—-Paper.pdf.

Joel Lehman and Kenneth O. Stanley. Novelty Search and the Problem with Objectives, pp. 37—
56. Springer New York, New York, NY, 2011a. ISBN 978-1-4614-1770-5. doi: 10.1007/
978-1-4614-1770-5_3. URL https://doi.org/10.1007/978-1-4614-1770-5_3.

Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evol. Comput., 19(2):189-223, jun 2011b. ISSN 1063-6560. doi: 10.1162/
EVCO0_a_00025. URL https://doi.org/10.1162/EVCO_a_00025.

Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O. Stanley. ES is more than just a traditional
finite-difference approximator. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’18, pp. 450-457, New York, NY, USA, 2018. Association for Computing

10

http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
https://mitpress.mit.edu/9780262529600/evolutionary-computation/
https://mitpress.mit.edu/9780262529600/evolutionary-computation/
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://arxiv.org/abs/1801.01290
https://journal.hep.com.cn/fcs/EN/abstract/article_29276.shtml
https://journal.hep.com.cn/fcs/EN/abstract/article_29276.shtml
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://doi.org/10.1007/978-1-4614-1770-5_3
https://doi.org/10.1162/EVCO_a_00025

Under review as a conference paper at ICLR 2026

Machinery. ISBN 9781450356183. doi: 10.1145/3205455.3205474. URL https://doi.
org/10.1145/3205455.3205474!

Pengyi Li, YAN ZHENG, Hongyao Tang, Xian Fu, and Jianye HAO. Evorainbow: Combining im-
provements in evolutionary reinforcement learning for policy search. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
75Hesb6Zsedl

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

Amjad Yousef Majid, Serge Saaybi, Vincent Francois-Lavet, R. Venkatesha Prasad, and Chris
Verhoeven. Deep reinforcement learning versus evolution strategies: A comparative survey.
IEEE Transactions on Neural Networks and Learning Systems, 35(9):11939-11957, 2024. doi:
10.1109/TNNLS.2023.3264540.

Paolo Pagliuca, Nicola Milano, and Stefano Nolfi. Efficacy of modern neuro-evolutionary strategies
for continuous control optimization. Frontiers in Robotics and Al, 7, 2020. ISSN 2296-9144.
doi: 10.3389/frobt.2020.00098. URL https://www.frontiersin.org/articles/
10.3389/frobt.2020.00098.

Thomas Pierrot, Nicolas Perrin-Gilbert, and Olivier Sigaud. First-order and second-order vari-
ants of the gradient descent in a unified framework. In Igor Farka§, Paolo Masulli, Sebastian
Otte, and Stefan Wermter (eds.), Proceedings of the International Conference on Artificial Neu-
ral Networks (ICANN 2021), pp. 197-208, Cham, 2021. Springer International Publishing. doi:
10.1007/978-3-030-86340-1_16.

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers in Robotics and Al, 3,2016. ISSN 2296-9144. doi: 10.3389/frobt.
2016.00040. URL https://www.frontiersin.org/articles/10.3389/frobt.
2016.00040.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Ingo Rechenberg. Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biol-
ogischen Evolution. Friedrich Frommann Verlag, Stuttgart-Bad Cannstatt, Germany, 1973. ISBN
377280374. URL |https://api.semanticscholar.org/CorpusID:60975248.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pp. 2234-2242, Red Hook, NY, USA,
2016. Curran Associates Inc. ISBN 9781510838819. URL https://dl.acm.org/doi/
10.5555/3157096.3157346.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv, abs/1703.03864, 2017. URL https://api.
semanticscholar.org/CorpusID:11410889.

Olivier Sigaud. Combining evolution and deep reinforcement learning for policy search: A survey.
ACM Trans. Evol. Learn. Optim., 3(3), September 2023. doi: 10.1145/3569096. URL https:
//doi.org/10.1145/3569096.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. ArXiv, abs/1712.06567, 2017. URL https:
//api.semanticscholar.org/CorpusID:5044808.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, 2 edition, 2018. ISBN 9780262039246. URL https://mitpress.mit.edu/
9780262039246/ reinforcement—learning/.

11

https://doi.org/10.1145/3205455.3205474
https://doi.org/10.1145/3205455.3205474
https://openreview.net/forum?id=75Hes6Zse4
https://openreview.net/forum?id=75Hes6Zse4
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://www.frontiersin.org/articles/10.3389/frobt.2020.00098
https://www.frontiersin.org/articles/10.3389/frobt.2020.00098
https://www.frontiersin.org/articles/10.3389/frobt.2016.00040
https://www.frontiersin.org/articles/10.3389/frobt.2016.00040
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://api.semanticscholar.org/CorpusID:60975248
https://dl.acm.org/doi/10.5555/3157096.3157346
https://dl.acm.org/doi/10.5555/3157096.3157346
https://api.semanticscholar.org/CorpusID:11410889
https://api.semanticscholar.org/CorpusID:11410889
https://doi.org/10.1145/3569096
https://doi.org/10.1145/3569096
https://api.semanticscholar.org/CorpusID:5044808
https://api.semanticscholar.org/CorpusID:5044808
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://mitpress.mit.edu/9780262039246/reinforcement-learning/

Under review as a conference paper at ICLR 2026

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033,
2012. doi: 10.1109/IROS.2012.6386109.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, tukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Yuxing Wang, Tiantian Zhang, Yongzhe Chang, Xueqian Wang, Bin Liang, and Bo Yuan.
A surrogate-assisted controller for expensive evolutionary reinforcement learning. [Informa-
tion Sciences, 616:539-557, 2022. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.
2022.10.134. URL https://www.sciencedirect.com/science/article/pii/
S0020025522012658.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jiirgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15(27):949-980, 2014. URL
http://jmlr.org/papers/vl5/wierstralda.htmll

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 27042-27059. PMLR, 17-23 Jul 2022. URL
https://proceedings.mlr.press/v162/zheng22c.html.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0020025522012658
https://www.sciencedirect.com/science/article/pii/S0020025522012658
http://jmlr.org/papers/v15/wierstra14a.html
https://proceedings.mlr.press/v162/zheng22c.html

Under review as a conference paper at ICLR 2026

A APPENDIX

Table 2: Hyperparameter values throughout the experiments (FF - Humanoid Feed Forward; DT -
Humanoid Decision Transformer; Pre - Humanoid Decision Transformer Pretrained; Atari - Atari
Decision Transformer)

Hyperarameter FF DT Pre Atari Function
rtg N/A 7000 7000 8000 Return-to-go (unscaled)
that should be passed to
the transformer

size_of_population 5000 20000 20000 40000 = Size of sampled popula-
tion in each generation
num_of_iterations 200 200 100 60 Number of iterations

/ generations the
OpenAlI-ES will run for
noise_deviation 0.02 0.02 0.01 0.02 Standard deviation
value for OpenAI-ES’s
distribution
weight_decay_factor 0.995 0.995 0.995 0.995 Decay factor of weights
of the model after each
update
batch_size 1000 1000 1000 100 Size of a batch for a
batched weighted sum
of noises during model
update
update_vbn_stats_probability 0.01 0.01 0. 0.01 Probability of using the
data obtained during
evaluation to update the
Virtual Batch Normal-
ization statistics

optimizer SGDM SGDM SGDM SGDM Optimizer used in ex-
periments
learning_rate 0.05 0.05 0.01 0.05 Learning rate (or step
size)

THE USE OF LARGE LANGUAGE MODELS

The LLMs were used in a few places to improve the language of the paper and to translate several
formulations to English.

13

	Introduction
	Background
	Evolution Strategies
	Transformers
	Our OpenAI-ES Implementation

	Experiments
	Feedforward - Humanoid
	Decision Transformer - Humanoid
	Decision Transformer - Humanoid - Pretrained
	Decision Transformer - Atari

	Discussion
	Conclusion
	Appendix

