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Abstract

Recent advances in diffusion models have significantly enhanced image editing capabilities,
raising serious concerns about copyright protection. Traditional watermarks often fail to
withstand diffusion-based edits, making image protection challenging. To address this, we
propose a method that embeds an imperceptible perturbation in images, serving as a water-
mark while simultaneously disrupting the output of latent diffusion models. Our approach
employs a Score Estimator trained on select latent embeddings to embed the watermark by
minimizing the score function. We then apply conformal inference to compute p-values for
watermark detection. To distort the output of latent diffusion models, we shift watermarked
image embeddings away from the distribution mean, distorting unauthorized generations.
Experiments demonstrate our framework’s superior performance in watermark detection,
imperceptibility, and robustness against attacks, offering a comprehensive approach to pro-
tect images against latent diffusion models.

1 Introduction

Traditional methods for protecting image copyrights often rely on embedding imperceptible messages as
digital watermarks into images (Zhu et al., 2018). These watermarks allow creators to verify ownership by
detecting their presence in suspected unauthorized copies. Although effective against direct misuse, such
approaches face limitations with the emergence of generative models, particularly diffusion models (Dhariwal
& Nichol, 2021).

Generative diffusion models such as DALL·E (Ramesh et al., 2022) and Stable Diffusion (Rombach et al.,
2022) have emerged as powerful tools for generating high-quality synthetic images. By learning the underlying
distribution of a given dataset, these models can produce novel images that closely resemble the training data
(Song et al., 2020). However, their accessibility raises serious copyright concerns. First, feeding watermarked
images into diffusion pipelines (e.g., for editing or style transfer) can degrade or distort embedded watermarks
in the output, complicating detection (Mareen et al., 2024). Second, malicious users can exploit diffusion
models to generate new images using watermarked images as training data, further complicating copyright
protection efforts.

These vulnerabilities threaten creators’ rights and creative integrity, for example, having their original works
replicated or modified without permission. Traditional watermarking techniques that focus on embedding
invisible information within images fail to address this challenge: they neither prevent the generation of new
images nor the modification of the original using diffusion models; nor do they ensure watermark robustness
against diffusion-based generation processes.

In this work, we propose a novel dual-protection framework designed to address both image watermarking
and the prevention of misuse by latent diffusion models (LDM). Our approach introduces an adversarial
perturbation that acts as a watermark by leveraging a Score Estimator trained on the latent embeddings
generated by an LDM encoder (Esser et al., 2021) (Figure 1). The watermark is made invisible by constraining
the perturbation strength to ensure minimal perceptual change. To statistically verify the presence of
a watermark, we employ conformal inference (Angelopoulos & Bates, 2021), which calculates p-values to
determine whether an image is watermarked and provides a rigorous guarantee for controlling type-1 errors.

1



Under review as submission to TMLR

LDM

Score 

Estimator

Watermarked 

Image

Distorted 

ImageWatermark

Conformity Score

Adversarial

Optimization

Prompt: 

Convert the 

image into 

a painting

Our Method

𝐼𝑜

𝑧

Embedding

KeyWatermark 
Model

Prompt

Diffusion Model

Existing Methods

𝐼𝑜

Regenerated

Figure 1: Existing methods that embed a predefined key as watermark cannot prevent malicious users from
using these images to re-generate or train a latent diffusion model (LDM). Our method generates unique
watermarks using adversarial optimization that minimizes a loss over the latent space and a conformity
score. We shift the watermarked image’s distribution to a low sampled region of the LDM’s latent space
which prevents the LDM to further train or sample from it, resulting in distorted outputs. Moreover, we
can detect the presence of our watermark using a statistical test satisfying our dual protection goal.

Additionally, the adversarial perturbations are designed to shift the latent embedding of watermarked images
away from the mean of the embedding distribution, placing them in low-density regions. As a result, when
a LDM tries to use this image as input, it forces the model to generate visibly distorted outputs, ensuring
detectable artifacts while maintaining watermarking objectives. The key contributions of our work are as
follows:

• We propose a dual-protection framework that introduces an invisible perturbation to images, serving as
a watermark while simultaneously distorting the output of LDMs.

• Our method leverages conformal inference to calculate p-values for watermark detection, providing a
statistically robust approach to identifying watermarked images.

• Unlike previous watermarking techniques, our framework is designed to prevent malicious users from
directly claiming ownership of a watermarked image using its embedding (Case 2 of Section 5.7). By
utilizing conformal inference, the selection of watermark dimensions remains hidden, making any malicious
claim of ownership no better than a random guess. This significantly strengthens the defense against
unauthorized ownership assertions.

In summary, our approach provides a comprehensive solution for copyright protection against known or
anticipated LDMs. By embedding invisible perturbations that act as both watermarks and deterrents to
misuse, we offer a novel mechanism for protecting creative works while ensuring that LDMs cannot be easily
exploited to generate unauthorized content.

2 Related Work

2.1 Adversarial Attacks

In computer vision, adversarial examples are subtly altered images designed to manipulate neural network
models while remaining nearly imperceptible (Szegedy et al., 2013). In image classification, these examples
can cause models to misclassify images. In diffusion models, adversarial attacks introduce undetectable
changes that result in distorted outputs, revealing tampering. Salman et al. (2023) identify two types of
adversarial attacks on LDMs: encoder and diffusion attacks. Both involve small perturbations, with encoder
attacks modifying the encoder’s output to resemble a predefined embedding, and diffusion attacks aiming
to match the model’s output to a target image. The Glaze model protects artists’ styles from unauthorized
replication by incorporating invisible perturbations that distort styles learned by diffusion models (Shan
et al., 2023).
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Figure 2: Pipeline of our proposed method. (a) The input image Io is passed through a feature embedding
model F to obtain the key vector Kv and a latent diffusion model encoder E to get the latent space vector
z. The label y is calculated using Equation 2. We use conformal inference to generate a score ss of the key
vector. The watermark for the input is a perturbation embedding generated by minimizing the loss over ss

and z. (b) Prior to watermark generation, we pretrain F using a large set of images in order to generate
key vectors which are drawn from the mean distribution of the dataset. (c) To detect whether an image is
watermarked or not, we calculate a p-value based on the score. If the value falls below a certain threshold
α we can claim that the image is watermarked.

2.2 Image Watermarking

Image watermarking embeds invisible information within images to establish copyright claims (Cox et al.,
2007; Urvoy et al., 2014). With the rise of diffusion models capable of producing high-quality images,
traditional digital watermarking techniques, like HiDDeN (Zhu et al., 2018) and SSL (Fernandez et al.,
2022) face new challenges. Zhu et al. (2018) introduced HiDDeN, an end-to-end CNN framework comprising
an encoder, decoder, and adversarial network. Fernandez et al. (2022) employed self-supervised learning
networks to embed watermarks in the latent spaces of pre-trained models. Recent work by Wen et al.
(2023) proposes Tree-Ring Watermarking, which embeds imperceptible patterns into the initial noise vectors
of diffusion models through Fourier-space structuring. Meanwhile Stable Signature Fernandez et al. (2023)
fine-tunes the latent decoder of diffusion models to natively embed watermarks during generation. Secret Key
Signature (SKS) (Chen et al., 2024) uses adversarial attacks to embed watermarks into images, accompanied
by hypothesis tests for detecting watermarks with statistical guarantees.

In this work, we aim to achieve comparable watermarking performance while distorting the outputs of
LDMs. Unlike previous watermark-only methods, such as SKS, our approach protects watermarked images
from manipulation by LDMs. Furthermore, by incorporating conformal inference, our method resists direct
ownership claims—an issue that SKS cannot address.

3 Methods

This section describes our dual-protection strategy – (i) integrate an invisible watermark in images, and (ii)
distort the output of LDMs that attempt to utilize these images without authorization.

As shown in Figure 2, first we train a Score Estimator model to predict a conformity score ss ∈ R for an input
image Io. Next, using the trained estimator, we run a joint optimization loop to add a small perturbation
to Io to produce a watermarked image Iw. The joint optimization needs to balance between the strength of
the watermark to ensure imperceptibility as well as to change the distribution of the original input so that
it becomes distorted when used by an LDM. Specifically, we achieve this by minimizing the following loss
function:

L(Io) = λDLD(Io) + λWLW(Io), (1)
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where LD represents the loss associated with distorting the output of the LDM, and LW represents the
loss for embedding the watermark. The parameters λD and λW are adjustable weights that control the
contribution of each term. We optimize this loss using a modified momentum-based iterative algorithm,
MI-FGSM (Dong et al., 2018), adapted with a parameter βtg to bound the perturbation’s magnitude. A
larger βtg relaxes this constraint, permitting stronger perturbations. The detailed steps of MI-FGSM are
provided in the appendix.

In the watermark detection stage, to determine whether a suspected image belongs to the image owner, the
image is input into the score estimator. A p-value is calculated via conformal inference and a reference set of
calibration images. If the value falls below the confidence level, we can assert that the image is watermarked.

3.1 Watermark Embedding

In this section, we describe the process of embedding a watermark into an image. Specifically, we elaborate
on the definition of LW in equation 1.

3.1.1 Score Estimator Model

We first introduce the Score Estimator, which contains a CNN-based feature embedding model F that learns
to generate m dimensional binary key vectors that align with the indices of the latent space of a frozen LDM
encoder E . In practice, we find that moderate-capacity backbones provide more suitable uncertainty profiles
for conformal inference, whereas overly confident predictors constrain adversarial optimization and degrade
watermark imperceptibility. To ensure the watermark is secure, we generate unique labels instead of relying
on known or easily accessible labels. To generate the training data, we sample an image I from a large dataset
of images and pass it through E to obtain a latent embedding z = E(I) ∈ Rd. We then compare z with the
embedding mean µ, which is calculated from the latent embeddings of the dataset. We compute the sign of
this difference: sign(E(I) − µ) and randomly select m dimensions in this sign vector as our m-dimensional
binary label y ∈ {−1, 1}m, i.e,

y = sign(E(I)− µ)i1,i2,...,im
, (2)

where i1, i2, . . . , im are randomly selected dimensions chosen by the image owner. The same set of m
dimensions should be used consistently across all images for both training and watermarking. Since the total
number of dimensions z is large, it is computationally infeasible for malicious users to identify the chosen
subset selected by the user, thereby protecting the watermark’s privacy.

Next, we train F to output the m-dimensional vector. A sigmoid activation function is applied to the model
output to produce probabilities for each dimension. We train this predictor model using binary cross-entropy
loss for multi-label classification on a large image dataset with our generated keys, shown in Figure 2b. We
refer to this trained model as the Score Estimator. During watermark generation and detection, we calculate
conformity scores using the the multi-label conformal prediction method (Cauchois et al., 2021) utilizing
both the generated keys and the latent space labels.

3.1.2 Multilabel Classification Conformal Inference

We use the multilabel classification conformal inference method proposed by Cauchois et al. (2021), which
forms the foundation of our watermark approach. Conformal inference is a statistical framework designed to
provide valid confidence levels for predictions (Tibshirani, 2023). In the context of multilabel classification, it
computes a conformity score for each label and constructs a prediction set that contains the true set of labels
with a predefined confidence level. Given an image I ∈ I and its corresponding k-th label yk ∈ {−1, 1},
our objective is to compute an overall conformity score for the image by considering dependencies between
multiple labels. In Cauchois et al. (2021), the authors propose building a tree structure to capture these
dependencies and then compute the conformity score based on it.

We begin by defining two factors for modeling label dependencies: interaction factors and marginal factors.
The interaction factors ψ : {−1, 1}2 → R4 capture pairwise interactions between labels. Specifically, ψ is
defined as:

ψ(−1,−1) = e1, ψ(1,−1) = e2, ψ(−1, 1) = e3, ψ(1, 1) = e4 (3)
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where e1, e2, e3, e4 are the standard basis vectors of R4. Meanwhile, marginal factors ϕk : {−1, 1} × I → R2

describe how the individual labels relate to I. The marginal factor for the k-th label is:

ϕk(yk, I) := 1
2

(
(yk − 1) · sk(I)
(yk + 1) · sk(I)

)
(4)

where sk(·) is the score function for the k-th label.

To model the dependencies among labels, we employ a tree-structured graphical model (Chow & Liu, 1968).
For a tree T = ([K], E), the joint probability of the labels is modeled as:

pT ,α,β(y | I) ∝ exp

 ∑
e=(k,l)∈E

βT
e ψ(yk, yl) +

K∑
k=1

αT
k ϕk(yk, I)

 (5)

where α and β are parameters that describe the interaction and marginal contributions, respectively. Specif-
ically, αk ∈ R2 for each label k, and βe ∈ R4 for each edge e ∈ E.

The tree structure T that best represents the dependencies between labels is learned by maximizing the log-
likelihood of the observed training data. Given a training dataset Dtrain = {(I(i), y(i))}Ntrain

i=1 , we optimize

T̂ , α̂, β̂ = arg max
T ,α,β

Ntrain∑
i=1

log pT ,α,β(y(i) | I(i)) (6)

To estimate the dependencies between labels, we compute the empirical mutual information between each
pair of labels using single-edge trees. The optimal tree structure is then identified by solving for the maximum
spanning tree based on the mutual information values (Chow & Liu, 1968). Once the tree structure and
parameters are learned, we define a scoring function s(I, y) for an image I and its label set y. The score is
given by:

sT̂ ,α̂,β̂(I, y) :=
∑

e=(k,l)∈Ê

β̂T
e ψ(yk, yl) +

K∑
k=1

α̂T
k ϕk(yk, I) (7)

3.1.3 Watermark Embedding Loss

Using the trained key generator F and the latent space labels y, we create a watermark via conformal
inference. We start by defining the scoring function between the k-th output F(I)k of the model and the
k-th label yk as:

sk(I, y) = −|F(I)k − yk|. (8)
Using the multi-label conformal prediction method, we estimate the edge empirical mutual information for
every pair of nodes in the m dimensions selected, and construct a tree-structured score function ŝ(I, y) based
on the Chow-Liu-type approximate maximum likelihood tree.

Next, we compute conformity scores for a calibration set of images by passing them through F to generate
keys and evaluating ŝ(I, y). Using these scores, we determine an empirical critical value scv. An image is
classified as watermarked if its conformity score satisfies ŝ(I, y) < scv. To enforce watermarking, we optimize
the original image Io to minimize its score such that ŝ(Io, y) ≤ scv, yielding the watermarked image Iw.

In practice, when minimizing the scoring function ŝ(I, y) with respect to I, we must account for the gradient
passing through y: ∂ŝ

∂y
∂y
∂I . However, since y is discrete, ∂y

∂I is zero. To address this, we “soften" y using the
sigmoid function σ, such that ỹ = σ(y). Therefore, the loss function for watermark embedding is:

LW(Io) = ŝ(Io, ỹ). (9)

3.2 Distorting Latent Diffusion Models

The last part of our objective function is the distortion loss LD, designed to distort the latent diffusion
model’s output. Given Io we want to shift its latent embedding E(Io) into low-probability regions of the
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latent space. These regions correspond to under-sampled patterns during the diffusion model’s training. By
doing so, we force the diffusion process to operate outside its learned manifold, inducing higher denoising
errors and distortions in generated outputs.

As demonstrated later in the appendix, the distribution of image embeddings z within the latent space
Z follows a Gaussian distribution f(z), characterized by a mean vector µ ∈ Rn and a covariance matrix
Σ ∈ Rn×n. Given Io, our objective is to create a watermarked image Iw by minimizing the log-likelihood of
the image embedding zw. We minimize the following loss with respect to Io,

LD(Io) = −1
2(E(Io)− µ)⊤Σ−1(E(Io)− µ). (10)

4 Watermark Detection

We use two hypotheses to detect whether a suspected image Is is watermarked or not: H0 (the null hypoth-
esis) states that Is is not watermarked, and H1 (the alternative hypothesis) states that Is is watermarked.
To test for the presence of a watermark, we assume access to a calibration dataset Dcal = {(Ii, yi)}N

i=1 ,
where Ii is the i-th image, yi the corresponding label calculated using equation 2, and N is the total number
of images in the calibration dataset. This calibration dataset is distinct from the one used in Section 3.1.3
to maintain statistical validity of the hypothesis test. For each calibration image Ii, we compute its con-
formity score si = ŝ(Ii, yi) and sort these scores in ascending order. Using the same feature dimensions
{i1, i2, . . . , im} selected during watermark embedding, we calculate the conformity score of the suspected
image as ss = ŝ(Is, ys).

The empirical critical value is then calculated as scv = s(⌈(N+1)α⌉), where ⌈·⌉ denotes the ceiling function
and α is the desired significance level. We reject H0 if ss < scv, indicating the presence of a watermark. We
compute the p-value of the suspected image under hypothesis testing as:

q̂(ss) = 1
N

N∑
i=1

1(si ≤ ss) (11)

where 1(·) is the indicator function.

5 Experiment

We evaluate our method in six aspects: detection performance, imperceptibility, distortion analysis, gener-
alization, robustness, and security.

5.1 Experiment Setup

Our experiments use the MSCOCO 2017 dataset (Lin et al., 2014) containing 118k training, 41k test, and 5k
validation images. We adopted the VGG16 model (Simonyan, 2014) as the backbone for our Score Estimator
to generate m-dimensional key vectors. While stronger backbones such as ResNet (He et al., 2016) achieve
higher classification accuracy, we empirically found that moderate-capacity models yield more favorable
uncertainty characteristics for conformal inference–based watermark embedding.

Specifically, overly confident predictors reduce uncertainty margins, which restricts adversarial optimization
and makes it difficult to simultaneously achieve low conformity scores and imperceptibility. In contrast,
VGG16 provides a better balance between predictive sensitivity and calibrated uncertainty, enabling effective
watermark embedding without excessive visual distortion. We provide a qualitative comparison with a
ResNet-101 backbone in the appendix.

We use the encoder of Stable Diffusion as E to generate latent embeddings and train the VGG model using
binary cross-entropy loss (see equation 1). Detailed training configurations are provided in the appendix.

We optimize equation 1 using the Momentum Iterative Fast Gradient Sign Method (MI-FGSM) (Dong
et al., 2018), evaluating performance in three aspects: (1) detection rate: measured as the percentage of
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Figure 3: Comparison of the original image with generated outputs using different watermarked images as
input to a LDM with the prompt - Generate an image in the impressionism style of the original image. Our
method produces the highest distortion in the generated result.

watermarked images with p-values smaller than significance level; (2) image quality, quantified using PSNR,
SSIM (Wang et al., 2004), MAE, and RMSE; and (3) distortion, evaluated via FID scores between latent
diffusion outputs and reference WikiArt images (Tan et al., 2019).

We compare against three adapted baselines: SSL (Fernandez et al., 2022) in zero-bit mode (α = 0.05),
HiDDeN (Zhu et al., 2018) with a bit error rate threshold of 0.05, and SKS (Chen et al., 2024). All methods
are modified by adding LD loss to the original watermark loss, and use identical MSCOCO training/validation
splits for fair comparison. For methods such as Stable Signature (Fernandez et al., 2023), which employ
in-diffusion watermarking, watermarks are embedded into outputs of diffusion models. In contrast, our
method embeds watermarks into images themselves, making a direct comparison of watermark properties
unsuitable. Additionally, metrics like PSNR are computed based on the diffusion model’s output. Since one
of our primary objectives is to distort the output of LDMs, a direct comparison with these methods is not
feasible.

Our experiments demonstrate that at equivalent image quality levels, our method achieves comparable
detection rates (99.94%) while inducing significantly stronger diffusion model distortion (FID 108.65 vs
72.68˘92.35). Watermark embedding requires 200 optimization iterations and approximately 16 seconds per
image on a single NVIDIA H100 GPU, while detection incurs negligible overhead.

5.2 Detection Performance Analysis

We evaluated the performance of our watermark detection method by analyzing the p-values generated
for all watermarked images. We compute the mean and standard deviation of these p-values and record
the percentage of p-values below significance levels of 0.05 and 0.01. To assess the false positive rate, we
compared these results with clean images. As shown in Table 1, our method achieves near-perfect detection
on watermarked images (> 99%), with low mean p-values. The results on clean images confirms a false
positive rate consistent with the chosen significance levels.

Table 1: Watermark detection performance.The table shows the mean and standard deviation (Std) of the
detector’s p-values, and the percentage of p-values below the significance levels α = 0.05 and 0.01 for both
watermarked and clean images.

Mean Std <0.05 <0.01
Clean 0.4950 0.2871 4.6% 0.92%
Watermarked 0.0013 0.0039 99.94% 99.52%

5.3 Distortion Analysis

To measure the level of distortion introduced by different methods we used 5,000 images from the MSCOCO
validation set and generate watermarked images using different models. Next we input these watermarked
images to the LDM with the prompt Generate an image in the impressionism style of the original image.
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We then compared the generated images with authentic Impressionist-style images from the WikiArt dataset
(Tan et al., 2019), and compute FID as a measure of distortion.

This addresses a critical challenge in image protection: preventing diffusion models from learning to replicate
the styles of artists. A higher FID score indicates greater distortion in the generated images, suggesting
stronger protection against unauthorized generation. As shown in Table 2, our method introduces more
distortion compared to other methods, providing better protection. Figure 3 visually compares the original
image with various generated images. While unwatermarked inputs yield high-quality impressionist outputs
that closely follow the text prompts, images watermarked with our method produce outputs with noticeable
artifacts and blurry segments in the LDM generations. Additional visual results and analysis across other
art styles are available in the appendix.

Table 2: FID comparison of the distortion introduced in LDM
outputs across different methods. Higher FID indicates more
distortion, offering better protection.

Method Orig. SSL HiDDeN SKS Ours
FID↑ 66.97 72.68 92.35 80.11 108.65

Table 3: FID comparison between original
and SD2-watermarked images after process-
ing by different models.

Model Original Watermarked
SDXL 117.54 122.69
DiffEdit 99.41 94.43

To complement FID, we additionally evaluate instruction adherence using CLIP similarity between the text
prompt and generated images. The lower CLIP score achieved by our method indicates weaker semantic
alignment between the generated images and the intended prompt, supporting the claim that diffusion-based
editing and instruction following are meaningfully disrupted.

Method HiDDeN SSL SKS Ours
CLIP score ↓ 0.2624 0.2641 0.2724 0.2581

5.4 Imperceptibility Analysis

We assess the imperceptibility of the watermarks by comparing image quality of watermarked images relative
to the original. The HiDDeN model achieved a PSNR of 33.56, and for a fair comparison, we adjusted SSL
and SKS to produce a similar PSNR of 33. Despite superior distortion effects, our method maintains better
image quality across all metrics, as shown in Table 4. Additionally, by increasing βtg to allow greater
perturbation in watermarked images, we matched the baseline PSNR (32) while achieving a FID of 150.65
and a 99.74% detection rate at α = 0.05. This demonstrates that increasing perturbation strength enhances
the ability to distort LDMs effectively. Visual examples of watermarked images and the perturbation is
shown in Figure 4.

Table 4: Comparison of watermark imperceptibility
across different methods.

Method PSNR↑ SSIM↑ MAE↓ RMSE↓
HiDDeN 32.72 0.9214 0.0242 0.0428
SSL 33.58 0.9408 0.0168 0.0222
SKS 32.01 0.9405 0.0165 0.0251
Ours 37.30 0.9412 0.0109 0.0195
Ours (32) 32.92 0.9147 0.0200 0.0278

Original Watermarked Perturbation x10

Figure 4: Visual comparison of original images,
watermarked images, and 10× amplified struc-
tural differences.

5.5 Generalization Analysis

We evaluate the generalization of our method across different LDMs by addressing two questions:

Case 1: Can watermarked images trained on one diffusion model withstand attacks from
another? We trained our Score Estimator module on Stable Diffusion 2 (SD2) (Ramesh et al., 2022) and
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Figure 5: Comparison of the robustness of different watermarking methods under various image perturba-
tions: Gaussian Noise, Gaussian Blur, Cropping, Rotation, and JPEG Compression. Our method shows
strong robustness under Gaussian Noise and JPEG Compression while being outperformed by SSL under
some spatial transformations. Notably, our method achieves the highest resilience against diffusion model
editing.

input the watermarked images into Stable Diffusion XL (SDXL) (Podell et al., 2023) and DiffEdit (Couairon
et al., 2022). We then compared the FID scores of their outputs against those of the original images, as
shown in Table 3. The results indicate that watermarked images trained for SD2 do not effectively distort
other models.This is because the watermark relies on the latent encoder, and different LDMs use different
encoders, limiting cross-model generalization.

Case 2: Can the entire watermark pipeline transfer to another diffusion model? To test this, we
retrained the Score Estimator for InstructPix2Pix (Brooks et al., 2023) and used it to generate watermarked
images. We then evaluated the watermark detection rate, image quality, and FID (Table 5). Our method
achieved a 98.84% detection rate at α = 0.05 while maintaining superior image quality compared to baselines
(Table 4). Furthermore, it significantly distorted outputs of InstructPix2Pix model, as shown in the increased
FID score.

Table 5: Image quality and FID comparison for watermark generated using InstructPix2Pix encoder.

Method PSNR SSIM MAE RMSE
InstructPix2Pix 36.38 0.9602 0.0119 0.0203

Method Original Watermarked
FID 96.73 132.79

In conclusion, watermarked images trained on one diffusion model do not effectively resist attacks from
another model. However, our method generalizes well to different diffusion models when trained from
scratch, demonstrating adaptability and robustness across architectures.

5.6 Robustness Analysis

To evaluate the robustness of our watermarking method, we tested its performance under a variety of image
perturbations commonly used in real-world scenarios. Specifically, we applied Gaussian noise, Gaussian blur,
cropping, rotation, and JPEG compression to the watermarked images, and then measured the watermark
detection rate. As shown in Figure 5, our method demonstrates strong robustness under Gaussian noise, out-
performing both HiDDeN and SSL. Besides, it performs better than HiDDeN across all other perturbations.
However, SSL and SKS surpass our method in Gaussian blur, cropping, rotation, and JPEG compression.
We attribute this difference to their higher watermark embedding dimensionality (2048 dimensions for SSL,
32 for SKS, and 6 for our method), which allow them to better withstand spatial transformations.

Note that we retrain the baselines with the distortion loss LD. This loss encourages the watermark to also
resist LDM-based editing and, to some extent, reduces robustness to image perturbations. This suggests
that simply combining standard watermark loss with distortion loss is not a good solution to achieve both
aims.
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Figure 6: Distribution of conformity scores from four different sets of randomly selected dimensions. Since
the conformity scores of randomly selected dimensions typically follow a nearly Gaussian distribution, it is
challenging for Bob to directly train a Score Estimator model to claim ownership of Alice’s image.

5.7 Security Analysis

We evaluated the security of our watermarking framework by simulating attacks in three scenarios involving
two users: Alice, the owner of the image, and Bob, a malicious user attempting to claim ownership. We
compared the performance with other 0-bit watermarking methods: SSL and SKS (Chen et al., 2024). For
Cases 1 and 3, we took the results from Chen et al. (2024) without adding the distortion loss LD.

Case 1: Fake Watermark Generation Bob attempts to generate fake watermarks on clean images, hop-
ing to bypass Alice’s watermark detection. To test this, we randomly selected m dimensions from the latent
embedding z, trained a corresponding Score Estimator, and calculated the parameters for the conformity
score in equation 7. We then watermarked the image using the loss function described in equation 1. Af-
terward, we evaluated the watermark detection rate using Alice’s model to determine the effectiveness of
Bob’s attack. Our method suffers from a higher detection rate than SKS, though it is still lower compared
to SSL. Notably, our method achieves a baseline detection rate comparable to SKS at a p-value thresh-
old of 0.01. When applying the same threshold to evaluate Bob’s attack, our detection rate improves to
1.88%—surpassing SKS’s performance.

Table 6: Detection rate for fake watermark generation attacks across different methods. The values in
parentheses for "Ours" represent the detection thresholds used (0.05 and 0.01).

Method SSL SKS Ours(0.05) Ours(0.01)
Detection rate 12.84% 1.94% 7.64% 1.88%

Case 2: Direct Ownership Claim Bob tries to claim ownership of Alice’s watermarked image without
modifying it. To simulate this, we trained four Score Estimators with different randomly selected dimen-
sions. Using the MSCOCO 2017 test set as a calibration set, we examined the conformity score distribution
to determine whether Bob could achieve a p-value below 0.05 by selecting dimensions at random. Since
the conformity score distribution concentrates around the mean, without using adversarial attacks, Bob is
unlikely to generate a valid watermark with a p-value below 0.05. Figure 6 presents the distribution of the
conformity scores for the four Score Estimators. In this scenario, SKS is vulnerable: if Bob simply takes
Alice’s watermarked image and uses his SKN to generate a signature, he could falsely claim ownership.
However, both SSL and our proposed method are resistant to this type of attack.

Case 3: Watermark Removal and Replacement Bob attempts to remove Alice’s watermark by em-
bedding his own watermark into the image. To test this, we embedded a watermark into an image (acting
as Alice’s watermark), then added another four watermarks as Bob’s attack. We then checked whether
Alice’s watermark could still be detected after Bob’s attack. The results in Table 7 show the detection
rate of Alice’s original watermark as more Bob’s watermarks are added. SKS maintained a high detection
rate (above 89%). Our method also showed resilience, with a detection rate of 84.62% after three additional
watermarks, outperforming SSL. SSL’s detection rate dropped significantly to 19.5% after three watermarks.
Although our method does not perform as well as SKS, this difference may be attributed to the additional
loss function LD, which affects all pixels, whereas the watermark loss LW only affects a portion of the pix-
els (approximately 20%). Balancing watermark detection and distortion introduces a trade-off, which may
explain the performance.

10
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Table 7: Robustness test against multiple overlapping watermark embeddings. Detection rate of Alice’s
original watermark after embedding Bob’s additional watermarks.

1 2 3 4 5
SSL 92.62% 60.50% 27.00% 19.50% 12.00%
SKS 99.50% 98.60% 96.10% 89.70% 89.70%
Ours 99.94% 96.52% 92.80% 84.62% 75.46%

6 Ablation Study

Effect of Dimensionality in Feature Selection: We analyze how the number of selected feature dimen-
sions (m) impacts system performance. Compared to the baseline configuration with m = 6 dimensions
(FID = 108.65), reducing the dimensions to m = 4 yields an FID score of 69.20, indicating weaker protec-
tion against unauthorized generation. The mean p-value for watermark detection is 0.0085, with 96.90% of
p-values below 0.05 and 93.66% below 0.01, showing reduced detection robustness.

Effect of Removing the Loss Component LD: To evaluate the effect of removing the distortion loss
LD, we set λSD = 0 in our optimization objective. Without LD, our method achieved an FID score of 68.45
compared to 66.97 for the original images. The output of the LDM was only slightly more distorted, as
expected. Surprisingly, the mean p-value for watermark detection was 0.0030, with 99.24% of p-values below
0.05 and 97.66% below 0.01. The detection rate performance was worse than when we included LD. We
hypothesize this stems from the non-convex optimization landscape in equation 1. Adding LD, which acts
as a small perturbation to the optimization, helps escape from local optima, as observed in the experiment.

7 Conclusion

In this work, we propose a dual-protection framework to safeguard image copyrights against latent diffusion
models. Our method embeds a perturbation into the image that serves both as a watermark and a mechanism
for disrupting the outputs of latent diffusion models. Additionally, we leverage conformal inference to develop
a statistically robust approach for detecting watermarked images. Experimental results demonstrate that our
method ensures strong watermark detection, enhanced imperceptibility, and resilience against various image
perturbations. Furthermore, we show that the entire pipeline generalizes across attacks involving different
diffusion models. Notably, our approach resists direct ownership claims and multiple watermark embeddings,
showing its potential as a reliable solution for protecting image copyrights in the era of generative AI.
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A Appendix

B Smoothing Function for Conformal Inference

In the multi-label conformal inference method introduced by Cauchois et al. (2021), the function ψ is defined
in a discrete manner. Here, we propose a smoothing technique for this function. Specifically, we smooth the
function ψ(yk, yl) used in the multi-label conformal prediction set by defining:

ψc(yk, yl) =(1− πk)(1− πl) · e1 + (1− πk)πl · e3 + πk(1− πl) · e2 + πkπl · e4 (12)

where πk and πl are smoothing parameters, and e1, e2, e3, and e4 are the standard basis vectors.

Note that ψc is equivalent to ψ when yk, yl ∈ {−1,+1}. The corresponding loss function for the smoothed
conformal prediction set is defined as:

Lc =
∑

(k,l)∈Ê

βT
e ψc(yk, yl) +

K∑
k=1

αT
k ϕk(yk, x) (13)

where Ê denotes the set of edges in the maximum spanning tree, βe represents edge-specific parameters, and
ϕk(yk, x) is the marginal factor as defined in the aforementioned paper.

C MI-FGSM

To minimize the loss defined in equation 1, we employed an approach inspired by the MI-FGSM (Dong
et al., 2018). For completeness, we outline the key aspects of this technique here. MI-FGSM is a widely used
method for generating adversarial examples by iteratively adjusting the perturbation η added to the input
data (Dong et al., 2018). This adjustment aims to minimize the adversarial loss while ensuring that the
perturbations remain minimal and imperceptible to the human eye. The update rule for the perturbation
at each iteration t is expressed as:

gt+1 = µgt + ∇IL(f(I + ηt))
∥∇IL(f(I + ηt))∥1

(14)

ηt+1 = ηt − α · sign(gt+1) (15)

In this equation, L(f(I)) represents the adversarial loss function, where f(·) is a deep neural network model,
and I is the input image. gt is the accumulated velocity vector in the gradient direction, initialized as g0 = 0,
and µ is the decay factor. The gradient ∇IL is computed with respect to the input image I. To ensure
the imperceptibility of the perturbations, a constraint on the magnitude of η is typically enforced, such that
∥ηt+1∥∞ < ϵ, where ϵ is a small threshold.

We made several modifications to MI-FGSM inspired by Chen et al. (2024) to better suit our specific problem:

1. Direct Gradient Application: Instead of using the sign of the gradient, we directly apply the
gradient values to update the perturbation η, enhancing control over the perturbation process.

2. Scaling Factor Introduction: We introduced a scaling factor β to expand the constraint
∥ηt+1∥∞ < ϵ. The perturbation update is modified as follows:

η′
t+1 = β · ηt+1 (16)

14



Under review as submission to TMLR

where β is determined by the following formula:

β = clip
(√

βtg

mean(η2
t+1) , 0, 1

)
(17)

Here, βtg is a target value similar to α, serving to set an upper bound on the perturbation magnitude.

3. Data Augmentation: Before being input into the model f(·), the image I undergoes data augmen-
tation techniques, such as rotation and cropping, to improve the robustness of watermark detection.
The updated rule becomes:

ηt+1 = ηt − α · ∇IL(f(da(I)), ytarget) (18)

where da(·) denotes the data augmentation module.

4. Adaptive Parameters: Instead of using fixed parameters, we employ adaptive values for βtg and
λW, allowing for a more flexible approach that enhances the success rate of watermark embedding.

These modifications to MI-FGSM make it more effective and suitable for our watermarking task, ensuring
imperceptibility while achieving high watermark detection success.

D Assessing the Normality of Latent Space Embeddings

A critical assumption underlying our adversarial attack strategy is that the embeddings in the latent space
follow a Gaussian distribution. To validate this assumption, we processed 118,000 images from the MSCOCO
training set through the latent diffusion model encoder and analyzed the resulting embeddings using the
Henze-Zirkler test for multi-dimensional normality. The test yielded a statistic of 0.0503, with a p-value of
1.0, allowing us to accept the null hypothesis that the latent space embeddings follow a Gaussian distribution.
Figure 7 illustrates the distribution of one dimension of these embeddings.
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Figure 7: Distribution of one dimension of the embeddings from the latent diffusion model encoder.

E Experiment Details

In our setting, we select the number of features for the watermark as m = 6. The step size is set to α = 0.1,
and the decay factor µ = 0.9. For training, we use λSD = 1 and λW = 1.6. The scaling factor is initialized
with βtg = 8× 10−4. For the adaptive parameters in MI-FGSM, after 200 iterations, we multiply λW by 30
and βtg by 10. Additionally, after every 50 subsequent iterations, both parameters are multiplied by 3.
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For training the VGG model, we use a learning rate of 1× 10−4, weight decay of 1× 10−4, batch size of 64,
and apply a learning rate decay of 0.8 every 10 steps.

When training the conformality score Chow-Liu tree parameter, we use 5,000 images from the COCO test
dataset. We then use an additional 5,000 images from the COCO validation dataset as the calibration set
for computing the p-values.

F Watermarking Algorithm Details

Our proposed watermarking framework consists of three key components: (1) score estimator pretraining,
(2) watermark embedding through adversarial perturbation, and (3) watermark detection. The complete
pseudocode is provided in Algorithms 1-3.

Algorithm 1 Score Estimator Pretraining
Require: Training images I, encoder E , mean vector µ, selected indices {i1, . . . , im}
Ensure: Trained CNN network F

1: for each image I in dataset do
2: Compute binary label: y ← {sign(E(I)− µ)}{i1,...,im}
3: end for
4: Initialize CNN network F with random weights
5: while not converged do
6: Predict Kv ← F(I)
7: Compute loss L← BCE(y,Kv)
8: Update F using gradient descent
9: end while

Algorithm 2 Watermark Embedding
Require: Original image Io, encoder E , mean µ, covariance Σ, iterations T , loss weights λD, λW

Ensure: Watermarked image Iw

1: Initialize Iw ← Io

2: for t = 1 to T do
3: Compute distortion loss: LD ← − 1

2 (E(Iw)− µ)⊤Σ−1(E(Iw)− µ)
4: Generate binary label: y ← {sign(E(Iw)− µ)}{i1,...,im}
5: Compute softened label: ỹ ← σ(y) ▷ Sigmoid activation
6: Calculate watermark loss: LW ← Sθ(Iw, ỹ)
7: Total loss: L← λDLD + λWLW

8: Compute perturbation ηt using MI-FGSM: ηt ← MI-FGSM(∇Iw
L)

9: Update image: Iw ← Clip(Iw + ηt)
10: end for

G Watermark Visualization

We provide more visualizations of the watermark to illustrate its characteristics. As shown in Figure 8,
the watermark embedded in the images exhibits a strong correlation with the image content itself, ensuring
seamless integration while maintaining imperceptibility.

We also include visual comparisons of the 10× amplified watermark deltas between original and watermarked
images for both baseline methods and our proposed approach in Figure 9.
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Algorithm 3 Watermark Detection
Require: Suspected image Is, significance level α, calibration distribution scores {si}N

i=1
Ensure: Detection decision

1: Retrieve y from training phase
2: Compute test statistic: ss ← Sθ(Is, y)
3: Calculate empirical p-value: q̂(ss)← 1

N

∑N
i=1 1(si ≤ ss)

4: if q̂(ss) < α then
5: return “Reject H0 (Watermarked)”
6: else
7: return “Retain H0 (Not watermarked)”
8: end if

Original Watermarked Perturbation (10x)

Figure 8: Visual comparison of original images, watermarked images, and 10× amplified structural differ-
ences.

Original HiDDen SSL SKS Ours

Figure 9: Visual comparison of watermark patterns across different methods. (Left) Original image; (Right)
Corresponding 10× amplified watermark deltas.

H Additional Distortion Analysis Results

We provide additional results comparing the distortion introduced by different watermarking methods in the
output of the latent diffusion model with the prompt Generate an image in the impressionism style of the
original image. Figure 10 to Figure 14 illustrate the generated images for various watermarking techniques.

We also performed an evaluation on generating Expressionism-style outputs and obtained an FID score of
162.16 using our method, compared to 95.09–105.60 for the baselines, indicating the effectiveness of our
method across different artistic styles. A corresponding visualization is shown in Figure 15.
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Figure 10

Figure 11

Figure 12

Figure 13

Figure 14
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Figure 15

I Effect of Score Estimator Backbone Choice

To study the impact of Score Estimator capacity on watermark imperceptibility, we replaced the VGG16
backbone with a ResNet-101 model while keeping all hyperparameters identical.

Although the adversarial optimization was still able to reduce conformity scores below the detection thresh-
old, the resulting watermarked images exhibited substantially increased visual noise and perceptual degra-
dation. This indicates that stronger predictors, while more accurate, reduce predictive uncertainty and leave
less room for adversarial optimization under imperceptibility constraints.

Figure 16: Watermarked image generated using a ResNet-101–based Score Estimator. Compared to VGG-
based watermarking (Figure 4 in the main paper), the ResNet backbone produces substantially higher visual
noise and perceptual distortion, despite achieving low conformity scores.
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