
NeuHMR: Neural Rendering-Guided Human Motion Reconstruction

Tiange Xiang, Kuan-Chieh Wang, Jaewoo Heo,
Ehsan Adeli, Serena Yeung, Scott Delp, Li Fei-Fei

Stanford University
xtiange@stanford.edu

Abstract

Reconstructing 3D human movements from video se-
quences is an important task in the fields of computer vision,
graphics, and biomechanics. Although much progress has
been made to infer 3D human mesh based on visual contexts
provided in video sequences, generalization to in-the-wild
videos still remains challenging for existing human mesh re-
covery (HMR) methods. To overcome inaccurate prediction,
they can perform a second step optimization that refines the
inaccurate estimations continuously at test time. Most op-
timization methods seek fitting of the body joints in the im-
age space with respect to pseudo ground truth predicted by
an off-the-shelf key point detector. However, state-of-the-
art detectors still introduce errors, especially for challeng-
ing poses. In this work, we rethink the dependency on the
2D key point fitting paradigm and present NeuHMR, an
optimization-based mesh recovery framework based on re-
cent advances in neural rendering. Our method builds on
Human Neural Radiance Fields that allow the refinement
of human meshes through animatable 2D renderings. We
evaluated our method on two common benchmarks and val-
idated its effectiveness.

1. Introduction
Reliable 3D reconstruction of a dynamic human requires
synchronized multi-view captures, which is commonly done
prospectively in heavily-equipped laboratories. This fun-
damental constraint in 3D geometry restricts our ability
to curate datasets with ground-truth 3D human meshes.
Consequently, it affects not only the size and coverage of
such datasets but also hinders the generalization of 3D Hu-
man Mesh Reconstruction (HMR) models trained on these
datasets. There are two typical types of HMR methods.
Prediction-based methods infer human meshes from visual
contents directly but usually suffer from a lack of high-
quality data. Optimization-based methods, which refine
3D mesh estimates using additional features from the orig-
inal video, offer a remedy to this limitation. They rely
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Figure 1. Most existing optimization-based HMR methods rely on
pseudo-2D keypoint ground truth estimated by off-the-shelf detec-
tors, but they are bound to make mistakes. See the example in the
left part of the figure. In this work, we remove this reliance and
demonstrate that using mostly low-level visual constraints based
on neural rendering is able to achieve even better pose refinements.

on minimizing the 2D projection loss with estimated 2D
keypoints from off-the-shelf models like OpenPose [4] and
ViTPose [50]. Due to the orders of magnitude more datasets
with 2D keypoint annotations, covering a wider range of
motions, 2D keypoint estimates are often more accurate
than reprojected 3D estimates and are easier to generalize
to in-the-wild videos. Hence, refining the 3D estimates to
match the 2D estimates can improve reconstruction.

However, the inherent flaw with existing optimization-
based approaches is that, when the 2D keypoint estimates
are incorrect, optimization degrades the original 3D esti-
mates. 2D keypoint estimators are bound to make mistakes
(see Figure 1). This paper aims to develop an optimization-
based HMR method that relies less on 2D keypoint es-
timates and achieves better generalization. The ideal
optimization-based method should not be bottlenecked by



other off-the-shelf models. Therefore, we seek a data-driven
optimization method that obtains its guidance signal from
the input target video.

We lean on recent advances in 3D human avatar recon-
struction from RGB videos [12] and images [1]. The topic
of avatar reconstruction focuses on building an articulated
digital human with a matched appearance. Intuitively, if
the groundtruth avatar of a given video is available, then
a pose optimization algorithm can be guided purely by a
photometric loss between the rendered avatar and the target
human in the input frames [52], removing the dependency
on off-the-shelf model predictions.

In this paper, we propose NeuHMR, an optimization-
based HMR method based on recent advances in neural ren-
dering. We focus on the setting where a monocular RGB
video is given as the input. Using only 2 frames from the
input video, NeuHMR first infers a rough estimate of the
avatar using our own generalizable human NeRF model.
In the second step, we determine a set of anchor frames
in the video to be used for registering reliable joint fea-
tures. In the last step, we use the human avatar, and our
proposed optimization strategy to refine the estimated hu-
man mesh by comparing the rendered avatar to the input
video from different perspectives. Our proposed optimiza-
tion strategy mostly benefits from the design of the joint
matching constraint that enables joint-wise optimization by
looking for references from a photometric approach. Em-
pirically, we show that NeuHMR can improve state-of-the-
art HMR methods, like Hybrik [23] and HMR2.0 [9]. We
evaluated NeuHMR on the recent EMDB dataset [18] which
contains multiple challenging in-the-wild videos.

2. Related Work
Human mesh recovery. Recovering human poses and
shapes from visual content is a longstanding research prob-
lem. Early attempts began with reconstructing human sur-
faces from full-body scans [2] and configuring structured
surface models using body shape coefficients and joint rota-
tions [28]. However, directly modeling humans in the wild
from a single RGB image presents considerable challenges.
Subsequent works have utilized visual cues and semantic
contexts to assist in mesh recovery. HMR [16] pioneered
the approach of learning SMPL parameters directly from
raw RGB images using an end-to-end architecture. Concur-
rently, [33] was developed to learn human shape and pose
from body silhouettes and joint heat maps. Building on this,
Hybrik [23] was proposed to derive 3D skeletons from rela-
tive joint rotations and assist in recovering physically realis-
tic 3D meshes. PARE [21] addresses the challenge of mesh
recovery under occlusions by first segmenting body parts in
images and then using the segmentation to guide part-aware
pose regressions. More recently, HMR2.0 [9] introduced
an advanced transformer architecture trained on large-scale

datasets for more precise recovery of human mesh.

There are also methods that leverage temporal informa-
tion for better modeling human meshes. Among these,
HMMR [17] is one of the earliest works that captures hu-
man motions through temporal convolutions. VIBE [20]
is another milestone in this line of study that incorporates
gated recurrent units to learn SMPL parameters from ad-
jacent frames. More advanced methods utilize transform-
ers to compute self-attention on both spatial and temporal
axes [47]. One main component in the training for all of
the above methods is the fitting of projected 2D joints to
pseudo ground truth. Our methods remove such reliance
and find 2D references based on neural rendering.
Optimization methods for human pose. Apart
from the aforementioned prediction-based HMR methods,
optimization-based approaches strive to iteratively refine
human meshes by referring to visual cues implied in the im-
ages. SMPLify [3] refines human meshes through iterative
fitting based on 2D keypoint priors. Subsequently, more re-
cent methods have advanced human mesh optimization by
employing either learned priors [40] or physics-based pri-
ors [8, 37, 39, 41]. GLAMR [54] infills inaccurate motion
segments in a long sequence and optimizes global motion
trajectories. It achieves coherent human motions and sta-
bilized movement predictions. SLAHMR [51] further ad-
vances this approach by decoupling the modeling of the
camera and the human body, thus enhancing robust opti-
mization of both human motion and global 3D trajectories.
Recently, NeMo [46] was introduced to learn the mapping
from movement phases to their corresponding SMPL pa-
rameters using repetitive motion patterns. Its superior per-
formance has led us to adopt it as the SMPL regressor.
TRACE [44] proposes a novel 5D representation comprised
of space, time, and identity that enables precise end-to-end
reasoning about human motion in both camera and world
coordinates. Lastly, WHAM [42] accurately reconstructs
3D human motion in global coordinates while accounting
for real-world dynamics by integrating 2D-to-3D keypoint
lifting with video features and leveraging camera angular
velocity from SLAM methods to estimate global trajecto-
ries.
Human rendering. Rendering and animating human
avatars has become a trending research direction since the
emergence of Neural Radiance Field (NeRF) [30]. Most
past works target at photo-realistic rendering of humans
from videos captured at multiple camera angles [7, 13, 24,
25, 34, 36, 55, 56]. There is another line of research focus
that renders human from videos captured by a single camera
[12, 15, 48, 53]. Among which, HumanNeRF [48] is a mile-
stone that for the first time achieves high-quality free-view
rendering of dynamic humans from only a monocular video.
Subsequent works include OccNeRF [49] and Vid2Avatar



[12] improve human rendering qualities a step further.
One major limitation of neural rendering methods is that

the human avatar has to be per-video optimized and can
hardly generalize across different videos. NHP [22], Tran-
sHuman [32], and GP-NeRF [5] are representatives that
achieve generalizable rendering for dynamic humans un-
der multi-view settings. Recently, ActorsNeRF [31] was
proposed to extend generalizable rendering on monocular
videos. We follow the insights of both GP-NeRF and Ac-
torsNeRF and built a generalizable human NeRF to acquire
reliable appearances for any given video.

3. Methods
In this section, we first provide the preliminaries and re-
view basic concepts in human neural radiance fields (sec-
tion 3.1). Then, we describe our proposed method which
consists of two components: a Generalizable Human NeRF
(GHN) model (section 3.2) and an optimization-based
HMR method, NeuHMR (section 3.3). Our core idea is to
optimize inaccurately estimated human poses with the help
of the pretrained GHN model. The overall framework of
NeuHMR is outlined in Figure 2. We provide a summary of
all defined symbols in the appendix for better reference.

3.1. Preliminaries
Problem formulation. We aim to reconstruct precise 3D
human mesh from a monocular video. We follow the
paradigm of model-based HMR which uses the SMPL [28]
body model. Given an input video, V , with T frames, the
target 3D human mesh is represented by a sequence of the
24 major body joints J and their angles ω1:T → R24→3→T .

NeuHMR is an optimization-based HMR method. It re-
fines the initial estimate from a HMR method (e.g. HMR2.0
[9]). Unlike existing optimization methods that rely on 2D
keypoint detectors (e.g. ViTPose [50]), we rely on an esti-
mated appearance model, which we detail in section 3.2.
Background. Neural Radiance Field (NeRF) [30] learns
mappings from encoded coordinates of 3D points {x → R3}
to their radiance c and density ε↑:

c,ε↑ = !NeRF
ω

(x), (1)

where ϑ denotes the parameters of the NeRF. When cast-
ing ray samples x, NeRF utilizes volume rendering [27] to
aggregate c and ε↑ along the rays:

wi = ϖ(xi)
∏

j<i

(
1↑ ϖ(xj)

)
, (2)

W =
∑

i

wi, C =
∑

i

(wici), (3)

where ϖ(xi) = 1 ↑ exp(↑ε↑
i
ϱi) and ϱi = zi+1 ↑ zi is the

z-axis distance between two adjacent ray samples. The fi-
nal 2D renderings are generated by permuting the per-pixel
occupancy W and rgb color C.

NeRF was originally designed for rendering static
scenes. In order to rendering moving human with dynamic
poses, a static canonical space is first defined [6, 48] and
dynamic human poses p at different frames can be obtained
by deforming the canonical pose to the observation spaces
at each frame. This deformation also transforms 3D coor-
dinates between the two spaces, which is achieved through
a mapping function T . In details, T performs a weighted
sum of a set of K motion bases defined by rotations Ri and
translation ti of the ith bone of the human body [48]:

x̂ =
K∑

i

wi(x)(Rix+ ti), (4)

where Ri and ti can be directly computed from J and ω. wi

serves as the weights in the observation space, which can be
derived from canonical weights [48].

3.2. Generalizable Human NeRF
Given the recent advances in human NeRFs, we propose to
use a Generalizable Human NeRF (GHN) model for model-
ing the appearance. Concretely, we seek a GHN model that
takes a video V as input and outputs the parameters of an
appearance model parameterized by ϑ:

ϑ = !GHN(V ). (5)

The key characteristics of our GHN model are: (1) it should
take a monocular video as input and (2) it should generalize
to new videos. Namely, in contrast to human NeRF methods
that rely on multi-view captures, we need a model that works
with monocular input. And, we should not optimize the
NeRF from scratch given any new videos.
GHN model architecture. Generalizable rendering re-
quires the framework to learn explicit appearance and ge-
ometry semantics from visual cues implied in the video.
Considering this, we borrow insights from GP-NeRF [5],
which takes as inputs multiple images {I} as conditions to
render appearance coherent human avatar with any given
poses. For a given image I, we regard the estimated SMPL
mesh {v} as a coarse geometry descriptor. The first step of
our rendering pipeline is to encode 2D image features via
a feature extraction backbone F = F(I), which is trained
from scratch during training. We associate 2D image fea-
tures at the corresponding positions of 3D mesh vertices
when projecting them onto the image space through cam-
era projection ς(·): Fε(x).

We then rely on a rendering network φ consisting of a
SparseConvNet [10] and a transformer layer [45] to regress
radiance c and density ε↑ at x:

c,ε↑ = φ(Fε(x),x). (6)

We refer readers to [5] for more details. In the monocular
setting, no multi-angle images are available which makes
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Figure 2. NeuHMR is an optimization-based human mesh recovery method that consists of several sequential steps. We first pre-train
a Generalizable Human NeRF (GHN) with ground truth poses that learns reliable mappings between 2D images and 3D human appear-
ance/geometry. Then, the learnt GHN is generalized to the target video and is able to render corresponding 2D avatars with the initially
estimated poses {J} → p. With the human renderings, a set of N anchor frames are first determined as the ones that span a wide range of
global orientations and yield the least photometric and geometric losses. 2D features at visible human body joints {FJ} on these anchor
frames are collected together and registered as common joint feature descriptors {J }. Based on the generalized appearance model and
{J }, we optimize inaccurate posses through photometric Lrgb, geometric Lgeo, and joints matching constraints Ljoint.

the above pipeline infeasible. Knowing that moving human
shows different body parts to the camera in different frames
of a monocular video. Inspired by ActorsNeRF [31], we
first pick multiple anchor frames throughout the monocular
video and transform the 3D ray samples from the anchor
frame spaces to the target observation spaces.
Training Losses. After obtaining per pixel color and den-
sity via Equation 3, the framework is mainly optimized to-
wards the input video itself through pixel-wise photometric
loss [30]. Moreover, we noticed that due to the huge cross-
subject diversity in the dataset, the rendered human body
is usually incomplete in geometry. We propose to regular-
ize the accumulation of ray densities to be close to the bi-
nary human segmentation mask. Overall, the training of our
GHN is supervised by the combination of losses:

∑

i

(||Ci ↑C↑
i
||22 +

1

2
||Wi ↑Mi||22), (7)

where C↑
i

is the RGB value from I at the pixel position of i,
M is the binary human segmentation mask of I that can be
pre-computed by an off-the-shelf model (e.g. SAM [19]).

3.3. NeuHMR
Given the trained GHN and a new target video, NeuHMR
starts with the estimated appearance model and performs
optimization in two steps. In the first step, we preprocess
the target video to determine N anchor frames based on
rendering errors and register anchor features of each body
joints by sampling on the 2D feature maps (section 3.3.1).
In the second step, we present a way to generalize the
trained appearance model onto arbitrary humans and rely on
the 2D renderings and pre-processed anchor joint features to
optimize inaccurate poses at test-time (section 3.3.2).

3.3.1 Anchor Joint Feature Registration

Optimization-based methods usually rely on an assump-
tion that in a few video frames, the human poses are eas-
ier to capture and the pose estimations are rather accurate
[51, 54]. Our method follows the same intuition and condi-
tion the GHN on n of the N anchor frames.
Anchor frame selection. We determine the anchor frames
through two criteria. First, the anchor frames must be the
ones that have relatively accurate initial pose estimations.
We approximate pose accuracy according to photometric
and geometric losses computed between the humans in the
frames and their corresponding renderings (later in sec-
tion 3.3.2 Another criteria is to include as diverse global
orientations of the poses as possible. Since a body joint may
have very different semantics when being viewed at differ-
ent angles (e.g. front and back of head), it is important to
ensure the poses in the anchor frames are from a complete
coverage at multiple angles. We ensure a wide range cov-
erage of body orientations by first projecting the global ro-
tation matrix → R3 onto the surface of a unit sphere. We
then run Farthest Point Sampling (FPS) [38] on the surface
vectors to sift N̂ > N candidates. The N anchor frames are
determined as the ones with the least loss.
Joint feature registration. After defining N relatively
well-aligned anchor frames, we can extract reliable 2D joint
features. The registration is achieved via collecting 2D fea-
tures for each of the joints {J} on the N anchor frames
through grid sampling. However, it is common that some
joints are invisible to the camera due to self-occlusion. Con-
sidering this, for each frame t, we perform Z-buffer tests
using the rendered human depth map Dt and the z-axis dis-
tances of the body joints {zt

i
} → Jt

i
= {xt

i
, yt

i
, zt

i
} in the



camera space. Each pixel of Dt indicates the distance be-
tween the camera and a closest point on the human surface.
We determine the visibility Vt

i
of a joint Jt

i
via:

Vt

i
= (|Dt

Jt
i
↑ zt

i
| < ↼), (8)

where (·) is an indicator that returns 1 for true condition
and 0 otherwise, ↼ = 0.2 is a tolerance threshold. Vt

i
= 1

indicates joint Jt

i
locates closest to the camera and not been

occluded by other parts of the body. We then register the
joint features as the average of all visible joints throughout
all N anchor frames:

Ji =
1

|Vi|
∑

t<N

(Vt

i
FJt

i
). (9)

The registered joint features {J } will be used in the joints
matching constraint for optimization (later in section 3.3.2).

3.3.2 Test-Time Optimization for Poses

Motivation. Given the estimated appearance model, the
goal of this phase is therefore utilizing such 2D renderings
to guide the refinement of inaccurate human poses. Specif-
ically, we account for three constraints for optimization,
which try to align photometric color, body geometry, and
joint key points between renderings and video frames in the
2D space. In this step, the appearance model is frozen from
being updated.
Motion fields. To refine frame-wise human poses, we build
a neural motion field (NeMo) [46] to map every time stamp
in a video to the corresponding pose parameters. Specif-
ically, it is parameterized as a MLP !MLP

ϑ
(·) with train-

able weights ↽ that takes as input an embedded scalar value
t → [0, 1] indexing the progress of the action in a given
video. It outputs residuals to be appended on all the joint
angles, global orientation as well as translation:

{R↑
joints

,R↑
global

,T↑} = !MLP
ϑ

(RBF(t)),

↓ Rjoints := Rjoints ·R↑
joints

,

↓ Rglobal := Rglobal ·R↑
global

,

↓ T := T+T↑,

(10)

where Rjoints/R↑
joints

/Rglobal/R↑
global

→ RK→3→3,
T/T↑ → R3, and RBF(·) is the radial basis function.
Photometric constraint Lrgb. One of the primary benefits
of optimizing human poses over 2D renderings is the access
to visual signals that can be used to guide the correction of
poses. We simply adopt the L2 norm of per-pixel distance
(similar to the training of GHN) to apply the photometric
constraint. With the correct pose, this constraint will lead to
minimum possible loss values.
Geometric constraint Lgeo. However, due to the limits of
rendering quality, the rendered rgb images on a new video
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Figure 3. Optimizing poses through joints matching constraint.

are usually over-smoothed missing lots of local contexts.
Without high quality pixel-pixel correspondences, optimiz-
ing the poses with photometric constraint solely is sub-par.
Here we apply another constraint to enforce matching be-
tween the geometric silhouette of the rendered human and
the binary human segmentation mask. We borrow the Jac-
card index loss from binary segmentation tasks that com-
putes intersections over unions on the accumulation of ray
densities W and the segmentation mask M:

Lgeo = 1↑
∑

i
(Mi ·Wi)∑

i
Mi +

∑
i
Wi ↑

∑
i
(Mi ·Wi)

. (11)

Noteworthy, this geometric constraint differs from that in
Equation 7. We observed that using Equation 7 for pose
optimization can lead to the rendered human being smaller
than the target. Equation 11 does not suffer from this issue.
Joints matching constraint Ljoint. Geometric constraint
is helpful in terms of aligning the overall human shape,
but still insufficient to correct positioning of detailed body
joints. Without relying on 2D pseudo ground truth, here we
present an alternative approach to find reliable optimization
targets for the joints with the help of the registered joint fea-
tures {J }. See Figure 3 for an illustration.

Our method is built on an observation that, state-of-the-
art human pose estimators only generate mild errors [9, 23],
therefore the correct joints should locate somewhere near to
the initial estimations. Following this intuition, we model
the distribution of possibly correct joints for J as Gaussian
N (J,ε2) centered at J with a self-defined ε. For each joint
Ji at each video frame I, S samples are randomly drawn
from the Gaussian {Ĵi} ↔ N (Ji,ε2) to be as potential
candidates for the correct joint locations |{Ĵi}| = S. If the
human body is properly rendered, there exists at least one
candidate joint Ĵi on the input frame I that shares similar
semantics to the registered joint features Ji. We rely on the
same encoder network F(·) in the GHN to extract features
at candidate 2D joint positions F{Ĵ}. We define the joints
matching constraint as:

Ljoint =
1

|{J}|
∑

i

||Ĵϖ(i)
i

↑ Ji||2,

⇀(i) = argmax
k

cos(F{Ĵk
i }
,Ji),

(12)



ZJU-MoCap init. MPJPE↗ PVE↗
prediction-based HMR methods

VIBE [20] - 101.3 113.0
HMR2.0 [9] - 78.0 94.7
Hybrik [23] - 77.3 86.5

optimization-based HMR methods
SLAHMR [54] HMR2.0 75.7 87.1
GLAMR [54] HMR2.0 93.1 120.0
GLAMR [54] Hybrik 91.5 111.6

Ours HMR2.0 74.7 89.6
Ours Hybrik 74.2 86.9

Table 1. Quantitative comparisons on ZJU-MoCap 393 [35].

where cos stands for cosine similarity. As the optimiza-
tion proceeds, poses are being corrected continuously and
getting closer to the correct joint positions. We repeat the
above process to re-determine {Ĵ} at each step.

We optimize NeuHMR through aggregation of the three
constraints combined with different weight scales ⇁(·):

argmin
ϑ

(⇁rgbLrgb + ⇁geoLgeo + ⇁jointLjoint). (13)

4. Experiments
Please see supplementary materials for more experiments.

4.1. Datasets
ZJU-MoCap [35]. This dataset contains videos captured
from 23 angles, recording various human activities in an
indoor motion capture setting. Given its high-quality anno-
tations, this dataset is commonly used as a benchmark for
human rendering. Following the common training protocol
[5, 48], we train a GHN using all camera angles for the 8
subjects (313, 315, 377, 386, 387, 390, 392, 394) and eval-
uate the pose optimization results on the first camera angle
for the left-out subject (393). This dataset is only used to
demonstrate a proof of concept.
EMDB [18]. To evaluate our method on more challeng-
ing in-the-wild videos, we adopt EMDB, the most recent
HMR benchmark, for a comprehensive study. Benchmarks
on this dataset follow two protocols, as suggested, we com-
pare methods on protocol 1, which includes videos for the
most challenging 17 activities performed by 8 different ac-
tors and encompasses both indoor and outdoor scenes. As
this dataset is not commonly utilized as a benchmark for
human rendering, humans in some videos are only partially
visible to the camera, thus posing significant challenges for
human rendering and NeuHMR in general.

4.2. Evaluations
Comparison. NeuHMR is mainly compared against three
state-of-the-art optimization based methods: GLAMR [54],

EMDB init. MPJPE↗ PVE↗
prediction-based HMR methods

VIBE [20] - 125.9 146.8
HMR2.0 [9] - 115.0 129.7
Hybrik [23] - 103.7 117.2

optimization-based HMR methods
NeMo [46] HMR2.0 158.1 202.9

GLAMR [54] HMR2.0 120.5 138.8
GLAMR [54] Hybrik 113.6 133.4

Ours HMR2.0 105.7 125.2
Ours Hybrik 95.4 109.6

Table 2. Quantitative comparisons on EMDB protocol 1 [18].

SLAHMR [51], and NeMo [46]. For comprehensive com-
parisons, NeuHMR is experimented to optimize upon mul-
tiple different pose estimations generated by VIBE [20] —
a classic video HMR method, Hybrik — the best perform-
ing method on EMBD [18], and HMR2.0 [9] — the most
recent state-of-the-art HMR method.
Metrics. We rely on the commonly used Mean Per Joint
Position Error (MPJPE) and Per Vertex Error (PVE) in mil-
limeters (mm) to measure the distance between optimized
SMPL joints/vertices to the ground truth references in the
3D space. Since the human poses estimated by different
methods are in different 3D coordinates, we transform all
of SMPL joints/meshes to the camera space by using corre-
sponding camera parameters.

4.3. Implementation Details
Details for generalizable human rendering. We pre-
trained a GHN on all frames from all camera angles of the 8
ZJU-MoCap subjects to cover as diverse human movements
as possible. We adopted ConvNeXt-tiny [26] as the back-
bone feature extractor F(·), and used an additional 1 ↘ 1
convolution to obtain the 2D feature maps F at 1

4↘ resolu-
tion [5]. We set the number of input frames to the GHN,
n, to 2, which is the minimum number that could possi-
bly cover the complete view of a human (front and back).
To better decouple the human from the background during
training, 512 rays are sampled on both the human body area
and the background area. For both training and inference,
we cast only 32 samples per ray to enhance rendering ef-
ficiency. We adopted the AdamW [29] optimizer with a
weight decay of 1e↓4 and an initial learning rate of 1e↓4,
which is exponentially decayed to 1e↓5 over 35,000 steps.
Details for NeuHMR. For better efficiency, we resize the
ZJU-MoCap videos to 1

4↘ and the EMDB videos to 1
8↘

their original resolutions. During the anchor joint feature
registration, we employ FPS to select N = T

10 anchor
frames per video. After registration, we construct a motion
field [46] with four simple MLP layers to regress the resid-



uals (Equation 10) from the 100-dimensional RBF features
at each frame. For the joint matching constraint, we sample
up to S = 128 joint candidates from the Gaussian distribu-
tion with ε = 4. We adopt the AdamW optimizer to refine
the motion field over 5 epochs. The learning rate is initially
set at 1e↓6 and gradually decays to 1e↓7, following a Co-
sine Annealing schedule. The loss weights are ⇁rgb = 2.5,
⇁geo = 0.001, and ⇁joint = 0.003. Furthermore, we ob-
served that the 24 SMPL joints are densely located when
projecting onto images and some of them share very similar
semantics due to the limited resolution of F. Consequently,
we disregard crowded joints at the body trunk, hands, and
feet, resulting in the utilization of only 16 out of the 24
SMPL joints for the joint matching loss. We also add a
simple joint regularization term to penalize high-degree ro-
tations at the head, hands, and feet.

4.4. Results
We first report quantitative results on the left-out ZJU-
MoCap sequence in Table 1 to demonstrate the feasibility of
NeuHMR. Hybrik, without employing optimization-based
HMR methods to refine the poses, achieves the best MPVPE
of 85.5. GLAMR, a global optimization-based method, pri-
oritizes refining the global trajectory but compromises the
metrics for local joints/vertices. Consequently, GLAMR
optimized poses yield even lower MPJPE/MPVPE than the
initial estimations. Conversely, SLAHMR excels in refin-
ing short videos, achieving marginal quantitative improve-
ments. Among all comparison methods, our NeuHMR
achieves the best MPJPE and comparable MPVPE.

Following the success on the toy ZJU-MoCap sequence,
we conducted comprehensive evaluations on the large-scale
EMDB dataset (Table 2). We observed that Hybrik main-
tains its superior performance as a prediction-based method.
Surprisingly, when incorporating NeMo, the human poses
become over-smoothed across frames, and local metrics de-
teriorate further. GLAMR strikes a balance between global
and local optimizations without significantly lowering the
quantitative performances. NeuHMR outperforms all the
counterparts on both MPJPE and MPVPE, validating its ef-
fectiveness on in-the-wild videos. We omit SLAHMR re-
sults here since it fails on most EMDB videos due to its
incapacity to handle long sequences1.

We present qualitative comparisons on the left-out
ZJU-MoCap sequence (against SLAHMR [51]) and
two sequences from EMDB (against GLAMR [54]):
outdoor climb and outdoor big stairs down, in
Figure 4. We observe finer articulations at human limbs
on our optimized meshes, which again validates that the
proposed rendering guidance is able to perform well when

1An alternative approach is segmenting long videos into smaller clips
and optimizing them individually. However, it requires over a thousand
SLAHMR runs, which are extremely resource-consuming.

Methods Time↗ (s per frame)
GLAMR [54] 0.1

SLAHMR [51] 31.6
Ours (joint feature registration) 0.8

Ours (pose optimization) 13.5

Table 3. Comparisons on methodology efficiency.

pseudo 2D references are limited (e.g. multiple 2D key-
points are crowded together).

4.5. Extensive Studies

Analysis of joint matching. As we argued in section 1,
existing 2D keypoint detectors are prone to errors, which
can adversely affect the performance of optimization when
used the key point predictions as pseudo ground truth. With
this in mind, NeuHMR employs a photometric approach
to optimize finer-grained body joints through the proposed
joint matching constraint. Nevertheless, we questioned
whether this constraint functions as anticipated and if it in-
deed outperforms reliance on ViTPose alone. To this end,
we conducted extensive experiments, measuring the L1 dis-
tances in the 2D space between ground truth joints, ViT-
Pose estimated joints (with confidence score > 0.5), and
our matched joints across all EMDB videos. Without los-
ing generality, we calculate the distances on the pelvis –—
the most critical joint and the joint that is most likely to be
visible in videos. The distance distributions are shown in
Figure 5. Although ViTPose did a better job of predicting
joints at frames with simple human poses, it occasionally in-
curs significant mistakes (red arrows) while still remaining
highly confident. On average, our matched joints approx-
imate the ground truth with a smaller L1 error of 0.008,
which is 1

4 of the errors made by ViTPose.
Running time comparisons. Each optimization step in
NeuHMR requires the complete rendering of a human
avatar. Despite our efficient implementation of GHN, we
were intrigued to see whether this restriction makes our
method significantly slower than other optimization-based
HMR methods. We report the average per-frame optimiza-
tion time in Table 3.
Among these methods, GLAMR is the fastest and
SLAHMR has the longest optimization process. Note that,
all of NeuHMR, GLAMR, and SLAHMR utilize pretrained
models —– GHN for NeuHMR, CVAE motion infiller for
GLAMR, and Humor [40] for SLAHMR. We do not con-
sider pretraining as part of the optimization process.
Ablation studies. Ablation results are reported in Ta-
ble 4. We first disabled the proposed joint feature reg-
istration, instead implementing joint matching with fea-
tures extracted directly from the input frame and its cor-
responding rendered image. This resulted in a significant
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Figure 4. Qualitative comparisons on the refined SMPL meshes for sequences in ZJU-MoCap [35] and EMDB [18]. NeuHMR refined
meshes are more aligned to the ground truth at twisted body limbs and crowded joints. Major differences are highlighted.

Distribution of distances between 
NeuHMR matched pelvis and GT pelvis

0.008

0.035

Distribution of distances between 
ViTPose estimated pelvis and GT pelvis

Figure 5. Pelvis distance distributions at two scales. A Gaussian is
fit on each distribution. Purple dots are the mean of the Gaussians
while red dots are at the coordinate (0,0) indicating no errors.

Ablations MPJPE↗ PVE↗
w/o Lrgb 99.3 115.0
w/o Lgeo 98.8 114.3

w/o Ljoint 100.7 116.4
w/o registered joint features 101.1 116.5

Full NeuHMR 95.4 109.6

Table 4. Ablation results on different constraints of NeuHMR.

performance drop on both MPJPE and PVE, validating
the importance of this step. We then assessed the impact
of each optimization constraint by individually removing
them from the complete training objectives. Removing the
proposed Ljoint prevented NeuHMR from aligning finer-
grained body joints, resulting in the second-worst perfor-
mances. Surprisingly, we observed that the removal of Lrgb

did not preclude the model from achieving competitive per-
formances. This may be attributed to the fact that the hu-
mans in most EMDB videos exhibit changing appearances,
which could adversely impact pose optimization.

5. Conclusion & Discussion
Limitations. While NeuHMR mainly follows data-driven
optimizations through neural rendering. The performance

of NeuHMR is correlated to the rendering quality of the
GHN. NeuHMR is also prone to subpar human renderings
due to appearance inconsistencies across videos. Moreover,
our method is designed to focus on per-frame optimization
without considering valuable temporal information, which
may result in unstable estimations across frames. Please
see supplementary materials for examples.
Conclusions. In this work, we present NeuHMR, a hu-
man mesh recovery method that optimizes inaccurately es-
timated human poses. Most of the existing optimization-
based counterparts rely on pseudo ground truth 2D key-
points, estimated by an off-the-shelf key point detector,
to refine human poses by minimizing reprojection errors.
However, we argue that even the most advanced keypoint
detectors still make mistakes, and optimizing poses to-
wards the inaccurate 2D references leads to inferior results.
NeuHMR is designed to optimize human poses with the
help of more reliable low-level visual constraints instead
of pseudo-2D keypoints. We start by training a general-
izable human radiance field with accurate poses and then
generalize the appearance model to any target videos. With
human appearances, we determine a set of frames and reg-
ister features at the corresponding joint positions. Human
pose estimations are eventually optimized via the combi-
nation of photometric, geometric, and joint matching con-
straints. We evaluated NeuHMR on two common bench-
marks with extensive analysis, which verified the effective-
ness of this novel approach. Please refer to the appendix for
future works as well as limitations in the current approach.
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