Published in Transactions on Machine Learning Research (11/2025)

Avoiding Structural Pitfalls: Self-Supervised Low-Rank
Feature Tuning for Graph Test-Time Adaptation

Haoxiang Zhang*
Halicroglu Data Science Institute
University of California, San Diego

Zhuofeng Li*
Independent

Qiannan Zhang
Weill Cornell Medicine College
Cornell University

Ziyi Kou
Department of Computer Science and Engineering
University of Notre Dame

Juncheng Li
School of Computer Science and Technology
East China Normal University

Shichao Peif
Department of Computer Science
University of Massachusetts Boston

Reviewed on OpenReview: https: //openreview. net/ forum? id=yi1S6q42LLt

haz140Q@ucsd.edu

zhuofengli1 2345@gmail.com

q124005Q@med.cornell.edu

zkou@nd.edu

jcli@cs. ecnu. edu.cn

shichao.pei@umb.edu

Abstract

Pre-trained graph neural networks (GNNs) have demonstrated significant success in leverag-
ing large-scale graph data to learn transferable representations. However, their performance
often degrades under distribution shifts, particularly in real-world scenarios where labels of
test data are unavailable. To address this challenge, we propose Graph Optimization via
Augmented Transformations (GOAT), a novel self-supervised test-time tuning paradigm
that adapts pre-trained GNNs to distribution-shifted test data by focusing exclusively on
node feature transformations. By avoiding complex and often suboptimal graph structure
transformations, GOAT overcomes the limitations of existing data-centric methods. To
further address the issue of transformation collapse, where feature transformations con-
verge to trivial solutions — such as when the test-time learned data-centric transformation
degenerates into a constant or identity mapping across different inputs, we introduce a
parameter-efficient low-rank adapter that generates diverse transformations tailored to in-
dividual input graphs. This design not only enhances adaptation performance but also
improves interpretability by avoiding modifications to the graph structure. Through exten-
sive experiments on six real-world datasets with diverse distribution shifts, we demonstrate
that GOAT achieves consistent performance improvements across different pre-trained GNN
backbones, outperforming state-of-the-art test-time adaptation methods.

*Equal contribution.
fCorresponding author.

https://openreview.net/forum?id=yiS6q42LLt

Published in Transactions on Machine Learning Research (11/2025)

Dataset | OGB-ArXiv | Elliptic

A dataset of transactions labeled as licit or illicit,
influenced by market conditions.

Open-world dataset of academic papers, the graph
evolves as new papers are cited.

Description

Split | Year Slice Accuracy | Degrade | Time Slice F1 score | Degrade
Train before 2011 - 2011 47.88% Tth _ 11th 90.12%

Val 2011 - 2014 44.46% -9.96% 12th - 17th 78.75% -39.17%
Test 2014 - 2020 38.92% 17th - 49th 50.95%

Table 1: The showcase indicates a significant decrease in the node classification performance of the pre-trained GCN
on the OGB-ArXiv (Hu et al.l [2020) and Elliptic (Pareja et al.,|2020) datasets in an OOD setting where graph data is
generated from different time intervals. For OGB-ArXiv, the year ranges from before 2011 to 2020; for Elliptic, from
the 7" snapshot (when the dark market crackdown occurred) to the 49" snapshot. Performance degrades noticeably
during validation and testing as time progresses.

1 Introduction

Graph pre-training has become a powerful technique for capturing and preserving information from large-
scale upstream graph data (Kipf & Welling, [2022; [Hamilton et al., |2017 |Velickovi¢ et al., [2018)), enabling
graph neural networks (GNNs) to learn rich representations that can be effectively transferred to a variety of
downstream graph tasks. However, the performance of pre-trained GNNs is often hindered by distribution
shifts (Yehudai et al., 2021} |Li et al., [2022a}; |Song & Wang), 2022; |Zhu et al., 2021}, particularly in real-world
scenarios where the labels of the test data are unavailable. This presents a significant obstacle to the practical
deployment of GNNs, as their performance can degrade substantially under such conditions. For example,
Table [1] illustrates that the performance of a pre-trained GNN deteriorates as the distribution of the test
data changes over time.

Adapting pre-trained GNNs to such unlabeled and distribution-shifted test scenarios is therefore a crucial
yet under-addressed problem. Several methods have been proposed to deal with distribution shift at training
time, including invariant risk minimization (Arjovsky et al.,|2019;|Wu et al.,|2023), domain-invariant learning
(Muandet et al., [2013; |Li et al., |2022b)), and invariant representation learning (Wu et al., [2022; |Chen et al.,
2022b)). These approaches attempt to learn features that remain stable across environments, assuming access
to labeled data in the target domain during training. Unfortunately, in many practical settings, test-time
data is both unlabeled and unavailable at training time, rendering these methods inapplicable for adapting
pre-trained models at test time.

Test-time adaptation (TTA) offers a promising alternative. Model-centric TTA methods, such as updating
classifier heads (Wang et al., [2022) or fine-tuning the full model (Zhang et al., [2024; Wang et al., 2021)), aim
to leverage the generalization capabilities of pre-trained models. However, these approaches often struggle
to adapt effectively to unseen or shifted distributions, as they heavily depend on parameters and statistics
learned from the training data (Hendrycks & Dietterich| |2019; |Arjovsky et alJ, 2019). Moreover, fine-tuning
the entire model can be computationally expensive, making it impractical in many real-world resource-
constrained scenarios. In contrast to model-centric approaches, data-centric TTA methods (Jin et al., [2023;
Chen et al., [2022a}; |Zhang et al., [2024) shift the focus from updating model parameters to refining the test
graph itself. By transforming node features and graph structure, these methods aim to better align the test
data with the representation space of the pre-trained model. This strategy has shown considerable promise
in improving model performance under distribution shifts.

Despite their effectiveness, data-centric methods typically rely on simultaneous transformations of both
node features and graph structures, as adapting node features alone often leads to suboptimal performance.
However, this requirement introduces two key challenges. First, identifying and optimizing appropriate
graph structure transformations is inherently difficult due to the vast and continuous search space. Inaccurate
structure modifications can result in poorly refined test graphs, ultimately degrading adaptation performance.
Second, altering the graph structure reduces the interpretability of the adaptation process by obscuring the
relationship between the original and transformed graphs, making it difficult to trace how specific structural
changes influence model predictions.

Published in Transactions on Machine Learning Research (11/2025)

While one might consider avoiding structure transformations by focusing exclusively on node features, this
approach introduces its own difficulties. In particular, it risks both reduced performance and transformation
collapse, where the transformation function becomes ineffective, often converging to a constant transforma-
tion or identity mapping that fails to facilitate meaningful adaptation.

Present work. To address these limitations and overcome the associated challenges, we propose a novel
self-supervised test-time tuning paradigm - Graph Optimization via Augmented Transformations (GOAT)
that enables the pre-trained GNN to dynamically adapt to unseen test distributions without requiring access
to test labels, source training data, or training details. 1) To avoid modifying the test graph structure, our
method GOAT focuses exclusively on node feature transformations. However, naively transforming node
features is insufficient for effective adaptation. To overcome this, we introduce a self-supervised strategy that
estimates optimal node feature transformations by leveraging a set of augmented test graphs. By measuring
the embedding discrepancies between augmented graphs before and after transformation, our method learns
a generalizable transformation function tailored to the test distribution. 2) To address the transformation
collapse issue, we propose a low-rank adapter that generates unique transformations for different input
graphs while effectively utilizing the knowledge encoded in the pre-trained GNN. This approach ensures
that, during each learning iteration, the augmented graphs undergo diverse transformations by the dynamic
adapter, preventing uniform transformations across all graphs and preserving the diversity of the augmented
data. With the learned low-rank adapter, the model’s interpretability becomes more intuitive compared to
interpreting transformations of the graph structure. To summarize, our main contributions are as follows:

e Our work centers on data-centric test-time adaptation and introduces a novel self-supervised test-time
tuning paradigm, GOAT, that leverages node features exclusively, bypassing the complexity of optimizing
for structure transformations.

e We propose a parameter-efficient low-rank adapter to address the transformation collapse issue while
enhancing model interpretability.

o Extensive experiments on real-world datasets with diverse distribution shifts demonstrate consistent
performance improvements across various backbones.

2 Related Work

Distribution Shift on Graphs. Graph-structured data often exhibits distribution-shift phenomena (Song
& Wang, 2022} |Li et al., 2022a). To tackle this challenge, researchers have proposed methods for learning
invariant representations (Wu et al., |2023; |Arjovsky et al., [2019; |Wu et al 2022; |Chen et al., |2022b; |Li
et al., 2022b; [Muandet et al., [2013)), generalizing pre-trained GNNs (Zhu et al., 2021} |[Li et al.l 2022a}; [Song
& Wang) [2022; Hu et al} [Zhao et al., 2021)), detecting OOD instances (Zellinger et al., [2022; |Guo et al.,
2023; Huang et all |2024). Most of these approaches often require access to multiple source domains, rely
on specific model architectures and train-time paradigms, or may lead to performance degradation. For a
thorough review, we refer the readers to two recent surveys (Wu et al., [2024; |Liu & Dingj, 2024]).

Graph Test-time Adaptation. Graph test-time adaptation (GTTA) aims to adapt pre-trained models to
the test distribution without requiring labeled data or modifying the model’s parameters (Chen et al.,|2022a).
Existing proposed methods can be broadly categorized into the following two classes: data-centric and model-
centric. (1) Model-centric. These approaches center on the learning process or the design of the graph model.
SLAPS (Fatemi et al., 2021), TTT (Sun et al.l |2020), TTT++ (Liu et al. [2021)), and Tent (Wang et al.,
2021), update the whole pre-train model or some specific layers. In addition, GraphTTA (Chen et al.,
2022a)) and GT3 (Wang et all 2022) tune a new classifier head expecting better prediction. However, these
approaches have limitations such as reliance on specific architectures, over-smoothing, or being preoccupied
with how to select negative samples for contrastive learning. These issues direct our attention to data-centric
approaches. (2) Data-centric. These recently emerging approaches emphasize the manipulation of input
graphs. GTRrans (Jin et al., [2023) both modify the adjacency matrix and node feature to empower graph
representation learning. GraphCTA (Zhang et all) 2024) uses a memory bank to keep the best neighbor

Published in Transactions on Machine Learning Research (11/2025)

& Teainable Node Embedding \ Node Embedding
Fixed ’—» Adapter — E 1 ’—' Adapter [E
1
Node Feature Adaptation Nodes : Node Feature 1 Nxd
XeRmdﬁ A% RV } | X e RV AX;R
1
1 o
Sampled — : o o
. & ! — —— — Pred
|-1 Ly »CA2 A : L, L,
Sampled !
amp e SN : é %/O
\
Gie{A, X} Pre-trained GNN 1 Gie{4, X} g;e{A X~ } Pre-trained GNN
Test-time Tuning Test-time Inference

Figure 1: Overview of the proposed method GOAT under two augmented views. In the test-time tuning, multiple
augmented views of a single test graph are generated by extracting induced subgraphs. These views are passed
through the fixed pre-trained GNN, with their input node features modified by an adaptation term AX. A self-
supervised loss La2a is used to train the adapter, encouraging alignment between the embeddings of one view with
node feature transformation and another without. During the test-time inference phase, all parameters are frozen.
The node feature and its embedding after certain layers of the pre-trained GNN will be fed to the adapter. The best
adaptation AX generated from the adapter is added to the input features of the test graph and passed through the
pre-trained GNN, resulting in improved prediction performance.

structure. Whereas, GTRANS requires the transformation of graph structure, leading to the suboptimal
structure refinement, while GraphCTA still needs to update the whole pre-trained model’s parameters.
Graph prompt tuning (Fang et al., |2024)) inspires a succinct direction; however, it emphasizes the task
discrepancy rather than the distribution shift and relies on the availability of label sets for downstream
tasks. These challenges guide us toward a more universal test-time tuning paradigm.

3 Methodology

In this section, we delve into our proposed paradigm GOAT and Figure [[| provides the framework overview.

3.1 Self-supervised Graph Test-time Adaptation from Augmentations

A graph is represented by G with a set of nodes V and a set of edges £. For any input graph data G = (A, X),
the adjacency matrix derived from a graph is denoted by A € RN*N | If v, v; € Vand (v, v;) € &, then A;;
is one, otherwise it is zero and X = {x, | v € V} is the node features. Apart from these, each node in the
graph has a label y,, and the label of the whole graph can be represented as a vector). In a local view, we
define an induced graph Gs = (Ag, Xs), where S C V, Ag = [Apy | v,u € 5], and Xg = {x, | v € S}. Its
corresponding label is Vg.

Graph Pre-train. During train time, a GNN fp(G) parameterized by 6 is optimized by the input-target
pairs (Ggs, Ys) sampled from training data Dy, = {Gy,, Vi }, which minimizes the empirical risk:

H*Zargmein(E ﬁtr(fo(gs) s)- (1)

S7S

Distribution Shift. It’s a key challenge in real-world applications that the training ﬁtr and test graph
Gte together with its label V. are drawn from different probability distributions. Formally, if we denote the
source distribution as P;.(G, Y|Dy-) and the test distribution as Pie(Vie|Gte), distribution shift is defined via
a divergence measure d(-,-) as:

A =d(Py(G, YD), Pre(VielGre)) > e

Here, € is assumed to be a relatively large threshold, meaning that the distributional gap is substantial
enough to hinder direct generalization of the source-trained model. This mismatch means a model optimized

Published in Transactions on Machine Learning Research (11/2025)

on the source distribution may not generalize effectively. The problem is particularly acute when test labels
are unavailable, which makes determining the true test-time distribution more difficult and is a core challenge
we aim to address.

Graph Test-time Adaptation. At test time, for arbitrary graph G;., when the label). is available,
following the data-centric paradigm (Jin et al., 2023; |Zhang et all [2024), an extra transformation of the
input graph data should satisfy the following objective:

Y* =argmin Ey ﬁtE(fG* (gw (gte))v yte)a (2)
Y (GresVre)

denoted that for parameter efficiency, the parameters 6* of the pre-trained GNN f(G) is fixed during tuning
the graph transformation ¢(G) : G — G parameterized by ¥ and the number of parameters || should be
significantly smaller than |6*|. During the prediction stage, L. represents the likelihood loss, while in the
representation learning stage, L;. can be defined as the Ly norm. Since the pre-trained 6* are fixed at
test-time and the test graph is the focus of this paper, we drop the subscript in G;. and fp+ to simplify
notations in the rest of the paper.

When test labels). are unavailable, we reframe the original task of predicting V. as estimating the optimal
representation z* = f (g; (Gte)), where f is the fixed pre-trained GNN encoder, and gy, is a transformation
function applied at test time. To estimate the optimal representation z*, we use prozies, a strategy akin
to estimating an unknown quantity (e.g., room temperature) by averaging multiple noisy measurements.
According to the law of large numbers, this can yield a reasonably accurate approximation of the ground
truth. Since we do not modify the pre-trained model or access ground-truth labels, we optimize g, using
prozy representations Z obtained from augmented versions of the test graph, denoted Gre:

A

zZ= f(gte)- (3)
Using these proxies, we formulate the objective to learn g, as:
¢ =argminE,, s |1/(90(Gre)) = 217, (4)

where the Lo norm is used as the loss L in the representation learning stage. Since we use Lo loss, it
suffices that the proxy 2 satisfies E;[2] = E,[2*].

To ensure generalization, g, must be capable of transforming both the original test graph G;. and its various

augmented versions Gie. To this end, we train g, on G and generate proxies from Gre. Importantly, to
prevent gy from collapsing to the identity function, the input graph passed to g, must be different from

the one that generates 2. Specifically, let :/5aug ={G1,G2,...,G|-|} be a set of |7| augmented graphs derived

from Gi.. We train gy to transform each G, € Dq.g, while selecting different graphs G, € 5aug \ Gp as the
proxies. The optimization objective becomes (proofs can be found in Appendix ?7?):

[T |7
L) =B, (1|) SN 1 (0s(G) — £GP (5)
s
subject to the constraint: _
E, [(9(G.)) — F(G)] =0, ¥G: € Do, (6)

To efficiently construct 75aug, We apply a subgraph sampling strategy, similar in principle to methods (Rong
et al.l [2020; [Hamilton et al., 2017, to generate sufficient sub-views of augmentation of the test graph.
Note that the graph transformation g, here is applied exclusively to the node features of these subgraphs.
The loss L5(Gp, G4) is symmetric with respect to its inputs, swapping G, and G, leaves the loss unchanged.
This symmetry ensures that the adaptation process is invariant to the input order, thereby enhancing the
robustness of the data-centric optimization approach.

Published in Transactions on Machine Learning Research (11/2025)

3.2 Node Feature Transformation with Low-rank Cross-attention Adapter

During optimizing the transformation g, with £, in Eq., collapse mapping occurs when each augmented
graph receives the same transformation solution, leading to a failure in producing meaningful input-specific
adaptations. We define this phenomenon as transformation collapse, a failure mode where the adapter
converges to a trivial function that fails to generate distinct outputs for different inputs. This includes two
primary forms: a) Constant Collapse: Where the data-centric transformation g, maps all different inputs to
the same output (g4 (Gp) = G, VG,). b) Identity Collapse: Where g, simply returns the input (g, (Gp) = Gp).
To address this issue, we design a low-rank cross-attention adapter to ensure that distinct inputs G produce
unique outputs g,(G), thereby preventing all augmented graphs from being mapped to the same point in
the pre-trained GNN'’s representation space from a data-centric perspective.

For an arbitrary graph G = (4, X), where A € RN*Y represents the adjacency matrix encoding the edge
relationships among N nodes, and X € RY*¢ denotes the node feature matrix with d-dimensional features
for each node, data-centric graph adaptation assumes the existence of a transformed graph G* = gy (G),
which ensures that the graph achieves the best possible performance when applied to the pre-trained GNN
f (), by bridging the gap between the test graph and the knowledge learned by f(-). Specifically, a graph
transformation that only transforms node features is defined as:

9(9) = (A, X & AX), (7)
where AX € RY*? denotes continuous learnable parameters with the same shape as the node features. Here,

@ denotes element-wise addition.

However, simply adding AX cannot solve the collapse mapping issue. To better solve this issue and integrate
global and local information of test graphs into AX while fully leveraging the knowledge learned by the
pre-trained GNN, we design the following adapter incorporating the pre-trained GNN to generate AX
dynamically.

In GNNSs, learning of node representations typically relies on the aggregation of neighboring nodes. Given a
graph G = (A, X), an L-layer GNN can be represented as:

HY = 6(AGGW (A, HIZVY), 1=1,2,...,L, (8)

where H(1) ¢ RNxd® represents the node representation at the I-th layer in pre-trained GNN with H(©) = X,
AGG(I)(-) is the aggregation function at the [-th layer, and o is the activation function. In our experiments,
the ReLU activation function is employed: o(z) = z™.

Although GNNs effectively capture local structural information

k k
through neighborhood aggregation, they face two key limitations. T III() }11()
First, they primarily focus on local interactions and lack mech- Lincar — .
anisms to model global structural context. Second, modeling y '
long-range dependencies requires stacking multiple layers, which I L°wi'a“k Lowsrank
significantly increases computational cost and often leads to over- o R gx M gy R
smoothing. To address these challenges, we propose the Low-

Rank Adapter (LRA), a lightweight module designed to incorpo- \—(P——‘
rate global context efficiently via attention over a compact set of Softans
virtual nodes. | ~

Specifically, the LRA operates on the k-th output of the first &k Linear
layers of the GNN with the original node features to obtain an k- |
hop neighbor-aware node representation H*) € RVN*d” Then AX
we introduce Low-Rank projection : RVxd" — RInlxd (usually Figure 2: Structure overview of Low-Rank
|n| < N), which is a low-rank projection function that projects Adapter.

nodes into a latent space represented by few virtual nodes, striv-

ing for maximal rank density and minimal computational overhead, where d’ is the attention dimension in
LRA. Let E, F € RI*™*N denote the key and value’s low-rank transition matrices of the virtual nodes. The

RNxd

Published in Transactions on Machine Learning Research (11/2025)

core of LRA is a self-attention mechanism, which enables each node to attend to a globally-aware summary
of the graph via virtual nodes. The computation process of LRA is:

QEK)"
Ja

where Wx € R% >4 js a learnable output projection matrix, and Q, K,V are obtained via:

Q=XWq, K=H®Wg, V=HPW. (10)

AX = (Softmax(). (FV))Wx, (9)

Here, Wq € R4 Wy e Rd(k)x”l/, and Wy € R4 xd" are learnable weight matrices. By introducing
the low-rank transition matrices £ and F'; LRA can compute long-range dependencies between nodes with
linear time complexity and generate AX € RY*4 that contain local-global contextual information. The time
complexity of the LRA, assuming k = 1, is O(Nd').

With LRA, both interpretability and robustness are improved. The output AX can be directly analyzed,
making it more interpretable than structural graph transformations. Additionally, in the test-time adaptation
setting, LRA helps prevent transformation collapse: when applied to different graphs g(G,) and ¢(G,), their
outputs are less likely to degenerate to the same representation, thus maintaining representational diversity.

3.3 Optimization

The constraint in Eq. requires the same input graph for both f(gy(-)) and f(-), which can easily result
in the mapping collapse issue. As transformation g(G) can be formulated as (A, X + AX), the constraint is
equivalent to:

argminEy||f(4, X + AX) — [(4, &) - [(4, AX)|
st. Ep[f(4,AX)] =0, (11)

where f(A, AX) serves as a regularization. We define g, (f(G)) = f(4, X)+ f(A, AX) as the transformation
on node embeddings. In this form, it can be seen as encouraging g, to learn an isomorphic mapping with f,
ensuring that the adapter’s transformations are consistent with those of the GNN, i.e., gy o f = fogy. This
consistency facilitates the rapid optimization and performance consistency of the transformation g, across
different designs of f. With further relaxing the constraint in Eq.7 we derive the following consistency loss
and a regularization loss. Optimizing the two loss functions jointly can achieve the same effect as optimizing
the constraints in Eq.(6]) with the same |7| augmented graphs in Eq.(5):

‘Cc(w) 1<p<\7'| |’7'| Z Hf Gy gp gw(f<gp))||2]
Cut) = By (o3 Ay AP (12

where A, is the adjacent matrix of G, € l~)aug, AX), is generated from LRA with the input of G,,.
The overall loss function used for training is defined as follows:

Lasa=aXLs+ L)+ (1 —a)Lpg, (13)
where o and A are hyperparameters that control the importance of each objective. « is a hyperparameter

in the range (0,1); A is a positive hyperparameter.

4 Experiments

4.1 Adaptation on Data with Distribution Shift

Datasets. We evaluate GOAT ’s performance on three types of distribution shifts across six benchmark
datasets, following the experimental settings of EERM (Wu et all 2023]). The dataset statistics, along with

Published in Transactions on Machine Learning Research (11/2025)

Table 2: Average classification performance (%) on the test graphs. The best performance on each dataset with a
specific backbone is indicated in bold, the second-best method is underlined, and “Avg.” indicates the average ranking
of the same method across all six datasets under the same backbone. OOM indicates an out-of-memory error on a
24 GB GPU. T/* denotes that GOAT significantly outperforms GTrans and ERM using the Wilcoxon signed-rank
test at the significance level of p < 0.05, respectively, across all datasets.

Datasets ‘ Artificial Transformation Temporal Evolution Cross-Domain
Backbone Method \ Amz-Photo Cora Elliptic OGB-Arxiv Twitch-E FB-100 ‘ Avg.
GCN ERM 92.78+1.34 93.92+0.64 54.13+1.18 36.89+0.67 56.84+1.13 53.95+0.77 4.7
EERM 94.2440.40 87.36+0.86 53.15+0.01 OOM 57.25+0.42 54.03£0.80 5.2
Tent 93.84+1.53 91.64+2.37 46.7240.06 39.3442.76 60.01£0.95 54.11£1.50 4.2
GCTA 91.43+1.74 93.13+2.02 55.824+3.50 37.27+3.46 60.10+0.95 54.11+1.49 3.7
GTRANS 94.32+1.34 94.76+1.94 55.07+3.61 40.45+1.76 60.37+1.44 54.174+1.23 1.8
GOAT 94.35+1.32 94.79+1.36 55.83+3.81 *39.4442.02 *60.15£1.30 54.19+2.04 1.3
SAGE ERM 87.79+£1.74 99.62+0.09 50.11+0.39 37.52+0.66 59.20+0.14 54.09+0.40 5.2
EERM 95.76+0.11 99.76+0.21 60.43+0.29 OOM 60.09+0.25 OOM 5.2
Tent 95.23+1.52 99.71+0.17 50.25+3.28 39.56+1.49 62.05+0.22 55.114+0.55 3.0
GCTA 96.86£1.11 99.85+0.06 66.92+£2.33 33.67+3.25 62.05+0.24 55.11+0.56 3.2
GTRANS | 97.09%+1.13 99.81+0.16 63.04£6.39 39.74+1.14 61.97+0.34 55.07+0.59 2.5
GOAT *92.54+2.51 *99.894+0.10 *67.92+5.56 *39.524+1.03 *61.91+£0.28 *55.61+0.30 2.5
GAT ERM 94.9242.33 95.99+0.88 49.49+1.51 37.9240.68 57.36+£0.30 48.254+1.55 3.8
EERM 94.07+1.32 79.35+8.90 54.27+2.42 OOM 56.27+0.37 52.46+£2.02 3.7
Tent 94.96£0.87 93.54+3.50 55.29+5.22 37.41+£5.20 58.93+1.50 51.22+1.99 5.3
GCTA 94.72£1.73 96.03+1.76 56.00+£10.11 37.8 6+£2.17 58.83+1.59 51.22+1.98 3.2
GTRANS 95.14+0.70 95.46+1.96 62.56+4.22 37.52+2.68 58.84+1.49 51.27+1.91 2.5
GOAT 94.69+0.63 94.72+2.83 #60.33+4.83 T#41.13+1.96 58.95+1.50 '*54.20+1.10 | 2.3
GPR ERM 84.81+£3.71 83.98+1.72 48.96+£1.05 40.91+0.28 57.25+0.66 54.36+0.27 4.1
EERM 90.87+0.52 87.16+£2.39 60.08+0.03 OOM 58.75+0.29 54.21£0.42 4.0
Tent* - - - - - - -
GCTA 91.96+0.75 92.75+2.48 66.36£3.67 44.44+0.70 59.97+0.62 54.63+0.77 2.6
GTRANS 91.97+0.84 92.70+2.46 68.54+5.56 45.64+0.61 59.84+0.89 54.48+0.66 2.4
GOAT *91.98+0.83 *92.79+2.74 *66.47+6.44 *44.78+0.69 *60.00+0.65 T%55.2340.43 1.7

* Tent cannot be applied to models that do not contain batch normalization layers.

Table 3: Summary of the experimental datasets that entail diverse distribution shifts.

Dataset Distribution Shift #Nodes #Edges #Classes Train/Val/Test Split Metric Adapted From
Cora A T Emmetien 2,703 5,278 10 Domain-Level Accuracy (Yang et al.| [2016)
Amazon-Photo 7,650 119,081 10 Domain-Level Accuracy (Shchur et al.| 12018))
Elliptic Temporal Evolution 203,769 234,355 2 Time-Aware F1 Score (Pareja et al.| [2020)
OGB-ArXiv 169,343 1,166,243 40 Time-Aware Accuracy (Hu et al.| |2020)
Twitch-BExplicit . 1,912 - 9,498 31,299 - 153,138 2 Domain-Level ROC-AUC (Rozemberczki et al.| |2021))
Cross-Domain Transfer
Facebook-100 769 - 41,536 16,656 - 1,590,655 2 Domain-Level Accuracy (Traud et al., |2012)

a breakdown of these three distinct types of distribution shifts, are presented in Table (1) Artificial
Transformation for Cora (Yang et al.,2016) and Amazon-Photo (Shchur et al., 2018, where node features
are replaced by synthetic features. (2) Cross-Domain transfers for Twitch-E (Rozemberczki et al., [2021))
and FB-100 (Traud et al.| 2012), involving graphs from different domains. (3) Temporal Evolution for
Elliptic (Pareja et all 2020) and OGB-ArXiv (Hu et al., [2020), utilizing dynamic datasets with natural
evolving characteristics. The datasets are split into training/validation/test sets with ratios of: 1/1/8 for
Cora and Amazon-Photo; 1/1/5 for Twitch-E; 3/2/3 for FB-100; 5/5/33 for Elliptic; and 1/1/3 for OGB-
ArXiv.

Baselines. GOAT is compared with four baselines: empirical risk minimization ERM, test-time training
method Tent (Wang et al.l [2021)), memory-bank-based method GraphCTA(GCTA) (Zhang et all 2024]),
the train-time state-of-the-art method EERM (Wu et al.l |2023)) which is exclusively developed for graph
OOD issues, and the test-time graph transformation state-of-the-art method GTrans (Jin et al. 2023]).
All methods are evaluated with four popular GNN backbones: GCN (Kipf & Welling, [2022)), GraphSAGE
(Hamilton et al., [2017), GAT (Velickovi¢ et al.| 2018), and GPR (Chien et al., [2021)). Their default setup
follows that in EERMB More implementation details of the baselines and GOAT can be found in Appendix

1 Adjustments have only been made to the hidden dimensions of GAT to ensure consistency in the parameter count across
all four backbones.

Published in Transactions on Machine Learning Research (11/2025)

Table 4: Efficiency comparison. GOAT is more time-

[ERM
0.8+ . =1 GOAT and memory-efficient than EERM on large graphs and
Z307- ¢ % E @ @ = comparable to GTRANS.
£06° . . . 5 Running Time (s) GPU Memory (GB)
05T = = B I . Photo Elliptic ArXiv | Photo Elliptic ArXi
. I___I__I [oto Elliptic ArXiv | Photo Elliptic ArXiv
n T s T 15 16 T T8 To EERM 4134 629.6 -1 10.5 12.8 24+
GTRANS 1.9 6.8 12.2 1.6 1.3 4.1
Figure 3: Results on Elliptic under OOD. GOAT im- goAT 5.5 0.5 0.3 15 1.3 5.0

proves SAGE on most test graphs.

350000
300000
102 - \

100 - 250000 I — Graph 0
o o 1077- { — Graph1
3 -4 2 2200000 M Graph 2
S 107 - 2 10-16 - 2 [| Graph 3
8 o8 5 % 150000 | Graph 4
3 1078 - 3 107%- a [Graph 5
< c | Graph 6
& 10712 - & 1073 - 100000 [— Graph7

1 I 1 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1 I 50000

1 2 3 4 5 6 7 8 9 .. 1 2 3 4 5 6 7 8 9 .. 0

Index of v-nodes Index of v-nodes 2 3 Y Y 9 1 3 3

(a) (b) (c)

Figure 4: (a)(b) Visualization of the low-rank property of matrix AX in the LRA module of a GAT backbone
trained on the two largest test graphs on OGB-ArXiv(169343 nodes) and FB-100(41554 nodes) under OOD settings.
The singular values, obtained via SVD, show a rapid decay, indicating that node embeddings can be effectively
compressed into virtual nodes of the units digit. (c) Visualization of the distribution of generated AX obtained
after training GOAT on 8 test graphs in Cora with Gaussian KDE. The x-axis represents the sum of feature values
on the nodes, and the y-axis represents the density of bias on each node within that value range. The further the
mode of the distribution is from "0", the greater the degree of distribution shift.

All experiments are repeated 8 times with different random seeds. Due to page limits, additional
baselines and backbones such as SR-GNN (Zhu et al.| 2021)), UDA-GCN (Wu et all 2020), and GTN (Yun
et all [2019) are included in Appendix [D]

Overall Comparison. Table [2| reports the averaged performance over the test graphs for each dataset
as well as the average rank of each algorithm. From the table, we conduct the following observations: (a)
Owverall Performance. The proposed framework consistently achieves strong performance across the datasets:
GOAT achieves average ranks of 1.3, 2.5, 2.3, and 1.7 with GCN, SAGE, GAT, and GPR, respectively, while
the corresponding ranks for the best baseline GOAT are 1.8, 2.5, 2.3 and 2.4. Furthermore, in most cases,
GOAT significantly improves the vanilla baseline (ERM) by a large margin. Particularly, when using SAGE
as the backbone, GOAT outperforms ERM by 9.8%, 18.5%, and 3.9% on Cora, Elliptic, and OGB-ArXiv,
respectively. These results demonstrate the effectiveness of GOAT in tackling diverse types of distribution
shifts. (b) Comparison to other baselines. Both GraphCTA and EERM modify the model parameters to
improve model generalization. Nonetheless, they are less effective than GOAT , as GOAT takes advantage
of adapting the pre-trained GNN to the environment of test graphs. As test-time training methods, Tent
and GTRANSs also perform well in some cases. However, Tent is ineffective for models that do not incorporate
batch normalization. On the other hand, GTrANS not only modifies node features but also alters edges, which
can backfire if the edge modifications are not carefully chosen, potentially leading to a misrepresentation of
the graph structure.

We further show the performance on each test graph on Elliptic with SAGE in Figure [3| and the results

for other datasets are provided in Figure [J]in Appendix. We observe that GOAT generally improves over
individual test graphs within each dataset, which validates the effectiveness of GOAT .

Published in Transactions on Machine Learning Research (11/2025)

Ours Surrogate Origin Ours Surrogate

Amazon-Photo

Cora
.

AX Embedding Node Embedding

Figure 5: t-SNE visualizations of AX and node feature embeddings on Amazon-Photo, Cora, and datasets. The
embeddings are obtained after a pre-trained GCN, using AX generated by our method and surrogate loss proposed
by GTRANS.

Efficiency Comparison. In Table 4] we compare the computational time and GPU usage on the largest
graph of each dataset for our GOAT , EERM, and GTrans methods. Unlike EERM, which increases pre-
training generalization through extensive environment augmentation during train time, GOAT optimizes
efficiency by minimizing reliance on computationally expensive data augmentations and parameter tuning.
In contrast to GTrans, which adjusts based on the proportion of edges modified on the graph, GOAT
requires sampling only a minimal number of two augmented input graphs per training epoch. These features
ensure that GOAT not only conserves GPU resources but also accelerates the adaptation process during
test timej,zlshowcasing substantial efficiency improvements over both train-time methods and other test-time
methods

4.2 A Node-Level Low-Rank Perspective on Adaptation

After tuning the parameters of LRA on validation sets and obtaining the optimal results through test-
time tuning, we further investigate the principal components of the low-rank matrix AX € RV*? in the
N-dimensional space as Figure a)(b) shown. By performing Singular Value Decomposition (SVD), we
obtained the singular values sorted in descending order and compared the major eigenvalues, showing a
significant decline compared to the others. In almost all large graphs, the adaptation graph AX exhibits
low rank along its N-th dimension. This phenomenon differs from the low-rank attention applied to the
node feature across each node’s dimensions. This finding further demonstrates that the input test graph can
be adapted using a low-rank additive representation. To elaborate, in Eq.@, AX can also take the form
AX € RN'*d with N’ nodes (N’ <« N), selected from a predefined node dictionary. This provides empirical
evidence for setting our |n| hyperparameter to a small constant that is independent of the number of nodes.
In comparison, with full-node attention, the time cost will surge to 4x or even cause an OOM error.

4.3 An Embedding View on Adaptation AX

We further visualize the t-SNE distribution of different AX generated by our paradigm and GTRANS on
different test graphs. From Figure [5] it can be observed that the AX obtained through our paradigm, i.e.,
optimized with LRA module and L2, forms a low-dimensional manifold M after being embedded by the
pre-trained GNN. This implies that AX itself belongs to a function manifold, encouraging g, (+) to transform
each node feature along the local tangent space of M or along the curvature directions of M.

2Detailed early-stop procedures are shown in Appendix

10

Published in Transactions on Machine Learning Research (11/2025)

Table 5: Ablation study of the overall loss function L£424 comparison on the
Elliptic dataset under OOD. Two-view sampling under a test environment shows
improvement in GCN average performance on test graphs with the addition of
each L 24 constraint component, demonstrating the effectiveness of each part of

0.7 - o=t e a= == ===

54
o
'

F1 score

—o— a,A=0.1

the loss function and the choice of the number of samples. — A a=5e-4
Configuration Performance le3 563 1e2 5e2 01 05 09
Pre-train Ls Le LR One sample Two samples
v 20.00% T0.00% Figure 6: «, A Parameter Study.
v v 1.51% 1.51% We compared the parameter sen-
v v v -1.62% 14.49% sitivity under two commonly used
v v v v -0.18% +5.28% settings: o = 0.0005 and A = 0.1

60 1

—— Graph 0 Graph 17
—— Graph 1 Graph 18
—— Graph 2 Graph 19
— Graph 3 Graph 20
—— Graph4 Graph 21
—— Graph5 Graph 22
—— Graph 6 Graph 23
—— Graph 7 Graph 24
—— Graph 8 Graph 25
~—— Graph 9 Graph 26

Graph 10— Graph 27

50 4

40

Density

Graph 11 —— Graph 28
Graph 12 —— Graph 29
Graph13 —— Graph 30
Graph 14 —— Graph 31
Graph15 —— Graph 32
Graph 16

20 1

10 A

—-0.08 —0.06 —0.04 —0.02 0.00 0.02 0.04

Figure 7: Visualization of the distribution of generated AX obtained after training GOAT on 32 test graphs in
Elliptic with Gaussian KDE.

Furthermore, we found that although the AX generated by the GTraNs method still adheres to the clustering
distribution of classification task labels, which, to some extent, even distorts the original topological structure
learned by the GNN. A notable observation is that the performance of GTRrANs correlates with the degree of
distortion it introduces. The distortion, in effect, allows AX to generate a "spurious" graph that potentially
overshadows the importance of the original node features for the classification task. Upon examining the
node embeddings before and after transformation by AX, it becomes evident that our method significantly
enhances performance while maintaining a largely consistent distribution. This further demonstrates that
the AX generated by our approach represents the degree of distributional shift, rather than conforming to
the classification and clustering observed during pre-training.

4.4 Distribution Shift Quantification

We utilize Kernel Density Estimation (KDE) to visualize the distribution of AX generated by our adapter
obtained through GOAT on Cora and Elliptic as Figure Ekc) and Figure El shown, by aggregating each
node’s feature dimensions d in AX. As the initialization of the AX is zero, the mean and mode of the initial
distribution should be 0. Due to the varying degrees of distribution shifts in different graphs, after tuning
by GOAT , our adapter can effectively capture the discrepancy between the current test graph and the
pre-trained GNN. Adding the generated AX can be seen as the mapping from the current test graph to the
distribution to which the original training graph belongs. Therefore, the farther the representation deviates
from the origin, the more severe distribution shift the graph has, whether observed from the perspective of
the entire graph or an individual node’s perspective. The distribution shifts in the time-evolving graph could
be more intuitive as time flows. Furthermore, we show AX'’s distribution in other datasets and compare
with the central moment discrepancy (CMD) (Zellinger et al.,[2022) measurement in the Appendix.Figure[10]
highlighting the interpretability of our designed adapter.

11

Published in Transactions on Machine Learning Research (11/2025)

0.925 - = GCN T~ 8- SAGE —=— GPR
GCN+GOAT 0.99 - SAGE+GOAT 0.94 - GPR+GOAT

o
o
S
3
1

0.98 - 092 -

0.875 =

Test accuracy
Test accuracy
Test accuracy

0.97 -

o

©

o
[

0.850 =

0.96 =

o

@

©
1

.825 -
0.825 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 I 1 1
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Noise structure ratio Noise structure ratio Noise structure ratio

Figure 8: Performance of GCN, GraphSAGE, and GPR on Cora under structural attacks (edge addition/deletion).

4.5 Ablation Studies and Parameter Study

Overall Loss Function £ 454. The ablation study shown in Table [5| demonstrates the effectiveness of the
different components in our proposed loss function. Optimizing £, alone may lead to instability and mode
collapse, which empirically proves our proposed target in Eq. and Eq.. The target Lp is affected by
whether the pre-trained GNN has sufficient generalization capability. Therefore, optimizing £, alone is also
sufficient to meet the requirements of Eq.. The best performance was achieved when all three components
were jointly optimized. Additionally, sampling at least two distinct graph augmentations in Baug is essential
to prevent biased learning, which empirically supports our choice of enforcing (¢ # p) in Eq.. We show a
more detailed loss component ablation study with backbone GraphSAGE in Appendix[E-T}

Adapter LRA. In Figure [6] we show the parameter study of A and « in L£424. Note that while the
proportion ﬁ may vary, 1 — « should remain relatively large to ensure that the constraint in Eq. , ie.,
L g, is satisfied before optimizing the other objectives.

Number of sampled views. We further show the time cost and the performance in more sampled views
(>2)in Appendix The results validate our choice that using two samples strikes an excellent balance,
capturing the vast majority of the potential performance gain while maintaining the high efficiency that is
critical for a practical test-time adaptation method.

4.6 Robustness under Structure Adversarial Attack

We evaluate the robustness of GCN, GraphSAGE, and GPR on the Cora dataset (Yang et al., |2016)) under
structural attacks, we perturb the graph by both adding and deleting edges. For a given perturbation budget
ratio, we randomly delete a number of edges corresponding to ratio/2 of the original edge count, and randomly
add an equal number of new edges. For the GCN model, our method achieves an average improvement of
2% under 25% structural attack noise, while for GPR, it delivers a stable gain of 0.5% across all noise
levels. Without modifying hyperparameters (e.g., learning rate, sampling ratio), our method consistently
improves backbone model performance by 0.5%-2.5% across varying attack intensities. Although our test-
time paradigm consistently enhances adversarial robustness, its performance remains dependent on the base
backbone’s inherent generalization capability and adversarial robustness. Notably, this gain is achieved with
just two samples with any subgraph sampling strategy, demonstrating computational efficiency alongside
robustness.

4.7 Further Analysis

Universal Bias vs. Local-global Bias. We compare the average improvement of various non-customized
additional parameter methods using our proposed £ 424 on graph classification datasets HIV (a small-scale
real-world molecular dataset adapted from MoleculeNet (Wu et al., 2018)) under the OOD setting in GOOD
(Gui et al., |2022) during test time. Average results of different designs of basis are shown in Table @

We show its improvement of ROC-AUC(%) based on ERM with GCN. For node classification, it is evident
that UPF’s universal prompts (Fang et al., 2024), AX € R'*9 across all nodes, are less customizable

12

Published in Transactions on Machine Learning Research (11/2025)

for classifying each node in an OOD environment, and might even learn controversial knowledge, therefore
showing diminishing performance.

Moreover, using a selection dictionary (Sun et al. [2023), AX € RFx4
(k < N), also presents difficulties during test-time .training. In contrast, Mothod Avg. Tmpr
subgraph-focused methods (Sun et al.l [2022) can simultaneously capture

the optimal bias more effectively, yielding relatively higher results, espe- Universal +0.01%
cially when it extends to a node-wise bias, i.e. each node’s learnable bias Prompt dict ~ +0.01%
is different, AX € RY¥*4 These demonstrate that, at least in OOD node Sub-graph +1.52%
classification, a bias design that focuses on local-global context can better Node-wise +2.35%
capture the relationships of nodes within the OOD environment. The node-
wise bias method is particularly well-suited to our designed strategy, as it can better adapt to different
distribution shift scenarios. This further validates the rationality of our adapter’s design. Furthermore,
based on the graph prompt methods (Liu et al.l 2023} |[Yu et al. 2023)), we experimented with incorporating
a learnable scaling parameter that multiplies the weights of each GNN layer or node embeddings during test
time. However, we found this approach difficult to apply effectively in our context.

Table 6: Bias Comparison

5 Further Discussion

It is worth noting that the distribution shift issue in graph models can lead to significant risks and negative
consequences in real-world applications. For instance, when GNNs are applied in financial risk control
systems, distribution shifts in the input data may cause a large number of misjudgments, leading to severe
economic losses or compliance issues. Similar risks exist in other high-stakes domains such as healthcare and
cyber-criminal justice, where the reliability and robustness of graph-based decision-making systems under
distributional changes are critical. Therefore, it is crucial to develop effective methods to detect and adapt
to distribution shift scenarios in graph learning and to carefully analyze and mitigate the potential negative
societal impacts. Our work aims to contribute to this important research direction.

Another illustrative example of the potential negative impact of the distribution shift issue in graph models
is in the context of social network analysis for misinformation detection. GNNs have been widely adopted
to identify fake news and rumors based on the propagation patterns and content features in social networks.
However, the characteristics of misinformation can evolve rapidly over time, leading to distribution shifts
between the training and test data. If the GNN-based misinformation detectors fail to adapt to such changes,
they may miss emerging misinformation or cause false alarms, which can have severe societal consequences
such as public panic, political manipulation, and erosion of trust in media. This urges the development
of graph OOD detection and adaptation methods that can robustly handle the dynamic and adversarial
nature of online misinformation. Our GOAT framework takes a step towards this goal by enabling test-time
adaptation of GNNs to evolved data distributions.

6 Conclusion

In this work, we proposed GOAT , a data-centric and self-supervised test-time adaptation framework for
graph neural networks that avoided the complexity and instability of structure-based transformations. By
focusing exclusively on node feature optimization, GOAT enabled efficient and interpretable adaptation to
distribution-shifted test graphs without requiring access to training data or test labels. To further enhance
robustness, we introduced a low-rank adapter that generated diverse, graph-specific transformations and
mitigated the risk of transformation collapse. Extensive experiments on six real-world datasets demonstrated
that GOAT consistently improved performance across different GNN backbones, outperforming existing
data-centric and model-centric test-time adaptation baselines. These results highlighted the potential of
feature-only, data-centric approaches for test-time graph adaptation. In future work, we will explore a more
relaxed optimization objective and inspire more discussion and novel propositions.

13

Published in Transactions on Machine Learning Research (11/2025)

Acknowledgments

This work was supported by the National Science Foundation (award number 2451605). Any opinions,
findings, conclusions, or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. We thank Professor Tianhao Wang for critical feedback on the
proofs and Tiange Lyu for valuable input during the early stages of this work.

References

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. Graphtta: Test time adaptation on graph neural networks.
arXiv preprint arXiw:2208.09126, 2022a.

Yonggiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu, Bo Han,
and James Cheng. Learning causally invariant representations for out-of-distribution generalization on
graphs. Advances in Neural Information Processing Systems, 35:22131-22148, 2022b.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. In International Conference on Learning Representations, 2021.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning for
graph neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure learning
for graph neural networks. Advances in Neural Information Processing Systems, 34:22667—22681, 2021.

Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark. Advances
in Neural Information Processing Systems, 35:2059-2073, 2022.

Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, and Junping Du. A data-centric framework to
endow graph neural networks with out-of-distribution detection ability. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 638-648, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1905.12261, 2019.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning Representa-
tions.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118-22133, 2020.

Kexin Huang, Ying Jin, Emmanuel Candes, and Jure Leskovec. Uncertainty quantification over graph with
conformalized graph neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph representation
learning with test-time graph transformation. In The Eleventh International Conference on Learning
Representations, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2022.

14

Published in Transactions on Machine Learning Research (11/2025)

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution generalized graph
neural network. IEEE Transactions on Knowledge and Data Engineering, 35(7):7328-7340, 2022a.

Jinfeng Li, Weifeng Liu, Yicong Zhou, Jun Yu, Dapeng Tao, and Changsheng Xu. Domain-invariant graph
for adaptive semi-supervised domain adaptation. ACM Transactions on Multimedia Computing, Commu-
nications, and Applications (TOMM), 18(3):1-18, 2022b.

Shuhan Liu and Kaize Ding. Beyond generalization: A survey of out-of-distribution adaptation on graphs.
arXiv preprint arXiv:2402.11153, 2024.

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre
Alahi. Ttt++4: When does self-supervised test-time training fail or thrive? Advances in Neural Information
Processing Systems, 34:21808-21820, 2021.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and down-
stream tasks for graph neural networks. In Proceedings of the ACM Web Conference 2023, pp. 417-428,
2023.

Krikamol Muandet, David Balduzzi, and Bernhard Scholkopf. Domain generalization via invariant feature
representation. In International conference on machine learning, pp. 10-18. PMLR, 2013.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,
Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks for dynamic
graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 5363-5370, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. In International Conference on Learning Representations, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls of graph
neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Yu Song and Donglin Wang. Learning on graphs with out-of-distribution nodes. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1635-1645, 2022.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and prompt
tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1717-1727, 2022.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting for graph
neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 2120-2131, 2023.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International conference on machine
learning, pp. 9229-9248. PMLR, 2020.

Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks. Physica A:
Statistical Mechanics and its Applications, 391(16):4165-4180, 2012.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In International Conference on Learning Representations, 2021.

Yiqi Wang, Chaozhuo Li, Wei Jin, Rui Li, Jianan Zhao, Jiliang Tang, and Xing Xie. Test-time training for
graph neural networks. arXiv preprint arXiv:2210.08813, 2022.

15

Published in Transactions on Machine Learning Research (11/2025)

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain adaptive
graph convolutional networks. In Proceedings of the web conference 2020, pp. 1457-1467, 2020.

Man Wu, Xin Zheng, Qin Zhang, Xiao Shen, Xiong Luo, Xingquan Zhu, and Shirui Pan. Graph learning un-
der distribution shifts: A comprehensive survey on domain adaptation, out-of-distribution, and continual
learning. arXiv preprint arXiv:2402.1637/4, 2024.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations, 2023.

Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales
for graph neural networks. In International Conference on Learning Representations, 2022.

Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl
Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical science,
9(2):513-530, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pp. 40-48. PMLR, 2016.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to size
generalization in graph neural networks. In International Conference on Machine Learning, pp. 11975—
11986. PMLR, 2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in neural information processing systems, 33:5812-5823, 2020.

Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Multigprompt for multi-task pre-training and
prompting on graphs. arXiv preprint arXiv:2312.03731, 2023.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschldger, and Susanne Saminger-Platz.
Central moment discrepancy (cmd) for domain-invariant representation learning. In International Con-
ference on Learning Representations, 2022.

Zhen Zhang, Meihan Liu, Anhui Wang, Hongyang Chen, Zhao Li, Jiajun Bu, and Bingsheng He. Collaborate
to adapt: Source-free graph domain adaptation via bi-directional adaptation. In Proceedings of the ACM
on Web Conference 2024, pp. 664—675, 2024.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data augmentation
for graph neural networks. In Proceedings of the aaai conference on artificial intelligence, volume 35, pp.
11015-11023, 2021.

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the limitations
of localized graph training data. Advances in Neural Information Processing Systems, 34:27965-27977,
2021.

16

Published in Transactions on Machine Learning Research (11/2025)

A Proof of Propositions

Theorem 1. (Proved in GPF(Fang et al., |2024)) Given a pre-trained GNN model f, an input graph G,
for any graph-level transformation g : G{A, X} — G'{A’, X'}, there exists an additional extra feature vector
AX that satisfies:

f(-A7X +AX) = f(g('A7X)) = f(-A/vX/)

A.1 Population-Level Optimum of £ 454
We first characterize the theoretical optimum of the A2A loss in the population setting (infinite augmented
views).

Proposition A.1. (Population Optimum) Suppose f, = f(gy(Gp)) is the adapted view representation
and f; = f(Gy) is the unadapted view representation, where G, and G, are independently and identically
distributed (i.i.d.) samples from a stochastic augmentation process Aug(:).

The population £ 454 is defined as:
L;= Ep g~ Aug [Hf; - fq||2]

The optimal adapted representation that minimizes L; is:

A

f,/,* = Eqnaug[fa] = Haug
where f14,,4 iS & constant vector representing the expectation of all possible augmented view representations.
Proof of Proposition A.1:
L can be reformed as:

Lo =B, [Eyllf; — foll* |]]

For any fixed p, the inner expectation Eq[|| f} — f,lI* | p] is a standard mean squared error problem. By the
property of expectation, arg miny E[||V — X||?] = E[X], the optimal solution is:

f;/;* :Eq[fq | p]

Since G, and G, are i.i.d. from Aug(-), the distribution of f, is independent of p:
fglo* =]Eq[fq] = Haug

This shows that the population optimum is a constant mapping for all inputs.
[|

Remark 1. Proposition A.1 reveals an important theoretical property: the unconstrained A2A loss drives all
adapted representations toward the same constant fiq.y. While this may appear similar to the transformation
collapse we observe in practice, there is a crucial distinction: theoretical collapse converges to the correct
constant fi4,4, Whereas practical collapse typically converges to a suboptimal constant that fails to capture
the true augmentation distribution. Furthermore, while this is the theoretical optimum, our finite-sample
algorithm with regularization operates in a different regime.

A.2 Finite-Sample Behavior and Empirical Optimum

In practice, we work with a finite number of augmented views. This section analyzes the behavior of the
empirical £424.

Proposition A.2. (Empirical Optimum) Given n augmented views {G; }I; at test time, let f] = f(g4(G:))
be the adapted representations and f; = f(G;) be the fixed unadapted representations. The empirical £424

1S:
em 1 . 1
‘cs p:n(n_l)zznfz_fJ”Q

i=1 j#i

17

Published in Transactions on Machine Learning Research (11/2025)

The empirical optimal solution that minimizes £ (treating {f;} as fixed) is the leave-one-out (LOO)
mean:

fi/emp _

Vie{l,...,n}
i

Proof of Proposition A.2:

The empirical loss LE™P is a convex function that is separable in each f/. Taking the gradient with respect
to f! and setting it to zero:

VLS =V > = fl17 =
J#i
2 -) =0
J#i
(n=1f=>1
J#i

fi/emp —

J#i

A.3 Mean Equivalence of Empirical Optimum and Samples

Proposition A.3. The average of all empirical optimal adapted representations equals the sample mean of

unadapted representations:
n
freme = Z fiemr = Z fi = fn
i

Proof of Proposition A.3:

Computing the average of empirical optima:

n

/emp Z flpmp Z Z f]

7._1 j;éi

For any fixed representation f;, it appears in the inner sum for all i # j, i.e., it appears exactly (n — 1)

times: .
flemp __ _
L= oy 2= Zfa
J:1

Remark 2. (Key Insight on Avoiding Collapse)

Propositions[A-2)and [A-3]|reveal why transformation collapse does not occur in practice despite the theoretical
prediction from Proposition A.1:

lemp

1. Input-Dependent Diversity: Each f; is different for different i. Specifically:

1
[= [= g (fe = fi) #0
The adapted representations remain input-dependent and diverse.

2. Finite-Sample Effect: Only when n — oo do all fi’emp converge to the same constant fi4,4. For finite n
used in practice (e.g., n = 2 or n = 4), substantial diversity is preserved.

18

Published in Transactions on Machine Learning Research (11/2025)

3. Regularization via Architecture: Our low-rank adapter parameterization g, further constrains the solution
. lemp
space, preventing the algorithm from reaching even the finite-sample optimum {f;,“""}.

Therefore, the practical algorithm operates in a regularized, finite-sample regime that naturally avoids the
constant-mapping degeneracy predicted by population-level analysis.

A.4 Convergence Analysis

We now analyze how the average adapted representation converges to the population mean as n increases.
Theorem 2. (Convergence Rate via Bernstein’s Inequality)

Let {G;}j~, be n ii.d. augmented views with representations {f; = f(G;)}i=, fi € RN*4 Define: figuy =
E[f;] (population mean) and f,, = 1 Y7 | f; (sample mean)

Assume: 1. Representations are bounded: || f;|| < M almost surely 2. Variance bound: E[|| f; — ftaugl?] < 02

Then, applying the Vector Bernstein Inequality, for any § € (0, 1), with probability at least 1 — §:

202log(2Nd/9d) N 2M log(2Nd/9d)

"fn_uaug|‘ S n 3n

where Nd is the node number times the dimension of representation f;.

By Proposition A.3, since ﬂemp = f,, this bound also applies to the average of empirical adapted represen-
tations.

Proof of Theorem 2:

Define zero-mean random variables:

Zi:fl-—,uauw izl,...,n

By definition, E[Z;] = 0. We verify the conditions for vector Bernstein’s inequality:
1. Zero mean: E[Z;] = 0 by construction.

2. Bounded variance:
E[|Zill*] = Elll fi = taugl®] < 0

3. Bounded range: Since || f;|| < M and ||paugll = |E[fi]|| < M (by Jensen’s inequality):

1Zill = 1 fi = Haugll < 1 fill + laugll < 2M £ B
Consider the sum S,, = Y .-, Z;. By the vector Bernstein inequality, for any ¢ > 0:

P(||S.|l >t) <2Nd-e __t2
== P no? + Bt/3

Setting the right-hand side equal to ¢ and solving for ¢:

2
2Nd - exp <t/2) =4

no? + Bt/3
t2/2
—————— =log(d/2Nd
no? + Bt/3 0g(0/)
t2/2
————— =log(2Nd/é
o Bij3 - 82Nd/9)

19

Published in Transactions on Machine Learning Research (11/2025)

This is a quadratic inequality in t. Solving yields:

Blog(2Nd/é)

t < \/2no?log(2Nd/d) + 3

Since f, — Haug = %Sn, dividing both sides by n:

202log(2Nd/9) n Blog(2Nd/$)

"fn_uaug|‘ < n 3n

Substituting B = 2M gives the stated bound.

Corollary 1. (Convergence Rate)

The bound in Theorem 2 consists of two terms: Variance term: O(1/+/n) (dominant for large n) and Bounded
term: O(1/n) (faster decay)

Therefore, as n — oo:

_ 1
an _MaugH =0 (ﬁ)

This establishes that the average adapted representation converges to the population mean pg,, at the
standard parametric rate.

Remark 3. (Practical Implications)
The convergence analysis provides several insights:

1. Sample Efficiency: The O(1/y/n) rate means that doubling the number of views n reduces the error by
a factor of /2 =~ 1.41. This suggests moderate values of n (e.g., n = 2 to 4) already provide substantial
benefits.

2. Diminishing Returns: Beyond a certain n, the computational cost of generating and processing addi-
tional views outweighs the marginal improvement in convergence, explaining our empirical observation that
performance saturates.

3. Connection to Collapse: While f,, — fiquy (collapse in the mean), individual ;" maintain diversity
through their leave-one-out structure. The regularization from our low-rank adapter further prevents collapse
at the individual level.

20

Published in Transactions on Machine Learning Research (11/2025)

B Algorithm

For detailed pseudocode under the augmented graphs number of |7| = 2, please refer to the right-hand side
of the page.

Algorithm 1 GOAT for Full Test-Time Graph Adaptation
1: Input: Pre-trained GNN fp. (6* is fixed, without the last layer which is the classifier head) and test
graph Gy = {A, X'}, Sample method(DropEdge) Aug(-)
Output: Model prediction Y
Initialize LRAy, a, A, learning rate 7
Lhest = 00, patience = k, patience, ., =0
fort=1toT do

6: G'=DE(Ge) ={A, X'}, G" =DE(G) = {A", X"}
7. AX' = LRAy(A, X7), AX" = LRA4(A”, X")

8 AX'op = for (A, AX') | AX" iy = for (A", AX")
9: . = fou (A/7 X’—i—AX’) 2 = fpu (AH, X”—i—AX”)

Pemb Pemb

10: z, = f@* (Ale/)) 2, f@* (A/I7 XH)

emb emb —

11: Ls=FE|(z, =2/)+ (= —2

Pemp — Zemb pems — Zemp) 12
120 Lo=E|(2) =zl = AX o) + (21 =2l = AX)|
130 Lr=EJAX ey + AX s
14 L=aNLe+ L)+ (1—NLg

15: Update: ¢ <1 —nAyL
16: if Lr < Lpest then

17: Ebest = LR

18: patience,,, = 0

19: else

20: patience,,, = patience,., + 1
21: end if

22: if patience, ., >patience then
23: Stop

24: end if

25: end for

26: AX = LRA, (A, X)
o7 ¥ = fou (A, X + AX)

28: return Y

C Datasets and Hyper-Parameters

In this section, we reveal the details of reproducing the results in the experiments. We will release the source
code upon acceptance.

C.1 Hyper-Parameter Setting

For the setup of backbone GNNs, we majorly followed EERM (Wu et al., [2023):

21

Published in Transactions on Machine Learning Research (11/2025)

1.0- -- 1.00 _ﬁi —_— = é o %-_e
. =$ -%LI g E @ & 0.99 - é ?
5 y 5 .
o o
g 20.98-
0.8- = tru = ERM .
=1 GOAT 0.97 - =1 GOAT
Tll Tl2 TI3 TI4 TI5 TIG TI7 TI8 Tll Tl2 TI3 TI4 TI5 TIG TI7 TI8
(a) Amazon-Photo (b) Cora
— =1 ERM
040 % . = g (E;F;’:T 0.65 - — = GoAT
> 0. = — >
CoE fes = T o, T
=1 =] S =
9] |9} o
fos- . & = = P - -
= ERM 55 -
0.50 - - =
= GOAT —
| | 1 1 | 1 == =
T1 T2 T3 Tl T2 T3 1 2 T3 Ta T5
(c) OGB-ArXiv (d) FB-100 (e) Twitch-E

Figure 9: Classification performance on individual test graphs within each dataset for OOD setting.

(a) GCN: the architecture setup is 5 layers with 32 hidden units for Elliptic and OGB-ArXiv, and
2 layers with 32 hidden units for other datasets, with batch normalization for all datasets. The
pre-train learning rate is set to 0.001 for Cora and Amz-Photo, 0.01 for other datasets; the weight
decay is set to 0 for Elliptic and OGB-ArXiv, and 0.001 for other datasets.

(b) GraphSAGE: the architecture setup is 5 layers with 32 hidden units for Elliptic and OGB-ArXiv
and 2 layers with 32 hidden units for other datasets, and with batch normalization for all datasets.
The pre-train learning rate is set to 0.01 for all datasets; the weight decay is set to 0 for Elliptic and
OGB-ArXiv, and 0.001 for other datasets.

(¢) GAT: the architecture setup is 5 layers for Elliptic and OGB-ArXiv, and 2 layers for other datasets,
with batch normalization for all datasets. Each layer contains 4 attention heads and each head is
associated with 8 hidden units. The pre-train learning rate is set to 0.01 for all datasets; the weight
decay is set to 0 for Elliptic and OGB-ArXiv, and 0.001 for other datasets.

(d) GPR: We use 10 propagation layers and 2 transformation layers with 32 hidden units. The pre-train
learning rate is set to 0.01 for all datasets; the weight decay is set to 0 for Elliptic and OGB-ArXiv,
and 0.001 for other datasets. Note that GPR does not contain batch normalization layers.

For the baseline methods, we tuned their hyper-parameters based on the validation performance. For Tent,
we search the learning rate in the range of [le-2, le-3, le-4, le-5] and the running epochs in [1, 10, 20, 30].
For EERM(Wu et al. [2023) and GTrans(Jin et al.l |2023), we followed the instructions provided by the
original paper. For GraphCTA(GCTA)(Zhang et al., 2024), we tune the feature adaptation 7; in [5e-3, le-3,
le-4, 1e-5, le-6], learning rate of structure adaptation 7, in [0.5, 0.1, 0.01], and alternatively optimize node
features epochs 71 in [1, 2, 3] and optimize graph structure epochs 75 in [1, 2], other parameters followed the
instruction provided by the original paper. For GOAT | we adopt DropEdge as the augmentation function
DE(+) and set the drop ratio to 0.05, K-layer aggregation in LRA set to 1 due to some GNN only has two
layers in some datasets while the last GNN layer performs as a classifier head. We use Adam Optimizer for
LRA module tuning. We further search the learning rate 7 in [le-2, 5e-3, le-3, 5e-4, le-4, 5e-5, 1e-5, le-6]
for different backbones, the virtual nodes number |n| in [1x, 2x, 5x, 10x, 20x] of the class number C, the
attention dim dgs, in LRA in [2, 4, 8, 16, 32], total epochs T in [50, 100], and the patience in [1, 0.5, 0.1,
5e-2, le-2, 1le-3]. In the optimization target, we search the A in [1, 3, 5, 10] and the « in [0.999, 0.9, 0.75,

22

Published in Transactions on Machine Learning Research (11/2025)

Method Amz-Photo Cora Elliptic FB-100 OGB-ArXiv Twitch-E
ERM 93.79+0.97 91.59+1.44 50.90+£1.51 54.044+0.94 38.59+1.35 59.8940.50
UDA-GCN 91.70+0.35 92.65+0.46 51.57£1.31 54.11£0.54 39.43+0.71 52.12+0.38
SRGNN 94.644+0.17 94.08£0.28 51.94+£0.81 54.08£1.10 38.92+0.65 59.2140.51
GOAT 94.35+1.32 94.794+1.36 55.83+3.81 54.194+2.04 39.44+2.02 60.15+1.30

Table 7: Performance comparison between GOAT with GCN and graph domain adaptation methods.

Method Amz-Photo Cora Elliptic FB-100 OGB-ArXiv Twitch-E
GTN 94.73+2.91 99.88+0.10 68.51£3.85 53.57+£0.75 43.0840.84 62.30£0.16
GTN + GOAT 94.754£2.97 99.854+0.12 70.08£2.50 54.94+0.61 44.11+£0.84 63.79+£0.27

Table 8: Performance comparison between GOAT with other backbones.

0.5, 0.25, 0.1, 5e-2, le-2, 5e-3]. We note that the process of tuning hyper-parameters is quick due to the high
efficiency of test-time adaptation as we demonstrated in Section 4.1. Furthermore, not every test graph is
learned over whole epochs set due to the patience of dissatisfaction of constraint in Eq

Evaluation Protocol. For ERM (standard pre-training), we pre-train all the GNN backbones using the
common cross-entropy loss. For EERM, it optimizes a bi-level problem to obtain a trained classifier. Note
that the aforementioned two methods do not perform any test-time adaptation and their model parameters
are fixed during the test. For the four test-time adaptation methods, Tent, GCTA, GTrans, and GOAT
. We first obtain the GNN backbones pre-trained from ERM and adapt the model parameters or graph
data at test time, respectively. Furthermore, Tent minimizes the entropy loss and GTrans and GCTA both
minimize the contrastive surrogate loss, while GOAT minimizes the Target £ 424.

C.2 Hardware and Software Configurations

We perform experiments on NVIDIA GeForce RTX 3090 GPUs. The GPU memory and running time
reported in Table 3 are measured on one single RTX 3090 GPU. Additionally, we use eight CPUs, with
the model name Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz. The operating system utilized in our
experiments was Ubuntu 22.04.3 LTS (codename jammy).

D More Experimental Results

D.1 Overall Comparison

To show the performance on individual test graphs, we choose SAGE as the backbone model and include
the box plot on all test graphs within each dataset in Figure [0] We observe that GOAT generally improves
over each test graph within each dataset, which validates the effectiveness of our proposed method.

D.2 Comparison to More Baseline and Backbones

To compare their empirical performance, we include two GraphDA methods (Zhu et al., [2021; Wu et al.|
2020). SR-GNN regularizes the model’s performance on the source and target domains. Note that SR-GNN
was originally developed under the transductive setting where the training graph and test graph are the same.
To apply SR-GNN in our OOD setting, we assume the test graph is available during the training stage of
SR-GNN, as typically done in domain adaptation methods. UDA-GCN is another work that tackles graph
data domain adaptation, which exploits local and global information for different domains. We followed the
authors’ suggestions in their paper to tune the hyper-parameters and the results are shown in Table[7] On the
one hand, we can observe that these graph domain adaptation methods generally improve the performance
of GCN under distribution shift and SRGNN is the best-performing baseline. On the other hand, GOAT
performs the best on all datasets except Amz-Photo. On Amz-Photo, GOAT does not improve as much
as SR-GNN, which indicates that joint optimization over source and target is necessary for this dataset.

23

Published in Transactions on Machine Learning Research (11,/2025)

12000
000 10000
—— Graph 0
4000 —— Graph 1 8000 Graph 0
2 grap: .31 2 —— Graph 1
E 3000 rapl E 6000 Graph 2
] Graph 4] Graph 3
o Graph 5 o — Grapha4
2000 —— Graph 6 4000
—— Graph 7
1000 2000
o o
00008 -0.0006 -0.0004 -0.0002 00000 0.0002 0.0004 0.0006 ~0.00010 000005 0,00000 0,00005
(a) Amazon-Photo (b) Twitch-E
300000 1600
1400
250000
1200
200000 1000
% — Graph0 g‘ —— Graph 0
£ 150000 = ns 2 800 Graph 1
e 8 —— Graph 2
100000 600
400
50000
200
0 0
-0.5 0.0 0.5 1.0 1.5
le-5 —-0.0010 —0.0005 0.0000 0.0005 0.0010
(c) FB-100 (d) OGB-ArXiv

Figure 10: AX Distribution after training on each dataset.

GraphlID Go G G Gs G4 gs Gs Gr Gs
Amz-Photo 6.4 5.1 5.5 3.7 2.8 3.7 3.9 6.6 -

Cora 5.4 4.2 4.8 6.3 5.5 4.8 4.6 5.4 -
Elliptic 80.2 90.8 1143 86.5 789.3 781.6 99.4 100.4 150.6
OGB-ArXiv 14.7 20.6 104 - - - - - -
FB-100 29.7 169 329 - - - - - -
Twitch-E 8.6 6.1 9.0 8.4 9.7 - - - -

Table 9: CMD values on each individual graph based on the pre-trained GCN.

However, recall that domain adaptation methods are less efficient due to the joint optimization on source
and target. Overall, the test-time graph adaptation with our adapter could better fit the specific distribution
shifts that deviate from the source target. As shown in Table [§], GOAT could also adapt to more popular
backbones.

D.3 Quantifying distribution shift through LRA

In this section, we further show more distribution of AX generated by GOAT that indicates the OOD
degree of each test graph. We can see an extreme shift in Figure [10f(c) that as the snapshots flow from the
validation, the mode and the mean value of AX shift away from the 0 initialized value, which shows a further
deviation of the later test graphs from the train source distribution. Furthermore, following SR-GNN
2021)), we adopt central moment discrepancy (CMD) (Zellinger et al., 2022) as the measurement to
quantify the distribution shifts in different graphs, we present them in Table 9] as a comparison with AX in
GOAT .

24

Published in Transactions on Machine Learning Research (11/2025)

0.

o 100- . 10
3 =)
g 103- g 107~
= =
3 105- 3 10°°-
2 2
B 1079 - »n 10712 -

1 1 1 I I I I I 1 1 1 1 1 1 1 1 1 1 I I

1 2 3 4 5 6 7 8 9 .. 1 2 3 4 5 6 7 8 9

Index of v-nodes Index of v-nodes
(a) G1 (b) G2

Figure 11: (a)(b) SVD of E in LRA after training on test graph Gi, Go in OGB-ArXiv with distribution shifts.

Table 10: Adaptation efficiency under different numbers of virtual nodes on Twitch-E (C = 2).

Virtual Nodes Value Time (s) GPU Memory (GB)
Default Setting 2C =4 1.50 + 0.38 0.9
4C' =8 1.44 +0.40 0.9
20C =40 1.54+£0.41 1.0
200C =400 1.62+0.42 1.1
Full Graph (No Compression) N ~ 4000 6.72+£2.77 3.4

D.4 Low-rank of Node-level Representation on Large Graph

In Figure we show other AX generated from LRA on two large test graphs in OGB-arXiv with 69499
and 120740 nodes.

D.5 Efficiency of LRA design: Impact of the Number of Virtual Nodes

The number of virtual nodes, denoted as r, is a crucial hyperparameter in our low-rank cross-attention
adapter, controlling the rank and expressive capacity of the transformation. In our main experiments, we
set r = 2C' (where C' is the number of classes) as the default, based on a balance between efficiency and
effectiveness. To evaluate the sensitivity of our method to this choice, we conduct an ablation study on the
Twitch-E dataset, varying r from 2C' to 200C, and compare against a full-graph baseline where adaptation
is performed over all N = 4000 original nodes (denoted as “N (Full Graph)”).

The results are summarized in Table reporting adaptation time per graph (in seconds) and overall GPU
memory consumption during inference. All configurations achieve nearly identical performance, with final
accuracy stabilized at 0.601, indicating that the model’s predictive quality is robust to the number of virtual
nodes.

As shown in the table, increasing the number of virtual nodes has minimal impact on adaptation time until
r = 200C, while memory usage grows only slightly due to the lightweight attention mechanism. In contrast,
the full-graph baseline suffers from a 4.5x slower adaptation speed and consumes 3.8x more GPU
memory, highlighting the effectiveness of our low-rank design.

Notably, even the smallest configuration (r = 2C') achieves the same performance as the full-graph model,
demonstrating that our virtual nodes efficiently capture the essential transformation signals without requiring
high-rank or full-node computation. This validates our design choice: using r = 2C' provides sufficient
expressiveness while maintaining high efficiency, making it a scalable and practical default across datasets
with varying sizes and label complexities.

25

Published in Transactions on Machine Learning Research (11/2025)

E Ablation study

E.1 Optimization Object

In Figure we show the parameter study of A and « in La24. Noted that there could be a different
proportion of r’\a), while it still should have a rather value of « in that the constraint in Eq. (LR)

should be satisfied first then the other objective could work.

To evaluate the individual and combined contributions of each component of £424, we conduct an abla-
tion study across all six datasets using GraphSAGE as the backbone. We report the average performance
improvement (in percentage points) over the no-adaptation baseline. The results are summarized in Table

Table 11: Ablation study on the components of the adaptation loss. All configurations include the base adapter
(La24). Performance is measured as average improvement (%) over the no-adaptation baseline across six datasets
with GraphSAGE.

‘ Loss Components ‘ Average Improvement (%)

Method
‘ Ls L Lr ‘ Two-Sample One-Sample

Baseline +0.00 +0.00
+ L, v +2.08 +2.08
+ L. v +2.15 +2.09
+ Lr v +2.14 +2.14
+ L+ L. |V OV +2.31 +2.20
+Ls+Lr |V v +2.14 +2.14
+ L.+ Lr v v +2.14 +2.10
Full L42, v v +2.32 +2.16

Key observations from the results include: Each individual loss term provides a consistent gain over the
baseline, with £, yielding the highest single-component improvement (42.15%), followed closely by Lg
(+2.14%) and L, (+2.08%). The combination of £, and L. achieves the best overall performance (+2.31%),
indicating a synergistic effect: the consistency constraint helps align the adapter with the GNN’s inductive
bias, while symmetry enforces view invariance. Adding Lz to other combinations does not further improve
performance and can slightly degrade results when combined with L, suggesting that excessive regularization
may suppress meaningful adaptation signals. The full model (all three terms) achieves the highest two-sample
improvement (42.32%), validating the design of our decomposed objective.

These findings reveal that the components are not simply additive but exhibit a hierarchical and interde-
pendent relationship. In particular, £, plays a central role in ensuring structural compatibility, while Lg
stabilizes training without dominating the update direction.

It is worth noting that the relative effectiveness of £ appears somewhat weaker in this ablation (with SAGE)
compared to the results on GCN backbones presented in the main paper. While the trend of L. being the
most impactful component remains consistent, the performance gain from Lp is less pronounced here. This
discrepancy may stem from differences in the architectural sensitivity of GCN and SAGE to regularization,
or from variations in message-passing dynamics under different aggregation schemes.

Nevertheless, the core insight—that £. and Ly act as complementary mechanisms to stabilize and enable £
rather than merely augment it—holds across architectures. This ablation confirms that our decomposition
effectively balances expressiveness and optimizability, enabling robust and effective test-time adaptation,
even if the exact contribution magnitudes vary across model families.

E.2 Different Augmentation Methods Used in Optimization

In Target 4, we used DropEdge as the augmentation function Aug(-) to obtain the augmented view and
enough inductive graphs. In practice, the choice of augmentation can be flexible, and here we explore two

26

Published in Transactions on Machine Learning Research (11/2025)

other choices: node dropping and FlipEdge (You et al.,|2020)). Specifically, we adopt a ratio of 0.05 for node
dropping, a ratio of 0.05 and 0.5 for FlipEdge, and ratios of 0.05 and 0.5 for DropEdge. We observe that (1)
GOAT with any of the three augmentations can greatly improve the performance of GCN under distribution
shift, and (2) different augmentations lead to slightly different performances on different datasets

E.3 Parameters in LRA

After tuning over all datasets, the hyperparameter almost shows a slight difference. Therefore, d,s,, is set to
8, |n| is almost 10 x C(C is the class number of nodes in test graph). Furthermore, we explore that, unlike
the Transformers structure in NLP, the multi-head attention and the residual connection cannot improve the
performance in our LRA module, which indicates the graph structure data information learned with GNNs
has a different representation from that learned as in NLP as sequences.

E.4 Choice of Number of Augmented Views (K)

The number of augmented views, denoted as K, is a key hyperparameter in our test-time adaptation frame-
work. In the main paper, we adopt K = 2 as the default setting for all experiments. This choice is motivated
by both robustness and efficiency considerations. Below, we provide a detailed ablation study to justify this
design decision.

Using two augmented views provides a simple and stable baseline that ensures consistent hyperparameter
settings across diverse datasets and backbone architectures. More importantly, our extended experiments

demonstrate that while increasing K > 2 can yield marginal performance improvements, the gains quickly
diminish relative to the significantly increased computational cost.

To illustrate this trade-off, we conduct ablation experiments on three representative datasets—Cora-GAT,
Elliptic-GCN, and Twitch-E-GCN—with K ranging from 2 to 20. The results are summarized in Table [I2]
We report both adaptation time per graph (in seconds) and final model performance.

Table 12: Performance and adaptation time under different numbers of augmented views (K).

K (# Views) ‘ Cora-GAT Elliptic-GCN Twitch-E-GCN
‘ Time (s) Acc. Time (s) F1. Time (s) ROC-AUC.
2 1.3689 0.9250 1.9075 0.5222 0.8734 0.6210
3 1.9199 0.9249 2.7447 0.5300 1.2444 0.6210
4 2.7233 0.9245 3.7554 0.5344 1.5541 0.6209
5 3.3211 0.9266 4.0833 0.5378 2.0369 0.6209
10 7.4531 0.9281 7.5256 0.5578 4.1890 0.6209
20 14.0208 0.9308 16.0332 0.5678 8.7940 0.6209

As shown in the table, the adaptation time increases substantially with K. This is due to two factors: (1)
a linear increase in the number of GNN forward passes (one per view), and (2) a combinatorial increase in
the number of pairwise similarity comparisons in the symmetry loss £, which scales as (12<) =K(K-1)/2.

The performance gains from using more than two views are marginal compared to the rising computational
cost: on Cora-GAT, increasing K from 2 to 10 yields only +0.31% improvement with a 5.4x time increase;
on Elliptic-GCN, going from K = 2 to K = 5 improves performance by +1.56%, far less than the +5.28%
gain from adding the second view, yet nearly doubles the cost; and on Twitch-E, no gain is observed beyond
K =2, indicating view diversity saturation.

These results confirm that the performance benefit of using more than two views is limited, especially when
considering the super-linear growth in computational overhead. In contrast, K = 2 captures the vast majority
of the potential gain from contrastive adaptation while maintaining high efficiency—making it an ideal choice
for practical test-time adaptation. Therefore, we conclude that K = 2 offers an excellent balance between

27

Published in Transactions on Machine Learning Research (11/2025)

effectiveness and efficiency, and is well-suited as a general-purpose setting across various graph structures
and model backbones.

28

	Introduction
	Related Work
	Methodology
	Self-supervised Graph Test-time Adaptation from Augmentations
	Node Feature Transformation with Low-rank Cross-attention Adapter
	Optimization

	Experiments
	Adaptation on Data with Distribution Shift
	A Node-Level Low-Rank Perspective on Adaptation
	An Embedding View on Adaptation X
	Distribution Shift Quantification
	Ablation Studies and Parameter Study
	Robustness under Structure Adversarial Attack
	Further Analysis

	Further Discussion
	Conclusion
	Proof of Propositions
	Population-Level Optimum of LA2A
	Finite-Sample Behavior and Empirical Optimum
	Mean Equivalence of Empirical Optimum and Samples
	Convergence Analysis

	Algorithm
	Datasets and Hyper-Parameters
	Hyper-Parameter Setting
	Hardware and Software Configurations

	More Experimental Results
	Overall Comparison
	Comparison to More Baseline and Backbones
	Quantifying distribution shift through LRA
	Low-rank of Node-level Representation on Large Graph
	Efficiency of LRA design: Impact of the Number of Virtual Nodes

	Ablation study
	Optimization Object
	Different Augmentation Methods Used in Optimization
	Parameters in LRA
	Choice of Number of Augmented Views (K)

