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Abstract

Pre-trained graph neural networks (GNNs) have demonstrated significant success in leverag-
ing large-scale graph data to learn transferable representations. However, their performance
often degrades under distribution shifts, particularly in real-world scenarios where labels of
test data are unavailable. To address this challenge, we propose Graph Optimization via
Augmented Transformations (GOAT), a novel self-supervised test-time tuning paradigm
that adapts pre-trained GNNs to distribution-shifted test data by focusing exclusively on
node feature transformations. By avoiding complex and often suboptimal graph structure
transformations, GOAT overcomes the limitations of existing data-centric methods. To
further address the issue of transformation collapse, where feature transformations converge
to trivial solutions, we introduce a parameter-efficient low-rank adapter that generates di-
verse transformations tailored to individual input graphs. This design not only enhances
adaptation performance but also improves interpretability by avoiding modifications to the
graph structure. Through extensive experiments on six real-world datasets with diverse
distribution shifts, we demonstrate that GOAT achieves consistent performance improve-
ments across different pre-trained GNN backbones, outperforming state-of-the-art test-time
adaptation methods.

1 Introduction

Graph pre-training has become a powerful technique for capturing and preserving information from large-
scale upstream graph data (Kipf & Welling, 2022; Hamilton et al., 2017; Veličković et al., 2018), enabling
graph neural networks (GNNs) to learn rich representations that can be effectively transferred to a variety of
downstream graph tasks. However, the performance of pre-trained GNNs is often hindered by distribution
shifts (Yehudai et al., 2021; Li et al., 2022a; Song & Wang, 2022; Zhu et al., 2021), particularly in real-world
scenarios where the labels of the test data are unavailable. This presents a significant obstacle to the practical
deployment of GNNs, as their performance can degrade substantially under such conditions. For example,
Table 1 illustrates that the performance of a pre-trained GNN deteriorates as the distribution of the test
data changes over time.

Adapting pre-trained GNNs to such unlabeled and distribution-shifted test scenarios is therefore a crucial
yet under-addressed problem. Several methods have been proposed to deal with distribution shift at training
time, including invariant risk minimization (Arjovsky et al., 2019; Wu et al., 2023), domain-invariant learning
(Muandet et al., 2013; Li et al., 2022b), and invariant representation learning (Wu et al., 2022; Chen et al.,
2022b). These approaches attempt to learn features that remain stable across environments, assuming access
to labeled data in the target domain during training. Unfortunately, in many practical settings, test-time
data is both unlabeled and unavailable at training time, rendering these methods inapplicable for adapting
pre-trained models at test time.

Test-time adaptation (TTA) offers a promising alternative. Model-centric TTA methods, such as updating
classifier heads (Wang et al., 2022) or fine-tuning the full model (Zhang et al., 2024; Wang et al., 2021), aim
to leverage the generalization capabilities of pre-trained models. However, these approaches often struggle
to adapt effectively to unseen or shifted distributions, as they heavily depend on parameters and statistics
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Dataset OGB-ArXiv Elliptic

Description Open-world dataset of academic papers, the graph
evolves as new papers are cited.

A dataset of transactions labeled as licit or illicit,
influenced by market conditions.

Split Year Slice Accuracy Degrade Time Slice F1 score Degrade

Train before 2011 - 2011 47.88% 7th - 11th 90.12%
Val 2011 - 2014 44.46% -9.96% 12th - 17th 78.75% -39.17%
Test 2014 - 2020 38.92% 17th - 49th 50.95%

Table 1: The showcase indicates a significant decrease in the node classification performance of the pre-trained GCN
on the OGB-ArXiv (Hu et al., 2020) and Elliptic (Pareja et al., 2020) datasets in an OOD setting where graph data is
generated from different time intervals. For OGB-ArXiv, the year ranges from before 2011 to 2020; for Elliptic, from
the 7th snapshot (when the dark market crackdown occurred) to the 49th snapshot. Performance degrades noticeably
during validation and testing as time progresses.

learned from the training data (Hendrycks & Dietterich, 2019; Arjovsky et al., 2019). Moreover, fine-tuning
the entire model can be computationally expensive, making it impractical in many real-world resource-
constrained scenarios. In contrast to model-centric approaches, data-centric TTA methods (Jin et al., 2023;
Chen et al., 2022a; Zhang et al., 2024) shift the focus from updating model parameters to refining the test
graph itself. By transforming node features and graph structure, these methods aim to better align the test
data with the representation space of the pre-trained model. This strategy has shown considerable promise
in improving model performance under distribution shifts.

Despite their effectiveness, data-centric methods typically rely on simultaneous transformations of both
node features and graph structures, as adapting node features alone often leads to suboptimal performance.
However, this requirement introduces two key challenges. First, identifying and optimizing appropriate
graph structure transformations is inherently difficult due to the vast and continuous search space. Inaccurate
structure modifications can result in poorly refined test graphs, ultimately degrading adaptation performance.
Second, altering the graph structure reduces the interpretability of the adaptation process by obscuring the
relationship between the original and transformed graphs, making it difficult to trace how specific structural
changes influence model predictions.

While one might consider avoiding structure transformations by focusing exclusively on node features, this
approach introduces its own difficulties. In particular, it risks both reduced performance and transformation
collapse, where the transformation function becomes ineffective, often converging to a trivial or identity
mapping that fails to facilitate meaningful adaptation.

Present work. To address these limitations and overcome the associated challenges, we propose a novel
self-supervised test-time tuning paradigm - Graph Optimization via Augmented Transformations (GOAT)
that enables the pre-trained GNN to dynamically adapt to unseen test distributions without requiring access
to test labels, source training data, or training details. 1) To avoid modifying the test graph structure, our
method GOAT focuses exclusively on node feature transformations. However, naïvely transforming node
features is insufficient for effective adaptation. To overcome this, we introduce a self-supervised strategy that
estimates optimal node feature transformations by leveraging a set of augmented test graphs. By measuring
the embedding discrepancies between augmented graphs before and after transformation, our method learns
a generalizable transformation function tailored to the test distribution. 2) To address the transformation
collapse issue, we propose a low-rank adapter that generates unique transformations for different input
graphs while effectively utilizing the knowledge encoded in the pre-trained GNN. This approach ensures
that, during each learning iteration, the augmented graphs undergo diverse transformations by the dynamic
adapter, preventing uniform transformations across all graphs and preserving the diversity of the augmented
data. With the learned low-rank adapter, the model’s interpretability becomes more intuitive compared to
interpreting transformations of the graph structure. To summarize, our main contributions are as follows:

• Our work centers on data-centric test-time adaptation and introduces a novel self-supervised test-time
tuning paradigm, GOAT, that leverages node features exclusively, bypassing the complexity of optimizing
for structure transformations.
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• We propose a parameter-efficient low-rank adapter to address the transformation collapse issue while
enhancing model interpretability.

• Extensive experiments on real-world datasets with diverse distribution shifts demonstrate consistent
performance improvements across various backbones.

2 Related Work

Distribution Shift on Graphs. Graph-structured data often exhibits distribution-shift phenomena (Song
& Wang, 2022; Li et al., 2022a). To tackle this challenge, researchers have proposed methods for learning
invariant representations (Wu et al., 2023; Arjovsky et al., 2019; Wu et al., 2022; Chen et al., 2022b; Li
et al., 2022b; Muandet et al., 2013), generalizing pre-trained GNNs (Zhu et al., 2021; Li et al., 2022a; Song
& Wang, 2022; Hu et al.; Zhao et al., 2021), detecting OOD instances (Zellinger et al., 2022; Guo et al.,
2023; Huang et al., 2024). Most of these approaches often require access to multiple source domains, rely
on specific model architectures and train-time paradigms, or may lead to performance degradation. For a
thorough review, we refer the readers to two recent surveys (Wu et al., 2024; Liu & Ding, 2024).

Graph Test-time Adaptation. Graph test-time adaptation (GTTA) aims to adapt pre-trained models to
the test distribution without requiring labeled data or modifying the model’s parameters (Chen et al., 2022a).
Existing proposed methods can be broadly categorized into the following two classes: data-centric and model-
centric. (1) Model-centric. These approaches center on the learning process or the design of the graph model.
SLAPS (Fatemi et al., 2021), TTT (Sun et al., 2020), TTT++ (Liu et al., 2021), and Tent (Wang et al.,
2021), update the whole pre-train model or some specific layers. In addition, GraphTTA (Chen et al.,
2022a) and GT3 (Wang et al., 2022) tune a new classifier head expecting better prediction. However, these
approaches have limitations such as reliance on specific architectures, over-smoothing, or being preoccupied
with how to select negative samples for contrastive learning. These issues direct our attention to data-centric
approaches. (2) Data-centric. These recently emerging approaches emphasize the manipulation of input
graphs. GTrans (Jin et al., 2023) both modify the adjacency matrix and node feature to empower graph
representation learning. GraphCTA (Zhang et al., 2024) uses a memory bank to keep the best neighbor
structure. Whereas, GTrans requires the transformation of graph structure, leading to the suboptimal
structure refinement, while GraphCTA still needs to update the whole pre-trained model’s parameters.
Graph prompt tuning (Fang et al., 2024) inspires a succinct direction; however, it emphasizes the task
discrepancy rather than the distribution shift and relies on the availability of label sets for downstream
tasks. These challenges guide us toward a more universal test-time tuning paradigm.

3 Methodology

In this section, we delve into our proposed paradigm GOAT and Figure 1 provides the framework overview.

3.1 Self-supervised Graph Test-time Adaptation from Augmentations

A graph is represented by G with a set of nodes V and a set of edges E . The adjacency matrix derived from
a graph is denoted by A ∈ RN×N . If vi, vj ∈ V and (vi, vj) ∈ E , then Aij is one, otherwise it is zero. For
any input graph data G = (A,X ), A = {avu | v, u ∈ V} is the adjacency matrix and X = {xv | v ∈ V}
is the node features. Apart from these, each node in the graph has a label yv, and the label of the whole
graph can be represented as a vector Y. In a local view, we define an induced graph GS = (AS ,XS), where
S ⊆ V, AS = {avu | v, u ∈ S}, and XS = {xv | v ∈ S}. Its corresponding label is YS . During train time, a
GNN fθ(G) parameterized by θ is optimized by the input-target pairs (GS ,YS) sampled from training data
D̃tr = {Gtr,Ytr}, which minimizes the empirical risk:

θ⋆ = arg min
θ

E
(GS ,YS)

Ltr(fθ(GS),YS). (1)

At test time, for arbitrary graph Gte, when the label Yte is available, following the data-centric paradigm
(Jin et al., 2023; Zhang et al., 2024), an extra transformation of the input graph data should satisfy the
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Test-time Tuning Test time

Figure 1: Overview of the proposed method GOAT under two augmented views. In the test-time tuning, multiple
augmented views of a single test graph are generated by extracting induced subgraphs. These views are passed
through the fixed pre-trained GNN, with their input node features modified by an adaptation term ∆X. A self-
supervised loss LA2A is used to train the adapter, encouraging alignment between the embeddings of one view with
node feature transformation and another without. During the test-time inference phase, all parameters are frozen.
The learned adaptation ∆X is added to the input features of the test graph and passed through the pre-trained
GNN, resulting in improved prediction performance.

following objective:

ψ⋆ = arg min
ψ

EV
(Gte,Yte)

Lte(fθ⋆(gψ(Gte)),Yte), (2)

denoted that for parameter efficiency, the parameters θ⋆ of the pre-trained GNN f(G) is fixed during tuning
the graph transformation g(G) : G→ G parameterized by ψ and |ψ| should be significantly smaller than |θ⋆|.
During the prediction stage, Lte represents the likelihood loss, while in the representation learning stage,
Lte can be defined as the L2 norm. Since the pre-trained θ⋆ are fixed at test-time and the test graph is the
focus of this paper, we drop the subscript in Gte and fθ⋆ to simplify notations in the rest of the paper.

When test labels Yte are unavailable, we reframe the original task of predicting Yte as estimating the optimal
representation z⋆ = f(g⋆ψ(Gte)), where f is the fixed pre-trained GNN encoder, and gψ is a transformation
function applied at test time. To estimate the optimal representation z⋆, we use proxies, a strategy akin
to estimating an unknown quantity (e.g., room temperature) by averaging multiple noisy measurements.
According to the law of large numbers, this can yield a reasonably accurate approximation of the ground
truth. Since we do not modify the pre-trained model or access ground-truth labels, we optimize gψ using
proxy representations ẑ obtained from augmented versions of the test graph, denoted Ĝte:

ẑ = f(Ĝte). (3)

Using these proxies, we formulate the objective to learn gψ as:

ψ⋆ = arg min
ψ

E(Gte,ẑ) ∥f(gψ(Gte))− ẑ∥2
, (4)

where the L2 norm is used as the loss Lte in the representation learning stage. Since we use L2 loss, it
suffices that the proxy ẑ satisfies Eẑ[ẑ] = Ez[z⋆].

To ensure generalization, gψ must be capable of transforming both the original test graph Gte and its various
augmented versions Ĝte. To this end, we train gψ on Gte and generate proxies from Ĝte. Importantly, to
prevent gψ from collapsing to the identity function, the input graph passed to gψ must be different from
the one that generates ẑ. Specifically, let D̃aug = {G1,G2, . . . ,G|τ |} be a set of |τ | augmented graphs derived
from Gte. We train gψ to transform each Gp ∈ D̃aug, while selecting different graphs Gq ∈ D̃aug \ Gp as the
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proxies. The optimization objective becomes (proofs can be found in Appendix A):

Ls = arg min
ψ

ED̃aug

 1(|τ |
2

) |τ |∑
p=1

|τ |∑
q=1
q ̸=p

∥f(gψ(Gp))− f(Gq)∥2

 , (5)

subject to the constraint:
Eν [f(gψ(Gi))− f(Gi)] = 0, ∀Gi ∈ D̃aug. (6)

To efficiently construct D̃aug, we apply a subgraph sampling strategy as in (Rong et al., 2020; Hamilton
et al., 2017) to generate sufficient graph augmentations. Note that the augmentations here are applied
exclusively to node features. The loss Ls(Gp,Gq) is symmetric with respect to its inputs, swapping Gp and
Gq leaves the loss unchanged. This symmetry ensures that the adaptation process is invariant to the input
order, thereby enhancing the robustness of the data-centric optimization approach.

3.2 Node Feature Transformation with Low-rank Cross-attention Adapter

During optimizing the transformation gψ with Ls in Eq.(5), collapse mapping occurs when each augmented
graph receives the same transformation solution. Therefore, we design a low-rank cross-attention adapter
to ensure that distinct inputs G produce unique outputs gψ(G), thereby preventing all augmented graphs
from being mapped to the same point in the pre-trained GNN’s representation space through a data-centric
perspective.

For an arbitrary graph G = (A,X ), where A ∈ RN×N represents the adjacency matrix encoding the edge
relationships among N nodes, and X ∈ RN×d denotes the node feature matrix with d-dimensional features
for each node, data-centric graph adaptation assumes the existence of a transformed graph G⋆ = gψ⋆(G),
which ensures that the graph achieves the best possible performance when applied to the pre-trained GNN
f(·), by bridging the gap between the test graph and the knowledge learned by f(·). Specifically, the graph
transformation is defined as:

g(G) = (A,X ⊕∆X), (7)

where ∆X ∈ RN×d denotes continuous learnable parameters with the same shape as the node features. Here,
⊕ denotes element-wise addition.

However, simply adding ∆X cannot solve the collapse mapping issue. To better solve this issue and integrate
global and local information of test graphs into ∆X while fully leveraging the knowledge learned by the
pre-trained GNN, we design the following adapter incorporating the pre-trained GNN to generate ∆X
dynamically.

In GNNs, learning of node representations typically relies on the aggregation of neighboring nodes. Given a
graph G = (A,X ), an L-layer GNN can be represented as:

H(l) = σ(AGG(l)(A, H(l−1))), l = 1, 2, . . . , L, (8)

where H(l) ∈ RN×d(l) represents the node representation at the l-th layer in pre-trained GNN with H(0) = X ,
AGG(l)(·) is the aggregation function at the l-th layer, and σ is the activation function. In our experiments,
the ReLU activation function is employed: σ(x) = x+.

Although GNNs effectively capture local structural information through neighborhood aggregation, they
face two key limitations. First, they primarily focus on local interactions and lack mechanisms to model
global structural context. Second, modeling long-range dependencies requires stacking multiple layers, which
significantly increases computational cost and often leads to oversmoothing. To address these challenges,
we propose the Low-Rank Adapter (LRA), a lightweight module designed to incorporate global context
efficiently via attention over a compact set of virtual nodes.
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Figure 2: Structure overview of Low-Rank
Adapter.

Specifically, the LRA operates on the k-th output of the first
k layers of the GNN with the original node features to obtain
an k-hop neighbor-aware node representation H(k) ∈ RN×d(k) .
Then we introduce Low-Rank projection : RN×d′ → R|n|×d′ (usu-
ally |n| ≪ N), which is a low-rank projection function that
projects nodes into a latent space represented by few virtual
nodes, striving for maximal rank density and minimal compu-
tational overhead, where d′ is the attention dimension in LRA.
Let E,F ∈ R|n|×N denote the key and value’s low-rank transition
matrices of the virtual nodes. The core of LRA is a self-attention
mechanism, which enables each node to attend to a globally-
aware summary of the graph via virtual nodes. The computation
process of LRA is:

∆X = (Softmax(Q(EK)T√
d′

) · (FV ))WX , (9)

where WX ∈ Rd′×d is a learnable output projection matrix, and Q,K, V are obtained via:

Q = XWQ, K = H(k)WK , V = H(k)WV . (10)

Here, WQ ∈ Rd×d′ , WK ∈ Rd(k)×d′ , and WV ∈ Rd(k)×d′ are learnable weight matrices. By introducing
the low-rank transition matrices E and F , LRA can compute long-range dependencies between nodes with
linear time complexity and generate ∆X ∈ RN×d that contain local-global contextual information. The time
complexity of the LRA, assuming k = 1, is O(Nd′).

With LRA, both interpretability and robustness are improved. The output ∆X can be directly analyzed,
making it more interpretable than structural graph transformations. Additionally, in the test-time adaptation
setting, LRA helps prevent transformation collapse: when applied to different graphs g(Gq) and g(Gp), their
outputs are less likely to degenerate to the same representation, thus maintaining representational diversity.

3.3 Optimization

The constraint in Eq.(5) requires the same input graph for both f(gψ(·)) and f(·), which can easily result
in the mapping collapse issue. As transformation g(G) can be formulated as (A,X + ∆X), the constraint is
equivalent to:

arg min
∆X

EV∥f(A,X + ∆X)− f(A,X )− f(A,∆X)∥2

s.t. EV [f(A,∆X)] = 0, (11)

where f(A,∆X) serves as a regularization. We define gψ(f(G)) = f(A,X )+f(A,∆X) as the transformation
on node embeddings. In this form, it can be seen as encouraging gψ to learn an isomorphic mapping with f ,
ensuring that the adapter’s transformations are consistent with those of the GNN, i.e., gψ ◦ f ≈ f ◦ gψ. This
consistency facilitates the rapid optimization and performance consistency of the transformation gψ across
different designs of f . With further relaxing the constraint in Eq.(11), we derive the following consistency loss
and a regularization loss. Optimizing the two loss functions jointly can achieve the same effect as optimizing
the constraints in Eq.(6):

Lc = arg min
ψ

EV
1≤p≤|τ |

[ 1
|τ |

∑
|τ |

∥f(gψ(Gp))− gψ(f(Gp))∥2]

LR = arg min
∆X

EV
1≤p≤|τ |

[ 1
|τ |

∑
|τ |

∥f(Ap,∆Xp)∥2], (12)

where Ap is the adjacent matrix of Gp ∈ D̃aug, ∆Xp is generated from LRA with the input of Gp.
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Table 2: Average classification performance (%) on the test graphs. The best performance on each dataset with a
specific backbone is indicated in bold, the second-best method is underlined, and Avg. indicates the average ranking
of the same method compared to others on all six datasets under the same backbone. OOM indicates an out-of-
memory error on 24 GB GPU memory. ↑/* indicates that GOAT outperforms ERM at the confidence level 0.1/0.05
from the paired t-test.

Datasets Artificial Transformation Temporal Evolution Cross-Domain

Backbone Method Amz-Photo Cora Elliptic OGB-Arxiv Twitch-E FB-100 Avg.

GCN ERM 92.78±1.34 93.92±0.64 54.13±1.18 36.89±0.67 56.84±1.13 53.95±0.77 4.7
EERM 94.24±0.40 87.36±0.86 53.15±0.01 OOM 57.25±0.42 54.03±0.80 5.2
Tent 93.84±1.53 91.64±2.37 46.72±0.06 39.34±2.76 60.01±0.95 54.11±1.50 4.2
GCTA 91.43±1.74 93.13±2.02 55.82±3.50 37.27±3.46 60.10±0.95 54.11±1.49 3.7
GTrans 94.32±1.34 94.76±1.94 55.07±3.61 40.45±1.76 60.37±1.44 54.17±1.23 1.8
GOAT ↑94.35±1.32 94.79±1.36 55.83±3.81 *39.44±2.02 *60.15±1.30 54.19±2.04 1.3

SAGE ERM 87.79±1.74 99.62±0.09 50.11±0.39 37.52±0.66 59.20±0.14 54.09±0.40 5.2
EERM 95.76±0.11 99.76±0.21 60.43±0.29 OOM 60.09±0.25 OOM 5.2
Tent 95.23±1.52 99.71±0.17 50.25±3.28 39.56±1.49 62.05±0.22 55.11±0.55 3.0
GCTA 96.86±1.11 99.85±0.06 66.92±2.33 33.67±3.25 62.05±0.24 55.11±0.56 3.2
GTrans 97.09±1.13 99.81±0.16 63.04±6.39 39.74±1.14 61.97±0.34 55.07±0.59 2.5
GOAT *92.54±2.51 *99.89±0.10 *67.92±5.56 *39.52±1.03 *61.91±0.28 *55.61±0.30 2.5

GAT ERM 94.92±2.33 95.99±0.88 49.49±1.51 37.92±0.68 57.36±0.30 48.25±1.55 3.8
EERM 94.07±1.32 79.35±8.90 54.27±2.42 OOM 56.27±0.37 52.46±2.02 3.7
Tent 94.96±0.87 93.54±3.50 55.29±5.22 37.41±5.20 58.93±1.50 51.22±1.99 5.3
GCTA 94.72±1.73 96.03±1.76 56.00±10.11 37.8 6±2.17 58.83±1.59 51.22±1.98 3.2
GTrans 95.14±0.70 95.46±1.96 62.56±4.22 37.52±2.68 58.84±1.49 51.27±1.91 2.5
GOAT 94.69±0.63 94.72±2.83 *60.33±4.83 *41.13±1.96 *58.95±1.50 *54.20±1.10 2.3

GPR ERM 84.81±3.71 83.98±1.72 48.96±1.05 40.91±0.28 57.25±0.66 54.36±0.27 4.1
EERM 90.87±0.52 87.16±2.39 60.08±0.03 OOM 58.75±0.29 54.21±0.42 4.0
Tent⋆ - - - - - - -
GCTA 91.96±0.75 92.75±2.48 66.36±3.67 44.44±0.70 59.97±0.62 54.63±0.77 2.6
GTrans 91.97±0.84 92.70±2.46 68.54±5.56 45.64±0.61 59.84±0.89 54.48±0.66 2.4
GOAT *91.98±0.83 *92.79±2.74 *66.47±6.44 *44.78±0.69 *60.00±0.65 *55.23±0.43 1.7

⋆ Tent cannot be applied to models that do not contain batch normalization layers.

Table 3: Summary of the experimental datasets that entail diverse distribution shifts.

Dataset Distribution Shift #Nodes #Edges #Classes Train/Val/Test Split Metric Adapted From

Cora 2,703 5,278 10 Domain-Level Accuracy (Yang et al., 2016)

Amazon-Photo
Artificial Transformation

7,650 119,081 10 Domain-Level Accuracy (Shchur et al., 2018)

Elliptic 203,769 234,355 2 Time-Aware F1 Score (Pareja et al., 2020)

OGB-ArXiv
Temporal Evolution

169,343 1,166,243 40 Time-Aware Accuracy (Hu et al., 2020)

Twitch-explicit 1,912 - 9,498 31,299 - 153,138 2 Domain-Level ROC-AUC (Rozemberczki et al., 2021)

Facebook-100
Cross-Domain Transfer

769 - 41,536 16,656 - 1,590,655 2 Domain-Level Accuracy (Traud et al., 2012)

The overall loss function used for training is defined as follows:

LA2A = αλ(Ls + Lc) + (1− α)LR, (13)

where α and λ are hyperparameters that control the importance of each objective. α is a hyperparameter
in the range (0, 1); λ is a positive hyperparameter.

4 Experiments

4.1 Adaptation on Data with Distribution Shift

Datasets. We evaluate GOAT ’s performance on three types of distribution shifts across six benchmark
datasets, following the experimental settings of EERM (Wu et al., 2023). The dataset statistics, along with
a breakdown of these three distinct types of distribution shifts, are presented in Table 3: (1) Artificial
Transformation for Cora (Yang et al., 2016) and Amazon-Photo (Shchur et al., 2018), where node features
are replaced by synthetic features. (2) Cross-Domain transfers for Twitch-E (Rozemberczki et al., 2021)
and FB-100 (Traud et al., 2012), involving graphs from different domains. (3) Temporal Evolution for
Elliptic (Pareja et al., 2020) and OGB-ArXiv (Hu et al., 2020), utilizing dynamic datasets with natural
evolving characteristics. The datasets are split into training/validation/test sets with ratios of: 1/1/8 for
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Figure 3: Results on Elliptic under OOD. GOAT im-
proves SAGE on most test graphs.

Table 4: Efficiency comparison. GOAT is more time-
and memory-efficient than EERM on large graphs and
comparable to GTrans.

Running Time (s) GPU Memory (GB)
Photo Elliptic ArXiv Photo Elliptic ArXiv

EERM 413.4 629.6 - 10.5 12.8 24+
GTrans 1.9 6.8 12.2 1.6 1.3 4.1
GOAT 5.5 0.5 0.3 1.5 1.3 5.0

Cora and Amazon-Photo; 1/1/5 for Twitch-E; 3/2/3 for FB-100; 5/5/33 for Elliptic; and 1/1/3 for OGB-
ArXiv.

Baselines. GOAT is compared with four baselines: empirical risk minimization ERM, test-time training
method Tent (Wang et al., 2021), memory-bank-based method GraphCTA(GCTA) (Zhang et al., 2024),
the train-time state-of-the-art method EERM (Wu et al., 2023) which is exclusively developed for graph
OOD issues, and the test-time graph transformation state-of-the-art method GTrans (Jin et al., 2023).
All methods are evaluated with four popular GNN backbones: GCN (Kipf & Welling, 2022), GraphSAGE
(Hamilton et al., 2017), GAT (Veličković et al., 2018), and GPR (Chien et al., 2021). Their default setup
follows that in EERM1. More implementation details of the baselines and GOAT can be found in Appendix
C.1. All experiments are repeated 8 times with different random seeds. Due to page limits, additional
baselines and backbones such as SR-GNN (Zhu et al., 2021), UDA-GCN (Wu et al., 2020), and GTN (Yun
et al., 2019) are included in Appendix D.

Overall Comparison. Table 2 reports the averaged performance over the test graphs for each dataset
as well as the average rank of each algorithm. From the table, we conduct the following observations: (a)
Overall Performance. The proposed framework consistently achieves strong performance across the datasets:
GOAT achieves average ranks of 1.3, 2.5, 2.3, and 1.7 with GCN, SAGE, GAT, and GPR, respectively, while
the corresponding ranks for the best baseline GOAT are 1.8, 2.5, 2.3 and 2.4. Furthermore, in most cases,
GOAT significantly improves the vanilla baseline (ERM) by a large margin. Particularly, when using SAGE
as the backbone, GOAT outperforms ERM by 9.8%, 18.5%, and 3.9% on Cora, Elliptic, and OGB-ArXiv,
respectively. These results demonstrate the effectiveness of GOAT in tackling diverse types of distribution
shifts. (b) Comparison to other baselines. Both GraphCTA and EERM modify the model parameters to
improve model generalization. Nonetheless, they are less effective than GOAT , as GOAT takes advantage
of adapting the pre-trained GNN to the environment of test graphs. As test-time training methods, Tent
and GTrans also perform well in some cases. However, Tent is ineffective for models that do not incorporate
batch normalization. On the other hand, GTrans not only modifies node features but also alters edges, which
can backfire if the edge modifications are not carefully chosen, potentially leading to a misrepresentation of
the graph structure.

We further show the performance on each test graph on Elliptic with SAGE in Figure 3 and the results
for other datasets are provided in Figure 9 in Appendix. We observe that GOAT generally improves over
individual test graphs within each dataset, which validates the effectiveness of GOAT .

Efficiency Comparison. In Table 4, we compare the computational time and GPU usage on the largest
graph of each dataset for our GOAT , EERM, and GTrans methods. Unlike EERM, which increases pre-
training generalization through extensive environment augmentation during train time, GOAT optimizes
efficiency by minimizing reliance on computationally expensive data augmentations and parameter tuning.
In contrast to GTrans, which adjusts based on the proportion of edges modified on the graph, GOAT
requires sampling only a minimal number of two augmented input graphs per training epoch. These features
ensure that GOAT not only conserves GPU resources but also accelerates the adaptation process during

1Adjustments have only been made to the hidden dimensions of GAT to ensure consistency in the parameter count across
all four backbones.
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(a) (b) (c)

Figure 4: (a)(b) Visualization of the low-rank property of matrix ∆X in the LRA module of a GAT backbone
trained on the two largest test graphs on OGB-ArXiv(169343 nodes) and FB-100(41554 nodes) under OOD settings.
The singular values, obtained via SVD, show a rapid decay, indicating that node embeddings can be effectively
compressed into virtual nodes of the units digit. (c) Visualization of the distribution of generated ∆X obtained
after training GOAT on 8 test graphs in Cora with Gaussian KDE. The x-axis represents the sum of feature values
on the nodes, and the y-axis represents the density of bias on each node within that value range. The further the
mode of the distribution is from "0", the greater the degree of distribution shift.

test time, showcasing substantial efficiency improvements over both train-time methods and other test-time
methods.2

4.2 A Node-Level Low-Rank Perspective on Adaptation

After tuning the parameters of LRA on validation sets and obtaining the optimal results through test-
time tuning, we further investigate the principal components of the low-rank matrix ∆X ∈ RN×d in the
N -dimensional space as Figure 4(a)(b) shown. By performing Singular Value Decomposition (SVD), we
obtained the singular values sorted in descending order and compared the major eigenvalues, showing a
significant decline compared to the others. In almost all large graphs, the adaptation graph ∆X exhibits
low rank along its N -th dimension. This phenomenon differs from the low-rank attention applied to the
node feature across each node’s dimensions. This finding further demonstrates that the input test graph can
be adapted using a low-rank additive representation. To elaborate, in Eq.(7), ∆X can also take the form
∆X ∈ RN ′×d with N ′ nodes (N ′ ≪ N), selected from a predefined node dictionary. This provides empirical
evidence for setting our |n| hyperparameter to a small constant that is independent of the number of nodes.

4.3 An Embedding View on Adaptation ∆X

We further visualize the t-SNE distribution of different ∆X generated by our paradigm and GTrans on
different test graphs. From Figure 5, it can be observed that the ∆X obtained through our paradigm, i.e.,
optimized with LRA module and LA2A, forms a low-dimensional manifold M after being embedded by the
pre-trained GNN. This implies that ∆X itself belongs to a function manifold, encouraging gψ(·) to transform
each node feature along the local tangent space of M or along the curvature directions of M.

Furthermore, we found that although the ∆X generated by the GTrans method still adheres to the clustering
distribution of classification task labels, which, to some extent, even distorts the original topological structure
learned by the GNN. A notable observation is that the performance of GTrans correlates with the degree of
distortion it introduces. The distortion, in effect, allows ∆X to generate a "spurious" graph that potentially
overshadows the importance of the original node features for the classification task. Upon examining the
node embeddings before and after transformation by ∆X, it becomes evident that our method significantly
enhances performance while maintaining a largely consistent distribution. This further demonstrates that
the ∆X generated by our approach represents the degree of distributional shift, rather than conforming to
the classification and clustering observed during pre-training.

2Detailed early-stop procedures are shown in Appendix B.
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Figure 5: t-SNE visualizations of ∆X and node feature embeddings on Amazon-Photo, Cora, and Tiwtch-E datasets.
The embeddings are obtained after a pre-trained GCN, using ∆X generated by our method and surrogate loss
proposed by GTrans.

Table 5: Ablation study of the overall loss function LA2A comparison on the
Elliptic dataset under OOD. Two-view sampling under a test environment shows
improvement in GCN average performance on test graphs with the addition of
each LA2A constraint component, demonstrating the effectiveness of each part of
the loss function and the choice of the number of samples.

Configuration Performance
Pre-train Ls Lc LR One sample Two samples

✓ ±0.00% ±0.00%
✓ ✓ -1.51% -1.51%
✓ ✓ ✓ -1.62% +4.49%
✓ ✓ ✓ ✓ -0.18% +5.28%

Figure 6: α, λ Parameter Study.
We compared the parameter sen-
sitivity under two commonly used
settings: α = 0.0005 and λ = 0.1

4.4 Distribution Shift Quantification

We utilize Kernel Density Estimation (KDE) to visualize the distribution of ∆X generated by our adapter
obtained through GOAT on Cora and Elliptic as Figure 4(c) and Figure 7 shown, by aggregating each
node’s feature dimensions d in ∆X. As the initialization of the ∆X is zero, the mean and mode of the initial
distribution should be 0. Due to the varying degrees of distribution shifts in different graphs, after tuning
by GOAT , our adapter can effectively capture the discrepancy between the current test graph and the
pre-trained GNN. Adding the generated ∆X can be seen as the mapping from the current test graph to the
distribution to which the original training graph belongs. Therefore, the farther the representation deviates
from the origin, the more severe distribution shift the graph has, whether observed from the perspective of
the entire graph or an individual node’s perspective. The distribution shifts in the time-evolving graph could
be more intuitive as time flows. Furthermore, we show ∆X’s distribution in other datasets and compare
with the central moment discrepancy (CMD) (Zellinger et al., 2022) measurement in the Appendix.Figure 11,
highlighting the interpretability of our designed adapter.

4.5 Ablation Studies and Parameter Study

Overall Loss Function LA2A. The ablation study shown in Table 5 demonstrates the effectiveness of the
different components in our proposed loss function. Optimizing Ls alone may lead to instability and mode
collapse, which empirically proves our proposed target in Eq.(5) and Eq.(12). The target LR is affected by
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Figure 7: Visualization of the distribution of generated ∆X obtained after training GOAT on 32 test graphs in
Elliptic with Gaussian KDE.

Figure 8: Performance of GCN, GraphSAGE, and GPR on Cora under structural attacks (edge addition/deletion).

whether the pre-trained GNN has sufficient generalization capability. Therefore, optimizing Lc alone is also
sufficient to meet the requirements of Eq.(5). The best performance was achieved when all three components
were jointly optimized. Additionally, sampling at least two distinct graph augmentations in D̃aug is essential
to prevent biased learning, which empirically supports our choice of enforcing (q ̸= p) in Eq.(5).

Adapter LRA. In Figure 6, we show the parameter study of λ and α in LA2A. Note that while the
proportion λ

1−α may vary, 1−α should remain relatively large to ensure that the constraint in Eq. (11), i.e.,
LR, is satisfied before optimizing the other objectives.

4.6 Robustness under Structure Adversarial Attack

We evaluate the robustness of GCN, GraphSAGE, and GPR on the Cora dataset (Yang et al., 2016) under
structural attacks, we perturb the graph by both adding and deleting edges. For a given perturbation budget,
ratio, we randomly delete a number of edges corresponding to ratio/2 of the original edge count, and randomly
add an equal number of new edges. For the GCN model, our method achieves an average improvement of
2% under 25% structural attack noise, while for GPR, it delivers a stable gain of 0.5% across all noise
levels. Without modifying hyperparameters (e.g., learning rate, sampling ratio), our method consistently
improves backbone model performance by 0.5%–2.5% across varying attack intensities. Although our test-
time paradigm consistently enhances adversarial robustness, its performance remains dependent on the base
backbone’s inherent generalization capability and adversarial robustness. Notably, this gain is achieved with
just two samples with any subgraph sampling strategy, demonstrating computational efficiency alongside
robustness.

4.7 Further Analysis

Universal Bias vs. Local-global Bias. We compare the average improvement of various non-customized
additional parameter methods using our proposed LA2A on graph classification datasets HIV (a small-scale
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real-world molecular dataset adapted from MoleculeNet (Wu et al., 2018)) under the OOD setting in GOOD
(Gui et al., 2022) during test time. Average results of different designs of basis are shown in Table 6.

Table 6: Bias Comparison
Method Avg. Impr
Universal ±0.01%
Prompt dict +0.01%
Sub-graph +1.52%
Node-wise +2.35%

We show its improvement of ROC-AUC(%) based on ERM with GCN. For
node classification, it is evident that UPF’s universal prompts (Fang et al.,
2024), ∆X ∈ R1×d, across all nodes, are less customizable for classifying each
node in an OOD environment, and might even learn controversial knowledge,
therefore showing diminishing performance. Moreover, using a selection dic-
tionary (Sun et al., 2023), ∆X ∈ Rk×d (k ≪ N), also presents difficulties
during test-time training. In contrast, subgraph-focused methods (Sun et al.,
2022) can simultaneously capture the optimal bias more effectively, yielding
relatively higher results, especially when it extends to a node-wise bias, i.e. each node’s learnable bias is dif-
ferent, ∆X ∈ RN×d. These demonstrate that, at least in OOD node classification, a bias design that focuses
on local-global context can better capture the relationships of nodes within the OOD environment. The
node-wise bias method is particularly well-suited to our designed strategy, as it can better adapt to different
distribution shift scenarios. This further validates the rationality of our adapter’s design. Furthermore,
based on the graph prompt methods (Liu et al., 2023; Yu et al., 2023), we experimented with incorporating
a learnable scaling parameter that multiplies the weights of each GNN layer or node embeddings during test
time. However, we found this approach difficult to apply effectively in our context.

5 Further Discussion

It is worth noting that the distribution shift issue in graph models can lead to significant risks and negative
consequences in real-world applications. For instance, when GNNs are applied in financial risk control
systems, distribution shifts in the input data may cause a large number of misjudgments, leading to severe
economic losses or compliance issues. Similar risks exist in other high-stakes domains such as healthcare and
cyber-criminal justice, where the reliability and robustness of graph-based decision-making systems under
distributional changes are critical. Therefore, it is crucial to develop effective methods to detect and adapt
to distribution shift scenarios in graph learning and to carefully analyze and mitigate the potential negative
societal impacts. Our work aims to contribute to this important research direction.

Another illustrative example of the potential negative impact of the distribution shift issue in graph models
is in the context of social network analysis for misinformation detection. GNNs have been widely adopted
to identify fake news and rumors based on the propagation patterns and content features in social networks.
However, the characteristics of misinformation can evolve rapidly over time, leading to distribution shifts
between the training and test data. If the GNN-based misinformation detectors fail to adapt to such changes,
they may miss emerging misinformation or cause false alarms, which can have severe societal consequences
such as public panic, political manipulation, and erosion of trust in media. This urges the development
of graph OOD detection and adaptation methods that can robustly handle the dynamic and adversarial
nature of online misinformation. Our GOAT framework takes a step towards this goal by enabling test-time
adaptation of GNNs to evolved data distributions.

6 Conclusion

In this work, we proposed GOAT , a data-centric and self-supervised test-time adaptation framework for
graph neural networks that avoided the complexity and instability of structure-based transformations. By
focusing exclusively on node feature optimization, GOAT enabled efficient and interpretable adaptation to
distribution-shifted test graphs without requiring access to training data or test labels. To further enhance
robustness, we introduced a low-rank adapter that generated diverse, graph-specific transformations and
mitigated the risk of transformation collapse. Extensive experiments on six real-world datasets demonstrated
that GOAT consistently improved performance across different GNN backbones, outperforming existing
data-centric and model-centric test-time adaptation baselines. These results highlighted the potential of
feature-only, data-centric approaches for test-time graph adaptation. In future work, we will explore a more
relaxed optimization objective and inspire more discussion and novel propositions.
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A Proof of Propositions

Theorem 1. (Proved in GPF(Fang et al., 2024)) Given a pre-trained GNN model f , an input graph G, for
any graph-level transformation g : G{A,X} → G′{A′,X ′}, there exists an additional extra feature vector ∆X
that satisfies:

f(A,X + ∆X) = f(g(A,X )) = f(A′,X ′)

A.1 Proof of Ls in Main Paper Eq 4

Assuming that there is a test Graph: Gte = {A,X}, and two augmented views of Gte generated from a
stochastic function Aug(·), denoted by G1 and G2, a pre-trained GNN model f , then we have:

G1 = Aug(Gte) = {A1,X1} (Ap.1)
G2 = Aug(Gte) = {A2,X2} (Ap.2)

For arbitrary graph Gi = {Ai,Xi}, let G⋆i = {A⋆i ,X ⋆i } represents the input graph at which the loss function
L(f(G⋆i ),Y) is optimal. According to proposition A, G⋆te = G′⋆ = {Ai,X ′

i
⋆}. Therefore, there separately

exists respective representation: ∆X⋆
1 , ∆X⋆

2 , and ∆X1,2, making the following formulas true:

f(A1,X ′⋆
1 ) = f(A1,X1 + ∆X⋆

1 ) (Ap.3)
f(A2,X ′⋆

2 ) = f(A2,X2 + ∆X⋆
2 ) (Ap.4)

f(A2,X2) = f(A1,X1 + ∆X1,2) (Ap.5)

Naturally, it is desirable to design a loss function so that an augmented view G′ is close enough to the
f -mapped representation in the representation space of the f mapped solution G′⋆:

PA2S = arg min
∆X1

E
[
∥f(A1,X1 + ∆X1)− f(A1,X ′⋆

1)∥2]
= arg min

∆X1
E[∥f(A1,X1 + ∆X1)∥2−

2f(A1,X ′⋆
1)T f(A1,X1 + ∆X1)+

∥f(A1,X1 + ∆X⋆
1 )∥2]. (Ap.5)

The naive Augmentation-to-Augmentation target PA2A with adaptation ∆X is defined as follows:

PA2A = arg min
∆X1

E
[
∥f(A1,X1 + ∆X1)− f(A2,X2)∥2]

= arg min
∆X1

E[∥f(A1,X1 + ∆X1)∥2−

2f(A2,X2)T f(A1,X1 + ∆X1)+
∥f(A1,X1 + ∆X1,2)∥2]. (Ap.6)

When

E
[
f(A1,X1 + ∆X1,2)− f(A1,X ′⋆

1)
]

= 0 ∧ E
[
∥f(A1,X1 + ∆X1)∥2 − ∥f(A1,X1 + ∆X1,2)∥2]

= 0, (Ap.7)

we get E [f(g(G))− f(G)] = 0 in Eq 5.
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B Algorithm

For detailed pseudocode under the augmented graphs number of |τ | = 2, please refer to the right-hand side
of the page.

Algorithm 1 GOAT for Full Test-Time Graph Adaptation
1: Input: Pre-trained GNN fθ⋆ (θ⋆ is fixed, without the last layer which is the classifier head) and test

graph Gte = {A,X}, Sample method(DropEdge) Aug(·)
2: Output: Model prediction Ŷ
3: Initialize LRAψ, α, λ, learning rate η
4: Lbest =∞, patience = k, patiencenow = 0
5: for t = 1 to T do

6: G′ = DE(Gte) = {A′,X ′} , G′′ = DE(Gte) = {A′′,X ′′}

7: ∆X̂ ′ = LRAψ(A′, X ′), ∆X̂ ′′ = LRAψ(A′′, X ′′)

8: ∆X̂ ′
emb = fθ⋆(A′, ∆X̂ ′) , ∆X̂ ′′

emb = fθ⋆(A′′,∆X̂ ′′)

9: z′
pemb

= fθ⋆(A′, X ′+∆X̂ ′) , z′′
pemb

= fθ⋆(A′′, X ′′+∆X̂ ′′)

10: z′
emb = fθ⋆(A′,X ′) , z′′

emb = fθ⋆(A′′, X ′′)

11: Ls = E∥(z′
pemb

− z′′
emb) + (z′′

pemb
− z′

emb)∥2

12: Lc = E∥(z′
pemb

− z′
emb −∆X̂ ′

emb) + (z′′
pemb

− z′′
emb −∆X̂ ′′

emb)∥2

13: LR = E|∆X̂ ′
emb + ∆X̂ ′′

emb|

14: L = αλ(Ls + Lc) + (1− λ)LR

15: Update: ψ ← ψ − η∆ψL
16: if LR ≤ Lbest then
17: Lbest = LR
18: patiencenow = 0
19: else
20: patiencenow = patiencenow + 1
21: end if
22: if patiencenow ≥patience then
23: Stop
24: end if
25: end for
26: ∆X = LRAψ(A,X )
27: Ŷ = fθ⋆(A,X + ∆X)
28: return Ŷ

C Datasets and Hyper-Parameters

In this section, we reveal the details of reproducing the results in the experiments. We will release the source
code upon acceptance.

C.1 Hyper-Parameter Setting

For the setup of backbone GNNs, we majorly followed EERM (Wu et al., 2023):
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(a) Amazon-Photo (b) Cora

(c) OGB-ArXiv (d) FB-100 (e) Twitch-E

Figure 9: Classification performance on individual test graphs within each dataset for OOD setting.

(a) GCN: the architecture setup is 5 layers with 32 hidden units for Elliptic and OGB-ArXiv, and
2 layers with 32 hidden units for other datasets, with batch normalization for all datasets. The
pre-train learning rate is set to 0.001 for Cora and Amz-Photo, 0.01 for other datasets; the weight
decay is set to 0 for Elliptic and OGB-ArXiv, and 0.001 for other datasets.

(b) GraphSAGE: the architecture setup is 5 layers with 32 hidden units for Elliptic and OGB-ArXiv
and 2 layers with 32 hidden units for other datasets, and with batch normalization for all datasets.
The pre-train learning rate is set to 0.01 for all datasets; the weight decay is set to 0 for Elliptic and
OGB-ArXiv, and 0.001 for other datasets.

(c) GAT: the architecture setup is 5 layers for Elliptic and OGB-ArXiv, and 2 layers for other datasets,
with batch normalization for all datasets. Each layer contains 4 attention heads and each head is
associated with 8 hidden units. The pre-train learning rate is set to 0.01 for all datasets; the weight
decay is set to 0 for Elliptic and OGB-ArXiv, and 0.001 for other datasets.

(d) GPR: We use 10 propagation layers and 2 transformation layers with 32 hidden units. The pre-train
learning rate is set to 0.01 for all datasets; the weight decay is set to 0 for Elliptic and OGB-ArXiv,
and 0.001 for other datasets. Note that GPR does not contain batch normalization layers.

For the baseline methods, we tuned their hyper-parameters based on the validation performance. For Tent,
we search the learning rate in the range of [1e-2, 1e-3, 1e-4, 1e-5] and the running epochs in [1, 10, 20, 30].
For EERM(Wu et al., 2023) and GTrans(Jin et al., 2023), we followed the instructions provided by the
original paper. For GraphCTA(GCTA)(Zhang et al., 2024), we tune the feature adaptation η1 in [5e-3, 1e-3,
1e-4, 1e-5, 1e-6], learning rate of structure adaptation η2 in [0.5, 0.1, 0.01], and alternatively optimize node
features epochs τ1 in [1, 2, 3] and optimize graph structure epochs τ2 in [1, 2], other parameters followed the
instruction provided by the original paper. For GOAT , we adopt DropEdge as the augmentation function
DE(·) and set the drop ratio to 0.05, K-layer aggregation in LRA set to 1 due to some GNN only has two
layers in some datasets while the last GNN layer performs as a classifier head. We use Adam Optimizer for
LRA module tuning. We further search the learning rate η in [1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 1e-6]
for different backbones, the virtual nodes number |n| in [1×, 2×, 5×, 10×, 20×] of the class number C, the
attention dim dattn in LRA in [2, 4, 8, 16, 32], total epochs T in [50, 100], and the patience in [1, 0.5, 0.1,
5e-2, 1e-2, 1e-3]. In the optimization target, we search the λ in [1, 3, 5, 10] and the α in [0.999, 0.9, 0.75,
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Method Amz-Photo Cora Elliptic FB-100 OGB-ArXiv Twitch-E
ERM 93.79±0.97 91.59±1.44 50.90±1.51 54.04±0.94 38.59±1.35 59.89±0.50
UDA-GCN 91.70±0.35 92.65±0.46 51.57±1.31 54.11±0.54 39.43±0.71 52.12±0.38
SRGNN 94.64±0.17 94.08±0.28 51.94±0.81 54.08±1.10 38.92±0.65 59.21±0.51
GOAT 94.35±1.32 94.79±1.36 55.83±3.81 54.19±2.04 39.44±2.02 60.15±1.30

Table 7: Performance comparison between GOAT with GCN and graph domain adaptation methods.

0.5, 0.25, 0.1, 5e-2, 1e-2, 5e-3]. We note that the process of tuning hyper-parameters is quick due to the high
efficiency of test-time adaptation as we demonstrated in Section 4.1. Furthermore, not every test graph is
learned over whole epochs set due to the patience of dissatisfaction of constraint in Eq 12.

Evaluation Protocol. For ERM (standard pre-training), we pre-train all the GNN backbones using the
common cross-entropy loss. For EERM, it optimizes a bi-level problem to obtain a trained classifier. Note
that the aforementioned two methods do not perform any test-time adaptation and their model parameters
are fixed during the test. For the four test-time adaptation methods, Tent, GCTA, GTrans, and GOAT
. We first obtain the GNN backbones pre-trained from ERM and adapt the model parameters or graph
data at test time, respectively. Furthermore, Tent minimizes the entropy loss and GTrans and GCTA both
minimize the contrastive surrogate loss, while GOAT minimizes the Target LA2A.

C.2 Hardware and Software Configurations

We perform experiments on NVIDIA GeForce RTX 3090 GPUs. The GPU memory and running time
reported in Table 3 are measured on one single RTX 3090 GPU. Additionally, we use eight CPUs, with
the model name Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz. The operating system utilized in our
experiments was Ubuntu 22.04.3 LTS (codename jammy).

D More Experimental Results

D.1 Overall Comparison

To show the performance on individual test graphs, we choose SAGE as the backbone model and include
the box plot on all test graphs within each dataset in Figure 9. We observe that GOAT generally improves
over each test graph within each dataset, which validates the effectiveness of our proposed method.

D.2 Comparison to More Baseline and Backbones

To compare their empirical performance, we include two GraphDA methods (Zhu et al., 2021; Wu et al.,
2020). SR-GNN regularizes the model’s performance on the source and target domains. Note that SR-GNN
was originally developed under the transductive setting where the training graph and test graph are the same.
To apply SR-GNN in our OOD setting, we assume the test graph is available during the training stage of
SR-GNN, as typically done in domain adaptation methods. UDA-GCN is another work that tackles graph
data domain adaptation, which exploits local and global information for different domains. We followed the
authors’ suggestions in their paper to tune the hyper-parameters and the results are shown in Table 7. On the
one hand, we can observe that these graph domain adaptation methods generally improve the performance
of GCN under distribution shift and SRGNN is the best-performing baseline. On the other hand, GOAT
performs the best on all datasets except Amz-Photo. On Amz-Photo, GOAT does not improve as much
as SR-GNN, which indicates that joint optimization over source and target is necessary for this dataset.
However, recall that domain adaptation methods are less efficient due to the joint optimization on source
and target. Overall, the test-time graph adaptation with our adapter could better fit the specific distribution
shifts that deviate from the source target. As shown in Table 8, GOAT could also adapt to more popular
backbones.
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Method Amz-Photo Cora Elliptic FB-100 OGB-ArXiv Twitch-E
GTN 94.73±2.91 99.88±0.10 68.51±3.85 53.57±0.75 43.08±0.84 62.30±0.16
GTN + GOAT 94.75±2.97 99.85±0.12 70.08±2.50 54.94±0.61 44.11±0.84 63.79±0.27

Table 8: Performance comparison between GOAT with other backbones.

GraphID G0 G1 G2 G3 G4 G5 G6 G7 G8
Amz-Photo 6.4 5.1 5.5 3.7 2.8 3.7 3.9 6.6 -
Cora 5.4 4.2 4.8 6.3 5.5 4.8 4.6 5.4 -
Elliptic 80.2 90.8 114.3 86.5 789.3 781.6 99.4 100.4 150.6
OGB-ArXiv 14.7 20.6 10.4 - - - - - -
FB-100 29.7 16.9 32.9 - - - - - -
Twitch-E 8.6 6.1 9.0 8.4 9.7 - - - -

Table 9: CMD values on each individual graph based on the pre-trained GCN.

D.3 Quantifying distribution shift through LRA

In this section, we further show more distribution of ∆X generated by GOAT that indicates the OOD
degree of each test graph. We can see an extreme shift in Figure 11(c) that as the snapshots flow from the
validation, the mode and the mean value of ∆X shift away from the 0 initialized value, which shows a further
deviation of the later test graphs from the train source distribution. Furthermore, following SR-GNN (Zhu
et al., 2021), we adopt central moment discrepancy (CMD) (Zellinger et al., 2022) as the measurement to
quantify the distribution shifts in different graphs, we present them in Table 9 as a comparison with ∆X in
GOAT .

D.4 Low-rank of Node-level Representation on Large Graph

In Figure 10, we show other ∆X generated from LRA on two large test graphs in OGB-arXiv with 69499
and 120740 nodes.

E Ablation study

E.1 Optimization Object

In Figure 10, we show the parameter study of λ and α in LA2A. Noted that there could be a different
proportion of λ

(1−α) , while it still should have a rather value of α in that the constraint in Eq.( 11) (LR)
should be satisfied first then the other objective could work.

(a) G1 (b) G2

Figure 10: (a)(b) SVD of E in LRA after training on test graph G1, G2 in OGB-ArXiv with distribution shifts.
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(a) Amazon-Photo (b) Twitch-E

(c) FB-100 (d) OGB-ArXiv

Figure 11: ∆X Distribution after training on each dataset.

E.2 Different Augmentation Methods Used in Optimization

In Target 4, we used DropEdge as the augmentation function Aug(·) to obtain the augmented view and
enough inductive graphs. In practice, the choice of augmentation can be flexible, and here we explore two
other choices: node dropping and FlipEdge (You et al., 2020). Specifically, we adopt a ratio of 0.05 for node
dropping, a ratio of 0.05 and 0.5 for FlipEdge, and ratios of 0.05 and 0.5 for DropEdge. We observe that (1)
GOAT with any of the three augmentations can greatly improve the performance of GCN under distribution
shift, and (2) different augmentations lead to slightly different performances on different datasets

E.3 Parameters in LRA

After tuning over all datasets, the hyperparameter almost shows a slight difference. Therefore, dattn is set to
8, |n| is almost 10× C(C is the class number of nodes in test graph). Furthermore, we explore that, unlike
the Transformers structure in NLP, the multi-head attention and the residual connection cannot improve the
performance in our LRA module, which indicates the graph structure data information learned with GNNs
has a different representation from that learned as in NLP as sequences.

21


	Introduction
	Related Work
	Methodology
	Self-supervised Graph Test-time Adaptation from Augmentations
	Node Feature Transformation with Low-rank Cross-attention Adapter
	Optimization

	Experiments
	Adaptation on Data with Distribution Shift
	A Node-Level Low-Rank Perspective on Adaptation
	An Embedding View on Adaptation X
	Distribution Shift Quantification
	Ablation Studies and Parameter Study
	Robustness under Structure Adversarial Attack 
	Further Analysis

	Further Discussion
	Conclusion
	Proof of Propositions
	Proof of Ls in Main Paper Eq 4

	Algorithm
	Datasets and Hyper-Parameters
	Hyper-Parameter Setting
	Hardware and Software Configurations

	More Experimental Results
	Overall Comparison
	Comparison to More Baseline and Backbones
	Quantifying distribution shift through LRA
	Low-rank of Node-level Representation on Large Graph

	Ablation study
	Optimization Object
	Different Augmentation Methods Used in Optimization
	Parameters in LRA


