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Abstract
Policy gradient methods are notorious for hav-
ing a large variance and high sample complexity.
To mitigate this, we introduce SoftTreeMax—a
generalization of softmax that employs planning.
In SoftTreeMax, we extend the traditional logits
with the multi-step discounted cumulative reward,
topped with the logits of future states. We an-
alyze SoftTreeMax and explain how tree expan-
sion helps to reduce its gradient variance. We
prove that the variance depends on the chosen
tree-expansion policy. Specifically, we show that
the closer the induced transitions are to being
state-independent, the stronger the variance decay.
With approximate forward models, we prove that
the resulting gradient bias diminishes with the
approximation error while retaining the same vari-
ance reduction. Ours is the first result to bound
the gradient bias for an approximate model. In
a practical implementation of SoftTreeMax, we
utilize a parallel GPU-based simulator for fast and
efficient tree expansion. Using this implementa-
tion in Atari, we show that SoftTreeMax reduces
the gradient variance by three orders of magni-
tude. This leads to better sample complexity and
improved performance compared to distributed
PPO.

1. Introduction
Policy Gradient (PG) methods (Sutton et al., 1999) for Re-
inforcement Learning (RL) are often the first choice for
environments that allow numerous interactions at a fast pace
(Schulman et al., 2017). Their success is attributed to sev-
eral factors: they are easy to distribute to multiple workers,
require no assumptions on the underlying value function,
and have both on-policy and off-policy variants.
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Despite these positive features, PG algorithms are also no-
toriously unstable due to the high variance of the gradients
computed over entire trajectories (Liu et al., 2020; Xu et al.,
2020). As a result, PG algorithms tend to be highly ineffi-
cient in terms of sample complexity. Several solutions have
been proposed to mitigate the high variance issue, including
baseline subtraction (Greensmith et al., 2004; Thomas &
Brunskill, 2017; Wu et al., 2018), anchor-point averaging
(Papini et al., 2018), and other variance reduction techniques
(Zhang et al., 2021; Shen et al., 2019; Pham et al., 2020).

A second family of algorithms that achieved state-of-the-art
results in several domains is based on planning. Planning
is exercised primarily in the context of value-based RL and
is usually implemented using a Tree Search (TS) (Silver
et al., 2016; Schrittwieser et al., 2020). In this work, we
combine PG with TS by introducing a parameterized differ-
entiable policy that incorporates tree expansion. Namely,
our SoftTreeMax policy replaces the standard policy logits
of a state and action, with the expected value of trajectories
that originate from these state and action. We consider two
variants of SoftTreeMax, one for cumulative reward and one
for exponentiated reward.

Unlike approaches that incorporate multi-step returns for
value function estimation (e.g., n-step TD methods), our
work explicitly integrates planning into the policy parame-
terization itself. This distinction is crucial—while n-step re-
turns serve as a Monte Carlo estimation technique for the ad-
vantage function A in the gradient estimator E[(∇ log π)A],
our SoftTreeMax affects the policy π directly. This enables
us to obtain fundamentally different variance reduction prop-
erties while keeping the policy gradient framework intact.

Combining TS and PG should be done with care given the
biggest downside of PG—its high gradient variance. This
raises questions that were ignored until this work: (i) How
to design a PG method based on tree-expansion that is sta-
ble and performs well in practice? and (ii) How does the
tree-expansion policy affect the PG variance? Here, we
analyze SoftTreeMax, and provide a practical methodology
to choose the expansion policy to minimize the resulting
variance. Our main result shows that a desirable expansion
policy is one, under which the induced transition probabili-
ties are similar for each starting state. More generally, we
show that the gradient variance of SoftTreeMax decays at a
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rate of |λ2|d, where d is the depth of the tree and λ2 is the
second eigenvalue of the transition matrix induced by the
tree expansion policy. This work is the first to prove such a
relation between PG variance and tree expansion policy. In
addition, we prove that with an approximate forward model,
the bias of the gradient is bounded proportionally to the
approximation error of the model.

To verify our results, we implemented a practical version of
SoftTreeMax that exhaustively searches the entire tree and
applies a neural network on its leaves. We test our algorithm
on a parallelized Atari GPU simulator (Dalton et al., 2020).
To enable a tractable deep search, up to depth eight, we
also introduce a pruning technique that limits the width of
the tree. We do so by sampling only the most promising
nodes at each level. We integrate our SoftTreeMax GPU im-
plementation into the popular PPO (Schulman et al., 2017)
and compare it to the flat distributed variant of PPO. This
allows us to demonstrate the potential benefit of utilizing
learned models while isolating the fundamental properties
of TS without added noise. In all tested Atari games, our
results outperform the baseline and obtain up to 5x more
reward. We further show in Section 6 that the associated
gradient variance is smaller by three orders of magnitude in
all games, demonstrating the relation between low gradient
variance and high reward.

We summarize our key contributions. (i) We show how to
combine two families of SoTA approaches: PG and TS by
introducing SoftTreeMax: a novel parametric policy that
generalizes softmax to planning. Specifically, we propose
two variants based on cumulative and exponentiated rewards.
(ii) We prove that the gradient variance of SoftTreeMax
in its two variants decays with its tree depth. Our analysis
sheds new light on the choice of tree expansion policy. It
raises the question of optimality in terms of variance versus
the traditional regret; e.g., in UCT (Kocsis & Szepesvári,
2006). (iii) We prove that with an approximate forward
model, the gradient bias is proportional to the approx-
imation error, while retaining the variance decay. This
quantifies the accuracy required from a learned forward
model. (iv) We implement a differentiable deep version of
SoftTreeMax that employs a parallelized GPU tree expan-
sion. We demonstrate how its gradient variance is reduced
by three orders of magnitude over PPO while obtaining up
to 5x reward.

2. Preliminaries
Let ∆U denote simplex over the set U. Throughout, we con-
sider a discounted Markov Decision Process (MDP)M =
(S,A, P, r, γ, ν), where S is a finite state space of size S,
A is a finite action space of size A, r : S×A → [0, 1] is the
reward function, P : S×A → ∆S is the transition function,
γ ∈ (0, 1) is the discount factor, and ν ∈ RS is the initial

state distribution. We denote the transition matrix starting
from state s by Ps ∈ [0, 1]A×S , i.e., [Ps]a,s′ = P (s′|a, s).
Similarly, let Rs = r(s, ·) ∈ RA denote the correspond-
ing reward vector. Separately, let π : S → ∆A be a sta-
tionary policy. Let Pπ and Rπ be the induced transition
matrix and reward function, respectively, i.e., Pπ(s′|s) =∑

a π(a|s) Pr(s′|s, a) and Rπ(s) =
∑

a π(a|s)r(s, a). De-
note the stationary distribution of Pπ by µπ ∈ RS s.t.
µ⊤
π P

π = Pπ, and the discounted state visitation fre-
quency by dπ so that d⊤π = (1 − γ)

∑∞
t=0 γ

tν⊤(Pπ)t.
Also, let V π ∈ RS be the value function of π defined
by V π(s) = Eπ [

∑∞
t=0 γ

tr (st, π(st)) | s0 = s], and let
Qπ ∈ RS×A be the Q-function such that Qπ(s, a) =
Eπ [r(s, a) + γV π(s′)]. Our goal is to find an optimal pol-
icy π⋆ such that V ⋆(s) ≡ V π⋆

(s) = maxπ V
π(s), ∀s ∈ S.

For the analysis in Section 4, we introduce the following
notation. Denote by Θ ∈ RS the vector representation
of θ(s) ∀s ∈ S. For a vector u, denote by exp(u) the
coordinate-wise exponent of u and by D(u) the diagonal
square matrix with u in its diagonal. For a matrix A, denote
its i-th eigenvalue by λi(A). Denote the k-dimensional iden-
tity matrix and all-ones vector by Ik and 1k, respectively.
Also, denote the trace operator by Tr . Finally, we treat all
vectors as column vectors.

2.1. Policy Gradient

PG schemes seek to maximize the cumulative reward as a
function of the policy πθ(a|s) by performing gradient steps
on θ. The celebrated Policy Gradient Theorem (Sutton et al.,
1999) states that

∂

∂θ
ν⊤V πθ = Es∼dπθ

,a∼πθ(·|s) [∇θ log πθ(a|s)Qπθ (s, a)] ,

where ν and d⊤πθ
are as defined above. The variance of the

gradient is thus

Vars∼dπθ
,a∼πθ(·|s) (∇θ log πθ(a|s)Qπθ (s, a)) . (1)

In the notation above, we denote the variance of a vector
random variable X by

Varx (X) = Tr
[
Ex

[
(X − ExX)

⊤
(X − ExX)

]]
,

similarly as in (Greensmith et al., 2004). From now on, we
drop the subscript from Var in (1) for brevity. When the
action space is discrete, a commonly used parameterized
policy is softmax: πθ(a|s) ∝ exp (θ(s, a)) , where θ : S ×
A → R is a state-action parameterization.

3. SoftTreeMax: Exponent of trajectories
We introduce a new family of policies called SoftTreeMax,
which are a model-based generalization of the popu-
lar softmax. We propose two variants: Cumulative
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(C-SoftTreeMax) and Exponentiated (E-SoftTreeMax). In
both variants, we replace the generic softmax logits θ(s, a)
with the score of a trajectory of horizon d starting from
(s, a), generated by applying a behavior policy πb. In
C-SoftTreeMax, we exponentiate the expectation of the log-
its. In E-SoftTreeMax, we first exponentiate the logits and
then only compute their expectation.

Logits. We define the SoftTreeMax logit ℓs,a(d; θ) to be
the random variable depicting the score of a trajectory of
horizon d starting from (s, a) and following the policy πb:

ℓs,a(d; θ) = γ−d

[
d−1∑
t=0

γtrt + γdθ(sd)

]
. (2)

In the above expression, note that s0 = s, a0 = a, at ∼
πb(·|st) ∀t ≥ 1, and rt ≡ r (st, at) . For brevity of the
analysis, we let the parametric score θ in (2) be state-based,
similarly to a value function. Instead, one could use a state-
action input analogous to a Q-function. Thus, SoftTreeMax
can be integrated into the two types of implementation of RL
algorithms in standard packages. Lastly, the preceding γ−d

scales the θ parametrization to correspond to its softmax
counerpart.

C-SoftTreeMax. Given an inverse temperature parameter
β, we let C-SoftTreeMax be

πC
d,θ(a|s) ∝ exp [βEπbℓs,a(d; θ)] . (3)

C-SoftTreeMax gives higher weight to actions that result
in higher expected returns. While standard softmax relies
entirely on parametrization θ, C-SoftTreeMax also interpo-
lates a Monte-Carlo portion of the reward.

E-SoftTreeMax. The second operator we propose is
E-SoftTreeMax:

πE
d,θ(a|s) ∝ Eπb exp [(βℓs,a(d; θ))] ; (4)

here, the expectation is taken outside the exponent. This
objective corresponds to the exponentiated reward objec-
tive which is often used for risk-sensitive RL (Howard
& Matheson, 1972; Fei et al., 2021; Noorani & Baras,
2021). The common risk-sensitive objective is of the form
logE[exp(δR)], where δ is the risk parameter and R is the
cumulative reward. Similarly to that literature, the exponent
in (4) emphasizes the most promising trajectories.

SoftTreeMax properties. SoftTreeMax is a natural model-
based generalization of softmax. For d = 0, both variants
above coincide since (2) becomes deterministic. In that case,
for a state-action parametrization, they reduce to standard
softmax. When β → 0, both variants again coincide and
sample actions uniformly (exploration). When β → ∞,
the policies become deterministic and greedily optimize
for the best trajectory (exploitation). For C-SoftTreeMax,

the best trajectory is defined in expectation, while for
E-SoftTreeMax it is defined in terms of the best sample
path.

SoftTreeMax behavior policy selection. The choice of
behavior policy πb plays a crucial role in the performance
of SoftTreeMax. As we show in Section 4, the gradient vari-
ance is minimized when the transitions induced by πb result
in similar distributions across states, which is achieved when
the second eigenvalue of Pπb is small. Without specific as-
sumptions on the MDP, a uniform policy that smoothens
transition probabilities across all actions serves as a reason-
able approximation to this goal. In practice, this leads to
better mixing properties in the associated Markov chain.

SoftTreeMax convergence. Under regularity conditions,
for any parametric policy, PG converges to local optima
(Bhatnagar et al., 2009), and thus also SoftTreeMax. For
softmax PG, asymptotic (Agarwal et al., 2021) and rate re-
sults (Mei et al., 2020b) were recently obtained, by showing
that the gradient is strictly positive everywhere (Mei et al.,
2020b, Lemmas 8-9). We conjecture that SoftTreeMax sat-
isfies the same property, being a generalization of softmax,
but formally proving it is subject to future work.

SoftTreeMax gradient. The two variants of SoftTreeMax
involve an expectation taken over Sd many trajectories from
the root state s and weighted according to their probability.
Thus, during the PG training process, the gradient∇θ log πθ

is calculated using a weighted sum of gradients over all
reachable states starting from s. Our method exploits the
exponential number of trajectories to reduce the variance
while improving performance. Indeed, in the next section
we prove that the gradient variance of SoftTreeMax decays
exponentially fast as a function of the behavior policy πb and
trajectory length d. In the experiments in Section 6, we also
show how the practical version of SoftTreeMax achieves
a significant reduction in the noise of the PG process and
leads to faster convergence and higher reward.

4. Theoretical Analysis
In this section, we first bound the variance of PG when
using the SoftTreeMax policy. Later, we discuss how the
gradient bias resulting due to approximate forward models
diminishes as a function of the approximation error, while
retaining the same variance decay.

We show that the variance decreases with the tree depth,
and the rate is determined by the second eigenvalue of the
transition kernel induced by πb. Specifically, we bound the
same expression for variance as appears in (Greensmith
et al., 2004, Sec. 3.5) and (Wu et al., 2018, Sec. A, Eq. (21)).
Other types of analysis could instead have focused on the
estimation aspect in the context of sampling (Zhang et al.,
2021; Shen et al., 2019; Pham et al., 2020). Indeed, in
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our implementation in Section 5, we manage to avoid sam-
pling and directly compute the expectations in Eqs. (3) and
(4). As we show later, we do so by leveraging efficient
parallel simulation on the GPU in feasible run-time. In our
application, due to the nature of the finite action space and
quasi-deterministic Atari dynamics (Bellemare et al., 2013),
our expectation estimator is noiseless. We encourage future
work to account for the finite-sample variance component.
We defer all the proofs to Appendix A.

We begin with a general variance bound that holds for any
parametric policy.

Lemma 4.1 (Bound on the policy gradient variance). Let
∇θ log πθ(·|s) ∈ RA×dim(θ) be a matrix whose a-th row is
∇θ log πθ(a|s)⊤. For any parametric policy πθ and func-
tion Qπθ : S ×A → R,

Var (∇θ log πθ(a|s)Qπθ (s, a)) ≤

max
s,a

[Qπθ (s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F .

Hence, to bound (1), it is sufficient to bound the Frobenius
norm ∥∇θ log πθ(·|s)∥F for any s.

Note that SoftTreeMax does not reduce the gradient uni-
formly, which would have been equivalent to a trivial change
in the learning rate. While the gradient norm shrinks, the
gradient itself scales differently along the different coor-
dinates. This scaling occurs along different eigenvectors,
as a function of problem parameters (P , θ) and our choice
of behavior policy (πb), as can be seen in the proof of the
upcoming Theorem 4.4. This allows SoftTreeMax to learn
a good “shrinkage” that, while reducing the overall gradient,
still updates the policy quickly enough. This reduction in
norm and variance resembles the idea of gradient clipping
(Zhang et al., 2019), where the gradient is scaled to reduce
its variance, thus increasing stability and improving overall
performance.

A common assumption in the RL literature (Szepesvári,
2010) that we adopt for the remainder of the section is that
the transition matrix Pπb , induced by the behavior policy
πb, is irreducible and aperiodic. Consequently, its second
highest eigenvalue satisfies |λ2(P

πb)| < 1.

From now on, we divide the variance results for the
two variants of SoftTreeMax into two subsections. For
C-SoftTreeMax, the analysis is simpler and we provide an
exact bound. The case of E-SoftTreeMax is more involved
and we provide for it a more general result. In both cases,
we show that the variance decays exponentially with the
planning horizon.

4.1. Variance of C-SoftTreeMax

We express C-SoftTreeMax in vector form as follows.

Lemma 4.2 (Vector form of C-SoftTreeMax). For d ≥ 1,
(3) is given by

πC
d,θ(·|s) =

exp
[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]

1⊤A exp
[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)] , (5)

where

Cs,d = γ−dRs + Ps

[
d−1∑
h=1

γh−d (Pπb)
h−1

]
Rπb

.

The vector Cs,d ∈ RA represents the cumulative discounted
reward in expectation along the trajectory of horizon d.
This trajectory starts at state s, involves an initial reward
dictated by Rs and an initial transition as per Ps. Thereafter,
it involves rewards and transitions specified by Rπb

and
Pπb , respectively. Once the trajectory reaches depth d, the
score function θ(sd) is applied,.

Lemma 4.3 (Gradient of C-SoftTreeMax). The
C-SoftTreeMax gradient is given by

∇θ log π
C
d,θ = β

[
IA − 1A(πC

d,θ)
⊤]Ps (P

πb)
d−1

,

in RA×S , where for brevity, we drop the s index in the policy
above, i.e., πC

d,θ ≡ πC
d,θ(·|s).

We are now ready to present our first main result:

Theorem 4.4 (Variance decay of C-SoftTreeMax). For ev-
ery Q : S × A → R, the C-SoftTreeMax policy gradient
variance is bounded by

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤

2
A2S2β2

(1− γ)2
|λ2(P

πb)|2(d−1).

We provide the full proof in Appendix A.4, and briefly
outline its essence here.

Proof outline. Lemma 4.1 allows us to bound the variance
using a direct bound on the gradient norm. The gradient is
given in Lemma 4.3 as a product of three matrices, which
we now study from right to left. The matrix Pπb is a row-
stochastic matrix. Because the associated Markov chain is
irreducible and aperiodic, it has a unique stationary distri-
bution. This implies that Pπb has one and only one eigen-
value equal to 1; all others have magnitude strictly less
than 1. Let us suppose that all these other eigenvalues have
multiplicity 1 (the general case with repeated eigenvalues
can be handled via Jordan decompositions as in (Pelletier,
1998, Lemma1)). Then, Pπb has the spectral decomposi-
tion Pπb = 1Sµ⊤

πb
+
∑S

i=2 λiviu
⊤
i , where λi is the i-th

4



Policy Gradient with Tree Expansion

eigenvalue of Pπb (ordered in descending order accord-
ing to their magnitude) and ui and vi are the correspond-
ing left and right eigenvectors, respectively, and therefore
(Pπb)d−1 = 1Sµ⊤

πb
+
∑S

i=2 λ
d−1
i viu

⊤
i . The second matrix

in the gradient relation in Lemma 4.3, Ps, is a rectangu-
lar transition matrix that translates the vector of all ones
from dimension S to A : Ps1S = 1A. Lastly, the first
matrix

[
IA − 1A(πC

d,θ)
⊤
]

is a projection whose null-space

includes the vector 1A, i.e.,
[
IA − 1A(πC

d,θ)
⊤
]

1A = 0.

Combining the three properties above when multiplying the
three matrices of the gradient, it is easy to see that the first
term in the expression for (Pπb)d−1 gets canceled, and we
are left with bounded summands scaled by λi(P

πb)d−1.
Recalling that |λi(P

πb)| < 1 and that |λ2| ≥ |λ3| ≥ . . .
for i = 2, . . . , S, we obtain the desired result.

It’s important to note that SoftTreeMax does not reduce the
gradient uniformly, which would be equivalent to simply
decreasing the learning rate. Rather, the gradient is scaled
differently along different eigenvectors, with scaling fac-
tors that depend on the MDP structure and behavior policy
πb. This non-uniform scaling allows the policy to continue
learning effectively while reducing harmful variance. The
empirical results in Section 6 demonstrate that this variance
reduction leads to faster, more stable convergence rather
than slowing it down.

Theorem 4.4 guarantees that the variance of the gradient
decays with d. More importantly, it also provides a novel
insight for choosing the behavior policy πb as the policy
that minimizes the absolute second eigenvalue of the Pπb .
Indeed, the second eigenvalue of a Markov chain relates to
its connectivity and its rate of convergence to the stationary
distribution (Levin & Peres, 2017).

Optimal variance decay. For the strongest reduction
in variance, the behavior policy πb should be chosen
to achieve an induced Markov chain whose transitions
are state-independent. In that case, Pπb is a rank one
matrix of the form 1Sµ

⊤
πb
, and λ2(P

πb) = 0. Then,
Var (∇θ log πθ(a|s)Q(s, a)) = 0. Naturally, this can only
be done for pathological MDPs; see Appendix C.1 for a
more detailed discussion. Nevertheless, as we show in Sec-
tion 5, we choose our tree expansion policy to reduce the
variance as best as possible.

Worst-case variance decay. In contrast, and somewhat
surprisingly, when πb is chosen so that the dynamics is
deterministic, there is no guarantee that it will decay expo-
nentially fast. For example, if Pπb is a permutation matrix,
then λ2(P

πb) = 1, and advancing the tree amounts to only
updating the gradient of one state for every action, as in the
basic softmax.

4.2. Variance of E-SoftTreeMax

The proof of the variance bound for E-SoftTreeMax is sim-
ilar to that of C-SoftTreeMax, but more involved. It also
requires the assumption that the reward depends only on the
state, i.e. r(s, a) ≡ r(s). This is indeed the case in most
standard RL environments such as Atari and Mujoco.

Lemma 4.5 (Vector form of E-SoftTreeMax). For d ≥ 1,
(4) is given by

πE
d,θ(·|s) =

Es,d exp(βΘ)

1⊤AEs,d exp(βΘ)
, (6)

where

Es,d = Ps

d−1∏
h=1

(
D
(
exp(βγh−dR)

)
Pπb

)
.

The vector R above is the S-dimensional vector whose s-th
coordinate is r(s).

The matrix Es,d ∈ RA×S has a similar role to Cs,d from (5),
but it represents the exponentiated cumulative discounted
reward. Accordingly, it is a product of d matrices as opposed
to a sum. It captures the expected reward sequence starting
from s and then iteratively following Pπb . After d steps, we
apply the score function on the last state as in (6).

Lemma 4.6 (Gradient of E-SoftTreeMax). The
E-SoftTreeMax gradient is given by

∇θ log π
E
d,θ = β

[
IA − 1A(πE

d,θ)
⊤]×

D
(
πE
d,θ

)−1

Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

∈ RA×S ,

where for brevity, we drop the s index in the policy above,
i.e., πE

d,θ ≡ πE
d,θ(·|s).

This gradient structure is harder to handle than that of
C-SoftTreeMax in Lemma 4.3, but here we also can bound
the decay of the variance nonetheless.

Theorem 4.7 (Variance decay of E-SoftTreeMax). There
exists α ∈ (0, 1) such that,

Var
(
∇θ log π

E
d,θ(a|s)Q(s, a)

)
∈ O

(
β2α2d

)
,

for every Q. Further, if Pπb is reversible or if the reward is
constant, then α = |λ2(P

πb)|.

Theory versus Practice. We demonstrate the above result in
simulation. We draw a random finite MDP, parameter vector
Θ ∈ RS

+, and behavior policy πb. We then empirically
compute the PG variance of E-SoftTreeMax as given in
(1) and compare it to |λ2(P

πb)|d. We repeat this experiment
three times for different Pπb : (i) close to uniform, (ii) drawn
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Figure 1. A comparison of the empirical PG variance and our
bound for E-SoftTreeMax on randomly drawn MDPs. We
present three cases for Pπb : (i) close to uniform, (ii) drawn
randomly, and (iii) close to a permutation matrix. This exper-
iment verifies the optimal and worse-case rate decay cases.
The variance bounds here are taken from Theorem 4.7 where
we substitute α = |λ2(P

πb)|. To account for the constants,
we match the values for the first point in d = 1.

randomly, and (iii) close to a permutation matrix. As seen
in Figure 1, the empirical variance and our bound match
almost identically. This also suggests that α = |λ2(P

πb)|
in the general case and not only when Pπb is reversible or
when the reward is constant.

4.3. Bias with an Approximate Forward Model

The definition of the two SoftTreeMax variants involves the
knowledge of the underlying environment, in particular the
value of P and r. However, in practice, we often can only
learn approximations of the dynamics from interactions,
e.g., using NNs (Ha & Schmidhuber, 2018; Schrittwieser
et al., 2020). Let P̂ and r̂ denote the approximate ker-
nel and reward functions, respectively. In this section, we
study the consequences of the approximation error on the
C-SoftTreeMax gradient.

Let π̂C
d,θ be the C-SoftTreeMax policy defined given the

approximate forward model introduced above. That is, let
π̂C
d,θ be defined exactly as in (5), but using R̂s, P̂s, R̂πb

and P̂πb , instead of their unperturbed counterparts from
Section 2. Then, the variance of the corresponding gradient
again decays exponentially with a decay rate of λ2(P̂

πb).
However, a gradient bias is introduced. In the following, we
bound this bias in terms of the approximation error and other
problem parameters. The proof is provided in Appendix
A.9.

Theorem 4.8. Let ϵ be the maximal model mis-specification,
i.e., let max{∥P − P̂∥, ∥r − r̂∥} = ϵ. Then the policy

gradient bias due to π̂C
d,θ satisfies∥∥∥∥ ∂

∂θ

(
ν⊤V πC

d,θ

)
− ∂

∂θ

(
ν⊤V π̂C

d,θ

)∥∥∥∥ = (7)

O
(

1

(1− γ)2γd
Sβ2dϵ

)
.

Proof outline. First, we prove that max{∥Rs− R̂s∥, ∥Ps−
P̂s∥, ∥Rπb

− R̂πb
∥, ∥Pπb − P̂πb∥} = O(ϵ). This follows

from the fact that the differences above are suitable convex
combinations of either the rows of P − P̂ or r − r̂. We use
the above observation along with the definitions of πC

d,θ and
π̂C
d,θ given in (5) to show that ∥πC

d,θ− π̂C
d,θ∥ = O(βdϵ). The

proof for the latter builds upon two key facts: (a) ∥(Pπb)k−
(P̂πb)k∥ ≤

∑k
h=1 ∥P̂πb∥h−1∥P̂πb − Pπb∥∥pπb∥k−h =

O(kϵ) for any k ≥ 0, and (b) |ex − 1| = O(x) as x → 0.
Next, we decompose the LHS of (7) to get∑

s

(
4∏

i=1

Xi(s)−
4∏

i=1

X̂i(s)

)
=

∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
×

Xi+1(s) · · ·X4(s),

where X1(s) = dπC
d,θ

(s) ∈ R, X2(s) =

(∇θ log π
C
d,θ(·|s))⊤ ∈ RS×A, X3(s) = D(πC

d,θ(·|s)) ∈
RA×A, X4(s) = QπC

d,θ (s, ·) ∈ RA×A, and
X̂1(s), . . . , X̂4(s) are similarly defined with πC

d,θ re-
placed by π̂C

d,θ. Then, we show that, for i = 1, . . . , 4, (i)
∥Xi(s) − X̂i(s)∥ = O(ϵ) and (ii) max{∥Xi∥, ∥X̂i∥} is
bounded by problem parameters. From this, the desired
result follows.

To the best of our knowledge, Theorem 4.8 is the first re-
sult that bounds the bias of the gradient of a parametric
policy due to an approximate model. This theorem reveals
an intriguing trade-off in SoftTreeMax: while the variance
decays exponentially with tree depth d as O(|λ2(P

πb)|d−1)
according to Theorem 4.4, the gradient bias with an ap-
proximate model grows as O(dγ−d). Since γ−d grows
exponentially with d, there exists an optimal tree depth that
balances these opposing effects.

The bias also depends on the temperature parameter β, with
higher temperature (lower β) reducing bias at the expense
of more exploratory policies. In the extreme case of β = 0,
the policy becomes uniform with no bias. Additionally, the
error scales linearly with d because the policy suffers from
cumulative error as it relies on further-looking states in the
approximate model.

These results suggest that if the learned model is accurate
enough, we can expect similar convergence properties for

6
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C-SoftTreeMax as we would obtain with the true dynamics.
In practice, one should adjust both d and β based on the
estimated accuracy of the forward model to achieve the best
performance. This is particularly important for practitioners
implementing SoftTreeMax with learned forward models.

5. SoftTreeMax: Deep Parallel
Implementation

Following impressive successes of deep RL (Mnih et al.,
2015; Silver et al., 2016), using deep NNs in RL is standard
practice. Depending on the RL algorithm, a loss function
is defined and gradients on the network weights can be
calculated. In PG methods, the scoring function used in
the softmax is commonly replaced by a neural network
Wθ: πθ(a|s) ∝ exp (Wθ(s, a)) . Similarly, we implement
SoftTreeMax by replacing θ(s) in (2) with a neural network
Wθ(s). Although both variants of SoftTreeMax from Sec-
tion 3 involve computing an expectation, this can be hard in
general. One approach to handle it is with sampling, though
these introduce estimation variance into the process. We
leave the question of sample-based theory and algorithmic
implementations for future work.

Instead, in finite action space environments such as Atari,
we compute the exact expectation in SoftTreeMax with an
exhaustive TS of depth d. Despite the exponential computa-
tional cost of spanning the entire tree, recent advancements
in parallel GPU-based simulation allow efficient expansion
of all nodes at the same depth simultaneously (Dalal et al.,
2021; Rosenberg et al., 2022). This is possible when a simu-
lator is implemented on GPU (Dalton et al., 2020; Makoviy-
chuk et al., 2021; Freeman et al., 2021), or when a forward
model is learned (Kim et al., 2020; Ha & Schmidhuber,
2018). To reduce the complexity to be linear in depth, we
apply tree pruning to a limited width in all levels. We do so
by sub-sampling only the most promising branches at each
level. Limiting the width drastically improves runtime, and
enables respecting GPU memory limits, with only a small
sacrifice in performance.

To summarize, in the practical SoftTreeMax algorithm we
perform an exhaustive tree expansion with pruning to obtain
trajectories up to depth d. We expand the tree with equal
weight to all actions, which corresponds to a uniform tree
expansion policy πb. We apply a neural network on the leaf
states, and accumulate the result with the rewards along each
trajectory to obtain the logits in (2). Finally, we aggregate
the results using C-SoftTreeMax. We leave experiments
E-SoftTreeMax for future work on risk-averse RL.

For a detailed illustration of our GPU-based tree expansion
implementation, see Appendix B.2. In addition, we provide
the psudeocode for C-SoftTreeMax in Algorithm 1 and
its integration with PPO in Algorithm 2 in Appendix B.3.

During training, the gradient propagates to the NN weights
of Wθ. When the gradient∇θ log πd,θ is calculated at each
time step, it updates Wθ for all leaf states, similarly to
Siamese networks (Bertinetto et al., 2016). An illustration
of the policy is given in Figure 2.

6. Experiments
We conduct our experiments on multiple games from the
Atari simulation suite (Bellemare et al., 2013). As a baseline,
we train a PPO (Schulman et al., 2017) agent with 256
GPU workers in parallel (Dalton et al., 2020). For the tree
expansion, we employ a GPU breadth-first as in (Dalal
et al., 2021). We then train C-SoftTreeMax 1 for depths
d = 1 . . . 8, with a single worker. For depths d ≥ 3, we
limited the tree to a maximum width of 1024 nodes and
pruned trajectories with low estimated weights. Since the
distributed PPO baseline advances significantly faster in
terms of environment steps, for a fair comparison, we ran all
experiments for one week on the same machine. For more
details see Appendix B.

In Figure 3, we plot the reward and variance of SoftTreeMax
for each game, as a function of depth. The dashed lines
are the results for PPO. Each value is taken after conver-
gence, i.e., the average over the last 20% of the run. The
numbers represent the average over five seeds per game.
The plot conveys three intriguing conclusions. First, in all
games, SoftTreeMax achieves significantly higher reward
than PPO. Its gradient variance is also orders of magnitude
lower than that of PPO. Second, the reward and variance
are negatively correlated and mirror each other in almost
all games. This phenomenon demonstrates the necessity
of reducing the variance of PG for improving performance.
Lastly, each game has a different sweet spot in terms of
optimal tree depth. Recall that we limit the run-time in all
experiments to one week The deeper the tree, the slower
each step and the run consists of less steps. This explains the
non-monotone behavior as a function of depth. For a more
thorough discussion on the sweet spot of different games,
see Appendix B.5.

7. Related Work
Reducing variance in PG estimates is essential for improving
efficiency and stability. Approaches include baseline sub-
traction (Sutton et al., 1999; Weaver & Tao, 2001), action-
dependent baselines (Wu et al., 2018), sub-sampling tech-
niques like SVRPG (Papini et al., 2018), and natural policy

1We also experimented with E-SoftTreeMax and the results
were almost identical. This is due to the quasi-deterministic nature
of Atari, which causes the trajectory logits (2) to have almost no
variability. We encourage future work on E-SoftTreeMax using
probabilistic environments that are risk-sensitive.
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Figure 2. SoftTreeMax policy. Our exhaustive parallel tree expansion iterates on all actions at each state up to depth d (= 2 here). The
leaf state of every trajectory is used as input to the policy network. The output is then added to the trajectory’s cumulative reward as
described in (2). I.e., instead of the standard softmax logits, we add the cumulative discounted reward to the policy network output. This
policy is differentiable and can be easily integrated into any PG algorithm. In this work, we build on PPO and use its loss function to train
the policy network.

Figure 3. Reward and Gradient variance: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The blue reward plots
show the average of 50 evaluation episodes. The red variance plots show the average gradient variance of the corresponding training runs,
averaged over five seeds. The dashed lines represent the same for PPO. Note that the variance y-axis is in log-scale.

gradient (Kakade, 2001). Multi-step returns for value esti-
mation, such as n-step TD (Sutton et al., 1998) and GAE
(Schulman et al., 2015), primarily affect learning targets
rather than policy parameterization. Our approach differs by
integrating planning directly into the policy structure, mak-
ing it fundamentally different from both variance reduction
techniques and multi-step return methods.

Softmax Operator. The softmax policy became a canonical
part of PG to the point where theoretical results of PG focus
specifically on it (Zhang et al., 2021; Mei et al., 2020b; Li
et al., 2021; Ding et al., 2022). Even though we focus on
a tree extension to the softmax policy, our methodology is
general and can be easily applied to other discrete or contin-
uous parameterized policies as in (Mei et al., 2020a; Miahi

et al., 2021; Silva et al., 2019). It’s important to distinguish
between tree search and our approach of tree expansion.
Traditional tree search methods like MCTS identify the best
trajectory through a selection process, while our approach
explores all possible trajectories up to a certain depth to
compute an improved policy. Recent work by Efroni et al.
(2018) showed that multi-step greedy policies improve con-
vergence rates, and Protopapas & Barakat (2024) combined
policy mirror descent with lookahead planning, though us-
ing different mechanisms than our SoftTreeMax policy.

Parallel Environments. In this work we used accurate
parallel models that are becoming more common with the
increasing popularity of GPU-based simulation (Makoviy-
chuk et al., 2021; Dalton et al., 2020; Freeman et al., 2021).
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Alternatively, in relation to Theorem 4.8, one can rely on
recent works that learn the underlying model (Ha & Schmid-
huber, 2018; Schrittwieser et al., 2020) and use an approxi-
mation of the true dynamics. Risk Aversion. Previous work
considered exponential utility functions for risk aversion
(Chen et al., 2007; Garcıa & Fernández, 2015; Fei et al.,
2021). This utility function is the same as E-SoftTreeMax
formulation from (4), but we have it directly in the policy
instead of the objective. Reward-free RL. We showed
that the gradient variance is minimized when the transitions
induced by the behavior policy πb are uniform. This is ex-
pressed by the second eigenvalue of the transition matrix
Pπb . This notion of uniform exploration is common to the
reward-free RL setup (Jin et al., 2020). Several such works
also considered the second eigenvalue in their analysis (Liu
& Brunskill, 2018; Tarbouriech & Lazaric, 2019).

8. Discussion and Future Work
In this work, we introduced for the first time a differentiable
parametric policy that combines TS with PG. We proved that
SoftTreeMax is essentially a variance reduction technique
and explained how to choose the expansion policy to mini-
mize the gradient variance. It is an open question whether
optimal variance reduction corresponds to the appealing
regret properties the were put forward by UCT (Kocsis &
Szepesvári, 2006). We believe that this can be answered by
analyzing the convergence rate of SoftTreeMax, relying on
the bias and variance results we obtained here.

As the learning process continues, the norm of the gradient
and the variance both become smaller. On the face of it, one
can ask if the gradient becomes small as fast as the variance
or even faster can there be any meaningful learning? As
we showed in the experiments, learning happens because
the variance reduces fast enough (a variance of 0 represents
deterministic learning, which is fastest).

Our work can be extended to infinite action spaces,
where the theoretical analysis would involve transition ker-
nels rather than matrices while preserving the same non-
expansive operator properties. For implementation, the tree
of continuous actions can be expanded by maintaining a
parametric distribution over actions depending on θ, similar
to a tree adaptation of MPPI (Williams et al., 2017) with a
value function. This would significantly broaden the appli-
cability of SoftTreeMax to important domains like robotics
and continuous control.

Further important extensions include learning the forward
model from interactions (Ha & Schmidhuber, 2018; Schrit-
twieser et al., 2020) rather than using the true dynamics. Our
analysis in Theorem 4.8 already provides theoretical guid-
ance on the resulting gradient bias, but empirical validation
with learned models would bridge the gap between model-

based approaches like MuZero and policy gradient methods.
Additionally, adapting the behavior policy πb over time as
learning progresses could lead to more relevant exploration,
though this requires careful management to maintain vari-
ance reduction benefits. Finally, the E-SoftTreeMax variant
offers potential applications in risk-sensitive RL by natu-
rally emphasizing exceptional trajectories through its reward
exponentiation structure.

Acknowledgements
Gugan Thoppe’s research is supported by the Walmart Cen-
tre for Tech Excellence at IISc, the Indo-French Centre for
the Promotion of Advanced Research—CEFIPRA (7102-1),
DST SERB’s Core Research Grant CRG/2021/008330, and
the Pratiksha Trust Young Investigator Award.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Reproducibility and Limitations
The code for our implementation is available at
https://github.com/NVlabs/SoftTreeMax.
We provide a docker file for setting up the environment
and a README file with instructions on how to run
both training and evaluation. The environment engine
is an extension of Atari-CuLE (Dalton et al., 2020), a
CUDA-based Atari emulator that runs on GPU. Our usage
of a GPU environment is both a novelty and a current
limitation of our work.

There are additional limitations to consider. First, our anal-
ysis focuses on MDPs with finite state and action spaces,
and while we discuss theoretical extensions to continuous
domains, practical implementations would require careful
design choices to manage the sampling process efficiently.
Second, while SoftTreeMax can be applied to any environ-
ment, it provides most benefit in quasi-deterministic envi-
ronments where accurate forward planning is possible. In
highly stochastic environments, the exponential growth of
the tree width with depth would present challenges even
with pruning.

References
Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.

On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. J. Mach. Learn.
Res., 22(98):1–76, 2021.

9

https://github.com/NVlabs/SoftTreeMax


Policy Gradient with Tree Expansion

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,
and Torr, P. H. Fully-convolutional siamese networks for
object tracking. In European conference on computer
vision, pp. 850–865. Springer, 2016.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee,
M. Natural actor–critic algorithms. Automatica, 45(11):
2471–2482, 2009.

Chatterjee, S. and Seneta, E. Towards consensus: Some
convergence theorems on repeated averaging. Journal of
Applied Probability, 14(1):89–97, 1977.

Chen, X., Sim, M., Simchi-Levi, D., and Sun, P. Risk
aversion in inventory management. Operations Research,
55(5):828–842, 2007.

Dalal, G., Hallak, A., Dalton, S., Mannor, S., Chechik, G.,
et al. Improve agents without retraining: Parallel tree
search with off-policy correction. Advances in Neural
Information Processing Systems, 34:5518–5530, 2021.

Dalton, S. et al. Accelerating reinforcement learning
through gpu atari emulation. Advances in Neural In-
formation Processing Systems, 33:19773–19782, 2020.

Ding, Y., Zhang, J., and Lavaei, J. On the global optimum
convergence of momentum-based policy gradient. In
International Conference on Artificial Intelligence and
Statistics, pp. 1910–1934. PMLR, 2022.

Efroni, Y., Dalal, G., Scherrer, B., and Mannor, S. Beyond
the one-step greedy approach in reinforcement learning.
In International Conference on Machine Learning, pp.
1387–1396. PMLR, 2018.

Fei, Y., Yang, Z., Chen, Y., and Wang, Z. Exponential
bellman equation and improved regret bounds for risk-
sensitive reinforcement learning. Advances in Neural
Information Processing Systems, 34:20436–20446, 2021.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch,
I., and Bachem, O. Brax-a differentiable physics en-
gine for large scale rigid body simulation. In Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

Garcıa, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437–1480, 2015.

Greensmith, E., Bartlett, P. L., and Baxter, J. Variance reduc-
tion techniques for gradient estimates in reinforcement

learning. Journal of Machine Learning Research, 5(9),
2004.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Howard, R. A. and Matheson, J. E. Risk-sensitive markov
decision processes. Management science, 18(7):356–369,
1972.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
Reward-free exploration for reinforcement learning. In
International Conference on Machine Learning, pp. 4870–
4879. PMLR, 2020.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

Kim, S. W., Zhou, Y., Philion, J., Torralba, A., and Fi-
dler, S. Learning to simulate dynamic environments with
gamegan. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1231–
1240, 2020.
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Appendix

A. Proofs
A.1. Proof of Lemma 4.1 – Bound on the policy gradient variance

For any parametric policy πθ and function Q : S ×A → R,

Var (∇θ log πθ(a|s)Q(s, a)) ≤ max
s,a

[Q(s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F ,

where∇θ log πθ(·|s) ∈ RA×dim(θ) is a matrix whose a-th row is∇θ log πθ(a|s)⊤.

Proof. The variance for a parametric policy πθ is given as follows:

Var (∇θ log πθ(a|s)Q(a, s)) =Es∼dπθ
,a∼πθ(·|s)

[
∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

]
−

Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)]

⊤ Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)] ,

where Q(s, a) is the currently estimated Q-function and dπθ
is the discounted state visitation frequency induced by the

policy πθ. Since the second term we subtract is always positive (it is of quadratic form v⊤v) we can bound the variance by
the first term:

Var (∇θ log πθ(a|s)Q(a, s)) ≤Es∼dπθ
,a∼πθ(·|s)

[
∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

]
=
∑
s

dπθ
(s)
∑
a

πθ(a|s)∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

≤max
s,a

[
[Q(s, a)]

2
πθ(a|s)

]∑
s

dπθ
(s)
∑
a

∇θ log πθ(a|s)⊤∇θ log πθ(a|s)

≤max
s,a

[Q(s, a)]
2
max

s

∑
a

∇θ log πθ(a|s)⊤∇θ log πθ(a|s)

=max
s,a

[Q(s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F .

A.2. Proof of Lemma 4.2 – Vector form of C-SoftTreeMax

In vector form, (3) is given by

πC
d,θ(·|s) =

exp
[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]

1⊤A exp
[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)] , (8)

where

Cs,d = γ−dRs + Ps

[
d−1∑
h=1

γh−d (Pπb)
h−1

]
Rπb

. (9)

Proof. Consider the vector ℓs,· ∈ R|A|. Its expectation satisfies

Eπbℓs,·(d; θ) = Eπb

[
d−1∑
t=0

γt−drt + θ(sd)

]

= γ−dRs +

d−1∑
t=1

γt−dPs(P
πb)t−1Rπb

+ Ps(P
πb)d−1Θ.

As required.
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A.3. Proof of Lemma 4.3 – Gradient of C-SoftTreeMax

The C-SoftTreeMax gradient of dimension A× S is given by

∇θ log π
C
d,θ = β

[
IA − 1A(πC

d,θ)
⊤]Ps (P

πb)
d−1

,

where for brevity, we drop the s index in the policy above, i.e., πC
d,θ ≡ πC

d,θ(·|s).

Proof. The (j, k)-th entry of ∇θ log π
C
d,θ satisifes

[∇θ log π
C
d,θ]j,k =

∂ log(πC
d,θ(a

j |s))
∂θ(sk)

= β[Ps(P
πb)d−1]j,k −

∑
a

[
exp

[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]]

a
β
[
Ps(P

πb)d−1
]
a,k

1⊤
A exp

[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)]

= β[Ps(P
πb)d−1]j,k − β

∑
a

πC
d,θ(a|s)

[
Ps(P

πb)d−1
]
a,k

= β[Ps(P
πb)d−1]j,k − β

[
(πC

d,θ)
⊤Ps(P

πb)d−1
]
k

= β[Ps(P
πb)d−1]j,k − β

[
1A(π

C
d,θ)

⊤Ps(P
πb)d−1

]
j,k

.

Moving back to matrix form, we obtain the stated result.

A.4. Proof of Theorem 4.4 – Exponential variance decay of C-SoftTreeMax

The C-SoftTreeMax policy gradient is bounded by

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ 2

A2S2β2

(1− γ)2
|λ2(P

πb)|2(d−1).

Proof. We use Lemma 4.1 directly. First of all, it is know that when the reward is bounded in [0, 1], the maximal value of
the Q-function is 1

1−γ as the sum as infinite discounted rewards. Next, we bound the Frobenius norm of the term achieved in
Lemma 4.3, by applying the eigen-decomposition on Pπb :

Pπb = 1Sµ
⊤ +

S∑
i=2

λiuiv
⊤
i , (10)

where µ is the stationary distribution of Pπb , and ui and vi are left and right eigenvectors correspondingly.

∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥F = β∥
(
IA,A − 1Aπ⊤)Ps

(
1Sµ

⊤ +

S∑
i=2

λd−1
i uiv

⊤
i

)
∥F

(Ps is stochastic) = β∥
(
IA,A − 1Aπ⊤)(1Aµ⊤ +

S∑
i=2

λd−1
i Psuiv

⊤
i

)
∥F

(projection nullifies 1Aµ
⊤) = β∥

(
IA,A − 1Aπ⊤)( S∑

i=2

λd−1
i Psuiv

⊤
i

)
∥F

(triangle inequality) ≤ β

S∑
i=2

∥
(
IA,A − 1Aπ⊤) (λd−1

i Psuiv
⊤
i

)
∥F

(matrix norm sub-multiplicativity) ≤ β|λd−1
2 |

S∑
i=2

∥IA,A − 1Aπ⊤∥F ∥Ps∥F ∥uiv
⊤
i ∥F

= β|λd−1
2 |(S − 1)∥IA,A − 1Aπ⊤∥F ∥Ps∥F .

14
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Now, we can bound the norm ∥IA,A − 1Aπ
⊤∥F by direct calculation:

∥IA,A − 1Aπ⊤∥2F = Tr
[(
IA,A − 1Aπ⊤) (IA,A − 1Aπ⊤)⊤] (11)

= Tr
[
IA,A − 1Aπ⊤ − π1⊤A + π⊤π1A1⊤A

]
(12)

= A− 1− 1 +Aπ⊤π (13)
≤ 2A. (14)

From the Cauchy-Schwartz inequality,

∥Ps∥2F =
∑
a

∑
s

[[Ps]a,s]
2
=
∑
a

∥[Ps]a,·∥22 ≤
∑
a

∥[Ps]a,·∥1∥[Ps]a,·∥∞ ≤ A.

So,

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ max

s,a
[Q(s, a)]

2
max

s
∥∇θ log π

C
d,θ(·|s)∥2F

≤ 1

(1− γ)2
∥β
(
IA,A − 1Aπ

⊤)Ps(P
πb)d−1∥2F

≤ 1

(1− γ)2
β2|λ2(P

πb)|2(d−1)S2(2A2),

which obtains the desired bound.

A.5. A lower bound on C-SoftTreeMax gradient (result not in the paper)

For completeness we also supply a lower bound on the Frobenius norm of the gradient. Note that this result does not
translate to the a lower bound on the variance since we have no lower bound equivalence of Lemma 4.1.

Lemma A.1. The Frobenius norm on the gradient of the policy is lower-bounded by:

∥∇θ log π
C
d,θ(·|s)∥F ≥ C · β|λ2(P

πb)|(d−1). (15)

Proof. We begin by moving to the induced l2 norm by norm-equivalence:

∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥F ≥ ∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2.

Now, taking the vector u to be the eigenvector of the second eigenvalue of Pπb :

∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2 ≥ ∥β
(
IA,A − 1Aπ

⊤)Ps(P
πb)d−1u∥2

= β∥
(
IA,A − 1Aπ

⊤)Psu∥2
= β|λ2(P

πb)|(d−1)∥
(
IA,A − 1Aπ⊤)Psu∥2.

Note that even though Psu can be 0, that is not the common case since we can freely change πb (and therefore the
eigenvectors of Pπb ).

A.6. Proof of Lemma 4.5 – Vector form of E-SoftTreeMax

For d ≥ 1, (4) is given by

πE
d,θ(·|s) =

Es,d exp(βΘ)

1⊤AEs,d exp(βΘ)
, (16)

where

Es,d = Ps

d−1∏
h=1

(
D
(
exp[βγh−dR]

)
Pπb

)
(17)

with R being the |S|-dimensional vector whose s-th coordinate is r(s).

15



Policy Gradient with Tree Expansion

Proof. Recall that

ℓs,a(d; θ) = γ−d

[
r(s) +

d−1∑
t=1

γtr(st) + γdθ(sd)

]
. (18)

and, hence,

exp[βℓs,a(d; θ)] = exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st) + γdθ(sd)

)]
. (19)

Therefore,

E[expβℓs,a(d; θ)] = E

[
exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st)

)]
E [exp [β (θ(sd))]|s1, . . . , sd−1]

]
(20)

= E

[
exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st)

)]
Pπb(·|sd−1)

]
exp(βΘ) (21)

= E

[
exp

[
βγ−d

(
r(s) +

d−2∑
t=1

γtr(st)

)]
exp[βγ−1r(sd−1)]P

πb(·|sd−1)

]
exp(βΘ). (22)

By repeatedly using iterative conditioning as above, the desired result follows. Note that exp(βγ−dr(s)) does not depend
on the action and is therefore cancelled out with the denominator.

A.7. Proof of Lemma 4.6 – Gradient of E-SoftTreeMax

The E-SoftTreeMax gradient of dimension A× S is given by

∇θ log π
E
d,θ = β

[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1

Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

,

where for brevity, we drop the s index in the policy above, i.e., πE
d,θ ≡ πE

d,θ(·|s).

Proof. The (j, k)-th entry of∇θ log π
E
d,θ satisfies

[∇θ log π
E
d,θ]j,k =

∂ log(πE
d,θ(a

j |s))
∂θ(sk)

=
∂

∂θ(sk)

(
log[(Es,d)

⊤
j exp(βΘ)]− log[1⊤AEs,d exp(βΘ)]

)
=

β(Es,d)j,k exp(βθ(s
k))

(Es,d)⊤j exp(βΘ)
− β1⊤AEs,dek exp(βθ(s

k))

1⊤AEs,d exp(βΘ)

=
β(Es,dek exp(βθ(s

k)))j
(Es,d)⊤j exp(βΘ)

− β1⊤
AEs,dek exp(βθ(s

k))

1⊤AEs,d exp(βΘ)

= β

[
e⊤j

e⊤j Es,d exp(βΘ)
− 1⊤

A

1⊤
AEs,d exp(βΘ)

]
Es,dek exp(βθ(s

k)).

Hence,

[∇θ log π
E
d,θ]·,k = β

[
D(Es,d exp(βΘ))−1 − (1⊤AEs,d exp(βΘ))−11A1⊤A

]
Es,dek exp(βθ(s

k))

From this, it follows that

∇θ log π
E
d,θ = β

[
D
(
πE
d,θ

)−1 − 1A1⊤A
] Es,dD(exp(βΘ))

1⊤AEs,d exp(βΘ)
. (23)

The desired result is now easy to see.
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A.8. Proof of Theorem 4.7 — Exponential variance decay of E-SoftTreeMax

There exists α ∈ (0, 1) such that, for any function Q : S ×A → R,

Var
(
∇θ log π

E
d,θ(a|s)Q(s, a)

)
∈ O

(
β2α2d

)
.

If all rewards are equal (r ≡ const), then α = |λ2(P
πb)|.

Proof outline. Recall that thanks to Lemma 4.1, we can bound the PG variance using a direct bound on the gradient norm.
The definition of the induced norm is

∥∇θ log π
E
d,θ∥ = max

z:∥z∥=1
∥∇θ log π

E
d,θz∥,

with∇θ log π
E
d,θ given in Lemma 4.6. Let z ∈ RS be an arbitrary vector such that ∥z∥ = 1. Then, z =

∑S
i=1 cizi, where ci

are scalar coefficients and zi are vectors spanning the S-dimensional space. In the full proof, we show our specific choice of
zi and prove they are linearly independent given that choice. We do note that z1 = 1S .

The first part of the proof relies on the fact that (∇θ log π
E
d,θ)z1 = 0. This is easy to verify using Lemma 4.6 together with

(6), and because
[
IA − 1A(πE

d,θ)
⊤
]

is a projection matrix whose null-space is spanned by 1S . Thus,

∇θ log π
E
d,θz = ∇θ log π

E
d,θ

S∑
i=2

cizi.

In the second part of the proof, we focus on Es,d from (6), which appears within∇θ log π
E
d,θ. Notice that Es,d consists of

the product
∏d−1

h=1

(
D
(
exp(βγh−dR

)
Pπb

)
. Even though the elements in this product are not stochastic matrices, in the

full proof we show how to normalize each of them to a stochastic matrix Bh. We thus obtain that

Es,d = PsD(M1)

d−1∏
h=1

Bh,

where M1 ∈ RS is some strictly positive vector. Then, we can apply a result by Mathkar & Borkar (2016), which itself
builds on (Chatterjee & Seneta, 1977). The result states that the product of stochastic matrices

∏d−1
h=1 Bh of our particular

form converges exponentially fast to a matrix of the form 1Sµ
⊤ s.t. ∥1Sµ⊤ −

∏d−1
h=1 Bh∥ ≤ Cαd for some constant C.

Lastly, 1Sµ
⊤
πb

gets canceled due to our choice of zi, i = 2, . . . , S. This observation along with the above fact that the
remainder decays then shows that∇θ log π

E
d,θ

∑S
i=2 zi = O(αd), which gives the desired result.

Full technical proof. Let d ≥ 2. Recall that

Es,d = Ps

d−1∏
h=1

(
D
(
exp[βγh−dR]

)
Pπb

)
, (24)

and that R refers to the S-dimensional vector whose s-th coordinate is r(s).

Define

Bi =

{
Pπb if i = d− 1,

D−1(PπbMi+1)P
πbD(Mi+1) if i = 1, . . . , d− 2,

(25)

and the vector

Mi =

{
exp(βγ−1R) if i = d− 1,

exp(βγi−dR) ◦ PπbMi+1 if i = 1, . . . , d− 2,
(26)

where ◦ denotes the element-wise product. Then,

Es,d = PsD(M1)

d−1∏
i=1

Bi. (27)
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It is easy to see that each Bi is a row-stochastic matrix, i.e., all entries are non-negative and Bi1S = 1S .

Next, we prove that all non-zeros entries of Bi are bounded away from 0 by a constant. This is necessary to apply the next
result from (Chatterjee & Seneta, 1977). The j-th coordinate of Mi satisfies

(Mi)j = exp[βγi−dRj ]
∑
k

[Pπb ]j,k(Mi+1)k ≤ ∥ exp[βγi−dR]∥∞∥Mi+1∥∞. (28)

Separately, observe that ∥Md−1∥∞ ≤ ∥ exp(βγ−1R)∥∞. Plugging these relations in (26) gives

∥M1∥∞ ≤
d−1∏
h=1

∥ exp[βγh−dR]∥∞ =

d−1∏
h=1

∥ exp[βγ−dR]∥γ
h

∞ = ∥ exp[βγ−dR]∥
∑d−1

h=1 γh

∞ ≤ ∥ exp[βγ−dR]∥
1

1−γ
∞ . (29)

Similarly, for every 1 ≤ i ≤ d− 1, we have that

∥Mi∥∞ ≤
d−1∏
h=i

∥ exp[βγ−dR]∥γ
h

∞ ≤ ∥ exp[βγ−dR]∥
1

1−γ
∞ . (30)

The jk-th entry of Bi = D−1(PπbMi+1)P
πbD(Mi+1) is

(Bi)jk =
Pπb

jk [Mi+1]k∑|S|
ℓ=1 P

πb

jℓ [Mi+1]ℓ
≥

Pπb

jk∑|S|
ℓ=1 P

πb

jℓ [Mi+1]ℓ
≥

Pπb

jk

∥ exp[βγ−dR]∥
1

1−γ
∞

. (31)

Hence, for non-zero Pπb

jk , the entries are bounded away from zero by the same. We can now proceed with applying the
following result.

Now, by (Chatterjee & Seneta, 1977, Theorem 5) (see also (14) in (Mathkar & Borkar, 2016)), limd→∞
∏d−1

i=1 Bi exists and

is of the form 1Sµ
⊤ for some probability vector µ. Furthermore, there is some α ∈ (0, 1) such that ε(d) :=

(∏d−1
i=1 Bi

)
−

1S µ⊤ satisfies

∥ε(d)∥ = O(αd). (32)

Pick linearly independent vectors w2, . . . , wS such that

µ⊤wi = 0 for i = 2, . . . , d. (33)

Since
∑S

i=2 αiwi is perpendicular to µ for any α2, . . . αS and because µ⊤ exp(βΘ) > 0, there exists no choice of
α2, . . . , αS such that

∑S
i=2 αiwi = exp(βΘ). Hence, if we let z1 = 1S and zi = D(exp(βΘ))−1wi for i = 2, . . . , S, then

it follows that {z1, . . . , zS} is linearly independent. In particular, it implies that {z1, . . . , zS} spans RS .
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Now consider an arbitrary unit norm vector z :=
∑S

i=1 cizi ∈ RS s.t. ∥z∥2 = 1. Then,

∇θ log π
E
d,θz = ∇θ log π

E
d,θ

S∑
i=2

cizi (34)

= β
[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1

Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

S∑
i=2

cizi (35)

= β
[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1

Es,d

1⊤AEs,d exp(βΘ)

S∑
i=2

ciwi (36)

= β
[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1 [
1Sµ⊤ + ε(d)

]
1⊤
AEs,d exp(βΘ)

S∑
i=2

ciwi (37)

= β
[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1

ε(d)

1⊤AEs,d exp(βΘ)

S∑
i=2

ciwi (38)

= β
[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1

ε(d)D(exp(βΘ))

1⊤AEs,d exp(βΘ)
(z − c11S), (39)

where (34) follows from the fact that ∇θ log π
E
d,θz1 = ∇θ log π

E
d,θ1S = 0, (35) follows from Lemma 4.6, (36)

holds since zi = D(exp(βΘ))−1wi, (38) because µ is perpendicular wi for each i, while (39) follows by reusing
zi = D(exp(βΘ))−1wi relation along with the fact that z1 = 1S .

From (39), it follows that

∥∇θ log π
E
d,θz∥ ≤ β∥ε(d)∥

∥∥∥∥∥∥∥
[
IA − 1A(π

E
d,θ)

⊤] D
(
πE
d,θ

)−1

1⊤AEs,d exp(βΘ)

∥∥∥∥∥∥∥ ∥D(exp(βΘ))∥ ∥z − c11S∥ (40)

≤ βαd(∥IA∥+ ∥1A(π
E
d,θ)

⊤∥)

∥∥∥∥∥∥∥
D
(
πE
d,θ

)−1

1⊤AEs,d exp(βΘ)

∥∥∥∥∥∥∥ exp(βmax
s

θ(s))∥z − c11S∥ (41)

≤ βαd(1 +
√
A)

∥∥∥∥∥∥∥
D
(
πE
d,θ

)−1

1⊤AEs,d exp(βΘ)

∥∥∥∥∥∥∥ exp(βmax
s

θ(s))∥z − c11S∥ (42)

≤ βαd(1 +
√
A)
∥∥D−1(Es,d exp(βΘ))

∥∥ exp(βmax
s

θ(s))∥z − c11S∥ (43)

≤ βαd(1 +
√
A)

1

mins[Es,d exp(βΘ]s
exp(βmax

s
θ(s))∥z − c11S∥ (44)

≤ βαd(1 +
√
A)

exp(βmaxs θ(s))

exp(βmins θ(s))mins |M1|
∥z − c11S∥ (45)

≤ βαd(1 +
√
A)

exp(βmaxs θ(s))

exp(βmins θ(s)) exp(βmins r(s))
∥z − c11S∥ (46)

≤ βαd(1 +
√
A) exp(β[max

s
θ(s)−min

s
θ(s)−min

s
r(s)])∥z − c11S∥. (47)

Lastly, we prove that ∥z−c11S∥ is bounded independently of d. First, denote by c = (c1, . . . , cS)
⊤ and c̃ = (0, c2, . . . , cS)

⊤.
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Also, denote by Z the matrix with zi as its i-th column. Now,

∥z − c11S∥ = ∥
S∑

i=2

cizi∥ (48)

= ∥Zc̃∥ (49)
≤ ∥Z∥∥c̃∥ (50)
≤ ∥Z∥∥c∥ (51)

= ∥Z∥∥Z−1z∥ (52)

≤ ∥Z∥∥Z−1∥, (53)

where the last relation is due to z being a unit vector. All matrix norms here are l2-induced norms.

Next, denote by W the matrix with wi in its i-th column. Recall that in (33) we only defined w2, . . . , wS . We now set
w1 = exp(βΘ). Note that w1 is linearly independent of {w2, . . . , wS} because of (33) together with the fact that µ⊤w1 > 0.
We can now express the relation between Z and W by Z = D−1(exp(βΘ))W. Substituting this in (53), we have

∥z − c11S∥ ≤ ∥D−1(exp(βΘ))W∥∥W−1D(exp(βΘ))∥ (54)

≤ ∥W∥∥W−1∥∥D(exp(βΘ))∥∥D−1(exp(βΘ))∥. (55)

It further holds that
∥D(exp(βΘ))∥ ≤ max

s
exp (βθ(s)) ≤ max{1, exp[βmax

s
θ(s)])}, (56)

where the last relation equals 1 if θ(s) < 0 for all s. Similarly,

∥D−1(exp(βΘ))∥ ≤ 1

mins exp (βθ(s))
≤ 1

min{1, exp[βmins θ(s)])}
. (57)

Furthermore, by the properties of the l2-induced norm,

∥W∥2 ≤
√
S∥W∥1 (58)

=
√
S max

1≤i≤S
∥wi∥1 (59)

=
√
Smax{exp(βΘ), max

2≤i≤S
∥wi∥1} (60)

≤
√
Smax{1, exp[βmax

s
θ(s)], max

2≤i≤S
∥wi∥1)}. (61)

Lastly,

∥W−1∥ = 1

σmin(W )
(62)

≤

(
S−1∏
i=1

σmax(W )

σi(W )

)
1

σmin(W )
(63)

=
(σmax(W ))

S−1∏S
i=1 σi(W )

(64)

=
∥W∥S−1

|det(W )|
. (65)

The determinant of W is a sum of products involving its entries. To upper bound (65) independently of d, we lower bound
its denominator by upper and lower bounds on the entries [W ]i,1 that are independent of d, depending on their sign:

min{1, exp[βmin
s

θ(s)])} ≤ [W ]i,1 ≤ max{1, exp[βmax
s

θ(s)])}. (66)

Using this, together with (53), (55), (56), (57), and (61), we showed that ∥z − c11S∥ is upper bounded by a constant
independent of d. This concludes the proof.
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A.9. Bias Estimates

Lemma A.2. For any matrix A and Â,

Âk −Ak =

k∑
h=1

Âh−1(Â−A)Ak−h.

Proof. The proof follows from first principles:

k∑
h=1

Âh−1(Â−A)Ak−h =

k∑
h=1

Âh−1ÂAk−h −
k∑

h=1

Âh−1AAk−h (67)

=

k∑
h=1

ÂhAk−h −
k∑

h=1

Âh−1Ak−h+1 (68)

= Âk −Ak +

k−1∑
h=1

ÂhAk−h −
k∑

h=2

Âh−1Ak−h+1 (69)

= Âk −Ak. (70)

Henceforth, ∥ · ∥ will refer to ∥ · ∥∞, i.e. the induced infinity norm. Also, for brevity, we denote πC
d,θ and π̂C

d,θ by πθ and
π̂θ, respectively. Similarly, we use dπθ

and dπ̂θ
to denote dπC

d,θ
and dπ̂C

d,θ
. As for the induced norm of the matrix P and its

perturbed counterpart P̂ , which are of size S×A×S, we slightly abuse notation and denote ∥P − P̂∥ = maxs{∥Ps− P̂s∥},
where Ps is as defined in Section 2.

Definition A.3. Let ϵ be the maximal model mis-specification, i.e., max{∥P − P̂∥, ∥r − r̂∥} = ϵ.

Lemma A.4. Recall the definitions of Rs, Ps, Rπb
and Pπb from Section 2, and respectively denote their perturbed

counterparts by R̂s, P̂s, R̂πb
and P̂πb . Then, for ϵ defined in Definition A.3,

max{∥Rs − R̂s∥, ∥Ps − P̂s∥, ∥Rπb
− R̂πb

∥, ∥Pπb − P̂πb∥} = O(ϵ). (71)

Proof. The proof follows easily from the fact that the differences above are convex combinations of P − P̂ and r − r̂.

Lemma A.5. Let πθ be as in (5), and let π̂θ also be defined as in (5), but with Rs, Ps, P
πb replaced by their perturbed

counterparts R̂s, P̂s, P̂
πb throughout. Then,

∥πC
d,θ − π̂C

d,θ∥ = O(βdγ−dϵ). (72)

Proof. To prove the desired result, we work with (5) to bound the error between Rs, Ps, P
πb , Rπb

and their perturbed
versions.

First, we apply Lemma A.2 together with Lemma A.4 to obtain that ∥(Pπb)k − (P̂πb)k∥ = O(kϵ). Next, denote by M the
argument in the exponent in (5), i.e.

M := β[Cs,d + Ps(P
πb)d−1Θ].

Similarly, let M̂ be the corresponding perturbed sum that relies on P̂ and r̂. Combining the bounds from Lemma A.4, and
using the triangle inequality, we have that ∥M̂ −M∥ = O(βdγ−dϵ). The factor γ−d appears because Cs,d includes the
term γ−d as shown in Lemma 4.2.

Eq. (5) states that the C-SoftTreeMax policy in the true environment is πθ = exp(M)/(1⊤ exp(M)). Similarly define π̂θ

using M̂ for the approximate model. Then,

π̂θ = (πθ ◦ exp(M̂ −M))1⊤ exp(M)/(1⊤ exp(M̂)),
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where ◦ denotes element-wise multiplication. Using the above relation, we have that ∥π̂θ − πθ∥ =

∥πθ∥∥ exp(M̂−M)1⊤ exp(M)

1⊤ exp(M̂)
− 1∥. Using the relation |ex − 1| = O(x) as x→ 0, the desired result follows.

Theorem A.6. Let ϵ be as in Definition A.3. Further let π̂C
d,θ being the corresponding approximate policy as given in

Lemma 4.2. Then, the policy gradient bias is bounded by∥∥∥∥ ∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π̂θ

)∥∥∥∥ = O
(

1

(1− γ)2
Sβ2dγ−dϵ

)
. (73)

We first provide a proof outline for conciseness, and only after it the complete proof.

Proof outline. First, we prove that max{∥Rs − R̂s∥, ∥Ps − P̂s∥, ∥Rπb
− R̂πb

∥, ∥Pπb − P̂πb∥} = O(ϵ). This follows from
the fact that the differences above are suitable convex combinations of either the rows of P − P̂ or r − r̂. We use the above
observation along with the definitions of πC

d,θ and π̂C
d,θ given in (5) to show that ∥πC

d,θ − π̂C
d,θ∥ = O(βdγ−dϵ). The proof for

the latter builds upon two key facts: (a) ∥(Pπb)k − (P̂πb)k∥ ≤
∑k

h=1 ∥P̂πb∥h−1∥P̂πb − Pπb∥∥pπb∥k−h = O(kϵ) for any
k ≥ 0, and (b) |ex − 1| = O(x) as x→ 0. Next, we decompose the LHS of (7) to get

∑
s

(
4∏

i=1

Xi(s)−
4∏

i=1

X̂i(s)

)
=
∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
×Xi+1(s) · · ·X4(s),

where X1(s) = dπC
d,θ

(s) ∈ R, X2(s) = (∇θ log π
C
d,θ(·|s))⊤ ∈ RS×A, X3(s) = D(πC

d,θ(·|s)) ∈ RA×A, X4(s) =

QπC
d,θ (s, ·) ∈ RA×A, and X̂1(s), . . . , X̂4(s) are similarly defined with πC

d,θ replaced by π̂C
d,θ. Then, we show that, for

i = 1, . . . , 4, (i) ∥Xi(s)− X̂i(s)∥ = O(γ−dϵ) and (ii) max{∥Xi∥, ∥X̂i∥} is bounded by problem parameters. From this,
the desired result follows.

Proof. We have

∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π′

θ

)
(74)

= Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Qπθ (s, a)]− Es∼dπ̂θ

,a∼π̂θ(·|s)
[
∇θ log π̂θ(a|s)Qπ̂θ (s, a)

]
(75)

=
∑
s,a

(
dπθ

(s)πθ(a|s)∇θ log πθ(a|s)Qπθ (s, a)− dπ̂θ
(s)π̂θ(a|s)∇θ log π̂θ(a|s)Qπ̂θ (s, a)

)
(76)

=
∑
s

(
dπθ

(s)(∇θ log πθ(·|s))⊤D(πθ(·|s))Qπθ (s, ·) (77)

− dπ̂θ
(s)(∇θ log π̂θ(·|s))⊤D(π̂θ(·|s))Qπ̂θ (s, ·)

)
(78)

=
∑
s

(
4∏

i=1

Xi(s)−
4∏

i=1

X̂i(s)

)
(79)

=
∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
Xi+1(s) · · ·X4(s), (80)

where X1(s) = dπθ
(s) ∈ R, X2(s) = (∇θ log πθ(·|s))⊤ ∈ RS×A, X3(s) = D(πθ(·|s)) ∈ RA×A, X4(s) = Qπθ (s, ·) ∈

RA×A, and X̂1(s), . . . , X̂4(s) are similarly defined with πθ replaced by π̂θ.

Therefore, ∥∥∥∥ ∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π′

θ

)∥∥∥∥ ≤ (max
s

Γ(s)
)
S, (81)

where

Γ(s) = ∥
4∑

i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
Xi+1(s) · · ·X4(s)∥. (82)
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Next, since dπθ
, dπ̂θ

, πθ, and π̂θ are all distributions, we have

max{|X1(s)|, |X̂1(s)|, |X3(s, a)|, |X̂3(s, a)|} ≤ 1. (83)

Separately, using Lemma 4.3, we have

∥X2∥ = ∥∇θ log πθ(a|s)∥ ≤ β(∥IA∥+ ∥1Aπ⊤
θ ∥)∥Ps∥∥(Pπb)d−1∥. (84)

Since all rows of the above matrices have non-negative entries that add up to 1, we get

∥Y ∥ ≤ 2β. (85)

In the rest of the proof, we bound each of ∥X1 − X̂1∥, . . . , ∥X4 − X̂4∥.

Finally,

∥X4∥ ≤
1

1− γ
. (86)

Similarly, the same bounds hold for X̂1, X̂2, X̂3 and X̂4.

From, we have

∥X1 − X̂1∥ ≤ (1− γ)

∞∑
t=0

γt∥ν⊤(Pπθ )t − ν⊤(P π̂θ )t∥ (87)

≤ (1− γ)∥ν∥
∑
t=0

γttdϵ (88)

≤ (1− γ)dϵ

∞∑
t=0

γtt (89)

=
γdϵ

1− γ
. (90)

The last relation follows from the fact that (1− γ)−1 =
∑∞

t=0 γ
t, which in turn implies

γ
∂

∂γ

(
1

1− γ

)
=

∞∑
t=0

tγt. (91)

From Lemma A.5, it follows that
∥X3 − X̂3∥ = O(βdϵ). (92)

Next, recall that from Lemma 4.3 that

X2(s, ·) = β
[
IA − 1A(πθ)

⊤]Ps (P
πb)

d−1
.

Then,

∥X2(s, ·)− X̂2(s, ·)∥ ≤∥β
[
IA − 1A(πθ)

⊤]Ps∥∥ (Pπb)
d−1 −

(
P̂πb

)d−1

∥ (93)

+ ∥β
[
IA − 1A(πθ)

⊤] ∥∥Ps − P̂s∥∥
(
P̂πb

)d−1

∥ (94)

+ β∥1A(πθ)
⊤ − 1A(π̂θ)

⊤∥∥P̂s

(
P̂πb

)d−1

∥. (95)

Following the same argument as in (85) and applying Lemma A.2, we have that (93) is O(βdϵ). Similarly, from the argument
of (85), Eq. (94) is O(βϵ). Lastly, (95) is O(βdϵ) due to Lemma A.5. Putting the above three terms together, we have that

∥X2(s, ·)− X̂2(s, ·)∥ = O(βdϵ). (96)
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Since the state-action value function satisfies the Bellman equation, we have

Qπθ = r + γPQπθ (97)

and
Qπ̂θ = r̂ + γP̂Qπ̂θ . (98)

Consequently,

∥Qπθ −Qπ̂θ∥ ≤ ∥r − r̂∥+ γ∥PQπθ − PQπ̂θ∥+ γ∥PQπ̂θ − P̂Qπ̂θ∥ (99)

≤ ϵ+ γ∥P∥∥Qπθ −Qπ̂θ∥+ γ∥P − P̂∥∥Qπ̂θ∥ (100)

≤ ϵ+ γ∥Qπθ −Qπ̂θ∥+ γ

1− γ
ϵ, (101)

which finally shows that
∥X4 − X̂4∥ = ∥Qπθ −Qπ̂θ∥ ≤ ϵ

(1− γ)2
. (102)

B. Experiments
B.1. Implementation Details

The environment engine is the highly efficient Atari-CuLE (Dalton et al., 2020), a CUDA-based version of Atari that runs
on GPU. Similarly, we use Atari-CuLE for the GPU-based breadth-first TS as done in (Dalal et al., 2021).

We train SoftTreeMax for depths d = 1 . . . 8, with a single worker. We use five seeds for each experiment.

For the implementation, we extend Stable-Baselines3 (Raffin et al., 2019) with all parameters taken as default from the
original PPO paper (Schulman et al., 2017). For depths d ≥ 3, we limited the tree to a maximum width of 1024 nodes and
pruned non-promising trajectories in terms of estimated weights. Since the distributed PPO baseline advances significantly
faster in terms of environment steps, for a fair comparison, we ran all experiments for one week on the same machine and
use the wall-clock time as the x-axis. We use Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz equipped with one NVIDIA
Tesla V100 32GB.

B.2. GPU-Based Tree Expansion Implementation

Figure 4 illustrates the GPU-based tree expansion mechanism used in our implementation. We achieve efficient parallelization
by duplicating and concatenating all states in the current level of the tree with each possible action, then advancing them
simultaneously with a single forward pass through the simulator.

The implementation follows these steps:

1. Start with a root state s0 and expand it across all actions a ∈ A.

2. For each depth level t from 1 to d:

• Collect all states st from the previous level.
• Duplicate each state for each action to create a batch of state-action pairs.
• Submit the entire batch to the GPU simulator in a single forward pass.
• Collect the resulting next states and corresponding rewards.
• If t < d and pruning is enabled, select the top-k most promising branches based on accumulated rewards.

3. For the leaf states (at depth d), compute the neural network outputs Wθ(sd).

4. Combine the accumulated rewards along each trajectory with the corresponding leaf state values.

5. Compute the final policy logits according to Equation (2) and apply the softmax operation.

This parallel implementation allows us to efficiently explore a larger number of trajectories compared to sequential tree
expansion, making deeper tree depths practically feasible.
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Figure 4. A diagram of the tree expansion used by SoftTreeMax. In every step, the states in the current level of the tree are duplicated
and concatenated with each possible action. The resulting state-action pairs are then fed as a batch to the GPU simulator to generate the
next level of states. Finally, the states of the last level d are inserted into the neural network Wθ and the logits are computed using the
corresponding rewards along each trajectory.

Algorithm 1 C-SoftTreeMax
Input: GPU environment G, network θ, depth d
Init tensors: state S̄ = [s], action Ā0 = [0, 1, 2, .., A− 1], reward R̄ = [0]
for id = 0 to d− 1 do
S̄ ← S̄ ×A, R̄← R̄×A {Replicate state and reward tensors A times}
r̄, S̄′ = G([S̄, Ā]) {Feed [S̄, Ā] to simulator and advance}
R̄← R̄+ γid r̄, S̄ ← S̄′ {Accumulate discounted reward }
Ā← Ā×A {Replicate action tensor A times}

end for
ls,a ← Averageπb

A0=a(R̄+ γdθ(S̄))/γd{Weighted average induced by πb}
Return π(a|s0) ∝ exp [βls,a(d; θ)] {Return optimal action at the root}

B.3. Algorithms

This section provides the pseudocode for our SoftTreeMax implementation. Algorithm 1 details the C-SoftTreeMax policy
computation, which efficiently utilizes GPU parallelization to perform tree expansion. Algorithm 2 shows how SoftTreeMax
integrates with the PPO algorithm, distinguishing the usage of our new policy in red.

Note that in Algorithm 2, we use Generalized Advantage Estimation (GAE) with λ = 0.95 for calculating advantage
estimates, which is the standard configuration in the stable-baselines3 PPO implementation that we build upon.

B.4. Time-Based Training Curves

We provide the training curves in Figure 5. For brevity, we exclude a few of the depths from the plots. As seen, there
is a clear benefit for SoftTreeMax over distributed PPO with the standard softmax policy. In most games, PPO with the
SoftTreeMax policy shows very high sample efficiency: it achieves higher episodic reward although it observes much less
episodes, for the same running time.
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Algorithm 2 SoftTreeMax-PPO
1: Initialize policy parameters θ0
2: Initialize value function parameters ϕ
3: for k = 0, 1, 2, . . . do
4: Collect set of trajectories Dk = {τi} by running policy πd,θk from Algorithm 1
5: Compute rewards-to-go R̂t

6: Compute advantage estimates Ât using GAE with λ = 0.95
7: for each epoch do
8: for each minibatch do
9: Compute policy ratio rt(θ) =

πd,θ(at|st)
πd,θk

(at|st)
10: Compute clipped surrogate objective:
11: LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]
12: Update θ with gradient step on LCLIP (θ)
13: Compute value function loss: LV F (ϕ) = (Vϕ(st)− R̂t)

2

14: Update ϕ with gradient step on LV F (ϕ)
15: end for
16: end for
17: end for

Figure 5. Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The plots show average reward and
standard deviation over 5 seeds. The x-axis is the wall-clock time. The runs ended after one week with varying number of time-steps. The
training curves correspond to the evaluation runs in Figure 3.

B.5. Step-Based Training Curves

In Figure 6 we also provide the same convergence plots where the x-axis is now the number of online interactions with the
environment, thus excluding the tree expansion complexity. As seen, due to the complexity of the tree expansion, less steps
are conducted during training (limited to one week) as the depth increases. In this plot, the monotone improvement of the
reward with increasing tree depth is noticeable in most games.
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Figure 6. Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The plots show average reward and
standard deviation over 5 seeds. The x-axis is the number of online interactions with the environment. The runs ended after one week with
varying number of time-steps. The training curves correspond to the evaluation runs in Figure 3.

We note that not for all games we see monotonicity. Our explanation for this phenomenon relates to how immediate
reward contributes to performance compared to the value. Different games benefit differently from long-term as opposed to
short-term planning. Games that require longer-term planning need a better value estimate. A good value estimate takes
longer to obtain with larger depths, in which we apply the network to states that are very different from the ones observed so
far in the buffer (recall that as in any deep RL algorithm, we train the model only on states in the buffer). If the model hasn’t
learned a good enough value function yet, and there is no guiding dense reward along the trajectory, the policy becomes
noisier, and can take more steps to converge – even more than those we run in our week-long experiment.

For a concrete example, let us compare Breakout to Gopher. Inspecting Fig. 6, we observe that Breakout quickly (and
monotonically) gains from large depths since it relies on the short term goal of simply keeping the paddle below the moving
ball. In Gopher, however, for large depths (¿=5), learning barely started even by the end of the training run. Presumably, this
is because the task in Gopher involves multiple considerations and steps: the agent needs to move to the right spot and then
hit the mallet the right amount of times, while balancing different locations. This task requires long-term planning and thus
depends more strongly on the accuracy of the value function estimate. In that case, for depth 5 or more, we would require
more train steps for the value to “kick in” and become beneficial beyond the gain from the reward in the tree.

The figures above convey two key observations that occur for at least some non-zero depth: (1) The final performance with
the tree is better than PPO (Fig. 3); and (2) the intermediate step-based results with the tree are better than PPO (Fig. 6).
This leads to our main takeaway from this work — there is no reason to believe that the vanilla policy gradient algorithm
should be better than a multi-step variant. Indeed, we show that this is not the case.

C. Further discussion
C.1. The case of λ2(P

πb) = 0

When Pπb is rank one, it is not only its variance that becomes 0, but also the norm of the gradient itself (similarly to the case
of d→∞). Note that such a situation will happen rarely, in degenerate MDPs. This is a local minimum for SoftTreeMax
and it would cause the PG iteration to get stuck, and to the optimum in the (desired but impractical) case where πb is the
optimal policy. However, a similar phenomenon was also discovered in the standard softmax with deterministic policies:
θ(s, a)→∞ for one a per s. PG with softmax would suffer very slow convergence near these local equilibria, as observed
in (Mei et al., 2020a). To see this, note that the softmax gradient is ∇θ log πθ(a|s) = ea − πθ(·|s), where ea ∈ [0, 1]A is
the vector with 0 everywhere except for the a-th coordinate. I.e., it will be zero for a deterministic policy. SoftTreeMax
avoids these local optima by integrating the reward into the policy itself (but may get stuck in another, as discussed above).
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