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Abstract

Interpretable machine learning has exploded as an area of interest over the last decade,
sparked by the rise of increasingly large datasets and deep neural networks. Simultaneously,
large language models (LLMs) have demonstrated remarkable capabilities across a wide
array of tasks, offering a chance to rethink opportunities in interpretable machine learning.
Notably, the capability to explain in natural language allows LLMs to expand the scale and
complexity of patterns that can be given to a human. However, these new capabilities raise
new challenges, such as hallucinated explanations and immense computational costs.
In this position paper, we start by reviewing existing methods to evaluate the emerging field
of LLM interpretation (both interpreting LLMs and using LLMs for explanation). We con-
tend that, despite their limitations, LLMs hold the opportunity to redefine interpretability
with a more ambitious scope across many applications, including in auditing LLMs them-
selves. We highlight two emerging research priorities for LLM interpretation: using LLMs
to directly analyze new datasets and to generate interactive explanations.

1 Introduction

Machine learning (ML) and natural language processing (NLP) have seen a rapid expansion in recent years,
due to the availability of increasingly large datasets and powerful neural network models. In response, the
field of interpretable ML∗ has grown to incorporate a diverse array of techniques and methods for understand-
ing these models and datasets (Doshi-Velez & Kim, 2017; Murdoch et al., 2019; Molnar, 2019). One part
of this expansion has focused on the development and use of inherently interpretable models (Rudin et al.,
2021), such as sparse linear models, generalized additive models, and decision trees. Alongside these models,
post-hoc interpretability techniques have become increasingly prominent, offering insights into predictions
after a model has been trained. Notable examples include methods for assessing feature importance (Ribeiro
et al., 2016; Lundberg & Lee, 2017), and broader post-hoc techniques, e.g., model visualizations (Yosinski
et al., 2015; Bau et al., 2018), or interpretable distillation (Tan et al., 2018; Ha et al., 2021).

Meanwhile, pre-trained large language models (LLMs) have shown impressive proficiency in a range of
complex NLP tasks, significantly advancing the field and opening new frontiers for applications (Brown
et al., 2020; Touvron et al., 2023; OpenAI, 2023). However, the inability to effectively interpret these models
has debilitated their use in high-stakes applications such as medicine, and raised issues related to regulatory
pressure, safety, and alignment (Goodman & Flaxman, 2016; Amodei et al., 2016; Gabriel, 2020). Moreover,
this lack of interpretability has limited the use of LLMs (and other neural-network models) in fields such as
science and data analysis (Wang et al., 2023a; Kasneci et al., 2023; Ziems et al., 2023). In these settings,
the end goal is often to elicit a trustworthy interpretation rather than to deploy an LLM. In other settings,
interpretability may instead be used as a tool to audit, understand, or manipulate LLMs.

In this work, we contend that LLMs hold the opportunity to rethink interpretability with a more ambitious
scope. LLMs can elicit more elaborate explanations than the previous generation of interpretable ML
techniques. While previous methods have often relied on restricted interfaces such as saliency maps, LLMs

∗We use the terms interpretable, explainable, and transparent interchangeably.
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Figure 1: Categorization of LLM interpretation research. (A) LLMs raise unique opportunities and
challenges for interpretation (Sec. 3). (B) Explaining an LLM can be categorized into methods that seek to
explain a single generation from an LLM (i.e. instance-level explanation, Sec. 4.1) or the LLM in its entirety
(i.e. model-level explanation, Sec. 4.2). Instance-level explanation methods build on many techniques that
were originally developed for interpreting non-LLM models, such as feature attribution methods. More recent
instance-level explanation techniques use LLMs themselves to yield interpretations, e.g., through post-hoc
natural language (NL) explanations, asking an LLM to build explanations into its generation process, or
through data grounding. Similar techniques have been developed and applied to model-level explanation,
although it also includes unique types of explanations, e.g., analyzing individual attention heads or circuits
inside an LLM. (C) Sec. 5 analyzes the emerging area that uses an LLM to aid in directly explaining a
dataset. In this setting, an LLM is given a new dataset (which can consist of either text or tabular features)
and is used to help analyze it. LLM-based techniques for dataset explanation are quite diverse, including
helping to build interpretable models, generate NL explanations, generate chains of NL explanations, or
construct data visualizations. (D) Common themes emerge among methods for instance-level explanation,
model-level explanation, and dataset explanation.

can communicate directly in expressive natural language. This allows users to make targeted queries, such
as Can you explain your logic?, Why didn’t you answer with (A)?, or Explain this data to me., and get
immediate, relevant responses. We believe simple questions such as these, coupled with techniques for
grounding and processing data, will allow LLMs to articulate previously incomprehensible model behaviors
and data patterns directly to humans in understandable text. However, unlocking these opportunities
requires tackling new challenges, including hallucinated (i.e. incorrect or baseless) explanations, along with
the immense size, cost, and inherent opaqueness of modern LLMs.

Contributions and overview We evaluate LLM interpretation and highlight emerging research priorities,
taking a broader scope than recent works, e.g., those focused on explaining LLM predictions (Zhao et al.,
2023), mechanistic interpretability (Räuker et al., 2023), social science (Ziems et al., 2023), or science more
generally (Wang et al., 2023a; Birhane et al., 2023; Pion-Tonachini et al., 2021). Rather than providing an
exhaustive overview of methods, we highlight the aspects of interpretability that are unique to LLMs and
showcase them with practically useful methods.

Specifically, we begin with a background and definitions (Sec. 2) before proceeding to analyze the unique
opportunities and challenges that LLMs present for interpretation (Sec. 3). We then ground these oppor-

2



Under review as submission to TMLR

tunities in two complementary categories for LLM-based interpretation (see Fig. 1). The first is generating
explanations for an existing LLM (Sec. 4), which is useful for auditing a model’s performance, alignment,
fairness, etc. The second is explaining a dataset (Sec. 5); in this setting, an LLM is used to help analyze a
new dataset (which can consist of either text or tabular features). While we cover these areas separately,
there is a great deal of interplay between them. For example, explaining a dataset relies on many tools orig-
inally developed to extract reliable explanations when explaining an LLM. Conversely, explaining an LLM
often requires understanding the dataset on which it was trained, as well as what dataset characteristics
elicit different LLM behaviors.

Throughout the paper, we highlight dataset explanation and interactive explanation as emerging research
priorities. Together, these two areas have great potential real-world significance in domains from science
to statistics, where they can facilitate the process of scientific discovery, data analysis, and model building.
Throughout, we focus on pre-trained LLMs, mostly applied to text data, but also applied to tabular data.

2 Background: definitions and evaluation

2.1 Definitions

Interpretability, when used without context, is a poorly defined concept. Precisely defining interpretability
requires understanding the problem and audience an interpretation is intended to serve. In light of this
imprecision, interpretable ML has largely become associated with a narrow set of techniques, including
feature attribution, saliency maps, and transparent models. However, LLM interpretation is broader in
scope and more expressive than these methods. Here, we paraphrase the definition of interpretable ML
from Murdoch et al. 2019 to define LLM interpretation as the extraction of relevant knowledge from an
LLM concerning relationships either contained in data or learned by the model. We emphasize that this
definition applies to both interpreting an LLM and to using an LLM to generate explanations. Moreover,
the definition relies on the extraction of relevant knowledge, i.e., knowledge that is useful for a particular
problem and audience. For example, in a code generation context, a relevant interpretation may help a
user quickly integrate an LLM-generated code snippet. In contrast, a relevant interpretation in a medical
diagnosis setting may inform a user whether or not a prediction is trustworthy.

Large language model is a term that is often used imprecisely. Here, we use it to refer to transformer-based
neural language models that contain tens to hundreds of billions of parameters, and which are pre-trained on
massive text data, e.g., PaLM (Chowdhery et al., 2023), LLaMA (Touvron et al., 2023), and GPT-4 (OpenAI,
2023). Compared to early pre-trained language models (such as BERT (Devlin et al., 2018)), LLMs are not
only much larger, but also exhibit stronger language understanding, generation abilities, and explanation
capabilities. After an initial computationally intensive pre-training stage, LLMs often undergo instruction
finetuning and further alignment with human preferences to improve instruction following (Ouyang et al.,
2022) or to improve interactive chat capabilities, e.g., the LLaMA-2 chat model (Touvron et al., 2023). They
are sometimes also further adapted via supervised finetuning to improve performance in a specific domain,
such as medicine (Singhal et al., 2023).

Prompting is the most common interface for applying LLMs (and our main focus in this paper), once they
have been trained. In prompting, a text prompt is fed into an LLM and used to generate subsequent output
text, e.g. an answer to a question. Few-shot prompting is a type of prompting that involves providing an
LLM with a small number of examples to allow it to better understand the task it is being asked to perform.

Interpretability is intricately related to other research areas where LLMs have begun to play an expanding
role. For example, in the field of causal inference, interpreting and querying LLMs may help extract and test
hypotheses for causal relationships contained in data (Kıcıman et al., 2023). Additionally, interpretability is
a major topic when considering the bias, fairness, privacy, and security of LLMs (Yao et al., 2024; Li et al.,
2023d), where it can be used to expose, fix, or exploit issues with an LLM.
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2.2 Evaluating LLM interpretations

Evaluating interpretability is difficult in general (Doshi-Velez & Kim, 2017), requiring that interpretations
be faithful to an underlying process in an LLM/dataset while remaining understandable to a human. This
process is made even more difficult by the use of LLMs, which broadens the space of explanations and
complicates rigorous understanding. In this section, we briefly overview three key approaches to evaluating
LLM interpretations through (i) human studies, (ii) automated metrics, and (iii) using the interpretation to
improve model performance. Careful consideration is required to match the choice of metric to the context
of a particular problem.

Evaluation with human studies Since different interpretations are relevant to different contexts, the
ideal way to evaluate an interpretation is by studying whether its usage in a real-world setting with humans
improves a desired outcome (Kim et al., 2017). This approach directly measures the utility of an interpre-
tation in its appropriate context. However, these targeted human studies have some shortcomings: They
are often laborious to conduct and are context-specific, i.e. an interpretation that helps humans in some
contexts may not help them in others. Additionally, human studies that simply measure a proxy for useful-
ness (i.e. measuring human judgment of explanations) are often uninformative, as they may not translate
into improvements in practice (Adebayo et al., 2018). A recent meta-analysis finds that introducing NLP
explanations into settings with humans yields widely varying utilities, ranging from completely unhelpful to
very useful (Chaleshtori et al., 2023). An important piece of this evaluation is the notion of complemen-
tarity (Bansal et al., 2021), i.e., that explanations should help LLMs complement human performance in a
team setting, rather than improve their performance in isolation.

Evaluation with automated metrics While human studies provide the most realistic evaluation, auto-
mated metrics (that can be computed without involving humans) are desirable to ease and scale evaluation,
especially in model-level explanation. An increasingly popular approach is to use LLMs themselves in evalu-
ation, although great care must be taken to avoid introducing biases, e.g., an LLM systematically scoring its
own outputs too positively (Zheng et al., 2023). One way to reduce bias is to use LLMs as part of a structured
evaluation process tailored to a particular problem, rather than directly querying LLMs for evaluation scores.
For example, one common setting is evaluating a natural-language interpretation of a given function (which
may be any component of a pre-trained LLM). In this setting, one can evaluate an explanation’s ability
to simulate the function’s behavior (Bills et al., 2023), the function’s output on LLM-generated synthetic
data (Singh et al., 2023b), or its ability to recover a groundtruth function (Schwettmann et al., 2023; Zhong
et al., 2023). In a question-answering setting, many automated metrics have been proposed for measuring
the faithfulness of a natural-language explanation for an individual answer to a question (Atanasova et al.,
2023; Parcalabescu & Frank, 2023; Chen et al., 2022).

Evaluation through improving model performance A third avenue for evaluating interpretations is
through their ability to control or improve model performance. This approach provides strong evidence
for the utility of an explanation, although it does not encompass all critical use cases of interpretability
(particularly those directly involving human interaction). Model improvements can take various forms, the
simplest of which is simply improving accuracy at downstream tasks. For example, few-shot accuracy was
seen to improve when aligning an LLM’s rationales with explanations generated using post-hoc explanation
methods (Krishna et al., 2023) or explanations distilled from large models (Mukherjee et al., 2023). Moreover,
employing few-shot explanations during inference (not training) can significantly improve few-shot LLM
accuracy, especially when these explanations are further optimized (Lampinen et al., 2022; Ye & Durrett,
2023). Beyond general performance, explanations can be used to overcome specific shortcomings of a model.
For example, one line of work identifies and addresses shortcuts/spurious correlations learned by an LLM (Du
et al., 2023; Kang & Choi, 2023; Bastings et al., 2021). Model editing, a related line of work, enables precise
modifications to certain model behaviors, enhancing overall performance (Meng et al., 2022; Mitchell et al.,
2022; Hernandez et al., 2023).
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3 Unique opportunities and challenges of LLM interpretation

In this section, we discuss two unique opportunities and two challenges that arise in LLM interpretation (see
Fig. 1A).

Unique opportunities of LLM interpretation First among LLM interpretation opportunities is the
ability to provide a natural-language interface to explain complex patterns. This interface is familiar to
humans, potentially ameliorating the difficulties that practitioners often face when using explainability tech-
niques (Kaur et al., 2020; Weld & Bansal, 2019). Additionally, natural language can be used to build a bridge
between humans and a range of other modalities, e.g., DNA, chemical compounds, or images (Taylor et al.,
2022; Liu et al., 2023b; Radford et al., 2021), that may be difficult for humans to interpret on their own. In
these cases, natural language allows for expressing complex concepts through explanations at different levels
of granularity, potentially grounded in evidence or discussions of counterfactuals. For example, a natural
language explanation for an LLM’s answer to a question may highlight the LLM’s coarse reasoning if the
LLM is prompted for a high-level explanation or instead to specific words in the input if the LLM is asked
for a more fine-grained explanation.

A second major opportunity is the ability for LLMs to generate interactive explanations. Interactivity
allows users to tailor explanations to their unique needs, e.g., by asking follow-up questions and perform-
ing analysis on related examples. Interviews with decision-makers, including physicians and policymakers,
indicate that they strongly prefer interactive explanations, particularly in the form of natural-language dia-
logues (Lakkaraju et al., 2022). Interactivity further allows LLM explanations to be decomposed into many
different LLM calls, each of which can be audited independently. This can be enabled in different ways, e.g.,
having a user repeatedly chat with an LLM using prompting, or providing a user a sequence of LLM calls
and evidence to analyze.

Unique challenges of LLM interpretation These opportunities bring new challenges. First and fore-
most is the issue of hallucination, i.e. incorrect or baseless LLM generations. In our setting, we focus on
hallucinated explanations generated by an LLM; Flexible explanations provided in natural language can
quickly become less grounded in evidence, whether the evidence is present in a given input or presumed
to be present in the knowledge an LLM has learned from its training data. Hallucinated explanations are
unhelpful or even misleading, and thus techniques for identifying and combating hallucination are critical to
the success of LLM interpretation.

A second challenge is the immensity and opaqueness of LLMs. Models have grown to contain tens or hundreds
of billions of parameters (Brown et al., 2020; Touvron et al., 2023), and continue to grow in size. This makes
it infeasible for a human to inspect or even comprehend the units of an LLM. Moreover, it necessitates
efficient algorithms for interpretation, as even generating a single token from an LLM often incurs a non-
trivial computational cost. In fact, LLMs are often too large to be run locally or can be accessed only
through a proprietary text API, necessitating the need for interpretation algorithms that do not have full
access to the model (e.g., no access to the model weights or the model gradients).

4 Explaining an LLM

In this section, we study techniques for explaining an LLM, including explaining a single generation from an
LLM (Sec. 4.1) or an LLM in its entirety (Sec. 4.2). Most of the methods we cover are specific to LLMs, but
we also cover some general interpretable ML techniques (e.g. feature attributions) as well as some methods
that apply to neural networks that are not LLMs (e.g. probing); see a full breakdown in Table 1.
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Table 1: Breakdown of LLM interpretation methods. First categorizes methods based on the model class
they apply to: LLMs, deep neural networks (DNNs), or general ML methods (ML). Additionally categorizes
methods based on whether they fall under instance-level interpretation (I-L), model-level interpretation (M-
L), and whether they us an LLM as a tool to generate natural-language explanations (N-L). All methods in
Sec. 5 use LLMs as a tool generate different forms of interpretations at the dataset-level.

Methods Example works Applicability Usage

Feature attributions Lundberg & Lee 2017;Enguehard 2023 ML I-L
Interpreting attention scores Jain & Wallace 2019;Bibal et al. 2022 LLM I-L
Natural-language explanations Bhattacharjee et al. 2023;Chen et al. 2023b LLM I-L, N-L
Chain of thought Wei et al. 2022 LLM I-L, N-L
RAG Guu et al. 2020;Worledge et al. 2023 LLM I-L

Probing Conneau et al. 2018;Zou et al. 2023 DNN M-L
Understanding internal model components Mu & Andreas 2020;Singh et al. 2023b DNN M-L
Toy LLM models Elhage et al. 2021;Olsson et al. 2022 LLM M-L, N-L
Investigating training data Grosse et al. 2023;Kandpal et al. 2023 ML M-L
Chat-based interactivity Slack et al. 2022;Wang et al. 2024 LLM M-L, N-L

4.1 Instance-level explanation

Instance-level explanation, i.e., explaining a single generation from an LLM, has been a major focus in the
recent interpretability literature. It allows for understanding and using LLMs in high-stakes scenarios, e.g.,
healthcare.

Feature attributions The simplest approach for providing instance-level explanations in LLMs provides
feature attributions for input tokens. These feature attributions assign a relevance score to each input
feature, reflecting its impact on the model’s generated output. Various attribution methods have been
developed, including perturbation-based methods (Lundberg & Lee, 2017), gradient-based methods (Sun-
dararajan et al., 2017; Montavon et al., 2017; Li et al., 2015), and linear approximations (Ribeiro et al., 2016).
Recently, these methods have been specifically adapted for transformer models, addressing unique challenges
such as discrete token embeddings (Sikdar et al., 2021; Enguehard, 2023) and computational costs (Chen
et al., 2023a). Moreover, the conditional distribution learned by an LLM can be used to enhance existing
attribution methods, e.g., by performing input marginalization (Kim et al., 2020). These works focus on
attributions at the token-level, but may consider using a less granular breakdown of the input to improve
understandability (Zafar et al., 2021).

Interpreting attention scores Besides feature attributions, attention mechanisms within an LLM offer
another avenue for visualizing token contributions to an LLM generation (Wiegreffe & Pinter, 2019), though
their faithfulness/effectiveness remains unclear (Jain & Wallace, 2019; Bibal et al., 2022). Interestingly,
recent work suggests that LLMs themselves can generate post-hoc attributions of important features through
prompting (Kroeger et al., 2023). This approach could be extended to enable eliciting different feature
attributions that are relevant in different contexts.

Natural-language explanations Beyond token-level attributions, LLMs can also generate instance-level
explanations directly in natural language. While the generation of natural-language explanations predates
the current era of LLMs (e.g., in text classification (Camburu et al., 2018; Rajani et al., 2019) or image
classification (Hendricks et al., 2016)), the advent of more powerful models has significantly enhanced their
effectiveness. Natural-language explanations generated by LLMs have shown the ability to elucidate model
predictions, even simulating counterfactual scenarios (Bhattacharjee et al., 2023), and expressing nuances
like uncertainty (Xiong et al., 2023; Tanneru et al., 2023; Zhou et al., 2024). Despite their potential benefits,
natural language explanations remain extremely susceptible to hallucination or inaccuracies, especially when
generated post-hoc (Chen et al., 2023b; Ye & Durrett, 2022).
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Chain of thought One starting point for combating these hallucinations is integrating an explanation
within the answer-generation process itself. Chain-of-thought prompting exemplifies this approach (Wei
et al., 2022), where an LLM is prompted to articulate its reasoning step-by-step before arriving at an an-
swer. This reasoning chain generally results in more accurate and faithful outcomes, as the final answer
is often more aligned with the preceding logical steps. The faithfulness of the produced step-by-step ex-
planation can be tested by introducing perturbations in the reasoning process and observing the effects on
the final output (Madaan & Yazdanbakhsh, 2022; Wang et al., 2022a; Lanham et al., 2023). Alternative
methods for generating this reasoning chain exist, such as tree-of-thoughts (Yao et al., 2023), which extends
chain-of-thought to instead generate a tree of thoughts used in conjunction with backtracking, graph-of-
thoughts (Besta et al., 2023), and others (Nye et al., 2021; Press et al., 2022; Zhou et al., 2022). All of these
methods not only help convey an LLM’s intermediate reasoning to a user, but also help the LLM to follow
the reasoning through prompting, often enhancing the reliability of the output. However, like all LLM-based
generations, the fidelity of these explanations can vary (Lanham et al., 2023; Wei et al., 2023).

RAG An alternative path to reducing hallucinations during generation is to employ retrieval-augmented
generation (RAG). In RAG, an LLM incorporates a retrieval step in its decision-making process, usually by
searching a reference corpus or knowledge base using text embeddings (Guu et al., 2020; Peng et al., 2023); see
review (Worledge et al., 2023). This allows the information that is used to generate an output to be specified
and examined explicitly, making it easier to explain the evidence an LLM uses during decision-making.

4.2 Model-level explanation

Rather than studying individual generations, model-level explanation aims to understand an LLM as a whole,
usually by analyzing its parameters. Recently, many model-level explanations of how model parameters
algorithmically yield model behaviors have been labeled mechanistic interpretability, though the use/omission
of this label is often imprecise, e.g. see (Räuker et al., 2023). Model-level explanations can help to audit a
model for concerns beyond generalization, e.g., bias, privacy, and safety, helping to build LLMs that are more
efficient / trustworthy. They can also yield mechanistic understanding about how LLMs function. Towards
this end, researchers have focused on summarizing the behaviors and inner workings of LLMs through various
lenses. Generally, these works require access to model weights and do not work for explaining models that
are only accessible through a text API, e.g., GPT-4 (OpenAI, 2023).

Probing One popular method for understanding neural-network representations is probing. Probing tech-
niques analyze a model’s representation by decoding embedded information (Adi et al., 2016; Conneau et al.,
2018; Giulianelli et al., 2018). In the context of LLMs, probing has evolved to include the analysis of at-
tention heads (Clark et al., 2019), embeddings (Morris et al., 2023a), and different controllable aspects of
representations (Zou et al., 2023). More recent methods directly decode an output token to understand what
is represented at different positions and layers (Belrose et al., 2023; Ghandeharioun et al., 2024) or connecting
multimodal embeddings with text embeddings to help make them more understandable (Oikarinen & Weng,
2022; Oikarinen et al., 2023; Bhalla et al., 2024). These methods can provide a deeper understanding of the
nuanced ways in which LLMs process and represent information.

Understanding internal model components In addition to probing, many works study LLM representa-
tions at a more granular level. This includes categorizing or decoding concepts from individual neurons (Mu
& Andreas, 2020; Gurnee et al., 2023; Dalvi et al., 2019; Lakretz et al., 2019) or directly explaining the
function of attention heads in natural language (Bills et al., 2023; Hernandez et al., 2022b). Beyond individ-
ual neurons, there is growing interest in understanding how groups of neurons combine to perform specific
tasks, e.g., finding a circuit for indirect object identification (Wang et al., 2022b), for entity binding (Feng &
Steinhardt, 2023), or for multiple shared purposes (Merullo et al., 2023). More broadly, this type of analysis
can be applied to localize functionalities rather than fully explain a circuit, e.g., localizing factual knowledge
within an LLM (Meng et al., 2022; Dai et al., 2021). A persistent problem with these methods is that they
are difficult to scale to immense LLMs, leading to research in (semi)-automated methods that can scale to
today’s largest LLMs (Lieberum et al., 2023; Wu et al., 2023).

Toy LLM models A complementary approach to mechanistic understanding uses miniature LLMs as a
test bed for investigating complex phenomena. For example, examining a 2-layer transformer model reveals
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information about what patterns are learned by attention heads as a function of input statistics (Elhage
et al., 2021) or helps identify key components, such as induction heads or ngram heads that copy and utilize
relevant tokens (Olsson et al., 2022; Akyürek et al., 2024). This line of mechanistic understanding places a
particular focus on studying the important capability of in-context learning, i.e., given a few input-output
examples in a prompt, an LLM can learn to correctly generate an output for a new input (Garg et al., 2022;
Zhou et al., 2023).

Investigating training data A related area of research seeks to interpret an LLM by understanding the
influence of its training data distribution. Unlike other methods we have discussed, this requires access to
an LLM’s training dataset, which is often unknown or inaccessible. In the case that the data is known,
researchers can employ techniques such as influence functions to identify important elements in the training
data (Grosse et al., 2023). They can also study how model behaviors arise from patterns in training data,
such as hallucination in the presence of long-tail data (Kandpal et al., 2023), in the presence of repeated
training data (Hernandez et al., 2022a), in-context learning (Chen et al., 2024b), statistical patterns that
contradict proper reasoning (McKenna et al., 2023), and others (Swayamdipta et al., 2020).

Chat-based interactivity All these interpretation techniques can be improved via LLM-based interactiv-
ity, allowing a user to investigate different model components via follow-up queries and altered prompts from
a user. For example, one recent work introduces an end-to-end framework for explanation-based debugging
and improvement of text models, showing that it can quickly yield improvements in text-classification per-
formance (Lee et al., 2022). Another work, Talk2Model, introduces a natural-language interface that allows
users to interrogate a tabular prediction model through a dialog, implicitly calling many different model
explainability tools, such as calculating feature importance (Slack et al., 2022).† More recent work extends
Talk2Model to a setting interrogating an LLM about its behavior (Wang et al., 2024).

Model manipulation Finally, the insights gained from model-level understanding are beginning to inform
practical applications, with current areas of focus including model editing (Meng et al., 2022), improving
instruction following (Zhang et al., 2023b), and model compression (Sharma et al., 2023). These areas
simultaneously serve as a sanity check on many model-level interpretations and as a useful path to enhancing
the reliability of LLMs.

5 Explaining a dataset

As LLMs improve their context length and capabilities, they can be leveraged to explain an entire dataset,
rather than explaining an LLM or its generations. This can aid with data analysis, knowledge discovery,
and scientific applications. Fig. 2 shows an overview of dataset explanations at different levels of granularity,
which we cover in detail below. We distinguish between tabular and text data, but note that most methods
can be successfully applied to either, or both simultaneously in a multimodal setting.

5.1 Tabular dataset explanation

LLM-aided data analysis One way LLMs can aid in dataset explanation is by making it easier to inter-
actively visualize and analyze tabular data. This is made possible by the fact that LLMs can simultaneously
understand code, text, and numbers by treating them all as input tokens. Perhaps the most popular method
in this category is ChatGPT Code Interpreter‡, which enables uploading datasets and building visualiza-
tions on top of them through an interactive text interface. Underlying this interface, the LLM makes calls
to tools such as python functions to create the visualizations. This capability is part of a broader trend of
LLM-aided visualization, e.g., suggesting automatic visualizations for dataframes (Dibia, 2023), helping to
automate data wrangling (Narayan et al., 2022), or even conducting full-fledged data analysis (Huang et al.,
2023a) with accompanying write-ups (Ifargan et al., 2024). These capabilities benefit from a growing line of
work that analyzes how to effectively represent and process tabular data with LLMs (Li et al., 2023b; Zhang
et al., 2023a;c).

†Note that Talk2Model focuses on interpreting prediction models rather than LLMs.
‡https://openai.com/blog/chatgpt-plugins#code-interpreter
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Chain of 
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ngram1

ngram3 ngram4

ngram2

prompt1
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(Tabular or text) This should be 
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Figure 2: Dataset explanations at different levels of granularity. Dataset explanation involves
understanding a new dataset (consisting of either text or tabular features) using a pre-trained LLM. Low-
level explanations are more faithful to the dataset but involve more human effort to extract meaningful
insights. Many dataset interpretations use prediction models (classification or regression) as a means to
identify and explain patterns between features.

Explaining models fit to tabular datasets LLMs can also help explaining datasets by directly an-
alyzing models that have been fit to tabular data. Unlike model-level explanation, where the goal is to
understand the model, in dataset explanation, the goal is to understand patterns in the data through the
model (although similar techniques can be used for both problems). For example, one recent work uses
LLMs to analyze generalized additive models (GAMs) that are fit to tabular data (Lengerich et al., 2023).
GAMs are interpretable models that can be represented as a set of curves, each representing the contribution
of a feature to the output prediction as a function of the feature’s value. An LLM can analyze the fitted
model (and thereby the underlying dataset) by processing each curve as a set of numerical tokens and then
detecting and describing patterns in each curve. Lengerich et al. find that LLMs can identify surprising
characteristics in the curves and the underlying data, largely based on their prior knowledge of a domain.
Rather than using an interpretable GAM model, another approach is to distill dataset insights by analyzing
classifier predictions. For example, MaNtLE generates natural-language descriptions of a classifier’s rationale
based on the classifier’s predictions, and these explanations are found to identify explainable subgroups that
contain similar feature patterns (Menon et al., 2023).

5.2 Text dataset explanation

Fully interpretable models Text data poses different challenges for dataset explanation than tabular
data because it is sparse, high-dimensional, and modeling it requires many high-order interactions. As a
result, interpretable models that have been successful in the tabular domain (e.g., sparse linear models (Tib-
shirani, 1996; Ustun & Rudin, 2016), GAMs (Hastie & Tibshirani, 1986; Lou et al., 2013; Caruana et al.,
2015), decision trees (Breiman et al., 1984; Quinlan, 1986; Agarwal et al., 2022), and others (Rudin, 2018)),
have struggled to accurately model text. One recent line of work addresses this issue by using LLMs to
help build fully interpretable text models, such as linear models or decision trees (Singh et al., 2023a); the
resulting models are surprisingly accurate, often outperforming even much larger LLM models. These inter-
pretable models can help explain a dataset by showing which features (i.e. words or ngrams) are important
for predicting different outcomes. Similar methods, use LLMs to build interpretable representations for text
classification (McInerney et al., 2023), text style (Patel et al., 2023), or text regression (Benara et al., 2024).

Partially interpretable models Going beyond fully interpretable models, LLMs also help in building
partially interpretable text models. Partially interpretable text models often employ chains of prompts;
these chains allow for decomposing an LLM’s decision-making process to analyze which dataset patterns
a model learns. Prompt chains are usually constructed by humans or by querying a model to generate a
chain of calls on-the-fly (Grunde-McLaughlin et al., 2023). For dataset explanation, the most relevant chains
are sequences of explanations that are generated by an LLM. For example, a model can generate a single
tree of explanations that is shared across all examples in a dataset, a process that enables understanding
hierarchical structures stored within a dataset (Morris et al., 2023b). Rather than a tree, a single chain of
prompts can often help an LLM employ self-verification, i.e. the model itself checks its previous generations
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using a chain of prompts, a popular technique that often improves reliability (Pan et al., 2023; Madaan et al.,
2023; Gero et al., 2023). As in instance-level explanation, an LLM can incorporate a retrieval step in its
decision-making process (Worledge et al., 2023), and access to different tools can help make different steps
(e.g., arithmetic) more reliable and transparent (Mialon et al., 2023).

Natural-language explanations Natural-language explanations hold the potential to produce rich, con-
cise descriptions of patterns present in a dataset, but are prone to hallucination. One method, iPrompt (Singh
et al., 2023c), aims to avoid hallucination by searching for a dataset explanation in the form of a single
prompt, and verifying that the prompt induces an LLM to accurately predict a pattern in the underlying
dataset. Another work learns and verifies a library of natural-language rules that help improve question
answering (Zhu et al., 2023). Related methods use LLMs to provide descriptions that differentiate between
groups in a dataset, followed by an LLM that verifies the credibility of the description (Zhong et al., 2022;
2023; Zhu et al., 2022). In addition to a raw natural-language explanation, LLMs can aid in summarizing
textual information, e.g., through explainable clustering of a text dataset (Wang et al., 2023b) or creating
prompt-based topic models (Pham et al., 2023).

6 Future research priorities

We now highlight research priorities surrounding LLM interpretation in three areas: explanation reliability,
knowledge discovery, and interactive explanations.

Explanation reliability All LLM-generated explanations are bottlenecked by reliability issues. This
includes hallucinations (Tonmoy et al., 2024), but encompasses a broader set of issues. For example, LLMs
continue to be very sensitive to the nuances of prompt phrasing; minor variations in prompts can completely
change the substance of an LLM output (Sclar et al., 2023; Turpin et al., 2023). Additionally, LLMs may
ignore parts of their context, e.g., the middle of long contexts (Liu et al., 2023a) or instructions that are
difficult to parse (Zhang et al., 2023b).

These reliability issues are particularly critical in interpretation, which often uses explanations to mitigate
risk in high-stakes settings. LLM interpretations rarely come with theoretical guarantees of reliability, and
those that do are often for very constrained settings. One work analyzing explanation reliability finds
that LLMs often generate seemingly correct explanations that are actually inconsistent with their own
outputs on related questions (Chen et al., 2023b), preventing a human practitioner from trusting an LLM or
understanding how its explanations apply to new scenarios. Another study finds that explanations generated
by an LLM may not entail the model’s predictions or be factually grounded in the input, even on simple
tasks with extractive explanations (Ye & Durrett, 2022).

Future work is required to improve the grounding of explanations and develop stronger, computationally
tractable methods to test their reliability, perhaps through methods such as RAG (Worledge et al., 2023;
Patel et al., 2024), self-verification (Pan et al., 2023), iterative prompting/grounding (Singh et al., 2023c), or
automatically improving model self-consistency (Chen et al., 2024a; Li et al., 2023c; Akyürek et al., 2024).

Knowledge discovery (through dataset explanation) Dataset explanation using LLMs (Sec. 5) holds
the potential to help with the generation and discovery of new knowledge from data (Wang et al., 2023a;
Birhane et al., 2023; Pion-Tonachini et al., 2021), rather than simply helping to speed up data analysis or
visualization. Dataset explanation could initially help at the level of brainstorming scientific hypotheses that
can then be screened or tested by human researchers (Yang et al., 2023). During and after this process,
LLM explanations can help with using natural language to understand data from otherwise opaque domains,
such as chemical compounds (Liu et al., 2023b) or DNA sequences (Taylor et al., 2022). In the algorithms
domain, LLMs have been used to uncover new algorithms, translating them to humans as readable computer
programs (Romera-Paredes et al., 2023). These approaches could be combined with data from experiments
to help yield new data-driven insights.

LLM explanations can also be used to help humans better understand and perform a task. Explanations
from transformers have already begun to be applied to domains such as Chess, where their explanations
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can help improve even expert players (Schut et al., 2023). Additionally, LLMs can provide explanations of
expert human behavior, e.g. “Why did the doctor prescribe this medication given this information about
the patient?”, that are helpful in understanding, auditing, and improving human behavior (Tu et al., 2024).

Interactive explanations Finally, advancements in LLMs are poised to allow for the development of
more user-centric, interactive explanations. LLM explanations and follow-up questions are already being
integrated into a variety of LLM applications, such as interactive task specification (Li et al., 2023a), rec-
ommendation (Huang et al., 2023b), and a wide set of tasks involving dialog. Furthermore, works like
Talk2Model (Slack et al., 2022) enable users to interactively audit models in a conversational manner. This
dialog interface could be used in conjunction with many of the methods covered in this work to help with
new applications, e.g., interactive dataset explanation.

7 Conclusions

In this paper, we have explored the vast and dynamic landscape of interpretable ML, particularly focusing on
the unique opportunities and challenges presented by LLMs. LLMs’ advanced natural language generation
capabilities have opened new avenues for generating more elaborate and nuanced explanations, allowing
for a deeper and more accessible understanding of complex patterns in data and model behaviors. As we
navigate this terrain, we assert that the integration of LLMs into interpretative processes is not merely an
enhancement of existing methodologies but a transformative shift that promises to redefine the boundaries
of machine learning interpretability.

Our position is anchored in the belief that the future of interpretable ML hinges on our ability to harness the
full potential of LLMs. To this end, we outlined several key stances and directions for future research, such
as enhancing explanation reliability and advancing dataset interpretation for knowledge discovery. As LLMs
continue to improve rapidly, these explanations (and all the methods discussed in this work) will advance
correspondingly to enable new applications and insights. In the near future, LLMs may be able to offer
the holy grail of interpretability: explanations that can reliably aggregate and convey extremely complex
information to us all.

Broader impact statement

This paper presents work whose goal is to advance the field of LLM interpretation, a crucial step toward
addressing the challenges posed by these often opaque models. Although LLMs have gained widespread use,
their lack of transparency can lead to significant harm, underscoring the importance of interpretable AI.
There are many potential positive societal consequences of this form of interpretability, e.g., facilitating a
better understanding of LLMs and how to use them safely, along with a better understanding of scientific
data and models. Nevertheless, as is the case with most ML research, the interpretations could be used to
interpret and potentially improve an LLM or dataset that is being used for nefarious purposes.
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