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Abstract

The short-answer: it depends! The long-answer is that this dependence is modulated1

by several factors including the architecture, dataset, optimizer and initialization.2

In general, this modulation is likely due to the fact that artificial perceptual systems3

are best suited for tasks that are aligned with their level of compositionality, so4

when these perceptual systems are optimized to perform a global task such as5

average color estimation instead of object recognition (which is compositional),6

different representations emerge in the optimized networks. In this paper, we first7

assess the novelty of our experiment and define what an adversarial example is in8

the context of the color estimation task. We then run controlled experiments in9

which we vary 4 variables in a highly controlled way pertaining neural network10

hyper-parameters such as: 1) the architecture, 2) the optimizer, 3) the dataset, and 4)11

the weight initializations. Generally, we find that a fully connected network’s attack12

vector is more sparse than a compositional CNN’s, although the SGD optimizer13

will modulate the attack vector to be less sparse regardless of the architecture. We14

also discover that the attack vector of a CNN is more consistent across varying15

datasets and confirm that the CNN is more robust to attacks of adversarial color.16

Altogether, this paper presents a first computational exploration of the qualitative17

assessment of the adversarial perception of color in simple neural network models,18

re-emphasizing that studies in adversarial robustness and vulnerability should19

extend beyond object recognition.20

1 Introduction21

Recent works in “NeuroAI” have shown the importance of task optimization for the construction of22

robust neural networks models that try to find a perceptual alignment between biological and artificial23

neural representations (Dwivedi & Roig, 2019; Wang et al., 2019; Schrimpf et al., 2020; Conwell24

et al., 2021, 2022; Doerig et al., 2022). In these works, authors often test a battery of neural network25

architectures or optimization constraints to evaluate how well such models align with human visual26

perception. Conversely, modern research in adversarial images has focused on creating a plethora of27

adversarial attacks & defenses for modern machine vision systems when networks are exclusively28

optimized via a cross-entropy loss to encode a compositional task such as object recognition.29

In this paper we shift gears and will focus on optimizing networks to perform average color estimation,30

where we will mainly not be evaluating the robustness success via performance curves, but rather31

qualitatively assessing how these differences look like when neural networks are optimized to estimate32

the average color of an image across a variety of training and testing conditions (Emery & Webster,33

2019; Shamsabadi et al., 2020; Kantipudi et al., 2020). We are primarily motivated by this framework,34

because we would like to take a step back in adversarial image research to investigate how such35

qualitative and quantitative differences are modulated when the object recognition task is completely36

removed from the picture, and neural networks are optimized to estimate the average color of an37

image instead. Perhaps convolutional neural networks become more robust? Perhaps they will not.38
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Figure 1: Visualization of the convergence of the loss function (MSE) over 20 separately trained
Convolutional Neural Networks (CNN) and Fully Connected Networks (FCN) optimized with either
Adam (10) or SGD (10) – totalling 40 trained neural networks over which we conduct our experiments.

Perhaps this will depend on the neural network architecture, dataset, optimizer and initialization or a39

combination of all these factors. This leads us to another question: What does an adversarial color40

look like in machines?41

2 Training classic Neural Networks to compute Color Estimation42

To investigate this question we will use two equi-parametric neural network families that have43

different approximational power induced by the computations pertaining to their architecture (See44

Appendix A). These are families of two very basic neural network types: Fully Connected Networks45

(hereto FCN) and Convolutional Neural Networks (hereto CNN) that are parameterized as seen in46

Table 1. The motivation for using these two types of architectures can be shown in Deza et al. (2020),47

that showed that while both CNNs and FCNs can approximate the average color of an image, FCNs48

easily arrive to a lower loss, given the correspondence of their architecture with the closed form49

expression of average color estimation (C), which can trivially be expressed as the average luminance50

values per channel in an image:51

C =

∑N
i (Ii)

N
; ∀i pixels of image I (1)

In our experiments, both FCNs and CNNs were trained on the CIFAR-10 dataset with a Mean Square52

Error (MSE) loss and the last layer set to be a 3× 1 vector, encoding the average RGB values of the53

image. In addition, each neural network was either optimized with SGD or Adam. The convergence54

of the training loss across all networks used in our experiments can be found in Figure 1 – as each55

FCN and CNN was optimized 10 times per each optimization procedure (SGD or Adam), totalling56

40 neural network models.57

Table 1: Training & parameter details of CNNs & FCNs

CNN FCN
Adam SGD Adam SGD

# Params 61411 61411 61523 61523
# Epochs trained 50 50 50 50

# Trials 10 10 10 10
Learning Rate 0.01 0.001 0.0025 0.001
Lowest Loss 6.77e-4 1.58e-2 6.07e-7 1.75e-3

Additional details pertaining to attacking the neural networks and representations of color can be58

seen in Appendix B.59
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Figure 2: A. A diagram showing the differences and similarities of color-based adversarial attacks
on the same image of two neural network trials across different architectures (CNN and FCN). B.
The same image and their attacks in RGB color space demonstrating how each network is “fooled”.
Notice that the average color of the superposition is curved by the average noise due to clipping (See
Appendix B). All epsilon values and resulting attacked images are shown in the 3D plots (contra to
inset A. that shows only a slide at ϵ = 0.4)

3 Evaluation of Color Adversarial Attacks on Neural Network models60

Thus, to shed light on the question of what an adversarial color look like, we must realize that this will61

be a distinctly different problem than one of the object recognition task, since there are no discrete62

classes by which we can determine when our network is fooled. Recall that the Fast Gradient Sign63

Method (FGSM) Attack can be formalized for the new adversarial image x̂ by Goodfellow et al.64

(2014):65

x̂← x+ ϵsign(∇x(L(x, t, θ))) (2)

Following this paradigm for the color estimation task, we define an adversarial example as one where66

the adversarial noise (a.k.a attack) – the gradient of the loss w.r.t the input image – is bounded by ep-67

silon in the set ϵ = [0.0, 0.0005, 0.001, 0.005, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2, 5, 10]68

maximizing the loss of the average color estimation. Hence, ‘fooling the network’ takes a trivial69

meaning in the average color estimation task as it is linked to a regression problem (estimates of70

RGB), rather than a classification problem (one-hot vector encoding as done in object recognition).71

Of course, it is thus trivial to say “the machine has confused the average RGB color of an image”,72

so our interest is knowing by how much is it confused1, and how the adversarial attack/vector/noise73

looks like.74

As previously suggested in the introduction, the adversarial color is thus modulated by several factors75

including: 1) the architecture, 2) the optimizer, 3) the dataset, 4) the multi-trial analysis (i.e., different76

1Notice that in the adversarial color landscape there is no notion of mis-classification accuracy, but rather
difference in magnitude of MSE color estimation across color channels of the target and the prediction.
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Figure 3: A small sample of the comparison of the effects of Adversarial Attacks on Average
Color Estimation to both CNNs and FCNs when they are modulated by their optimizer. No clear
differences emerge with the exception of an interaction between Adam + FCNs that reinforces a
sparsity constraint on the Adversarial Attack. This can be observed in the Superposition, and also in
Figures 6,7.

weight initializations of the same architecture). In the following subsections, we do our best to77

provide a holistic understanding of each one of these phenomena.78

3.1 The Architecture and Optimizer: Interactions and Divergences79

The effect of the optimizer does not affect our CNN models overall. The pattern of noise vectors80

is always dense and strangely off-set in the border with no noise (as if the CNN’s stride were to81

implicitly direct the CNN to ignore the borders of the image: See Figures 6,7). Further investigation82

is required to explain this phenomena although some have found that this naturally emerges in CNNs83

trained for object recognition (Alsallakh et al., 2020; Yuan et al., 2021).84

For the FCN, we see that Adam accentuates a sparse attack vector for many of the trials in our85

experiments. Whether this is a feature of a bug, requires more experiments, but this comes to a86

surprise as FCNs could opt for a theoretically stable weight vector that computes the exact average of87

all luminance channels through its layers (Figures 2,3).88

3.2 Control Conditions: The Image Dataset & Individual Differences89

We further examined the effects of varying the testing dataset for the color estimation task to90

challenge each neural network’s robustness and learned perceptual representations. Rather than using91

MNIST (LeCun & Cortes, 2010), Places (Zhou et al., 2017), or ImageNet (Russakovsky et al., 2015),92

we first experiment with the simplest variations of color estimation from the CIFAR-10 test dataset:93

their vertically mirrored/inverted version, and a set of solid colors based on the original testing images.94

Notice that in all cases, the ground truth average color is preserved, but the image structure has been95

varied.96

This variation is critical in testing for the color estimation task because we hypothesize that any97

rotational transformation should not affect the global structure of the color estimation attack for a98

FCN that does not have any explicit locality prior as a CNN does. Here, our initial expectations were99

that CNNs would also vertically flip their noise vectors (as these networks perhaps can not avoid100

trying to parse image identity even if it is not explicitly encoded in their loss function), while FCNs101

would stay invariant to such rotational shift.102

We found that the attack vector of FCNs were not preserved during the vertical flipping (and in some103

cases also changed pattern; See Figures 6,7). CNNs, on the other hand, did seem to mildly preserve a104

structural bias when the image was flipped, but a further quantitative analysis is required to verify105

such a claim. More surprisingly, when we rendered solid colors that stemmed from such testing106

stimuli, CNNs failed to estimate color even with no adversarial attack, while FCNs did not struggle107

to accurately compute error. This would imply that CNNs are not learning an equipartite weighting108

scheme in their learned filters, as we would have initially expected2.109

2Although see Deza et al. (2020) that shows that CNN’s first layer filters develop random weights to compute
color, rather than Gabor-like structures, as CNNs learn to ignore edge cues to estimate color.
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Figure 4: Individual differences in color perception from neural networks that are randomly initialized
are shown. Such variations include architecture and optimizer across several images. By seeing these
color-based adversarial attacks, it suggests that each neural network has learned to compute its “own”
notion of color, analogous to what has been shown in humans (Emery & Webster, 2019).

Finally, extending our overall analysis to multiple trials, we see an interesting pattern of results as110

shown in Figure 4, where all neural network models seem to “learn to compute color” in a very111

different way (Lafer-Sousa et al., 2015; Emery & Webster, 2019) which can be visualized through112

the different attack structures in color space. What is even more puzzling is that on occasion, the113

final output of the adversarial attack will also be modulated by the input image. There are some cases114

where the attack is sparse, and other cases where it is dense (see Trial 2 for FCN optimized via Adam).115

This is an interesting interaction that we did not expect to find before running these experiments and116

requires further investigation which can not be covered in the scope of this paper.117

4 Discussion118

Circling back to the question that initially motivated this paper – What does an Adversarial Color119

look like? – we realize that the answer is still complex even if our focus in the paper pertains120

only to oversimplified models of machine vision. We have found that CNNs on the whole produce121

random noise vectors while fully connected models produce sparser noise vectors contingent on their122

optimization procedure. CNNs also chose to ignore the borders of the image to compute colors, unlike123

FCNs that would use the overall image information. Critically, FCNs seem to be better estimators124

of the average color of an image than CNNs even if CNNs are more robust to adversarial color125

attacks which is reminiscent of an accuracy-robustness tradeoff for object recognition-trained neural126

networks (Tsipras et al., 2018).127

Indeed, perhaps a more accessible question for an extended version of this paper is: how do these128

attacks differ when compared quantitatively and qualitatively to neural networks trained to do object129

classification? And most importantly, do the adversarial attack patterns that arise across the different130

variations of neural networks optimized to do color estimation hold any resemblance to those that also131

fool a human observer? What are the effects of adversarial training for average color estimation?132

Future work will explore the perturbations performed on our machine vision models on humans,133

where we may be able to find that under the color estimation loss, such attacks fool humans the same134

way (Elsayed et al., 2018; Feather et al., 2019; Harrington & Deza, 2022; Feather et al., 2022).135
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Checklist136

The checklist follows the references. Please read the checklist guidelines carefully for information on137

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or138

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing139

the appropriate section of your paper or providing a brief inline description. For example:140

• Did you include the license to the code and datasets? [No] We will release the code in a141

follow-up version of the paper, but all details are available for re-implementation.142

• Did you include the license to the code and datasets? [No] The code and the data are143

currently proprietary, but will be made open-source.144

• Did you include the license to the code and datasets? [N/A]145

Please do not modify the questions and only use the provided macros for your answers. Note that the146

Checklist section does not count towards the page limit. In your paper, please delete this instructions147

block and only keep the Checklist section heading above along with the questions/answers below.148

1. For all authors...149

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s150

contributions and scope? [Yes]151

(b) Did you describe the limitations of your work? [Yes]152

(c) Did you discuss any potential negative societal impacts of your work? [N/A]153

(d) Have you read the ethics review guidelines and ensured that your paper conforms to154

them? [Yes]155

2. If you are including theoretical results...156

(a) Did you state the full set of assumptions of all theoretical results? [N/A]157

(b) Did you include complete proofs of all theoretical results? [N/A]158

3. If you ran experiments...159

(a) Did you include the code, data, and instructions needed to reproduce the main experi-160

mental results (either in the supplemental material or as a URL)? [No] We will upload161

the code in a future version of the paper162

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they163

were chosen)? [Yes]164

(c) Did you report error bars (e.g., with respect to the random seed after running experi-165

ments multiple times)? [Yes]166

(d) Did you include the total amount of compute and the type of resources used (e.g., type of167

GPUs, internal cluster, or cloud provider)? [Yes] Experiments were ran on a MacBook168

Air through a Google Colab notebook with Pytorch 1.12.1, and the computer’s CPU169

through Visual Studio Code. No GPU’s were used.170

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...171

(a) If your work uses existing assets, did you cite the creators? [Yes]172

(b) Did you mention the license of the assets? [Yes]173

(c) Did you include any new assets either in the supplemental material or as a URL? [No]174

(d) Did you discuss whether and how consent was obtained from people whose data you’re175

using/curating? [N/A]176

(e) Did you discuss whether the data you are using/curating contains personally identifiable177

information or offensive content? [N/A]178

5. If you used crowdsourcing or conducted research with human subjects...179

(a) Did you include the full text of instructions given to participants and screenshots, if180

applicable? [N/A]181

(b) Did you describe any potential participant risks, with links to Institutional Review182

Board (IRB) approvals, if applicable? [N/A]183

(c) Did you include the estimated hourly wage paid to participants and the total amount184

spent on participant compensation? [N/A]185
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A Neural Network Architecture Details243

CNNet (244

( conv1 ) : Conv2d ( 3 , 6 , k e r n e l _ s i z e = (5 , 5 ) , s t r i d e = (1 , 1 ) )245

( poo l ) : MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e )246

( conv2 ) : Conv2d ( 6 , 16 , k e r n e l _ s i z e = (5 , 5 ) , s t r i d e = (1 , 1 ) )247

( f c 1 ) : L i n e a r ( i n _ f e a t u r e s =400 , o u t _ f e a t u r e s =120 , b i a s =True )248

( f c 2 ) : L i n e a r ( i n _ f e a t u r e s =120 , o u t _ f e a t u r e s =84 , b i a s =True )249

( f c 3 ) : L i n e a r ( i n _ f e a t u r e s =84 , o u t _ f e a t u r e s =3 , b i a s =True )250

)251

FCNet (252

( f c 1 ) : L i n e a r ( i n _ f e a t u r e s =3072 , o u t _ f e a t u r e s =20 , b i a s =True )253

( r e l u ) : ReLU ( )254

( f c 2 ) : L i n e a r ( i n _ f e a t u r e s =20 , o u t _ f e a t u r e s =3 , b i a s =True )255

)256

B Implementational Details of Adversarial Attacks on Color Space257

The implementation and visualization of the adversarial attacks for the color estimation task took258

place in two distinctly different color spaces. For the sake of quicker convergence in training, and259

smoother intervals of adversarial attacks, each CIFAR-10 input image was scaled down from integers260

in the space of [0, 255] so that its pixel values fit into the normalized range of [-1, 1] as flots.261

Visualization of the adversarial attack took place in the un-normalized (original) range of [0,255]262

so that the images would have an appropriate meaning and rendering in the RGB color space. This263

transformation to [0,255] range only happened within the final stages of visualization so as to not264

interfere with the attack.265

One consequence of visualizing images in any color space is that out-of-bounds values are not266

renderable/visualizable. In our context, this referred to values not in the range [-1,1] (e.g. -2.3, 4).267

Thus, whenever the neural networks models predicted average color of the adversarial image with268

values outside of the range [-1,1] – which happened quite often with ϵ = 0.4 and higher – or when269

the adversarial image itself was created with too strong of a noise perturbation, we bounded these270

values to stay within [-1,1]. This is why the adversarial superposition is curved in figure 2.271

This also affected our evaluation of the average loss of the networks on adversarial datasets as it272

capped the maximum distance between a label and prediction - bounding the regression problem.273

Thus, the MSE loss was never unreasonably high because the color space was bounded.274

Future work will also explore how the color space may take into account the nature of the adversarial275

attack (RGB vs LAB or HSV).276

C Supplementary Experiments277
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Figure 5: Visualizations of the bounded average loss of the 4 architecture types averaged over 10
trials, when tested on the adversarially attacked datasets with increasing epsilon. CNN’s appear more
robust than FCN’s those approximation power of FCN’s is evident in the solid color experiments.
Individual trials can be see in Figure 8,9.

10



Figure 6: Full schematic visualizing the adversarial attack for Adam optimized neural networks,
including ground truth, prediction and averages of different images (original, inverted and solid).
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Figure 7: Full schematic visualizing the adversarial attack for SGD optimized neural networks,
including ground truth, prediction and averages of different images (original, inverted and solid).
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CIFAR-10 CIFAR-10 Inverted Solid Color

FCN (Adam)

FCN (Adam)

FCN (SGD)

FCN (SGD)

Figure 8: Quantitative estimation of the loss (computed via MSE) in normalized color space between
the ground truth and the prediction for Fully Connected Neural Networks. Average Loss is visualized
on the top, while the individual trial losses are visualized in the bottom. Notice that all FCNs compute
color extremely well with near zero error.
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CNN (Adam)

CNN (Adam)

CNN (SGD)

CNN (SGD)

CIFAR-10 CIFAR-10 Inverted Solid Color

Figure 9: Quantitative estimation of the loss (computed via MSE) in normalized color space between
the ground truth and the prediction for Convolutional Neural Networks. Average Loss is visualized
on the top, while the individual trial losses are visualized in the bottom. Notice the variability of
CNNs to compute average colors specially for solid colors.
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