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Abstract
We introduce an offline multi-agent reinforcement learning (offline MARL) frame-
work that utilizes previously collected data without additional online data collection.
Our method reformulates offline MARL as a sequence modeling problem and thus
builds on top of the simplicity and scalability of the Transformer architecture. In
the fashion of centralized training and decentralized execution, we propose to first
train a teacher policy who has the privilege to access every agent’s observations,
actions, and rewards. After the teacher policy has identified and recombined the
"good" behavior in the dataset, we create separate student policies and distill not
only the teacher policy’s features but also its structural relations among different
agents’ features to student policies. We show that our framework significantly
improves performances on a range of tasks and outperforms state-of-the-art offline
MARL baselines. Furthermore, we demonstrate that the proposed method has a
better convergence rate, is more sample efficient, and is more robust to various
demonstration qualities compared with baselines.

1 Introduction
The online learning paradigm assumed by existing multi-agent reinforcement learning (MARL)
algorithms is one of the biggest obstacles to their widespread adoption. To apply MARL, one has to
repeatedly perform the following two steps: (a) collect experiences by deploying multiple agents,
typically with their latest learned policies, and (b) use the collected experiences to improve the
policies. In many scenarios, frequently performing the first step is impractical because deploying
multi-agents to the environment can be expensive and dangerous (e.g., self-driving cars). Therefore,
devising offline MARL algorithms that can simply learn from previously collected datasets without
interaction with the environment is an important step toward solving real-world problems.

Recently, several works have extended offline RL algorithms under the single-agent setting to offline
MARL [45]. These works focus on addressing the distribution shift issue that causes the values of
unseen state-action pairs to be erroneously estimated. However, these methods are based on temporal
difference (TD) learning and thus require bootstrapping for credit assignment, a problem that is
especially challenging under the multi-agent setting as the interactions between the agents and the
environment can be highly complex.

To mitigate these issues, we explore the possibility to transform offline MARL into a sequence
modeling problem. This paradigm shift, first introduced by Decision Transformer [3] under the
single-agent setting, allows us to bypass bootstrapping and perform credit assignment directly via
self-attention. A concurrent work, MADT [26], proposes to adapt Decision Transformer to the
multi-agent setting by (a) sharing model parameters across agents and (b) attaching one-hot agent
IDs to observations. Different from MADT, we propose a framework based on policy distillation that
achieves better performance (as demonstrated in the experiments).

Our method first trains a teacher policy (instantiated as a decision transformer) to model the entire
offline MARL dataset sequentially by accessing each agent’s observation, action, and reward. The
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Figure 1: Illustrative Example. (a)
Two agents are tasked to explore as
many blocks as possible. Explored
blocks are colored (e.g., blue). (b) The
training dataset consists of agents’ ran-
dom walk trajectories and per-step re-
wards. (c) Agents trained with behav-
ior cloning result in suboptimal perfor-
mance. (d) A centralized Decision Trans-
former (Teacher DT) achieves superior
performance but assumes privileged infor-
mation. (e) Our framework structurally
distills Teacher DT’s policy into student
policies for decentralized execution.

privilege to access every agent’s information helps the teacher policy understand the underlying
interaction across agents and predict actions that encourage cooperative behavior. However, the
teacher policy cannot be deployed at test time in the fashion of decentralized execution. To address
this issue, we initialize a separate student policy for each agent and distill the knowledge of the
teacher policy into the student policy. In addition to allowing decentralized execution, this step is
helpful because (a) the teacher policy can identify and recombine "good" behavior in a suboptimal
dataset [3], (b) the centralized teacher allows credit assignment across agents via self-attention, and
(c) distillation from a privileged model (teacher) provides richer and more stable learning signal to
the student policy [2]. Furthermore, we propose a novel distillation objective that transfers structural
relations of student policies’ features rather than actual values of individual features. In our empirical
results, we show that this objective is complementary to the classical policy distillation and helps
us outperform state-of-the-art baselines on a range of benchmarks. Additionally, we provide further
analysis on convergence rate, sample efficiency, and robustness to different demonstration qualities.
Qualitative results are presented in our project website1.

In summary, our contributions are as follows:

• A framework that reformulates offline MARL as sequential modeling and policy distillation
for using self-attention to perform multi-agent credit assignment.

• A novel multi-agent policy distillation objective that focuses on preserving structural rela-
tionships among policies.

• State-of-the-art results on a broad range of tasks in terms of performance, convergence rate,
sample efficiency and robustness to demonstration quality compared with baselines.

2 Related Works
MARL. Applying RL to multi-agent settings has been an active research domain for years. One line
of work adapts value-based RL algorithms to perform credit assignment among agents given the joint
reward signal [40, 9, 32, 38, 13]. COPA [23] and REFIL [15] uses dynamic team composition to
further improve the training efficiency for tasks that require cooperative behaviors.

Another line of work extends the actor-critic framework to the multi-agent setting. For instance,
MADDPG[25] uses DDPG [21] to jointly update decentralized policies and a centralized critic. For
better scalability, several works [16, 17] further introduce the attention mechanism into the critic to
prevent noises from irrelevant information .

A unique challenge in multi-agent environments [14, 30] is local observation. Previous works have
proposed various communication mechanisms to tackle this issue. By exchanging information
between agents, they can better understand the tasks and other agents. Some works [17, 8, 28, 24, 20]
incorporate the attention mechanism to improve communication efficiency, while others [37] design
a gating mechanism to decide when to communicate.

Offline RL. Different from the typical RL setting, offline RL trains the policy with a static, collected
dataset and does not need any online interaction with the environment. Then, this policy is leveraged

1https://weichengtseng.github.io/project_website/neurips22/index.html
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Figure 2: Overview. We compare (a) independent decision transformer (IDT), (b) multi-agent
decision transformer [26] (MADT), and (c) our approach. (a) IDT trains an independent decision
transformer for each agent separately. (b) MADT extends IDT by sharing parameters across multiple
agents and concatenate agent’s one-shot IDs to the observations. (c) Our approach first train a
teacher policy, instantiated by a centralized decision transformer, and then distill both its features and
structural relations among features to IDT.

to interact with the online environment to obtain promising results or assist exploration [43]. However,
trajectories existing in offline datasets and interaction with the online environment have different
distributions. One of the strategies to mitigate this issue is applying policy constraints [27, 48].
Another direction to alleviate this difficulty is to regularize the value estimation in reinforcement
learning [18] or take uncertainty into consideration [1].

Recently, the Decision Transformer [3] outperforms many state-of-the-art offline RL algorithms
by regarding the training process as a sequential modeling phase and testing on the online envi-
ronment. This approach can bypass the drawback of TD-learning and overcome sparse reward
difficulty. MADT [26] further extends Decision Transformer to a multi-agent domain by making
agents controlled by a shared weight transformer-based policy.

Knowledge Distillation. Knowledge distillation (KD) transfers knowledge from one deep learning
model (the teacher) to another (the student). The objective originally proposed by [12] minimizes the
KL divergence between the teacher and student outputs. This formulation makes intuitive sense when
the output is a distribution, such as a probability mass function over classes. Recent works focus
on how to leverage the relationships between instances in the dataset to further provide meaningful
representation learning [42, 41]. RKD [29] extracts the relation between instances from the feature
space by defining distance-wise relation and angle-wise relation.

Knowledge distillation is also adapted to RL scenario. [6] proposes to distill multiple task-specific
policies into a single policy which is more parameter-efficient. DPD [19] utilizes two policies that
interact with the same environment with different initialization to explore different perspectives of the
environment and extract knowledge from each other to enhance their learning. M&M [7] combines
curriculum learning as well as distillation to allow agents to perform well in an environment with
large action space.

The typical goal of knowledge distillation is model compression by making the student model smaller.
Our method is different because our goal is to enable decentralized execution in the multi-agent
setting.

3 Method

In this section, we introduce our framework based on sequence modeling and policy distillation.
We first describe a baseline, Independent Decision Transformer (IDT), that naively adapts Decision
Transformer to the multi-agent setting in Section 3.1. Then, we present our novel structural relation
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Algorithm 1 Our Offline MARL
Input: offline dataset D : {τi(oit, ait, rit)Tt=1}ni=1
Initialize: θ as the parameters of πteacher , ϕ1:n as the parameters of π1:n

// training centralized decision transformer
for τ in D do

â1:nt = argmaxπcentralized(a
1:n|â1:n<t , θ)

θ = θ − α∇θLcentralized
end for

// training decision transformers for agents
Freeze the weight θ
for τ in D do

â1:nt = argmaxπteacher(a
1:n|â1:n<t , θ)

for i=1:n do
ait = argmaxπi(a

i|âi<t, ϕ
i)

ϕi = ϕi − α∇ϕi(Li
action + αLi

rel + βLi
KL)

end for
end for

distillation for multi-agent policy distillation in Section 3.2. The overall algorithm is presented in
Algorithm 1.

3.1 Independent Decision Transformer

Figure 3: Policy distillation objectives we consider in
our work. (a) Convential policy distillation [34] transfers
individual outputs from a teacher model (green dots) to
a student model (blue dots) point-wise, while (b) the pro-
posed Relational Policy Distillation transfers structural
relations of multi-agents’ features.

An intuitive method to transform offline
MARL into a sequence modeling problem
is to treat each agent’s trajectory as inde-
pendent sequence. For each agent i, a sep-
arate decision transformer πi is trained to
predict the next action ait+1 given the past
trajectories (oi(t−B):t, a

i
(t−B):t, r

i
(t−B):t)

where B stands for the maximum num-
ber of past steps to consider. Since these
agents are trained independently without
access to other agents’ information, we
call this method Independent Decision
Transformer (IDT). Its learning objective can be formulated as a sequence modelling problem
that aims to predict the next action, Li

action = ||ait+1 − ait+1||2 We note that although each agent can
leverage self-attention to perform credit assignment along their own trajectories, this algorithm cannot
perform credit assignment across agents. This limitation prohibits agents to achieve cooperative
behavior that attains maximal returns.

3.2 Teacher-Student Policy Distillation
To address IDT’s cross-agents credit assignment issue, we propose to first train a centralized teacher
policy πteacher that takes in all agents’ observations, actions, and rewards (o1:n(t−B):t, a

1:n
(t−B):t, r

1:n
(t−B):t)

combined via concatenation to predict all agents’ actions â1:nt+1 at the next step. We represent the
teacher policy πteacher with a decision transformer and train it to minimize the prediction error of all
agents’ actions. Since the teacher policy has access to all agents’ information, it can perform credit
assignment across agents with self-attention to better foster cooperative behavior. This is similar
to how centralized critic helps actor critic-based methods in online MARL [16, 25]. However, the
centralized teacher policy cannot be deployed distributedly. To fix this, we propose to distill the
teacher policy’s features to n separate student policies. We note that even though student policies
operate independently during test time, they are very different from policies learned by IDT because
(a) the supervision comes from a teacher policy that can perform credit assignment across agents, and
(b) distillation provides a more stable learning signal to the student policy [2]. One intuitive policy
distillation objective is to minimize the KL divergence between the actions predicted by the teacher
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policy âi and the student’s policy ai:

Li
KL = DKL(â

i|ai) (1)

The other common distillation objective is to minimize the euclidean distance between the teacher’s
features f̂ i and the student’s features f

i
[33]:

Li
feature = ∥f̂ i − f

i∥22 (2)

However, both of these widely-used distillation strategies do not consider the structural relation
between multi-agent students.

Structural Relation Distillation. To help the student policies learn as much as possible from the
teacher policy, we introduce a new distillation objective tailored to the multi-agent setting. Our main
insight is that in addition to transferring the teacher policy’s actual feature values, we wish to preserve
the structural relation among multi-agents’ features. For example, if two agents belong to the same
type of units and have similar observations in SMAC [35], their outputs should be close to each other.
To this end, we define the relation between agents as the angle between feature vectors, and we intend
to make the relation between student policies π1:n mimic the relation between agents controlled by
πteacher. In other words, we would like to minimize

Li
rel =

∑
j ̸=i

H(cos−1(f̂ i, f̂ j), cos−1(f
i
, f

j
)) (3)

where H denotes the Huber loss. During the policy distillation procedure, the weight of the centralized
policy πteacher is frozen. The comparision of IDT, MADT [26] and our approach is summarized in
Fig. 2

Mapping Networks. Inspired by recent works [4, 11, 5] which use an MLP projection head
to provide flexibility for contrastive representation learning, we propose to use a pair of mapping
networks (M,N) to help policy distillation and prevent from loss of information induced by relational
distillation loss. By leveraging mapping networks that remove information irrelevant to structural
relation yet potentially useful in downstream policy learning, more information can be formed and
maintained in the feature f . Specifically, M and N are simple MLPs that transform the features before
relational policy distillation. Note that the weight of mapping networks are non-shared (M ̸= N )
in our setting since the teacher and student policies are inherently asymmetric in the amount of
information allowed for reasoning (the teacher has access to privileged information from all agents).
Therefore, the relational policy distillation becomes

Li
rel =

∑
j ̸=i

H(cos−1(M(f̂ i),M(f̂ j)),

cos−1(N(f
i
), N(f

j
)))

However, a learnable and non-fixed M effectively forms a moving target in the objective, causing
unstable learning. To stabilize the distillation process, we adopt a momentum-like update for mapping
networks. We make the update frequency of the teacher’s mapping network M lower than the
student’s mapping network N . In other words, we update M every e updates of N . We empirically
found that setting e = 4 improves the convergence speed, but the converged performance is insensitive
to e.

In summary, the overall learning objective for agent i is

Li
total = Li

action + αLi
rel + βLi

KL (4)

where α and β are hyperparameters that determine the importance of the proposed policy distillation.

4 Experiments
We execute a series of experiments to evaluate whether the proposed method is effective at solving
offline MARL problems. Specifically, our experiments seek to answer the following questions: first,
does our method perform favorably against a wide range of existing approaches based on sequence
modeling, imitation learning, and offline reinforcement learning (Section 4.1)? Specifically, we
compare our method with model-free offline MARL methods based on TD-learning and MADT, a
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Fill-In Equal Space Grid-World Highway
BC −12.43± 0.21 −9.35± 0.64 1.49± 0.16 13.38± 1.14
IDT [3] −7.83± 0.42 −7.99± 0.42 1.52± 0.27 18.71± 1.53
MADT [26] −6.51± 0.21 −6.91± 0.92 1.57± 0.34 18.78± 1.27
MA-CQL [18] −9.41± 1.72 −6.99± 0.38 1.44± 0.30 17.69± 1.32
MA-ICQ [45] −9.72± 0.39 −7.12± 0.29 1.62± 0.29 18.01± 1.27
MA-BCQ [10] −8.11± 0.20 −7.06± 0.59 1.49± 0.44 17.92± 1.48
MA-GAIL [39] −3.41± 0.12 −8.43± 0.42 1.51± 0.32 16.48± 1.80
MA-AIRL [47] −11.41± 0.07 −8.43± 0.63 1.52± 0.37 16.76± 1.95
Ours −3.41± 0.12 −2.43± 0.72 2.09± 0.22 23.35± 0.91

SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

BC 14.77± 1.01 11.32± 0.79 11.45± 1.14 10.86± 0.99
IDT [3] 17.63± 1.80 15.99± 1.11 15.93± 0.86 16.33± 1.93
MADT [26] 18.09± 1.26 16.18± 1.05 17.11± 1.83 16.91± 2.10
MA-CQL [18] 17.04± 1.38 15.02± 1.93 14.92± 1.87 15.32± 2.42
MA-ICQ [45] 17.42± 1.52 15.36± 2.01 14.72± 1.22 14.99± 2.21
MA-BCQ [10] 17.08± 1.12 15.09± 0.84 14.32± 1.02 15.78± 1.64
MA-GAIL [39] 15.01± 1.12 13.99± 0.84 13.99± 0.69 14.98± 2.04
MA-AIRL [47] 15.11± 1.12 14.02± 0.84 14.01± 0.79 14.95± 2.18
Ours 18.12± 1.31 16.98± 1.19 18.33± 0.99 18.78± 2.01

Table 1: Quantitative Results. We show the average and standard deviation of return pre-agent, and
all the experiments are merged with 10 random seeds. As for detailed information about the offline
dataset, please refer to appendix D.

Grid-World Highway

Dataset Quality good normal poor good normal poor

BC 1.49 ± 0.16 1.29 ± 0.05 1.01 ± 0.12 13.38 ± 1.14 10.23 ± 0.91 8.71 ± 0.72
IDT [3] 1.52 ± 0.27 1.45 ± 0.12 1.43 ± 0.09 18.71 ± 1.53 18.01 ± 1.39 17.58 ± 1.01
MADT [26] 1.57 ± 0.34 1.50 ± 0.17 1.44 ± 0.11 18.78 ± 1.27 18.03 ± 1.02 17.84 ± 0.84
MA-CQL [18] 1.44 ± 0.30 1.40 ± 0.21 1.31 ± 0.11 17.69 ± 1.32 16.88 ± 0.93 15.98 ± 0.67
MA-ICQ [45] 1.62 ± 0.29 1.37 ± 0.10 1.32 ± 0.09 18.01 ± 1.27 16.54 ± 0.74 16.03 ± 0.83
MA-BCQ [10] 1.49 ± 0.44 1.39 ± 0.14 1.37 ± 0.05 17.92 ± 1.48 16.89 ± 0.78 15.73 ± 0.58
MA-GAIL [39] 1.51 ± 0.32 1.19 ± 0.31 1.16 ± 0.28 14.48 ± 1.80 11.27 ± 1.58 9.12 ± 1.78
MA-AIRL [47] 1.52 ± 0.37 1.21 ± 0.27 1.11 ± 0.25 16.76 ± 1.95 15.82 ± 1.93 10.22 ± 1.87
Ours 2.09 ± 0.22 1.89 ± 0.12 1.81 ± 0.19 23.35 ± 0.91 20.01 ± 1.01 17.13 ± 1.12

Table 2: Offline learning results on offline trajectories with different quality. In general, our approach
outperform other baselines when the quality of the offline dataset is not perfect.

concurrent work that also solves MARL via sequence modeling. Next, we conduct careful ablation
studies to evaluate the contribution of each component within our framework (Section 4.2). To test the
sample efficiency of various approaches, we further show the performance of various methods when
different numbers of demonstrations are provided (Section 4.4). Finally, we analyze the convergence
rate (Section 4.5) and discuss the scalability (Section 5) of our method.

Baselines. We compare our approach with three group of baselines including sequence modeling
(IDT, MADT), offline RL (MA-CQL, MA-ICQ, MA-BCQ) and imitation learning/inverse RL (BC,
MA-GAIL, MA-AIRL), and we briefly introduce them as follow.

BC: behavior cloning. IDT: each agent is represented by a decision transformer [3] independently.
MADT [26]: a weight-sharing decision transformer is used to represent each agent’s policy. MA-
CQL [18]: conservative Q-learning (CQL), which aims to address the extrapolation error by learning
a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds
its true value. MA-ICQ [45]: implicit constraint Q-learning (ICQ), which improves upon MA-CQL
by only trusting the state-action pairs given in the dataset for value estimation under the multi-agent
setting. MA-BCQ [10]: batch-constrained reinforcement learning, which restricts the action space
in order to force the agent towards behaving close to on-policy with respect to a subset of the given
data. MA-GAIL [39]: an inverse reinforcement learning for multi-agent scenario. MA-AIRL [47]: a
framework for multi-agent inverse reinforcement learning, which is effective and scalable for Markov
games with high-dimensional state-action space and unknown dynamics. For detail experimental
setting about our approach and baselines, please refer to appendix A.

6



Figure 4: Environments we used in our ex-
periments: (a) Fill-In (b) Equal Space (c)
Grid-World (d) SAMC (e) Highway. See the
detailed description of each task in Section 4.

Environments. We test our approach on three multi-
agent environments. Fill-In: a grid-world environ-
ment that agents are required to pass all the blocks
in map. Equal Space: a particle system environment
that agents need to keep the same distance between
each other. SMAC [28]: a collaborative multi-agent
reinforcement learning based on Blizzard’s StarCraft
II RTS game, and we choose four different scenarios,
2s3z, 3s5z, 8m9m, and 3s5z vs 3s6z. Grid-World:
a simple grid-world environment that allow agents
to conduct discrete actions to move and collect the
corresponding objects. Highway: a multi-agent envi-
ronment that simulate highway traffic scenario. Each
controllable agent drives a car and the goal is to reach
a high speed while not colliding into neighboring ve-
hicles. For detail experimental setting, please refer to
appendix B.

Offline Dataset The offline MARL dataset for n
agents is represented as a set of trajectories τ :=
(o1:nt , a1:nt , r1:nt )Tt=1. For Grid-World and Highway,
we train a centralized policy with PPO [36] and treat it
as the expert to generate demonstrated trajectories. The offline datasets for SMAC [35] are collected
by running a policy trained with MAPPO [46]. We also provide more information about datasets in
appendix C.

Fill-In Equal Space Grid-World Highway
Ours (conventional distillation) −4.11± 0.22 −5.43± 0.51 1.62± 0.29 18.33± 1.27
Ours (M = N ) −3.11± 0.22 −2.61± 0.33 1.42± 0.19 14.92± 1.87
Ours - Momentum Update −3.92± 0.31 −2.44± 0.53 1.79± 0.19 18.62± 1.98
Ours - Mapping Network −3.32± 0.42 −2.87± 0.19 1.88± 0.11 18.21± 1.99
Ours - KL Distillation −3.89± 0.33 −2.99± 0.27 1.99± 0.51 20.11± 1.88
Ours - KL Distillation

- Mapping Network −3.30± 0.21 −2.71± 0.42 1.59± 0.44 18.40± 1.09

Ours Full method −3.41± 0.12 −2.43± 0.72 2.09± 0.22 23.35± 0.91

SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

Ours (conventional distillation) 16.11± 1.87 15.78± 1.78 15.99± 1.11 17.93± 1.32
Ours (M = N ) 14.14± 1.31 12.78± 1.08 15.40± 2.11 12.27± 1.11
Ours - Momentum Update 15.69± 1.91 15.20± 0.81 16.39± 2.70 17.51± 1.49
Ours - Mapping Network 15.23± 1.81 15.01± 0.31 16.87± 0.91 17.01± 0.32
Ours - KL Distillation 16.32± 0.91 16.21± 0.55 17.01± 1.26 17.80± 1.08
Ours - KL Distillation

- Mapping Network 15.01± 1.23 14.98± 1.06 16.42± 1.22 17.71± 1.88

Ours Full method 18.12± 1.31 16.98± 1.19 18.33± 0.99 18.78± 2.01

Table 3: Ablation study. We show the average and standard deviation of return pre-agent, and all the
experiments are merged with 10 random seeds.

4.1 Quantitative Results
We present the quantitative results in Table 1. For all the experiments, we report the mean and
standard deviation of rewards based on 10 runs using different random seeds. The results show
that our approach outperforms other baselines in all three environments. In general, we find that
offline RL approaches reach higher performance compared with imitation learning and inverse RL
methods. It is because offline RL approach can use reward signals to judge the quality of the policy
and try to infer optimal strategy. Sequence modeling methods slightly outperform offline RL ones
since Sequence modeling methods allow us to bypass bootstrapping and perform credit assignments
directly via self-attention. Besides, comparing ours and IDT, we can find that the proposed structural
knowledge distillation does provide performance benefits.
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Figure 6: Learning curves of online finetuning. The experimental results are merged with 10 random
seeds, and the shaded area represent the standard deviation.

We also find that our approach performs better than inverse MARL methods. Although inverse MARL
discards the necessity of reward signal, it assumes the quality of demonstration trajectories is perfect.
Under this assumption, it is possible to infer reward signals in an adversarial manner. However, since
it’s hard to guarantee the quality of multi-agent trajectories due to its dependency on other agents’
behaviors, the drawback of inverse MARL becomes obvious.

Figure 5: Qualitative results on equal space environment.
By observing the behavior of the agents, our approach
encourage agents to behave more efficiently.

In Table 2, we present the quantitative
results with different qualities of offline
demonstrations and find that our method
outperforms all baselines except for one
setting. The results suggest that our
method is more robust to various demon-
stration qualities across tasks. We hy-
pothesize our method performs on par
with baselines on Highway-poor because
learning a strong centralized decision
transformer from poor demonstrations is
challenging. This in turns affects the per-
formances of student policies.

4.2 Ablation Study
To validate the effectiveness of each component in our approach. To be more specific, we compare
our approach with following variant. Ours - Momentum Update: the variant that both mapping
network (M and N ) are updated with the same frequency. Ours - Mapping Network: the variant
that relation knowledge distillation is directly applied to feature space of decision transformer. Ours -
KL divergence: our approach without the KL divergence between teacher and student as distillation.
Ours (conventional distillation): our approach but use KL divergence for knowledge distillation
from the teacher policy. Ours (M = N ): the variant of our approach that the mapping networks for
teacher policy and student policies share the same weights.

The results show that all the components in our approach are required. Specifically, Ours - Mapping
Network achieves poor performance on 7 out of 8 tasks. It shows that Mapping Networks that
transform the students’ and teacher’s features into the same space for distillation are essential.
Additionally, according to the standard deviation of the performance, we find that approaches that do
not use momentum update are less reliable. KL divergence also provide performance benefit, but not
significant compared with mapping networks and momentum update.

We also find that ours (conventional distillation) performs the worst, which highlight that the
proposed our knowledge distillation is more effective than transitional knowledge distillation. It is
because structural relation among multi-agent can potentially represent how agent interact with each
other, which is the critical signal for a multi-agent task. Fig. 5 shows the behavior of the policies
trained by our approach and ours with conventional distillation, respectively. To make agents keep
the same distance from each other, policy obtained by our method tends to make agent move the the
closest corner and form an equilateral triangle structure. On the other hand, policy obtained by offline
learning and conventional distillation encourage specific agents to go to specific corners, which is a
sub-optimal solution. The performance Ours (M = N ) drops a lot, which represents that making the
weights of the two mapping networks non-shared is a reasonable choice.
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Figure 7: Data efficiency in offline learning setting on highway and grid-world environment. The
experimental results are merged with 10 random seeds, and the shaded area represents the standard
deviation. In general, our approach can have better data efficiency.

4.3 Finetuning
To verify whether the offline pre-trained framework can be further improved, we finetune the pre-
trained framework with MAPPO [46]. In Fig 6, we show the comparison of learning curves between
finetuning based on the pre-trained policy and policy trained from scratch. The experimental results
show that the pre-trained policy can get improvement with an online multi-agent reinforcement
learning approach.

4.4 Data Efficiency
We also show the performance with a different number of trajectories in Fig. 7 . The results show
that our relational knowledge distillation achieves better performance than conventional knowledge
distillation when the number of offline trajectories is relatively low. Besides, we also find that offline
RL approaches perform well with limited offline trajectories compared with our approach. We
hypothesize that the cause is that the transformer-based approach requires a large amount of data.
We stress that a common offline MARL setting allows abundant yet non-interactive demonstration
and thus our approach is still meaningful and desirable. Finally, we find that naive imitation learning
and behavior cloning perform the worst in all the cases, and we hypothesize that imitation learning
suffers from covariate shift, which can be more severe when the training data is few and unable to
cover a sufficiently large domain.

4.5 Convergence Rate
We observe better or comparable convergence with the centralized decision transformer for all
environments compared to MADT, e.g., in SMAC 3s5z vs 3s6z with poor quality data, the centralized
transformer is ∼8% better at 20k iterations (not fully converged). For knowledge distillation, it
requires roughly similar total training iterations for the student policies to converge. Besides, adding a
centralized decision transformer doesn’t introduce a large overhead in training time. In general, adding
one more centralized DT only requires less than an additional 10% training time in our experiment,
the training time as well as learning curves for each experiment are presented in Appendix B.

5 Limitation and Broader Impact

The scalability of multi-agent frameworks is important. Our approach depends on a centralized
decision transformer, which predicts all actions of each agent based on the returns and actions of all
the agents. Therefore, the centralized decision transformer may fall short in scalability. However, our
experiments find that we can still reach comparable performance compared with MADT when the
number of agents increases. We leave scalability in multi-agent policy distillation for future work.
Additionally, we note that offline MARL algorithms may lead to negative applications such as flying
a fleet of drones for surveillance.

6 Conclusion

In this work, we propose an offline MARL algorithms that first trains a teacher policy as if the dataset
is generated by a single agent. Once the teacher policy is trained, we use its predictions to supervise
the student using a novel distillation objective that considers agents’ relations.
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