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Abstract

Vision-and-Language Navigation (VLN) has gained increasing attention over recent years
and many approaches have emerged to advance their development. The remarkable achieve-
ments of foundation models have shaped the challenges and proposed methods for VLN
research. In this survey, we provide a top-down review that adopts a principled framework
for embodied planning and reasoning, and emphasizes the current methods and future op-
portunities leveraging foundation models to address VLN challenges. We hope our in-depth
discussions could provide valuable resources and insights: on the one hand, to document the
progress and explore opportunities and potential roles for foundation models in this field,
and on the other, to organize different challenges and solutions in VLN to foundation model
researchers.

1 Introduction

Developing embodied agents that are capable of interacting with humans and their surrounding environments
is one of the longstanding goals of Artificial Intelligence (AI) (Nguyen et al., 2021; Duan et al., 2022). These
AI systems hold immense potential for real-world applications to serve as multi-functional assistants in
daily life, such as household robots (Szot et al., 2021), self-driving cars (Hu et al., 2023), and personal
assistants (Chu et al., 2023). One formal problem setting to advance this research direction is Vision-and-
Language Navigation (VLN) (Anderson et al., 2018), a multimodal and cooperative task that requires the
agent to follow human instructions, explore 3D environments, and engage in situated communications under
various forms of ambiguity. Over the years, VLN has been explored in both photorealistic simulators (Chang
et al., 2017; Savva et al., 2019; Xia et al., 2018) and real environments (Mirowski et al., 2018; Banerjee et al.,
2021), leading to a number of benchmarks (Anderson et al., 2018; Ku et al., 2020; Krantz et al., 2020) that
each presents slightly different problem formulations.

Recently, foundation models (Bommasani et al., 2021), ranging from early pre-trained models like
BERT (Kenton & Toutanova, 2019) to contemporary large language models (LLMs) and vision-language
models (VLMs) (Achiam et al., 2023; Radford et al., 2021), have exhibited exceptional abilities in multi-
modal comprehension, reasoning, and cross-domain generalization. These models are pre-trained on massive
data, such as text, images, audio, and video, and could further be adapted for a broad range of specific
applications, including embodied AI tasks (Xu et al., 2024). Integrating these foundation models into VLN
task marks a pivotal recent advancement for embodied AI research, demonstrated through significant perfor-
mance improvements (Chen et al., 2021b; Wang et al., 2023h; Zhou et al., 2024a). Foundation models have
also brought new opportunities to the VLN field, such as expanding the research focus from multi-modal
attention learning and strategy policy learning to pre-training generic vision and language representations,
hence enabling task planning, commonsense reasoning, as well as generalize to realistic environments.

Despite the recent impact of foundation models on VLN research, the previous surveys on VLN (Gu et al.,
2022; Park & Kim, 2023; Wu et al., 2024) are from the pre-foundation-model era and mainly focus on
the VLN benchmarks and conventional approaches, i.e., they are missing a comprehensive overview of the
existing methods and opportunities leveraging foundation models to address VLN challenges. Especially
with the emergence of LLMs, to the best of our knowledge, no review has yet discussed their applications in
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Figure 1: We organize challenges and solutions in VLN using the LAW framework (Hu & Shu, 2023).
Specifically, the world model is a mental representation that encodes the visual perception and predicts the
outcomes of actions. The human model is a mental representation that interprets the human intentions from
textual instructions and contexts. They are a part of a VLN agent which reasons over multimodal input,
engages in dialogue and plans the navigation actions accordingly.

VLN tasks. Moreover, unlike previous efforts that discuss the VLN task as an isolated downstream task, the
objective of this survey is twofold: first, to milestone the progress and explore opportunities and potential
roles for foundation models in this field; second, to organize different challenges and solutions in VLN to
foundation model researchers within a systematic framework. To build this connection, we adopt the LAW
framework (Hu & Shu, 2023), where foundation models serve as backbones of world model and agent model.
This framework offers a general landscape of reasoning and planning in foundation models, and is closely
scoped with the core challenges in VLN.

Specifically, at each navigation step, the AI agents perceive the visual environment, receive language in-
structions from humans, and reason upon their representation of the world and humans to plan actions
and efficiently complete navigation tasks. As shown in Figure 1, a world model is an abstraction that
agents maintain to understand the external environment around them and how their actions change the
world state (Ha & Schmidhuber, 2018; Koh et al., 2021). This model is part of a broader agent model,
which also incorporates a human model that interprets the instructions of its human partner, thereby
informing the agent’s goals (Andreas, 2022; Ma et al., 2023). To review the growing body of work in VLN
and to understand the milestones achieved, we adopt a top-down approach to survey the field, focusing on
fundamental challenges from three perspectives:

• Learning a world model to represent the visual environment and generalize to unseen ones.
• Learning a human model to effectively interpret human intentions from grounded instructions.
• Learning a VLN agent that leverages its world and human model to ground language, communicate,

reason, and plan, enabling it to navigate environments as instructed.

We present a hierarchical and fine-grained taxonomy in Figure 2 to discuss challenges, solutions, and future
directions based on foundation models for each model. To organize this survey, we start with a brief overview
of the background and related research efforts as well as the available benchmarks in this field (§2). We
structure the review around how the proposed methods have addressed the three key challenges described
above: world model (§3), human model (§4), and VLN agent (§5). Finally, we discuss the current challenges
and future research opportunities, particularly in light of the rise of foundation models (§6).

2



Under review as submission to TMLR

Name World Human VLN Agent Dataset
Domain Environment Turn Format Gran. Type Act. Sp. Other Text Route

LANI/CHAI (2018) Indoors CHALET Single Multi Instr A - Disc Mani H H
R2R (2018) Indoors Matterport3D Single Multi Instr A Robot Graph H P
R4R (2019) Indoors Matterport3D Single Multi Instr A Robot Graph H P
RxR (2020) Indoors Matterport3D Single Multi Instr A Robot Graph H P

SOON (2021a) Indoors Matterport3D Single Multi Instr G Robot Graph H P
REVERIE (2020b) Indoors Matterport3D Single Multi Instr A, G Robot Graph Detect H P

VNLA (2019) Indoors Matterport3D Multi Multi Instr A, G Robot Graph T P
HANNA (2019) Indoors Matterport3D Multi Multi Instr A, G Robot Graph H P
CVDN (2020) Indoors Matterport3D Multi Restricted A Robot Graph H H

VLN-CE (2020) Indoors Habitat, Matterport3D Single Multi Instr A Robot Disc H P
Robo-VLN (2021) Indoors Habitat, Matterport3D Single Multi Instr A Robot Cont H P
RobotSlang (2021) Indoors Real Multi Freeform A Robot Disc H P
ALFRED (2020) Indoors AI2-THOR Single Multi Instr. A, G Robot Disc Mani H P
TEACh (2022) Indoors AI2-THOR Multi Freeform A, G Robot Disc Mani H H

DialFRED (2022) Indoors AI2-THOR Multi Restricted A, G Robot Disc Mani H, T P
TouchDown (2019) Outdoors Google Street View Single Multi Instr A - Graph H P
Street Nav (2020) Outdoors Google Street View Multi Multi Instr A - Disc T P
Talk2Nav (2021) Outdoors Google Street View Single Multi Instr A, G - Disc H P

TtW (2018) Outdoors Real Multi Freeform A, G - Disc H H
LCSD (2019) Outdoors CARLA Single Multi Instr A Driving Disc H P
CDNLI (2020) Outdoors CARLA Multi Multi Instr A, G Driving Cont H, T H

SDN (2022) Outdoors CARLA Multi Freeform A, G Driving Disc, Cont H H
AerialVLN (2023b) Outdoors AirSim Single Multi Instr A, G Aerial Disc H H

ANDH (2023a) Outdoors xView Multi Freeform A, G Aerial Disc H H

Table 1: A summary of existing VLN benchmarks, taxonomized based on several key aspects: the world
in which navigation occurs, the type of human interaction involved, the action space and tasks assigned to
the VLN agent, and the methods of dataset collection. For the world, we consider their domain (either
indoors or outdoors) and the environment. For the human, we consider their turns of interaction
(either single or multiple turn), the format of communication (freeform dialogue, restricted dialogue, or
multiple instructions), and the language granularity (action-directed and goal-directed). For the VLN
agent, we consider their agent types (e.g., household robot, autonomous driving vehicles, or autonomous
aerial vehicles), their action space (graph-based, discrete or continuous), and other additional tasks
(manipulation and object detection). For dataset collection, we consider the text collection (by human
or templated) and the route demonstrations (by human or planner).

2 Background and Task Formulations

In this section, we discuss the background, clarify the scope of this survey, define the VLN problem, and
briefly overview the benchmarks.

2.1 Cognitive Underpinnings of VLN

Humans and other navigational animals demonstrate early understanding and strategies for navigating their
environments (Rodrigo, 2002; Brand et al., 2015; Lingwood et al., 2018). For example, Gallistel (1990)
describes two basic mechanisms: piloting, which involves environmental landmarks and computes distances
and angles; and path integration, which calculates displacement and orientation changes through self-motion
sensing. Central to understanding spatial navigation is the cognitive map hypothesis, suggesting that the
brain forms a unified spatial representation to support memory and guide navigation (Epstein et al., 2017;
Bellmund et al., 2018). For instance, Tolman (1948) observed that rats could adopt the correct novel path
when familiar paths are blocked and landmarks are absent. Neuroscientists also discovered hippocampal
place cells, indicating a spatial coordinate system that encodes landmarks and goals allocentrically (O’Keefe
& Dostrovsky, 1971; O’keefe & Nadel, 1978). Recent studies also propose non-Euclidean representations, e.g.,
cognitive graphs, which illustrate the complexity of how we represent spatial knowledge of the world (Warren,
2019; Ericson & Warren, 2020). While visual and auditory perceptions are obviously integral to spatial repre-
sentation (Klatzky et al., 2006), our linguistic skills and spatial cognition are also closely intertwined (Pruden
et al., 2011). For instance, researchers have shown that understanding different aspects of spatial language
can help with space-related tasks (Pyers et al., 2010), and that language influences how children interact with
space by assisting them to recognize the importance of landmarks in identifying locations (Shusterman et al.,
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Figure 2: VLN challenges and solutions within the framework of world model, human model, and VLN
agent. We discuss history and memory in the world model, ambiguous instructions in the human model,
generalization ability in them both. For the VLN agent, we discuss methods for grounding and reasoning,
planning, and adapting foundation models as agents. Depending on the role served by the foundation models,
we categorize these methods into four types. Additionally, we discuss the potential future of the foundation
model for the VLN task.

2011). Studying VLN not only enhances the development of embodied AI that follows human instructions in
visual environments, but also deepens our understanding of how cognitive agents develop navigation skills,
adapt to different environments, and how language use is connected to visual perceptions and actions.

2.2 Relevant Tasks and Scope of the Survey

Following natural language navigation instructions has traditionally been modeled using symbolic world
representations such as maps (Anderson et al., 1991; MacMahon et al., 2006; Paz-Argaman & Tsarfaty,
2019). However, our survey focuses on models that employ visual environments and address the challenges
of multimodal understanding and grounding. Likewise, we redirect readers to extensive surveys on visual
navigation (Zhu et al., 2021b; Zhang et al., 2022a; Zhu et al., 2022) and mobile robot navigation (Gul
et al., 2019; Crespo et al., 2020; Möller et al., 2021), which concentrate on visual perception and physical
embodiment. However, these studies provide minimal discussions on the role of language in navigation tasks.
While we inevitably extend our discussions of VLN to encompass areas beyond navigation, such as mobile
manipulation and dialogue, our primary focus remains on navigational tasks, for which we provide a detailed
literature review. Besides, unlike previous VLN surveys (Gu et al., 2022; Park & Kim, 2023; Wu et al., 2024),
which offer a bottom-up summary focusing on benchmarks and modeling innovations, our survey adopts a
top-down approach, and uses the roles of foundation models to categorize the research efforts into three
fundamental challenges from the aspects of the world model, the human model, and the VLN agent. Note
that this survey concentrates on frontier methods associated with the rise of foundation models. Thus, we
point to less relevant methods (e.g., LSTM-based methods) very briefly at the beginning of each section to
motivate our discussions.

2.3 VLN Task Formulations and Benchmarks

VLN Task Definition. A typical VLN agent receives a (sequence of) language instruction(s) from human
instructors at a designated position. The agent navigates through the environment using an egocentric visual
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perspective. By following the instructions, its task is to generate a trajectory over a sequence of discrete views
or lower-level actions and control (e.g., FORWARD 0.25 meter) to reach the destination, which is considered
successful if the agent arrives within a specified distance (e.g., 3 meters) from the destination. Besides, the
agent may exchange information with the instructor during navigation, either by requesting help or engaging
in freeform language communication. Additionally, there has been an increasing expectation for VLN agents
to integrate additional tasks such as manipulation (Shridhar et al., 2020) and object detection (Qi et al.,
2020b), along with navigation.

Benchmarks. Unlike other multimodal tasks such as VQA, which have a relatively fixed task definition
and format, VLN encompasses a wide range of benchmarks and task formulations. These distinctions intro-
duce unique challenges in addressing the broader VLN task and must be clearly understood as prerequisites
for developing effective methods with appropriate foundation models. As is summarized in Table 1, exist-
ing VLN benchmarks can be taxonomized based on several key aspects in the LAW framework: (1) the
world where navigation occurs, including the domain (indoors or outdoors) and the specifics of the envi-
ronment. (2) the type of human interaction involved, including the interaction turns (single or multiple),
communication format (freeform dialogue, restricted dialogue, or multiple instructions), and language gran-
ularity (action-directed or goal-directed). (3) the VLN agent, including its types (e.g., household robots,
autonomous driving vehicles, or autonomous aerial vehicles), action space (graph-based, discrete, or contin-
uous), and additional tasks (manipulation and object detection). (4) the dataset collection, including text
collection method (human-generated or templated) and route demonstrations (human-performed or planner-
generated). Representatively, Anderson et al. (2018) create the Room-to-Room (R2R) dataset based on the
Matterport3D simulator (Chang et al., 2017), where an agent needs to follow fine-grained navigation instruc-
tions to reach the goal. Room-across-Room (RxR) (Ku et al., 2020) is a multilingual variation, including
English, Hindi, and Telugu instructions. It offers a larger sample size and provides time-aligned instructions
for virtual poses, enriching the task’s linguistic and spatial information. Matterport3D allows VLN agents to
operate in a discrete environment and rely on pre-defined connectivity graphs for navigation, where agents
travel on the graph by teleportation between adjacent nodes, referred to as VLN-DE. To make the simplified
setting more realistic, Krantz et al. (2020); Li et al. (2022c); Irshad et al. (2021) propose VLN in continu-
ous environments (VLN-CE) by transferring discrete R2R paths to continuous spaces (Savva et al., 2019).
Robo-VLN (Irshad et al., 2021) further narrows the sim-to-real gap by introducing VLN with continuous
action spaces that are more realistic in robotics settings. Recent VLN benchmarks have undergone several
design changes and expectations, which we discuss in § 6.

Evaluation Metrics. Three main metrics have been employed to evaluate navigation wayfinding perfor-
mance (Anderson et al., 2018): (1) Navigation Error (NE), the mean of the shortest path distance between
the agent’s final position and the goal destination; (2) Success Rate (SR), the percentage of the final position
being close enough to the goal destination; and (3) Success Rate Weighted Path Length (SPL), which normal-
izes success rate by trajectory length to balance both the success rate in reaching the correct destination and
the efficiency of the path. Some other metrics are used to measure the faithfulness of instruction following
and the fidelity between the predicted and the ground-truth trajectory, for example: (4) Coverage Weighted
by Length Score (CLS) (Jain et al., 2019)measures how closely an agent’s trajectory follows the reference
path. It balances two key aspects of the agent’s performance: the extent of coverage of the reference path
and the efficiency of the agent’s navigation by considering the length score; (5) Normalized Dynamic Time
Warping (nDTW) (Ilharco et al., 2019), which penalizes deviations from the ground-truth trajectories; and
(6) Normalized Dynamic Time Warping Weighted by Success Rate (sDTW) (Ilharco et al., 2019), which
penalizes deviations from the ground-truth trajectories and also considers the success rate.

2.4 Foundation Model

Foundation models are trained on large-scale datasets, which show strong generalization capability for a
wide range of downstream applications. Text-only foundation models, such as pre-trained language models
like BERT (Kenton & Toutanova, 2019) and GPT-3 (Brown, 2020), have revolutionized the field of NLP
by setting new benchmarks for tasks like text generation, translation, and understanding. Building on
the success of these models, vision-language (VL) foundation models, like LXMERT (Tan & Bansal, 2019),
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CLIP (Radford et al., 2021) and GPT-4 (OpenAI, 2023), have expanded the paradigm to multimodal learning
by integrating both visual and textual data, proving particularly impactful in various VL applications (Li
et al., 2020a; 2019a; Ramesh et al., 2021; Alayrac et al., 2022; Hong et al., 2021). Some commonly used VL
foundation models in VLN include LXMERT, which processes visual and textual inputs simultaneously, and
CLIP (Radford et al., 2021), which uses a contrastive learning approach to align visual and textual data.
For a more comprehensive overview of foundation models and their applications, we encourage readers to
refer to existing survey papers such as Bommasani et al. (2021), Du et al. (2022), and Zhou et al. (2023).

3 World Model: Learning and Representing the Visual Environments

A world model helps the VLN agent to understand their surrounding environments, predict how their
actions would change the world state, and align their perception and actions with language instructions.
Two challenges have been highlighted in existing work about learning a world model: encoding the visual
observation history in the current episode in the memory, and generalization to unseen environments in new
tasks.

3.1 History and Memory

Different from other vision-language tasks like Visual Question Answering (VQA) (Antol et al., 2015), Visual
Entailment (Xie et al., 2019), etc, the VLN agent needs to incorporate the history information of past actions
and observations into its current step’s input to determine the action rather than solely consider image and
text in a single step. Prior to employing the foundation models in VLN, LSTM hidden states served as
an implicit memory supporting agents’ decision-making during navigation, and researchers further design
different attention mechanisms (Tan et al., 2019; Wang et al., 2019) or auxiliary tasks (Ma et al., 2019; Zhu
et al., 2020) to improve the alignment between the encoded history and instructions.

History Encoding. Different works have been proposed to encode navigation history using foundation
models. A multi-modal Transformer is built upon encoded instructions and navigation history for decision-
making, which is usually initialized from a model pre-trained on in-domain instruction-trajectory data like
Prevalent (Hao et al., 2020). Some approaches encode the navigation history in recurrently updated state
tokens. Hong et al. (2021) proposes to utilize a single [CLS] token from last step for encoding the history
information, while Lin et al. (2022a) introduces a variable-length memory framework that stores multiple
action activations from previous steps in a memory bank as the history encoding. Despite their effectiveness,
these methods are limited by the need for step-by-step token updates, making it challenging to efficiently
retrieve history encodings at arbitrary steps in the navigation trajectory, which can hinder scalability in
pre-training. Another line of work directly encodes navigation history as a sequence with multi-modal
Transformer. Among them, Pashevich et al. (2021) encodes single-view images for each step in a trajectory.
Chen et al. (2021b) further proposes a panorama encoder to encode the panoramic visual observation at each
time step, followed by a history encoder to encode all the past observations. This hierarchical design sepa-
rately processes the spatial relationship in a panoramic view and the temporal dynamics across panoramas in
the navigation history. Besides, this method eliminates the dependency on recurrently updated state tokens
for history encoding, facilitating efficient and large-scale pre-training on instruction-path pairs. Follow-up
research replaces the panorama encoder with mean pooling of images (Kamath et al., 2023) or front-view
image encoding (Qiao et al., 2022), both maintaining effective navigation performance. With the advent of
LLM-based navigation agents, some works (Zhou et al., 2024b) focus on converting the visual environment
into textual descriptions, and explaining the world with text became the trend. The navigation history is
then encoded as a sequence of these image descriptions, along with relative spatial information such as head-
ing, elevation, and distance. HELPER (Sarch et al., 2023) equips an external memory of language-program
pairs that parse free-form human-robot dialogue into action programs through retrieval-augmented LLM
prompting.

Graph-based History. Another line of research enhances the navigation history modeling with graph
information. For example, some works utilize a structured Transformer encoder to capture the geometric
cues in the environment (Chen et al., 2022d; Deng et al., 2020; Wang et al., 2023b; Zhou & Mu, 2023; Su
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et al., 2023; Zheng et al., 2023b; Wang et al., 2021; Chen et al., 2021a; Zhu et al., 2021a). In addition to
the topological graph used in encoding, many works propose to include the top-down view information (e.g.,
grid map (Wang et al., 2023g; Liu et al., 2023a), semantic map (Hong et al., 2023a; Huang et al., 2023;
Georgakis et al., 2022; Anderson et al., 2019; Chen et al., 2022b; Irshad et al., 2022), local metrics map (An
et al., 2023)), and local neighborhood map (Gopinathan et al., 2023) in modeling the observation history
during navigation. Recent advances in LLM-based navigation agents have introduced innovative approaches
to memory construction using maps. For instance, Chen et al. (2024a) proposes a novel map-guided GPT-
based agent that utilizes a linguistical-formed map to store and manage topological graph information.
MC-GPT (Zhan et al., 2024b) introduces a topological map as the memory structure to record information
about viewpoints, objects, and their spatial relationships.

3.2 Generalization across Environments

One main challenge in the VLN is learning from limited available environments and generalizing to new and
unseen environments. Many works demonstrate that learning from semantic segmentation features (Zhang
et al., 2020), dropout information in the environment during training (Tan et al., 2019), and maximizing the
similarity between semantically-aligned image pairs from different environments (Li et al., 2022a) improve
agents’ generalization performance to unseen environments. These observations suggest the need to learn
from large-scale environment data to avoid overfitting to training environments. Next, we discuss how
existing works collect new environment data, and utilize it in training.

Pre-trained Visual Representations. Most works obtain vision representations from ResNet pre-
trained on ImageNet (Anderson et al., 2018; Tan et al., 2019). Shen et al. (2021) replace it with the
CLIP visual encoder (Radford et al., 2021), which is pre-trained with contrastive loss between image-text
pairs and naturally aligns better with the instructions, boosting the VLN performance. Wang et al. (2022b)
further explores transferring vision representation learned from video data for VLN task, suggesting that
temporal information learned from video is crucial for navigation.

Environment Augmentation. One main line of research focuses on augmenting the navigation environ-
ment with auto-generated synthetic data. EnvEdit (Li et al., 2022b), EnvMix (Liu et al., 2021), KED (Zhu
et al., 2023), and FDA (He et al., 2024a) generate synthetic data by changing the existing environments from
Matterport3D. Specifically, they mix up rooms from different environments, change the appearance and style
of the environments, and interpolate high-frequency features with the environments. Pathdreamer (Koh
et al., 2021) and SE3DS (Koh et al., 2023) further synthesize the environments in future steps given current
observations and explore utilizing the synthesis view as augmented data for VLN training.

The learning paradigm from the collected environments has changed with the advances in foundation models.
Prior to the prevalence of pre-training in foundation models, most works directly augment the training
environment with the auto-collected new environments and fine-tune a LSTM-based VLN agent (Li et al.,
2022b; Liu et al., 2021; Koh et al., 2021; 2023; Zhu et al., 2023). As pre-training has been demonstrated
to be crucial for foundation models, it has also become a standard practice in VLN to learn from collected
environments during the pre-training stage (Li & Bansal, 2024; Kamath et al., 2023; Chen et al., 2022c;
Wang et al., 2023h; Lin et al., 2023b; Guhur et al., 2021a; He et al., 2024a). Large-scale pre-training with
augmented in-domain data has become crucial in bridging the gap between agents’ and humans’ performance.
The in-domain pre-trained multi-modal transformer has been proven to be more effective than the multi-
modal Transformer initialized from VLMs, like Oscar (Li et al., 2020b) and LXMERT (Tan & Bansal, 2019).

4 Human Model: Interpreting and Communicating with Humans

Besides learning and modeling the world, VLN agents also need a human model that comprehends human-
provided natural language instructions per situation to complete navigation tasks. There are two main
challenges: resolving ambiguity and generalization of grounded instructions in different visual environments.
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4.1 Ambiguous Instructions

Ambiguous instructions mainly arise in single-turn navigation scenarios, where the agent follows an initial
instruction without further human interaction for clarification. These instructions lack the flexibility to
train the agent to adapt its language understanding and visual perception to the dynamic environment. For
instance, instructions may contain landmarks invisible at the current view or indistinguishable landmarks
visible from multiple views (Zhang & Kordjamshidi, 2023). The issue of ambiguous instructions is barely
addressed before the application of foundational models to VLN. Although LEO (Xia et al., 2020) attempts
to aggregate multiple instructions to describe the same trajectory from different perspectives, it still relies
on human-annotated instructions. However, comprehensive perceptual context and commonsense knowledge
from foundational models enable the agent to interpret ambiguous instructions using external knowledge, as
well as seek assistance from other human models.

Perceptual Context and Commonsense Knowledge. Large-scale cross-modal pre-trained models like
CLIP are capable of matching visual semantics with text. This enables the VLN agent to utilize information
from the visual objects and their states in the current perception to resolve ambiguity, especially in single-turn
navigation scenarios. For example, VLN-Trans (Zhang & Kordjamshidi, 2023) constructs easy-to-follow sub-
instructions with visible and distinctive objects obtained from CLIP to pre-train a Translator that converts
original ambiguous instructions into easily understandable sub-instruction representations. LANA+ (Wang
et al., 2023f) leverages CLIP to query a text list of landmark semantic tags with the visual panoramic
observations, and selects the top-ranked retrieved textual cues as representations of the salient landmarks
to follow. NavHint (Zhang et al., 2024b) constructs a hint dataset, providing detailed visual descriptions to
help the VLN agent build a comprehensive understanding of the visual environment rather than focusing
solely on the objects mentioned in the instructions. On the other hand, the commonsense reasoning ability
of LLMs can be used to clarify or correct ambiguous landmarks in the instructions, and break instructions
into actionable items. For example, Lin et al. (2024b) use LLMs to provide commonsense about open-world
landmark co-occurrences and conduct CLIP-driven landmark discovery accordingly. SayCan (Ahn et al.,
2022) breaks an instruction into a ranked list of pre-defined admissible actions and combines them with an
affordance function that assigns higher weights to the objects appearing in the current scene.

Information Seeking. While ambiguous instructions can be resolved based on visual perception and
situational context, another more direct approach is to seek help from the communication partner, i.e.,
the human speakers who generate the instructions (Nguyen & Daumé III, 2019; Paul et al., 2022). There
are three key challenges in this line of work: (1) deciding when to ask for help (Chi et al., 2020); (2)
generating information-seeking questions, e.g., next action, objects, and directions (Roman et al., 2020;
Singh et al., 2022); (3) developing an oracle that provides the queried information, which could be either real
humans (Singh et al., 2022), rules and templates (Gao et al., 2022), or neural models (Nguyen & Daumé III,
2019). LLMs and VLMs could potentially fit two roles in this framework, either as information-seeking
models, or as proxies for human helpers or information-providing models. Preliminary research has explored
the use of LLMs as the information-seeking model, addressing determining both when and what to ask. This
is achieved with the help of techniques including conformal prediction (CP) (Ren et al., 2023) or in-context
learning (ICL) (Chen et al., 2023c). For the latter, foundation models play the role of a helper who has
access to oracle information, such as the location of the destination and a map of the environment, which is
not available to the task performer. Very recently, VLN-Copilot (Qiao, 2024) enables agents to actively seek
assistance when encountering confusion, with the LLM serving as a copilot to facilitate navigation. Fan et al.
(2023b) demonstrate that GPT-3 can decompose ground-truth responses in the training data step-by-step,
which helps in training an oracle model using a pre-trained SwinBert (Lin et al., 2022b) video-language
model. They also demonstrate large vision-language models like mPLUG-Owl (Ye et al., 2023) can serve as
strong zero-shot oracles off the shelf. Besides, self-motivated communication agents have been proposed (Zhu
et al., 2021c) by learning the confidence of the oracle to produce a positive answer, which enables a self-Q&A
manner where the oracle can be removed at inference time.
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4.2 Generalization of Grounded Instructions

The limited scale and diversity of navigation data is another significant issue affecting the VLN agent’s
ability to comprehend various linguistic expressions and follow instructions effectively, particularly in unseen
navigation environments. Although the language style itself has good generalization capability across seen
and unseen environments (Zhang et al., 2020), how to ground the instructions with the unseen environments
is potentially a hard task given the limited scale of training instructions. Foundation models help address
these issues through both pre-trained representations and instruction generation for data augmentation.

Pre-trained Text Representations. Before the foundation models, many works rely on text encoders,
such as LSTM, to represent text instructions (Anderson et al., 2018; Tan et al., 2019). The foundation
models significantly enhance the VLN agent’s language generalization ability through pre-trained represen-
tations. For example, PRESS (Li et al., 2019b) fine-tunes the pre-trained language model BERT (Kenton &
Toutanova, 2019) to obtain text representations that generalize better to previously unseen instructions. The
multi-modal Transformers (Tan & Bansal, 2019; Lu et al., 2019) boost methods, such as VLN-BERT (Majum-
dar et al., 2020) and PREVALENT (Hao et al., 2020), to obtain more generic vision-linguistic representations
by pre-training on large-scale text-image pairs collected from the web. Airbert (Guhur et al., 2021b) trains
ViLBERT-like architecture to learn text representations from image-caption pairs collected from the Inter-
net. CLEAR (Li et al., 2022a) learns cross-lingual language representations that capture the visual concepts
behind the instruction. ProbES (Liang et al., 2022) self-explores environments by sampling trajectories
and automatically constructs the corresponding instruction by filling the instruction templates with move-
ments and object phrases detected by CLIP. Additionally, it leverages prompt-based learning to facilitate fast
adaptation of language embeddings. NavGPT-2 (Zhou et al., 2024b) explores leveraging vision-and-language
representations from pre-trained VLMs (InstructBLIP (Dai et al., 2024) with Flan-T5 (Chung et al., 2024)
or Vicuna (Zheng et al., 2023a)) to enhance policy learning for navigation and navigational reasoning.

Instruction Synthesis. Another method to improve the agent’s generalization ability is to synthesize
more instructions. Early works employ the Speaker-Follower framework (Fried et al., 2018; Tan et al., 2019;
Kurita & Cho, 2020; Guhur et al., 2021a) to train an offline speaker (instruction generator) using human-
annotated instruction-trajectory pairs. It then generates new instructions based on sequences of panoramas
along a given trajectory. However, Zhao et al. (2021) observe that these generated instructions are low-
quality and show a poor performance in human wayfinding evaluation. Marky (Wang et al., 2022a; Kamath
et al., 2023) addresses this limitation using a multi-modal extension of the multilingual T5 model (Xue
et al., 2020) with text-aligned visual landmark correspondences, achieving near-human quality on R2R-style
paths in unseen environments. PASTS (Wang et al., 2023c) introduces a progress-aware spatial-temporal
Transformer speaker to better leverage the sequenced multiple vision and action features. Additionally,
instead of training an offline instruction generator, some recent research (Liang et al., 2022; Lin et al.,
2023b; Zhang & Kordjamshidi, 2023; Wang et al., 2023e; Magassouba et al., 2021) generates instructions
while navigating. For instance, LANA (Wang et al., 2023e) introduces a language-capable navigation agent
that not only executes navigation instructions but also provides route descriptions.

5 VLN Agent: Learning an Embodied Agent for Reasoning and Planning

While the world and human models empower visual and language understanding abilities, VLN agents
need to develop embodied reasoning and planning capabilities to support their decision-making. From this
perspective, we discuss two challenges: grounding and reasoning, and planning. We also explore the method
of directly applying foundation models as the VLN agent backbone.

5.1 Grounding and Reasoning

Different from other VL tasks, such as VQA and Image Captioning, which primarily focus on static alignment
between images and corresponding textual descriptions, the VLN agent needs to reason about spatial and
temporal dynamics in the instructions and the environment based on its actions. Specifically, the agent
should consider previous actions, identify the part of the sub-instruction to execute, and ground the text
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to the visual environment to execute the action accordingly. Previous methods primarily rely on explicit
semantic modeling or auxiliary task design to obtain such abilities. However, pre-training with specially
designed tasks has become the dominant approach with the advent of foundation models.

Explicit Semantic Grounding. The previous efforts enhance the agent’s grounding ability through ex-
plicit semantic modeling in both vision and language modalities, including modeling motions and land-
marks (Hong et al., 2020b;a; Zhang et al., 2021; Qi et al., 2020a), utilizing syntactic information in the
instruction (Li et al., 2021), as well as spatial relations (Zhang & Kordjamshidi, 2022b). Very few works (Lin
et al., 2023a; Zhan et al., 2024a; Wang et al., 2023b) explore explicit grounding in the VLN agent with the
foundation models. Lin et al. (2023a) proposes actional atomic-concept learning and map visual observations
to actional atomic concepts to facilitate multi-modal alignments.

Pre-training VLN Foundation Models. Except for explicit semantic modeling, the previous research
also enhances the agent’s grounding ability through auxiliary reasoning tasks (Ma et al., 2019; Wu et al.,
2021; Zhu et al., 2020; Raychaudhuri et al., 2021; Dou & Peng, 2022; Kim et al., 2021). Such methods
are less explored in VLN agents with foundation models, as their pre-training already provides a general
understanding of spatial and temporal semantics prior to navigation. Various pre-training methods with
specially designed tasks have been proposed to improve the agent’s grounding ability. Lin et al. (2021) intro-
duce pre-training tasks specifically designed for scene and object grounding. LOViS (Zhang & Kordjamshidi,
2022a) formulates two specialized pre-training tasks to enhance orientation and visual information separately.
HOP (Qiao et al., 2022; 2023a) introduces a history-and-order aware pre-training paradigm that emphasizes
historical information and trajectory orders. Li & Bansal (2023) suggests that enhancing the agent with the
ability to predict future view semantics helps the agent in longer path navigation performance. Dou et al.
(2023) design a masked path modeling objective to reconstruct the original path given a randomly masked
sub-path. Cui et al. (2023) propose entity-aware pre-training by predicting grounded entities and aligning
them to text.

5.2 Planning

Dynamic planning enables VLN agents to adapt to environmental changes and improve navigation strategies
on the fly. Alongside the graph-based planners that utilize global graph information to enhance local action
spaces, the rise of foundational models, particularly LLMs, has brought LLM-based planners into the VLN
field. These planners use LLMs’ vast commonsense knowledge and advanced reasoning to create dynamic
plans that improve decision-making.

Graph-based Planner. Recent advancements in VLN emphasize enhancing navigational agents’ planning
capabilities through global graph information. Among them, Wang et al. (2021); Chen et al. (2022d); Deng
et al. (2020); Zheng et al. (2023b) enhance the local navigation action spaces with global action steps from
graph frontiers of visited nodes for better global planning. Gao et al. (2023) further enhances navigation
decision-making with high-level planning for zone selection and low-level planning for node selection. More-
over, Liu et al. (2023a) enriches the graph-frontier-based global and local action spaces with grid-level actions
for more accurate action prediction. In continuous environments, Krantz et al. (2021); Hong et al. (2022);
Anderson et al. (2021) adopt a hierarchical planning approach utilizing high-level action spaces instead of
low-level ones by selecting a local waypoint from a predicted local navigability graph. CM2 (Georgakis
et al., 2022) facilitates trajectory planning by grounding instructions within a local map. Expanding on this
strategy, An et al. (2024; 2023); Wang et al. (2023g); Chang et al. (2023b); Wang et al. (2022c) construct
a global topological graph or grid maps to facilitate map-based global planning. Additionally, Wang et al.
(2023a; 2024a) predict multiple future waypoints using either a video prediction model or a neural radiance
representation model to plan the best action based on the long-term effects of predicted candidate waypoints.

LLM-based Planner. In parallel, some studies leverage common-sense knowledge from LLMs to generate
text-based plans (Huang et al., 2022a;b). LLM-Planner (Song et al., 2022) creates detailed plans composed
of sub-goals, dynamically adjusting these plans in real-time by integrating detected objects according to
predefined program patterns. Similarly, Mic (Qiao et al., 2023b) and A2Nav (Chen et al., 2023b) specialize
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in breaking down navigation tasks into detailed textual instructions, with Mic generating step-by-step plans
from both static and dynamic perspectives, while A2Nav uses GPT-3 to parse instructions into actionable
sub-tasks. ThinkBot (Lu et al., 2023) employs thought chain reasoning to generate missing actions with
interactive objects. VL-Map (Huang et al., 2023) decomposes navigation instructions into sequential, goal-
related functions in code format using code-written LLMs (following the Code-as-Policy (Liang et al., 2023)
framework) and utilizes a dynamically built, queryable map to guide the execution of these goals. Addition-
ally, SayNav (Rajvanshi et al., 2023) builds a 3D scene graph of the explored environment as input to LLMs
for generating feasible and contextually appropriate high-level plans for the navigator.

5.3 Foundation Models as VLN Agents

The architecture of VLN agents has undergone significant transformations with the advent of foundation
models. Initially conceptualized by Anderson et al. (2018), VLN agents were formulated within a Seq2Seq
framework, employing an LSTM and an attention mechanism to model the interaction between vision and
language modalities. With the advent of foundation models, the agent backend has transitioned from LSTM
to Transformer and, more recently, to these large-scale pre-trained systems.

VLMs as Agents. The mainstream methodology leverages single-stream VLMs as the core structure of
VLN agents (Hong et al., 2021; Qi et al., 2021; Moudgil et al., 2021; Zhao et al., 2022). These models
process inputs from language, vision, and historical tokens simultaneously at each time step. It performs
self-attention over these cross-modal tokens to capture the textual-visual correspondence, which is then used
to infer the action probability. In the zero-shot VLN, CLIP-NAV (Dorbala et al., 2022) utilizes CLIP to
obtain natural language referring expressions that describe the target object and make sequential navigational
decisions. VLN-CE agents (Krantz et al., 2020) differentiate themselves from the VLN-DE (Anderson et al.,
2018) agents by their action space, executing low-level controls in the continuous environment instead of
graph-based high-level actions of view selection. Despite early works (Krantz et al., 2020; Raychaudhuri
et al., 2021) utilizing LSTM to infer low-level actions, the introduction of waypoint predictors has allowed
to transfer methods from DE to CE (Krantz et al., 2021; Krantz & Lee, 2022; Hong et al., 2022; Anderson
et al., 2021). All these methods use a waypoint predictor to obtain a local navigability graph, allowing
foundation models in DE to adapt to the continuous environment. In particular, the waypoint detection
process primarily involves using visual observations (e.g., panoramic RGBD images) to predict navigable
candidate adjacent waypoints from the agent’s current position as possible targets. Given the predicted
waypoints, the agent selects one as the current destination.

LLMs as Agents. Since LLMs have powerful reasoning ability and semantic abstraction of the world,
and also show strong generalization ability in unknown large-scale environments, recent research in VLN
has started to directly employ LLMs as agents to complete navigation. Typically, visual observations are
converted into textual descriptions and fed into the LLM along with instructions, which then perform ac-
tion predictions. Innovations such as NavGPT (Zhou et al., 2024a) and MapGPT (Chen et al., 2024a)
demonstrate the feasibility of zero-shot navigation, with NavGPT autonomously generating actions using
GPT-4 and MapGPT converting topological maps into global exploration hints. DiscussNav (Long et al.,
2023) extends this approach by deploying multiple domain-specific VLN experts to automate and reduce
human involvement in navigation tasks. It includes Instruction Analysis Experts, Vision Perception Ex-
perts, Completion Estimation Experts, and Decision Testing Experts. The use of multiple domain-specific
VLN experts distributes tasks among specialized agents, reducing the burden on a single model and allow-
ing for optimized, task-specific processing. This multi-expert approach enhances robustness, transparency,
and overall performance by leveraging the collective strengths of multiple large models. MC-GPT (Zhan
et al., 2024b) employs memory topology maps and human navigation examples to diversify strategies, while
InstructNav (Long et al., 2024) breaks navigation into sub-tasks with multi-sourced value maps for effective
execution. In contrast to zero-shot usage, some works (Zheng et al., 2024; Zhang et al., 2024a; Pan et al.,
2023) fine-tune LLMs to address the embodied navigation tasks effectively. Some studies have incorporated
the Chain-of-Thought (CoT) (Wei et al., 2022) reasoning mechanism to improve the reasoning process. Nav-
CoT (Lin et al., 2024a) transforms LLMs into a world model and navigational reasoning agent, streamlining
decisions by simulating future environments. This demonstrates the flexibility and practical potential of

11



Under review as submission to TMLR

fine-tuned language models in both simulation and real-world scenarios, marking a significant advancement
over traditional applications.

6 Challenges and Future Directions

While foundation models have enabled novel solutions to VLN, several limitations remain underexplored
and new challenges arise. In this section, we delve into the challenges and future direction of the VLN field
from the perspectives of benchmarks, the world model, the human model, the agent model, and real robot
deployment.

Benchmarks: Limitations of Data and Task. The current VLN datasets have limitations regarding
quality, diversity, bias, and scalability. For example, in the R2R dataset, the instruction-trajectory pairs are
biased to the shortest path, which may not accurately represent real-world navigation scenarios. We discuss
the trends and recommendations on how VLN benchmarks can be improved.

• Unified and Realistic Tasks and Platforms. Establishing robust benchmarks and ensuring reproducibil-
ity are crucial for evaluating VLN in real-world settings. Real-world variability necessitates compre-
hensive benchmarks reflecting navigation challenges. A universal sim-to-real evaluation platform, like
OVMM (Yenamandra et al., 2024), is needed for standardized testing across simulated and real-world
settings. In addition, the tasks and activities should be realistic and designed originated from human
needs. For instance, BEHAVIOR-1K (Li et al., 2024a) presents a benchmark of everyday household
activities in virtual, interactive, and ecological environment to address the demands for diversity and
realism.

• Dynamic Environment. Real-world environments are inherently complex and dynamic, with moving
objects, people, and variations like lighting and weather presenting unexpected situations (Ma et al.,
2022). These factors disrupt the visual perception of navigation systems and make maintaining reliable
performance difficult. Recent efforts like HAZARD (Zhou et al., 2024c), Habitat 3.0 (Puig et al., 2024),
and HA-VLN (Li et al., 2024c) consider dynamic environments and provide a good starting point.

• Indoors to Outdoors. VLN agents navigating in outdoor environments, e.g., autonomous driving and
aerial vehicles, also start to get more attention (Vasudevan et al., 2021; Li et al., 2024b), with various
language-guided datasets (Sriram et al., 2019; Ma et al., 2022) developed. Early studies have attempted
to involve LLMs in these tasks, either with prompt engineering (Shah et al., 2023; Sha et al., 2023; Wen
et al., 2023), or by fine-tuning LLMs to predict the next action or plan future trajectories (Chen et al.,
2023a; Mao et al., 2023). To adapt off-the-shelf VLMs to these outdoor navigation domains, real-world
driving videos (Xu et al., 2023; Yuan et al., 2024), simulated driving data (Wang et al., 2023d; Shao et al.,
2023) and them both (Sima et al., 2023; Huang et al., 2024b) have been utilized for instruction tuning so
that these foundation models learn to predict future throttle and steering angles. Additional reasoning
and planning modules have also been integrated into foundation model driving agents (Huang et al.,
2024b; Tian et al., 2024). We refer the readers to surveys and position papers for a detailed review (Li
et al., 2023a; Cui et al., 2024; Gao et al., 2024; Yan et al., 2024).

World Model: From 2D to 3D. Building effective world representations is a central research theme
in embodied perception, reasoning, and planning. Although the current research represents the world with
strong and generic 2D representations, VLN is fundamentally a 3D task, where the agent perceives the real-
world environment in 3D. Many explicit 3D representations are developed in prior work, including various
semantic SLAMs and volumetric representation (Chaplot et al., 2020; Min et al., 2021; Saha et al., 2022;
Blukis et al., 2022; Zhang et al., 2022b; Liu et al., 2024), depth information (An et al., 2023), Bird’s-Eye-
View representations like grid map (Wang et al., 2023g; Liu et al., 2023a), and local metrics map (An
et al., 2023). These representations are limited because they reduce the object set to a closed set, making
them inadequate for open-vocabulary settings with natural language. Several studies develop queryable
map/scene representations by integrating multi-view image features captured from CLIP into 3D voxel
grids (Jatavallabhula et al., 2023; Chang et al., 2023a) or top-down feature maps (Huang et al., 2023; Chen
et al., 2022a), as well as utilizing scene graphs (Rana et al., 2023; Gu et al., 2023b) to represent spatial
relationships. However, adapting 3D representations learned from large-scale data for VLN agents to better
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perceive the 3D environment is still under exploration. The recent rise of 3D foundation models, including
3D reconstruction models (Hong et al., 2024) and 3D multimodal language models (Hong et al., 2023b; Yang
et al., 2024; Huang et al., 2024a), can be crucial for VLN.

Human Model: From Instruction to Dialogue. Previous efforts predominantly adopt either a speaker-
listener paradigm or restricted QA dialogue (Thomason et al., 2020; Gao et al., 2022) that only allows the
agent to ask for help. Recently, there has been a surge in new benchmarks featuring open-ended dialogue
instructions (De Vries et al., 2018; Banerjee et al., 2021; Padmakumar et al., 2022; Ma et al., 2022; Fan et al.,
2023a), supporting fully free-form communication where agents can ask, propose, explain, suggest, clarify,
and negotiate even in ambiguous or confusing scenarios. Still, current approaches rely on rule-based dialogue
templates to tackle these complexities (Zhang et al., 2023; Parekh et al., 2023; Gu et al., 2023a), though
they might feature a foundation model component. Huang et al. (2024b) perform conversational tuning
on a video-language model using human-human dialogue data paired with simulated navigation videos,
showcasing enhanced dialogue generation capabilities while navigation. Moving forward, it is imperative for
future research to integrate foundation models for situated task-oriented dialogue management (Ulmer et al.,
2024), or explore existing foundation models for task-oriented dialogue (He et al., 2022).

Agent Model: Adapting Foundation Models for VLN. While foundation models show strong gen-
eralizability, incorporating them into navigation tasks remains challenging. LLMs fundamentally lack the
capability to visually perceive the actual environment and are prone to hallucinations. We als discuss capa-
bilities of LLMs in planning and reasoning.

• Lack of Embodied Experience. This limitation can lead to scenarios where LLMs rely solely on pre-
established commonsense for task planning and reasoning, which might not meet specific real-world
needs (Xiang et al., 2024). Some pipelines tackle this issue by captioning the visual observations to
textual descriptions as prompts for LLMs (Zheng et al., 2022), with a potential loss of essential visual
semantics. Compared with LLMs, VLM agents demonstrate the potential to perceive the visual world and
plan (Zhang et al., 2024a). Still, these models are primarily developed from internet data, which lack em-
bodied experiences (Mu et al., 2024) and need finetuning for robust agentic decision-making (Zhai et al.,
2024). Further research is needed to transfer the commonsense knowledge in foundation model agents
to generalize to embodied situations. Recently proposed embodied foundation models (such as Embod-
ieGPT (Mu et al., 2024), PaLM-E (Driess et al., 2023) and Octopus (Yang et al., 2023)) offer a promising
solution for enabling agents to operate more effectively in interactive environments. They fine-tune foun-
dation models across multiple embodied tasks to bridge the gap between an agent’s understanding of
vision, language, and embodied actions, enhancing the foundation model’s ability to comprehend and
execute based on multimodal input.

• Hallucination Issue. LLMs and VLMs might generate non-existent objects, leading to misinformation (Li
et al., 2023b; Chen et al., 2024b). For example, when LLM performs task planning, it may generate
instructions such as “go forward and turn left at the sofa” even if there is no sofa in the room. This
inaccuracy may cause them to execute incorrect or impossible actions.

• LLMs in Planning and Reasoning. There are some literatures evaluating the zero-shot reasoning and
planning capabilities of LLMs, particularly in relation to PlanBench (Valmeekam et al., 2022) and Co-
gEval (Momennejad et al., 2023), which highlight LLMs’ limitations in more complex planning tasks.
These works assess LLMs in a variety of challenging settings, such as plan generation, optimality, robust-
ness, and reasoning, and identify that LLMs sometimes struggle with hallucinations or fail to grasp the
relational structures underlying complex planning problems. In the context of VLN, the action space and
the planning requirements are relatively constrained due to the fixed indoor environments and the limited
set of navigational actions. This bounded setting makes it more feasible for LLMs to provide step-by-step
instructions for coarse-grained directions, which has been demonstrated to be effective in previous works.
In VLN tasks, the LLM’s role is not to take over the entire planning process, but rather to assist by
offering a structured breakdown of instructions. The agent’s actual decision-making remains primarily
reliant on other components, such as perception and motion control. Therefore, in VLN tasks, the LLM’s
planning serves more as a supplementary guide rather than the sole decision-making factor.
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Deployment: From Simulation to Real Robots. Simulated settings often lack the complexity and
variability of real-world environments, and lower-quality rendered images exacerbate this issue. First, the
perception gap results in decreased performance and accuracy, highlighting the need for more robust percep-
tion systems. Wang et al. (2024b) have started to explore the use of semantic maps and 3D feature fields to
provide monocular robots with panoramic perception shows improved performance. The embodiment gap
and the data scarcity are also bottlenecks. The rise of robot teleportation (He et al., 2024b) also provides
an alternative to scale up VLN data for foundation models in real human-robot communications.

7 Broader Impact

Foundation models hold great promise for advancing vision-language navigation. However, it is essential
to address their broader ethical, legal, and societal implications. Given that they are pre-trained on vast,
web-scale datasets, these models can carry inherent biases, which may result in fairness concerns, e.g., to
multilingual users. Some approaches involve continual model training, it is critical to acknowledge and
mitigate any potential risks to user privacy, especially when deployed in real-world applications such as
home robotics.
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