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Figure 1: Given any number of images and optional camera poses, Depth Anything 3 reconstructs
the visual space, producing accurate depth and ray maps that fuse into a consistent point cloud. It
substantially outperforms VGGT in multi-view geometry and pose accuracy; with monocular inputs,
it also surpasses Depth Anything 2 while matching its detail and robustness.

ABSTRACT

We present Depth Anything 3 (DA3), a model that predicts spatially consistent ge-
ometry from an arbitrary number of visual inputs, with or without known camera
poses. In pursuit of minimal modeling, DA3 yields two key insights: a single plain
transformer (e.g., vanilla DINO encoder) is sufficient as a backbone without archi-
tectural specialization, and a singular depth-ray prediction target obviates the need
for complex multi-task learning. Through our teacher-student training paradigm,
the model achieves a level of detail and generalization on par with Depth Any-
thing 2 (DA2). We establish a new visual geometry benchmark covering camera
pose estimation, any-view geometry and visual rendering. On this benchmark,
DA3 sets a new state-of-the-art across all tasks, surpassing prior SOTA VGGT by
an average of 35.7% in camera pose accuracy and 23.6% in geometric accuracy.
Moreover, it outperforms DA2 in monocular depth estimation. All models are
trained exclusively on public academic datasets.



1 INTRODUCTION

The ability to perceive and understand 3D spatial information from visual input is a cornerstone
of human spatial intelligence (Arterberry and Yonas, 2000) and a critical requirement for applica-
tions like robotics and mixed reality. This fundamental capability has inspired a wide array of 3D
vision tasks, including monocular depth estimation, Structure from Motion (Snavely et al., 2006),
Multi-View Stereo (Seitz et al., 2006) and Simultaneous Localization and Mapping (Mur-Artal et al.,
2015). Despite the strong conceptual overlap between these tasks—often differing by only a single
factor, such as the number of input views—the prevailing paradigm has been to develop highly spe-
cialized models for each one. While recent efforts (Wang et al., 2024¢; 2025a) have explored unified
models to address multiple tasks simultaneously, they typically suffer from several key limitations:
they often rely on complex, bespoke architectures, are trained via joint optimization over tasks from
scratch, and consequently cannot effectively leverage large-scale pretrained models.

In this work, we step back from established 3D task definitions and return to a more fundamental
goal inspired by human spatial intelligence: recovering 3D structure from arbitrary visual inputs,
be it a single image, multiple views of a scene, or a video stream. Forsaking intricate architectural
engineering, we pursue a minimal modeling strategy guided by two central questions. First, is there
a minimal set of prediction targets, or is joint modeling across numerous 3D tasks necessary? Sec-
ond, can a single plain transformer suffice for this objective? Our work provides an affirmative
answer to both. We present Depth Anything 3, a single transformer model trained exclusively for
joint any-view depth and pose estimation via a specially chosen ray representation. We demon-
strate that this minimal approach is sufficient to reconstruct the visual space from any number of
images, with or without known camera poses.

Depth Anything 3 formulates the above geometric reconstruction target as a dense prediction task.
For a given set of IV input images, the model is trained to output N corresponding depth maps and
ray maps, each pixel-aligned with its respective input. The architecture to achieve this begins with
a standard pretrained vision transformer (e.g., Oquab et al. 2023), as its backbone, leveraging its
powerful feature extraction capabilities. To handle arbitrary view counts, we introduce a key modifi-
cation: an input-adaptive cross-view self-attention mechanism. This module dynamically rearranges
tokens during the forward pass in selected layers, enabling efficient information exchange across all
views. For the final prediction, we propose a new dual DPT head designed to jointly outputs both
depth and ray values, by processing the same set of features with distinct fusion parameters. To
enhance flexibility, the model can optionally incorporate known camera poses via a simple camera
encoder, allowing it to adapt to various practical settings. This overall design results in a clean and
scalable architecture that directly inherits the scaling properties of its pretrained backbone.

We train Depth Anything 3 via a teacher-student paradigm to unify diverse training data, which is
necessary for a generalist model. Our data sources include varied formats like real-world depth
camera captures (e.g., Baruch et al. 2021), 3D reconstruction (e.g., Reizenstein et al. 2021), and
synthetic data, where real-world depth may be of poor quality (Fig. 7). To resolve this, we adopt
a pseudo-labeling strategy inspired by prior works (Yang et al., 2024a;b). Specifically, we train a
powerful teacher monocular depth model on synthetic data to generate dense, high-quality pseudo-
depth for all real-world data. Crucially, to preserve geometric integrity, we align these dense pseudo-
depth maps with the original sparse or noisy depth. This approach proved remarkably effective,
significantly enhancing label detail and completeness without sacrificing the geometric accuracy.

To better evaluate our model and track progress in the field, we establish a comprehensive benchmark
for assessing geometry and pose accuracy. The benchmark comprises 5 distinct datasets, totaling
over 89 scenes, ranging from object-level to indoor and outdoor environments. By directly evalu-
ating pose accuracy across scenes and fusing the predicted pose and depth into a 3D point cloud
for accuracy assessment, the benchmark faithfully measures the pose and depth accuracy of visual
geometry estimators. Experiments show that our model achieves state-of-the-art performance on 18
out of 20 settings. Moreover, on standard monocular benchmarks, our model outperforms Depth
Anything 2 (Yang et al., 2024b).

To further demonstrate the fundamental capability of Depth Anything 3 in advancing other 3D vi-
sion tasks, we introduce a challenging benchmark for feed-forward novel view synthesis (FF-NVS),
comprising over 160 scenes. We adhere to the minimal modeling strategy and fine-tune our model
with an additional DPT head to predict pixel-aligned 3D Gaussian parameters. Extensive experi-
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Figure 2: Pipeline of Depth Anything 3. Depth Anything 3 employs a single transformer (vanilla
DINOvV2 model) without any architectural modifications. To enable cross-view reasoning, an input-
adaptive cross-view self-attention mechanism is introduced. A dual-DPT head is used to predict
depth and ray maps from visual tokens. Camera parameters, if available, are encoded as camera
tokens and concatenated with patch tokens, participating in all attention operations.

ments yield two key findings: 1) fine-tuning a geometry foundation model for NVS substantially
outperforms highly specialized task-specific models (Xu et al., 2025); 2) enhanced geometric re-
construction capability directly correlates with improved FF-NVS performance, establishing Depth
Anything 3 as the optimal backbone for this task.

2 DEPTH ANYTHING 3

We tackle the recovery of consistent 3D geometry from diverse visual inputs—single image, multi-
view collections, or videos—and optionally incorporate known camera poses when available.

2.1 FORMULATION

We denote the input as Z = {I;}*, with each I, € R¥*W*3_ For N, = 1 this is a monocular
image, and for NV,, > 1 it represents a video or multi-view set. Each image has depth D; € R7*W
camera extrinsics [RZ- | ti] , and intrinsics K;. The camera can also be represented as v; € RY

with translation t;, € R3, rotation quaternion q; € R*, and FOV parameters f; € R2. A pixel
p = (u,v,1)T projects to a 3D point P = (X,Y, Z,1)" by

P =R;(D;i(u,v)K; 'p) +t;,

through which the underlying 3D visual space can be faithfully recovered.

Depth-ray representation. Predicting a valid rotation matrix R; is challenging due to the orthog-
onality constraint. To avoid this, we represent camera pose implicitly with a per-pixel ray map,
aligned with the input image and depth map. For each pixel p, the camera ray r € RS is defined
by its origin t € R3 and direction d € R3: r = (t,d). The direction is obtained by backproject-
ing p into the camera frame and rotating it to the world frame: d = RK~'p. The dense ray map
M € RH*XWx6 stores these parameters for all pixels. We do not normalize d, so its magnitude
preserves the projection scale. Thus, a 3D point in world coordinates is simply P = t + D(u, v) - d.
This formulation enables consistent point cloud generation by combining predicted depth and ray
maps through element-wise operations.

Minimal prediction targets. Recent works aim to build unified models for diverse 3D tasks, often
using multitask learning with different targets—for example, point maps alone (Wang et al., 2024b),
or redundant combinations of pose, local/global point maps, and depth (Wang et al., 2025a;b; Yang
et al., 2025a). While point maps are insufficient to ensure consistency, redundant targets can improve
pose accuracy but often introduce entanglement that compromises it. In contrast, our experiments
(Tab. 5) show that a depth-ray representation forms a minimal yet sufficient target set for capturing
both scene structure and camera motion, outperforming alternatives like point maps or more complex
outputs. However, recovering camera pose from the ray map at inference is computationally costly.
We address this by adding a lightweight camera head, D¢. This transformer operates on camera



tokens to predict the field of view (f € R?), rotation as a quaternion (q € R*), and translation
(t € R?). Since it processes only one token per view, the added cost is negligible.

2.2 ARCHITECTURE

We now detail the architecture of Depth Anything 3, which is illustrated in Fig. 2. The network
is composed of three main components: a single transformer model as the backbone, an optional
camera encoder for pose conditioning, and a Dual-DPT head for generating predictions.

Single transformer backbone. We use a Vision Transformer with L blocks, pretrained on large-
scale monocular image corpora (e.g., DINOv2 Oquab et al. 2023). Cross-view reasoning is enabled
without architectural changes via an input-adaptive self-attention, implemented by rearranging input
tokens. We divide the transformer into two groups of sizes L; and Lg. The first Ly layers apply
self-attention within each image, while the subsequent L, layers alternate between cross-view and
within-view attention, operating on all tokens jointly through tensor reordering. In practice, we set
Ly : Ly =2:1with L = Ly + L,. As shown in our ablation study in Tab. 6, this configuration
provides the optimal trade-off between performance and efficiency compared to other arrangements.
This design is input-adaptive: with a single image, the model naturally reduces to monocular depth
estimation without extra cost.

Camera condition injection. To seamlessly handle both posed and unposed inputs, we prepend
each view with a camera token c;. If camera parameters (K;, R;,t;) are available, the token is
obtained via a lightweight MLP &.: ¢; = &.(f;, q;,t;). Otherwise, a shared learnable token ¢; is
used. Concatenated with patch tokens, these camera tokens participate in all attention operations,
providing either explicit geometric context or a consistent learned placeholder.

Dual-DPT head. For the final prediction
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2.3 TRAINING

Teacher-student learning paradigm. Our training data comes from diverse sources, including
real-world depth captures, 3D reconstructions, and synthetic datasets. Real-world depth is often
noisy and incomplete (Fig. 7), limiting its supervisory value. To mitigate this, we train a monocular
relative depth estimation “teacher” model solely on synthetic data to generate high-quality pseudo-
labels. These pseudo-depth maps are aligned with the original sparse or noisy ground truth via
RANSAC least squares, enhancing label detail and completeness while preserving geometric accu-
racy. We term this model Depth-Anything-3-Teacher, trained on a large synthetic corpus covering
indoor, outdoor, object-centric, and diverse in-the-wild scenes to capture fine geometry. We detail
our teacher design in the appendix.

Training objectives. Following the formulation in Sec. 2.1, our model Fy maps an input Z to a
set of outputs comprising a depth map D, a ray map R, and an optional camera pose ¢: Fp : Z +—
{]57 R, ¢}. The gray color indicates that ¢ is an optional output, included primarily for practical
convenience. Prior to loss computation, all ground-truth signals are normalized by a common scale
factor. This scale is defined as the mean /5 norm of the valid reprojected point maps P, a step that
ensures consistent magnitude across different modalities and stabilizes the training process. The



overall training objective is defined as a weighted sum of several loss terms:
L=LpD,D)+Ly(R,M)+ Lp(DOd+t,P)+ 3L0(¢,v) + algna(D, D).
In practice, we set « = 1 and 5 = 1. Lp is a confidence-aware loss following Wang et al. (2024b).

Lygraq is taken from Yang et al. (2024b) , penalizing the depth gradients. This loss preserves sharp
edges while ensuring smoothness in planar regions. We detail the loss function in the appendix.

2.4  FINETUNING FOR FEED-FORWARD NOVEL VIEW SYNTHESIS

Inspired by human spatial intelligence, we believe that consistent depth estimation can greatly en-
hance downstream 3D vision tasks. We choose feed-forward novel view synthesis (FF-NVS) as
the demonstration task, given its growing attention driven by advances in neural 3D representations
and its relevance to numerous applications. Adhere to the minimal modeling strategy, we perform
FF-NVS by fine-tuning with an added DPT head (GS-DPT) to infer pixel-aligned 3D Gaussians.

GS-DPT Head. Given visual tokens for each view extracted via our single transformer backbone
(Sec. 2.2), GS-DPT predicts the camera-space 3D Gaussian parameters {o;, q;, S;, C; le Xlw, where
0i,q; € H,s; € R3, ¢; € R3 denote the opacity, rotation quaternion, scale, and RGB color of the
i-th 3D Gaussian, respectively. Among them, o; is predicted by the confidence head, while others
are predicted by the main GS-DPT head. The estimated depth is unprojected to world coordinates
to obtain the global positions P; € R? of the 3D Gaussians. These primitives are then rasterized to

synthesize novel views from given camera poses. We detail our loss functions in the appendix.

3 VISUAL GEOMETRY BENCHMARK

We further introduce a visual geometry benchmark to assess geometry prediction models. It directly
evaluates pose accuracy, depth via reconstruction accuracy and visual rendering quality.

Pose accuracy. Our benchmark covers 5 datasets: HiRoom (an internal high-fidelity room
dataset), ETH3D (Schops et al., 2017), DTU (Aanes et al., 2016), 7Scenes (Shotton et al., 2013),
and ScanNet++ (Yeshwanth et al., 2023), containing 29, 11, 22, 7, and 20 scenes, respectively. These
span object-centric to indoor and outdoor. HiRoom and the benchmark will be released publicly.
ScanNet++ is not a zero-shot dataset, as it has been widely used for training since DUSt3R. Although
comparisons are biased, we retain it for completeness since subsequent methods also adopt it. We
report Auc3 and Auc30, which measure relative rotation and translation score (higher is better).

Geometry accuracy. Using the same datasets, we assess depth accuracy via reconstruction. Un-
like Wang et al. (2025a), which aligns predicted depths to ground truth with scale and shift and
then reconstructs the scene with ground-truth poses, we reconstruct using both predicted poses and
depths. The resulting point cloud is aligned to ground truth by applying evo (Umeyama, 2002) to
match predicted poses with ground-truth poses. We report F-Score for all datasets except Chamfer
Distance for DTU, following a prior work (Yu et al., 2022).

Visual rendering quality. We evaluate visual rendering quality on diverse large-scale scenes. We
introduce a new NVS benchmark built from three datasets, including DL3DV (Ling et al., 2024) with
140 scenes, Tanks and Temples (Knapitsch et al., 2017a) with 6, and MegaDepth (Li and Snavely,
2018) with 19, each spanning around 300 sampled frames. Ground truth camera poses, estimated
with COLMAP, are used directly to ensure accurate and fair comparison across diverse models. We
report PSNR, SSIM, and LPIPS metrics on rendered novel views using given camera poses.

4 EXPERIMENTS
Training datasets, baselines, implementation details and more ablations are provided in the appendix.

4.1 VISUAL GEOMETRY ESTIMATION

Pose estimation. As shown in Tab. 1 and Fig. 4, comparing against five baselines (Wang et al.,
2024b; 2025a; Yang et al., 2025a; Wang et al., 2025d; Keetha et al., 2025), our DA3-Giant model



Table 1: Comparisons with SOTA methods on pose accuracy. We report both Auc3 1 and Auc30
1 metrics. The top-3 results are highlighted as first, second , and third .

HiRoom ETH3D DTU 7Scenes ScanNet++
Methods Auc3  Auc30 Auc3 Auc30 Auc3  Auc30 Auc3 Auc30 Auc3  Auc30
DUSGR 176 543 430 273 400 743 690 616 810 339
Fast3R 259 770 810 444 950 79.1 190 786 179 725
MapAnything  17.9 828 192 774 650 727 126 797 202  84.1
Pi3 670 948 352 873 625 949 255 863 507 92.1
VGGT 49.1 880 263 808 792 998 239 850 626 95.1

DA3-Giant 81.7 96.4 39.3 90.6 85.6 94.9 29.2 86.8 83.2 98.0
DA3-Large 379 84.5 19.0 81.7 58.4 95.3 25.1 85.4 46.9 92.1
DA3-Base 12.8 79.8 13.6 74.0 314 90.8 17.2 81.1 16.2 71.5
DA3-Small 3.40 64.6 4.89 51.9 9.46 82.2 6.19 71.8 2.86 51.8

Reference video VGGT Pi3 Ours GT

Figure 4: Comparisons of pose estimation quality. Camera trajectories for two videos are shown.
Ground-truth trajectories are derived using COLMAP on images with dynamic objects masked.

attains the best performance on nearly all metrics, with the only exception being Auc30 on the DTU
dataset. Notably, on Auc3 our model delivers at least an 8% relative improvement over all competing
methods, and on ScanNet++ it achieves a 33% relative gain over the second-best model.

A g e b 4
R ot

Ours VGGT Fast3R MapAnything

Figure 5: Comparisons of depth quality. Compared with other methods, our depth maps exhibit
finer structural detail and higher semantic correctness across diverse scenes.

Geometry estimation. As shown in Tab. 2, our DA3-Gaint establishes a new SOTA in nearly
all scenarios, outperforming all competitors in all five pose-free settings. On average, DA3-Gaint
achieves a relative improvement of 23.6% over VGGT and 16.7% over Pi3. Fig. 5 and Fig. 6 vi-
sualize our predicted depth and recovered point clouds. The results are not only clean, accurate,
and complete, but also preserve fine-grained geometric details, clearly demonstrating a superiority
over other methods. Even more notably, our much smaller DA3-Large (0.30B parameters) demon-
strates remarkable efficiency. Despite being 3 x smaller, it surpasses the prior SOTA VGGT (0.90B
parameters) in five out of the ten settings, with particularly strong performance on the ETH3D.

When camera poses are available, both our method and MapAnything can exploit them for improved
results, and other methods also benefit from ground-truth pose fusion. Our model shows clear gains
on most datasets except 7Scenes, where the limited video setting already saturates performance and
reduces the benefit of pose conditioning. Notably, with pose conditioning, performance gains from
scaling model size are smaller than in pose-free models, indicating that pose estimation scales
more strongly than depth estimation and requires larger models to fully realize improvements.



Table 2: Comparisons with SOTA methods on reconstruction accuracy. For all datasets except
DTU, we report the F-Score (F1 7). For DTU, we report the chamfer distance (CD |, unit: mm).
w/o p. and w/ p. denote without pose and with pose, indicating whether ground-truth camera poses

are provided for reconstruction. The top-3 results are highlighted as first , second , and third .

HiRoom ETH3D DTU 7Scenes ScanNet++

Methods

wlop. w/p. wlop. w/p. wlop. w/p. wlop. w/p. wlop. Ww/p.
DUSt3R 301 395 197 188 7.60 797 266 398 189 273
Fast3R 407 482 385 503 688 820 410 498 371 537
MapAnything 324 692 548 719 791 397 448 552 394 713
Pi3 75.8 8.0 727 8.6 328 172 442 575 63.1 733
VGGT 567 702 572 667 205 144 479 514 664 70.7

DA3-Giant 893 952 744 858 192 091 520 523 764 792
DA3-Large 482 857 573 791 345 248 487 487 589 729
DA3-Base 186 717 528 66.6 514 199 378 472 397 663
DA3-Small 129 431 394 582 512 405 30.8 395 242 457

Reference Ours VGGT Pi3 Fast3R

Figure 6: Comparisons of point cloud quality. Our model produces point clouds that are more
geometrically regular and substantially less noisy than those generated by other methods.

Monocular depth accuracy also reflects geome-  Table 3: Monocular depth comparisons. §; 1
try quality. As shown in Tab. 3, on the st andard =G R NYU SINTEL ETH3D DIODE Rank
monocular depth benchmarks reported in Yang
et al. (2024b), our model outperforms VGGT DA2 246 919 772 86.5 952 260

E VGGT 91.7 979 679 97.5 953 3.5
and Depth Anything 2. For reference, we also a3 953 974 755 086 954 220

include the results of our teacher model. Teacher 972 979 814 99.8 96.6 1.00

Visual  rendering. To fairly . .
evaluate feed-forward novel view lable4: Comparisons with SOTA methods on NVS task.

synthesis (FF-NVS), we compare We report NVS comparsions with exisiting feed-forward
against three recent 3DGS mod- 3DGS models and counterparts using other backbones.

els—pixelSplat (Charatan et al, In-domain Dataset  Out-of-domain Datasets

2024), - MVSplat (Chen et al., pehods DL3DV Tanks&Temples MegaDepth
2024), and DepthSplat (Xu et al.,
2025)—and further test alternative PSNR1 LPIPS| PSNRfT LPIPS| PSNRt LPIPS|
frameworks by replacing our geom-  pixelSplat 1655 0480  13.81 0558 13.87 0.561
etry backbone with Fast3R (Yang MVSplat 18.13 0.393 14.81 0.508 14.67 0.533
et al., 2025b), MV-DUSt3R (Tang DepthSplat  19.24 0.322 15.80 0.418 1590 0.450

etal, 2025), and VGGT (Wang et al,  Fast3R 1930 0320 1624 0409 1643 0421
20252).  All models are trained on MV-DUSBR 2001 0294  17.04 0370 1620 0437
DL3DV-10K training set under a VGGT 2096 0253 17.18 0347 1645 0417

unified protocol and evaluated on our DA3 21.33 0.241 18.10 0.311 17.89 0.351

benchmark (Sec. 3).




Table 5: Ablations of prediction-target combinations. Note that all experiments in this table do
not have camera condition token. The best and second best are highlighted.

HiRoom ETH3D DTU 7Scenes ScanNet++
Auc3T FI1 Auc3t FIT Auc3t CDJ Auc3t FIT Auc3t FIt

depth + pcd + cam 9.1 12.8 190 604 423 40918 20.8 434 220 430
depth + cam 10.8 16.5 9.9 480 233 5.316 13.0 385 13.3 41.0
depth + ray 48.7 603 255 654 465 3919 240 465 355 534
depth + ray + cam 372 454 223 594 563 3.066 257 456 34.1 56.5

Methods

Table 6: Ablations for single transformer. We evaluate three architectural designs with comparable
model sizes. The best and second best are highlighted.

HiRoom ETH3D DTU 7Scenes ScanNet++
Auc3t F1T Auc3t F1T Auc3t CDJ Auc3t F1T Auc3t FI17r

a. Proposed Arch.  39.2 47.0 210 554 458 3.82 262 476 303 511
b. VGGT Style 372 145 231 274 138 693 097 214 203 12.2
c. Full Alt. 247 293 13.1 519 446 423 21.1 48.6 277 475

Methods

As shown in Tab. 4, all models perform substantially better on DL3DV than on the other datasets,
suggesting that 3DGS-based NVS is sensitive to trajectory and pose distributions standardized by
DL3DYV, rather than scene content. Comparing the two groups, geometry-model-based frameworks
consistently outperform specialized feed-forward models, demonstrating that a simple backbone
plus DPT head can surpass complex task-specific designs. The advantage stems from large-scale
pretraining, which enables better generalization and scalability than approaches relying on epipolar
transformers, cost volumes, or cascaded modules. Within this group, NVS performance correlates
with geometry estimation capability, making DA3 the strongest backbone. Looking forward, we ex-
pect FE-NVS can be effectively addressed with simple architectures leveraging pretrained geometry
backbones, and that the strong spatial understanding of DA3 will benefit other 3D vision tasks.

4.2 SUFFICIENCY OF THE DEPTH-RAY REPRESENTATION

To validate our depth-ray representation, we compare different prediction combinations summarized
in Tab. 5. All models use a ViT-L backbone, identical training settings (view size: 10, batch size:
128, steps: 120k). We evaluate four heads: 1) depth for dense depth maps; 2) ped for direct 3D
point clouds; 3) cam for 9-DoF camera pose ¢ = (t, q, f); and 4) our proposed ray, predicting per-
pixel ray maps (Sec. 2.1). The ray head uses a Dual-DPT architecture, while pcd uses a separate
DPT head. For models without pcd, point clouds are obtained by combining depth with camera
parameters from ray or cam. As shown in Table 5, the minimal depth + ray configuration consis-
tently outperforms depth + pcd + cam and depth + cam across all datasets and metrics, achieving
nearly 100% relative gain in Auc3 over depth + cam. Adding an auxiliary cam head (depth +
ray + cam) yields no further benefit, confirming the sufficiency of the depth-ray representation. We
adopt depth + ray + cam as our final representation, as the camera head incurs negligible compu-
tational overhead, amounting to approximately 0.1% of the computation cost of the main backbone.

4.3 SUFFICIENCY OF A SINGLE PLAIN TRANSFORMER

We compare a standard ViT-L backbone with a VGGT-style architecture that stacks two distinct
transformers, tripling the block count. For fair capacity comparison, the VGGT-style model uses
smaller ViT-B backbones, yielding a similar parameter size to our ViT-L. Our backbone supports
two attention strategies: Full Alt., which alternates cross-view/within-view attention in all layers
(L = L), and our default partial alternation. As shown in Table 6, the VGGT-style model drops
to 79.8% of our baseline performance, confirming the superiority of a single-transformer design at
similar scale. We attribute this gap to full pretraining of our backbone versus two-thirds untrained
blocks in VGGT. Moreover, the Full Alt. variant degrades across nearly all metrics—except F1 on
7Scenes—indicating that partial alternation is the more effective and robust strategy.



5 RELATED WORK

Multi-view visual geometry estimation. Traditional systems (Schonberger and Frahm, 2016;
Schonberger et al., 2016) decompose reconstruction into feature detection and matching, robust
relative pose estimation, incremental or global SfM with bundle adjustment, and dense multi-view
stereo for per-view depth and fused point clouds. These methods remain strong on well-textured
scenes, but their modularity and brittle correspondences complicate robustness under low texture,
specularities, or large viewpoint changes. Early learning methods injected robustness at the com-
ponent level: learned detectors (DeTone et al., 2018), descriptors for matching (Dusmanu et al.,
2019), and differentiable optimization layers that expose pose/depth updates to gradient flow (He
et al., 2024; Guo et al., 2025; Pan et al., 2024). On the dense side, cost-volume networks (Yao
et al., 2018; Xu et al., 2023) for MVS replaced hand-crafted regularization with 3D CNNs, im-
proving depth accuracy especially at large baselines and thin structures compared with classical
PatchMatch. Early end-to-end approaches (Teed and Deng, 2018; Wang et al., 2024a) moved be-
yond modular SfM/MVS pipelines by directly regressing camera poses and per-image depths from
pairs of images. These approaches reduced engineering complexity and demonstrated the feasibility
of learned joint depth pose estimation, but they often struggled with scalability, generalization, and
handling arbitrary input cardinalities.

A turning point came with DUSt3R (Wang et al., 2024b), which leveraged transformers to directly
predict point map between two views and compute both depth and relative pose in a purely feed-
forward manner. This work laid the foundation for subsequent transformer-based methods aiming
to unify multi-view geometry estimation at scale. Follow-up models extended this paradigm with
multi-view inputs (Yang et al., 2025a; Wang et al., 2025b; Tang et al., 2025), video input (Zhang
et al.; Wang et al., 2025b; Murai et al., 2025), robust correspondence modeling (Leroy et al., 2024),
camera parameter injection (Jang et al., 2025; Keetha et al., 2025), and view synthesis (Zhang et al.,
2025). Among these, Wang et al. (2025a) push accuracy to a new level through large-scale training,
a multi-stage architecture, and redundancy in design. In contrast, we focus on a minimal modeling
strategy built around a single, simple transformer.

Monocular depth estimation. Early monocular depth estimation methods relied on fully super-
vised learning on single-domain datasets, which often produced models specialized to either indoor
rooms (Silberman et al., 2012) or outdoor driving scenes (Geiger et al., 2013). These early deep
models achieved good accuracy within their training domain but struggled to generalize to novel
environments, highlighting the challenge of cross-domain depth prediction. Modern generalist ap-
proaches (Yang et al., 2024a;b; Wang et al., 2025¢; Bochkovskii et al., 2024; Yin et al., 2023; Ke
et al., 2024) exemplify this trend by leveraging massive multi-dataset training and advanced archi-
tectures like vision transformers (Ranftl et al., 2021) or DiT (Peebles and Xie, 2023). Trained on
millions of images, they learn broad visual cues and incorporate techniques such as affine-invariant
depth normalization. In contrast, our method is primarily designed for a unified visual geometry
estimation task, yet it still demonstrates competitive monocular depth performance.

6 CONCLUSION AND DISCUSSION

Depth Anything 3 shows that a plain transformer, trained on depth-and-ray targets with teacher—
student supervision, can unify any-view geometry without ornate architectures. Scale-aware depth,
per-pixel rays, and adaptive cross-view attention let the model inherit strong pretrained features
while remaining lightweight and easy to extend. On the proposed visual geometry benchmark the
approach sets new pose and reconstruction records, with both giant and compact variants surpassing
prior models, while the same backbone powers efficient feed-forward novel view synthesis model.

We view Depth Anything 3 as a step toward versatile 3D foundation models. Future work can
extend its reasoning to dynamic scenes, integrate language and interaction cues, and explore larger-
scale pretraining to close the loop between geometry understanding and actionable world models.
We hope the model and dataset releases, benchmark, and simple modeling principles offered here
catalyze broader research on general-purpose 3D perception.



7 REPRODUCIBILITY STATEMENT

Our model is strictly aligned with the open-source backbone architecture DINO v2 (Oquab et al.,
2023), and we provide as many methodological details as possible in appendix A to ensure model
reproducibility. We have included comprehensive details of our benchmarks in appendix B, guaran-
teeing that the benchmarking process can be faithfully reproduced. Finally, we commit to releasing
the models (ranging from small to giant), the evaluation benchmark code, and the HiRoom datasets
to further promote reproducibility.
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A METHOD DETAILS

A.1 DERIVING CAMERA PARAMETERS FROM THE RAY MAP

Given an input image I € RT*WX3 the corresponding ray map is denoted by M € RH*Wx6,
This map comprises per-pixel ray origins, stored in the first three channels (IM(:,:,: 3)), and ray
directions, stored in the last three (M(:,:, 3 :)).

First, the camera center t. is estimated by averaging the per-pixel ray origin vectors:

1 H W
be =7 WZZM(h,w,;s). (1)

h=1w=1

To estimate the rotation R and intrinsics K, we formulate the problem as finding a homography
H. We begin by defining a “identity” camera with an identity intrinsics matrix, K; = I. For a
given pixel p, its corresponding ray direction in this canonical camera’s coordinate system is simply
d; = K;lp = p. The transformation from this canonical ray d; to the ray direction d.,, in the
target camera’s coordinate system is given by d¢,,, = KRd;. This establishes a direct homography
relationship, H = KR, between the two sets of rays. We can then solve for this homography by
minimizing the geometric error between the transformed canonical rays and a set of pre-computed
target rays, M (h, w, 3 :). This leads to the following optimization problem:

H

w
H* = arg min Hpp . x M(h,w,3:)||. 2)
gHHH:l};wZ:lH Ph, ( )|

This is a standard least-squares problem that can be efficiently solved using the Direct Linear Trans-
form (DLT) algorithm (Abdel-Aziz et al., 2015). Once the optimal homography H* is found, we
recover the camera parameters. Since the intrinsics matrix K is upper-triangular and the rotation
matrix R is orthonormal, we can uniquely decompose H* using RQ decomposition to obtain K, R.

A.2 DETAILS OF TRAINING OBJECTIVE

We define the loss terms in Equation 2.3 as follows.

£p(D,D; Do) = 4 > my (Dey[Dy = Dy| = Aclog Doy )
pEN

where D, , denotes the confidence of depth D,. All loss terms are based on the ¢; norm, with
weights set to o = 1 and 3 = 1. The gradient loss, L4, penalizes the depth gradients:

Lgwa(D, D) = ||V, D — V,D||; +||V,D — V,D||1, (3)

where V, and V, are the horizontal and vertical finite difference operators. This loss preserves
sharp edges while ensuring smoothness in planar regions.

A.3 DEPTH ANYTHING 3 TEACHER MODEL

As shown in Fig. 7, the real-world datasets are
of poor quality, thus we train the teacher model
exclusively on synthetic data to provide super-
vision for real-world data.

Data scaling. Following DA2, we train the
teacher model exclusively on synthetic data to
achieve finer geometric detail. However, the ,
synthetic datasets used in DA2 are relatively ——WildRGBD LiDAR

limited. In DA3, we substantially expand the Figure 7: Poor quality real-world datasets. We
training corpus to include: Hypersim (Roberts Show some examples of the poor quality real-
et al., 2021), TartanAir (Wang et al., 2020), Wworld datasets.

IRS (Wang et al.,, 2019), vKITTI2 (Cabon
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et al., 2020), BlendedMVS (Yao et al., 2020),

SPRING (Mehl et al., 2023), MVSSynth (Huang et al., 2018), UnrealStereo4K (Zhang et al., 2018),
GTA-SfM (Wang and Shen, 2020), TauAgent (Gil et al., 2021), KenBurns Niklaus et al. (2019),
MatrixCity (Li et al., 2023), EDEN (Le et al., 2021), ReplicaGSO (Straub et al., 2019a), Urban-
Syn (Gomez et al., 2025), PointOdyssey (Zheng et al., 2023), Structured3D (Zheng et al., 2020),
Objaverse (Deitke et al., 2023), Trellis (Xiang et al., 2024), and OmniObject (Wu et al., 2023). This
collection spans indoor, outdoor, object-centric, and diverse in-the-wild scenes, improving general-
ization of the teacher model.

Depth representation. Unlike DA2, which predicts scale—shift-invariant disparity, our teacher out-
puts scale—shift-invariant depth. Depth is preferable for downstream tasks, such as metric depth
estimation and multiview geometry, that directly operate in depth space rather than disparity. To
address depth’s reduced sensitivity for near-camera regions comparing to disparity, we predict ex-
ponential depth instead of linear depth, enhancing discrimination at small distances.

Training objectives. For geometric supervision, in addition to a standard depth-gradient loss, we
adopt ROE alignment with the global-local loss introduced in Wang et al. (2025¢). To further
refine local geometry, we introduce a distance-weighted surface-normal loss. For each center pixel,
we sample four neighboring points and compute unnormalized normals n;. We then weight these
normals by:

4
wi =Y [Ing || = | ni )
j=0

which downweights contributions from neighbors farther from the center, yielding a mean normal
closer to the true local surface normal:

4

n;
Ny, = W ——, @)
2
The final normal loss is
4
Ly = E(Rm,nim) + > E(Riyns) (6)

=0

where £ denotes the angular error between normals. Ground truth is undefined in sky regions and
in background areas of object-only datasets. To prevent these regions from degrading the depth
prediction and to facilitate downstream use, we jointly predict a sky mask and an object mask aligned
with the depth output, supervised with MSE loss. The overall training objective is

Lr = Oéﬁgrad + Egl +Ln+ ‘Csky + Eobj (7N

where a = 0.5. Here, Lgraa, La1, Loky» and Loy denote the gradient loss, global-local loss, sky-mask
loss, and object-mask loss, respectively.

A.4 VISUAL RENDERING DETAILS.
The NVS model is fine-tuned with two training objectives, namely photometric loss (i.e., LypsE and

L1 prps) on rendered novel views and scale-shift-invariant depth loss £p on the estimated depth of
observed views, following the teacher—student learning paradigm (Sec. 2.3).

B VISUAL GEOMETRY BENCHMARK

B.1 MORE DETAILS ABOUT EVALUATION PIPELINE

Pose estimation. For each scene, we select all available images; if the total number exceeds the
limit, we randomly sample 100 images using a fixed random seed. The selected images are then
processed through a feed-forward model to generate consistent pose and depth estimations, after
which the pose accuracy is computed.
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Geometry estimation. For the same image set, we perform reconstruction using the predicted
poses together with the predicted depths. To align the reconstructed point cloud with the ground-
truth, we employ evo (Umeyama, 2002) to align the predicted poses to the ground-truth poses,
obtaining a transformation that maps the reconstruction into the ground-truth coordinate system. To
improve robustness, we adopt a RANSAC-based alignment procedure. Specifically, we repeatedly
apply evo on randomly sampled pose subsets and evaluate each candidate transformation by count-
ing the number of inlier poses, where inliers are defined as those with translation errors below the
median of the overall pose deviations. The transformation with the largest inlier set is then chosen
and applied to fuse the aligned predicted point cloud with the predicted depth maps by TSDF fu-
sion. Finally, reconstruction quality is assessed by comparing the aligned reconstruction with the
ground-truth point cloud using the metrics described in Sec. B.3.

Visual rendering. For each testing scene, the number of images typically ranges from 300 to
400 across all benchmark datasets. We sample one out of every 8 images as target novel views
for evaluation. From the remaining viewpoints, we use COLMAP camera poses provided by each
dataset and apply farthest point sampling, considering both camera translation and rotation distances,
to select 12 images as input context views. For DL3DV, we use the official Benchmark set for
testing. For Tanks and Temples, all Training Data scenes are included except Courthouse. For
MegaDepth, we select scenes numbered from 5000 to 5018, as these are most suitable for NVS.

B.2 POSE METRICS

For assessing pose estimation, we follow the evaluation protocol introduced in Wang et al. (2025a;
2023) and report results using the AUC. This metric is derived from two components: Relative Rota-
tion Accuracy (RRA) and Relative Translation Accuracy (RTA). RRA and RTA quantify the angular
deviation in rotation and translation, respectively, between two images. Each error is compared
against a set of thresholds to obtain accuracy values. AUC is then computed as the integral of the
accuracy—threshold curve, where the curve is determined by the smaller of RRA and RTA at each
threshold. To illustrate performance under different tolerance levels, we primarily report results at
thresholds of 3 and 30.

B.3 RECONSTRUTION METRICS

Let G denote the ground-truth point set and R the reconstructed point set under evaluation. We
measure accuracy using dist(R — G) and completeness using dist(G — R) following Aanes et al.
(2016). The Chamfer Distance (CD) is then defined as the average of these two terms. Based on
these distances, we define the precision and recall of the reconstruction R with respect to a distance
threshold d. Precision is given by ﬁ > [dist(R; — G) < d], and recall by ﬁ > [dist(G; —

R) < d|, where [-] denotes the Iverson bracket Knapitsch et al. (2017b). To jointly capture both
2 X precision X recall

measures, we report the F1-score, computed as F1 = —.
precision-recall

B.4 DATASETS

Our benchmark is built on five datasets: HiRoom, ETH3D (Schops et al., 2017), DTU (Aanzs
et al., 2016), 7Scenes (Shotton et al., 2013), and ScanNet++ (Yeshwanth et al., 2023). Together,
they cover diverse scenarios ranging from object-centric captures to complex indoor and outdoor
environments, and are widely adopted in prior research. Below, we present more details about the
dataset preparation process.

HiRoom is a Blender-rendered synthetic dataset comprising 30 indoor living scenes created by
professional artists. We use a threshold d of 0.05m for the F1 reconstruction metric calculation. For
TSDF fusion, we set the parameters voxel size to 0.007m.

ETH3D provides high-resolution indoor and outdoor images with ground-truth depth from laser
sensors. We aggregate the ground-truth depth maps with TSDF fusion for GT 3D shapes. We select
11 scenes: courtyard, electro, kicker, pipes, relief, delivery area, facade,
office, playground, relief 2, terrains, for the benchmark. All frames are used in the
evaluation. We use a threshold d of 0.25 for the F1 reconstruction metric calculation. For TSDF
fusion, we set the parameters voxel size to 0.039m.
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DTU is an indoor dataset consisting of 124 different objects, each scene is recorded from 49 views. It
provides ground-truth point clouds collected under well-controlled conditions. We evaluate models
on the 22 evaluation scans of the DTU dataset following Yao et al. (2018). We adopt the RMBG
2.0 Zheng et al. (2024) to remove meaningless background pixels and use the default depth fusion
strategy proposed in Zhang et al. (2023). All frames are used in the evaluation.

7Scenes is a challenging real-world dataset, consisting of low-resolution images with severe motion
blurs for in-door scenes. We follow the implementation in Zhu et al. (2024) to fuse RGBD images
with TSDF fusion and prepare ground-truth 3D shapes. We downsample the number of frames for
each scene by 11 to faciliate evaluation. We use a threshold d of 0.05m for the F1 reconstruction
metric calculation. For TSDF fusion, we set the parameters voxel size to 0.007m.

ScanNet++ is an extensive indoor dataset providing high-resolution images, depth maps from
iPhone LiDAR, and high-resolution depth maps sampled from reconstructions of laser scans. We
select 20 scenes for the benchmark. As depth maps from iPhone LiDAR lack of invalid ground-truth
indicators, we use depth maps sampled from reconstructions of laser scans as ground-truth depth
by default. We aggregate the ground-truth depth maps with TSDF fusion for GT 3D shapes. We
downsample the number of frames for each scene by 5 to faciliate evaluation. We use a threshold d
of 0.05m for the F1 reconstruction metric calculation. For TSDF fusion, we set the parameters voxel
size to 0.02m.

C EXPERIMENTAL SETUP

C.1 TRAING DATASETS

We provide our training datasets in Table 7. Note that for datasets with potential overlap between
training and testing (ScanNet++ and DL3DV), we ensure a strict separation at the scene level, i.e.,
scenes in training and testing are mutually exclus

C.2 TRAINING DETAILS

We train our model on 128 H100 GPUs for 200k steps, using an 8k-step warm-up and a peak learning
rate of 2 x 10~*. Training image resolutions are randomly sampled from 504 x 504, 504 x 378,
504 x 336, 504 x 280, 336 x 504. For the 504 x 504 resolution, the number of views is sampled
uniformly from [2, 18]. The batch size is dynamically adjusted to keep the token count per step
approximately constant. Supervision transitions from ground-truth depth to teacher-model labels at
120k steps. Pose conditioning is randomly activated during training with probability 0.1.

C.3 BASELINES

VGGT (Wang et al., 2025a) is an end-to-end transformer that jointly predicts camera parameters,
depth, and 3D points from one or many views. Pi3 (Wang et al., 2025d) further adopts a permutation-
equivariant design to recover affine-invariant cameras and scale-invariant point maps from unordered
images. MapAnything (Keetha et al., 2025) provides a feed-forward framework that can also take
camera pose as input for dense geometric prediction. Fast3R (Yang et al., 2025b) extends point-map
regression to hundreds or even thousands of images in a single forward pass. Finally, DUSt3R (Wang
et al., 2024c) tackles uncalibrated image pairs by regressing point maps and aligning them globally.
Our method is similar to VGGT (Wang et al., 2025a), but adopts a new architecture and a different
camera representation, and it is orthogonal to Pi3 (Wang et al., 2025d).

D ADDITIONAL ANALYSIS
We present additonal analysis on Parameters, max number of images and running speed in Tab. 8
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Table 7: Datasets used in Depth Anything 3 , including number of scenes, data type, and usage.

Usage \ Dataset #Scenes Data Type
HiRoom (ours) 29 Synthetic
Pose-geometry ETH3D (Schops et al., 2017) 11 LiDAR
benchmark DTU (Aanes et al., 2016) 22 LiDAR
7Scenes (Shotton et al., 2013) 7 LiDAR
ScanNet++ (Yeshwanth et al., 2023) 20 LiDAR
AriaDigitalTwin (Pan et al., 2023) 237 Synthetic
AriaSyntheticENV (Pan et al., 2023) 99950 Synthetic
ArkitScenes (Baruch et al., 2021) 4388 LiDAR
BlendedM VS (Yao et al., 2020) 503 3D Recon
Co3dv2 (Reizenstein et al., 2021) 30616 Colmap
DL3DV (Ling et al., 2024) 6379 Colmap
HyperSim (Roberts et al., 2021) 344 Synthetic
MapFree (Arnold et al., 2022) 921 Colmap
MegaDepth (Li and Snavely, 2018) 268 Colmap
Pose-geometry MegaSynth (Jiang et al., 2025) 6049 Synthetic
Training MyvsSynth (Huang et al., 2018) 121 Synthetic
Objaverse (Deitke et al., 2023) 505557 Synthetic
Omniobject (Wu et al., 2023) 5885 Synthetic
PointOdyssey (Zheng et al., 2023) 44 Synthetic
ReplicaVMAP (Straub et al., 2019b) 17 Synthetic
ScanNet++ (Yeshwanth et al., 2023) 230 LiDAR
ScenenetRGBD (McCormac et al., 2017) 16866 Synthetic
TartanAir (Wang et al., 2020) 355 Synthetic
Trellis (Xiang et al., 2024) 557408 Synthetic
vKitti2 (Cabon et al., 2020) 50 Synthetic
WildRGBD (Xia et al., 2024) 23050 LiDAR
NVS Training | DL3DV (Ling et al., 2024) 10015 Colmap
NVS Tanks and Temples (Knapitsch et al., 2017a) 6 Colmap
Benchmark MegaDepth (Li and Snavely, 2018) 19 Colmap
DL3DV (Ling et al., 2024) 140 Colmap

Table 8: Comparison of Models with Parameters and Running Speed. The maximum number of
images was tested on an 80 GB A100 GPU. If we store some intermediate tokens in CPU memory,
we could process many more images. The running speed was measured on an A100 GPU with a

scene of 32 images, and we report the average speed per image.

Parameters .
Model Max # of Images Backbone  DualDPT _ Cameralead Running Speed
VGGT(Reference) 400-500 0.91B 0.064B 0.22B 34.1 FPS
DA3-Giant 900-1000 1.130B 0.050B 0.48B 37.6 FPS
DA3-Large 1500-1600 0.300B 0.047B 0.21B 78.37 FPS
DA3-Base 2100-2200 0.086B 0.045B 0.12B 126.5 FPS
DA3-Small 4000-4100 0.022B 0.043B 0.03B 160.5 FPS

E ADDITIONAL EXPERIMENTS

E.1 TEACHER MODEL

Teacher model training. We ablate the teacher using a ViT-L backbone with batch size 64. Eval-
uation follows the DA2 benchmark protocol, and we additionally report Squared Relative Error
(SqgRel), defined as the mean squared error between predictions and ground truth normalized by the
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Table 9: Ablation studies on teacher model geometry. Depth-based geometry achieves §; compa-
rable to disparity, while attaining the best AbsRel and SqRel among the three geometry representa-
tions.

Geometry d; (T) AbsRel (]) SqRel (})

Disparity ~ 0.919 0.095 1.033
Pointmap  0.912 0.096 0.693
Depth 0.918 0.089 0.637

Table 10: Ablation studies on teacher model loss. The full teacher-loss configuration yields the
strongest performance, outperforming the other two loss variants across all metrics.

Loss 61 (T) AbsRel(]) SqRel(])
MAE-Loss 0.918 0.089 0.637
Teacher-Loss w/o Dist. Nor.  0.918 0.087 0.600
Full teacher-loss 0.919 0.087 0.596

ground truth. Across geometries (Tab. 9), depth emerges as the most effective target compared with
disparity and point maps. For training objectives (Tab. 10), the full teacher loss proposed in this
work outperforms both the DA2 loss and a variant without proposed normal-loss term. Finally, data
scaling contribute notably to performance (Tab. 11): upgrading datasets from V2 to V3 and adopting
a multi-resolution training strategy yield consistent improvements in the teacher’s final metrics.

E.2 ADDITIONAL ABLATIONS FOR DEPTH ANYTHING 3

Dual-DPT Head. We assess the effectiveness of the dual-DPT head via an ablation in which two
separate DPT heads predict depth and ray maps independently. Results are reported in Tab. 12,
item (d). Compared with the model equipped with the dual-DPT head, the variant without it shows
consistent drops across metrics, confirming the effectiveness of our dual-DPT design.

Teacher model supervision. We ablate the use of teacher model labels as supervision, with quan-
titative results reported in Tab. 12, item (e). Training without teacher labels yields a slight improve-
ment on DTU but leads to performance drops on 7Scenes and ScanNet++. Notably, the degradation
is pronounced on HiRoom. We attribute this to HiRoom’s synthetic nature and its ground truth
containing abundant fine structures; supervision from the teacher helps the student capture such de-
tails more accurately. Qualitative comparisons in Fig. 8 corroborate this trend: models trained with
teacher-label supervision produce depth maps with substantially richer detail and finer structures.
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Figure 8: Comparison of teacher-label supervision. Supervision with teacher-generated labels
yields depth maps with substantially richer detail and finer structures.
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Table 11: Ablation studies on teacher model data. V2 denotes the datasets used to train the DA2
teacher model. V3 denotes those used for the DA3 teacher model. Traning with V3 datasets and
multi-resolution strategy improves teacher model performance.

Data 61 (1) AbsRel(]) SqRel(])
V2 0.919 0.087 0.596
V3 0.929 0.079 0.508
V3 + multi-res.  0.938 0.072 0.452

Table 12: More ablations for single transformer. We evaluate the effects of the dual-DPT head,
teacher label supervision, and the pose conditioning module. Methods marked with “*” are evaluated
with ground-truth pose fusion.

HiRoom ETH3D DTU 7Scenes ScanNet++
Methods Auc3t FIT Auc3t FIT Auc3t CDJ Auc3t FIt Auc3t FIf
a. Full Model 390 470 210 554 458 382 262 476 303 5Ll
d. wioDual DPT 559 115 13.6 334 217 514 142 494 265 466
e. wlo Teacher 112 160 162 57.6 525 329 233 403 262 477
f. w/o Pose Cond.* 65.8 63.2 3.65 58.4 62.8
¢. wi Pose Cond.* 73.8 70.9 2.14 46.0 65.7

Pose conditioning. To assess the pose-conditioning module, we ablate it on the ViT-L backbone
and report results in Tab. 12, items (f) and (g). Unlike other entries in the table, these two are
evaluated with ground-truth pose fusion (marked with “*”), whereas the rest use predicted pose fu-
sion. Across metrics, configurations with pose conditioning consistently outperform those without,
confirming the effectiveness of the pose-conditioning module.

E.3 ADDITIONAL COMPARISONS FOR VISUAL RENDERING

Additional implementation details. We retrain all compared feed-forward 3DGS models, ensur-
ing that the training configuration matches the testing setup by using 12 input context views selected
through farthest point sampling. We apply engineering optimizations such as flash attention and
fully shared data parallelism to enable all models to process 12 input views efficiently. Depth train-
ing loss are incorporated for all baselines to ensure stable training and convergence. All models are
trained on 8 A100 GPUs for 200K steps with a batch size of 1, except for pixelSplat, which is trained
for 100K steps due to rather slow epipolar attention. All results are reported at H x W = 270 x 480.

Visual quality analysis. We present visual comparisons with other models in Fig. 9 under novel
view synthesis settings. As illustrated, simply augmenting our DA3 model with a 3D Gaussian DPT
head yields significantly improved rendering quality over existing state-of-the-art approaches. Our
model demonstrates particular strength in challenging regions, such as thin structures (e.g., columns
in the first and third scenes) and large-scale outdoor environments with wide-baseline input views
(last two scenes), as shown in Fig. 9. These results underscore the importance of a robust geometry
backbone for high-quality visual rendering, consistent with our quantitative findings in Tab. 4. We
anticipate that the strong geometric understanding of DA3 will also benefit other 3D vision tasks.
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Inputs MVSplat DepthSplat Fast3R VGGT DA3 (Ours)

Ground Truth
Figure 9: Qualitative comparisons with state-of-the-art methods for visual rendering. The first
column shows the selected input views, while the remaining columns display novel views rendered
by comparison models and ground truth. For each scene, two rendered novel viewpoints are pre-
sented in consecutive rows. The first three scenes are from DL3DV, the following two are from

Tanks and Temples, and the last three are from MegaDepth. Compared to other methods, our model
consistently achieves superior rendering quality across diverse and challenging scenes.
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