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ABSTRACT

We propose a novel method for density estimation that leverages an estimated
score function to debias kernel density estimation (SD-KDE). In our approach,
each data point is adjusted by taking a single step along the score function with
a specific choice of step size, followed by standard KDE with a modified band-
width. The step size and modified bandwidth are chosen to remove the leading
order bias in the KDE. Our experiments on synthetic tasks in 1D, 2D and on
MNIST, demonstrate that our proposed SD-KDE method significantly reduces the
mean integrated squared error compared to the standard Silverman KDE, even
with noisy estimates in the score function. These results underscore the potential
of integrating score-based corrections into nonparametric density estimation.

1 INTRODUCTION

Kernel density estimation (KDE) (Rosenblatt, 1956; Parzen, 1962) is a widely used nonparametric
method for estimating an unknown probability density function from a finite set of data points. The
classical KDE effectively smooths the data by convolving with a kernel function, such as the Gaus-
sian kernel, and then normalizing the result to obtain a density estimate. KDE finds application in
diverse fields such as anomaly detection, clustering (Campello et al., 2013), data visualization (Scott,
2012), nonparametric statistical inference (Guerre et al., 2000; Zhang et al., 2008), and dynamical
systems (Hang et al., 2018).

The classical KDE suffers from a well-known bias-variance trade-off, controlled by the choice of
kernel bandwidth (Silverman, 1986). Larger bandwidths lead to smoother estimates with lower vari-
ance but higher bias, while smaller bandwidths yield more variable estimates with lower bias (Rosen-
blatt, 1956; Parzen, 1962). This trade-off is particularly damaging in cases with highly variable
density functions, where the bias can dominate the estimation error.

Recent advances in score-based generative modeling and diffusion processes have demonstrated the
power of using the score function—the gradient of the log-density—to reverse a forward process of
noise injection, effectively reconstructing the underlying data distribution (Ho et al., 2020). Notably,
methods such as score matching (Hyvärinen & Dayan, 2005) and its deep learning extensions, diffu-
sion models, (Song & Ermon, 2019) provide robust estimates of the score function even in complex,
high-dimensional settings, without requiring density estimation.

In this work, we investigate whether incorporating knowledge of the score function into the KDE
framework allows us to push the Pareto frontier of the bias-variance trade-off. We propose a method
to debias the KDE using the score function to improve density estimation accuracy. Specifically, our
method adjusts each data point by taking a small step in the direction of the estimated score, and
then performs KDE with a modified bandwidth. Intuitively, taking a step along the score sharpens
the sample distribution, which counteracts the smoothening effect of applying the KDE. We find that
with a carefully chosen combination of step size and KDE bandwidth, we remove the leading order
bias in the KDE, resulting in a more accurate, debiased density estimate.

∗Equal contribution.
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In summary, our contributions are the following:

1. We propose Algorithm 1, our method for score-debiased kernel density estimation (SD-
KDE).

2. We provide asymptotically optimal bandwidth and step size selection for Algorithm 1
(Theorem 1), achieving the asymptotic mean integral square error (AMISE) of order
O
(
n−8/(d+8)

)
, instead of the O

(
n−4/(d+4)

)
achieved by a standard KDE (Silverman,

1986).
3. In Section 3, we numerically corroborate our theoretical results on 1D and 2D synthetic

datasets and observe strong agreement with the asymptotic scaling identified in Theorem 1.

2 METHOD AND THEORETICAL RESULTS

Algorithm 1 Score-Debiased Kernel Density Estimation
Require: Data {xi}ni=1, score estimator ŝ, kernel K, KDE bandwidth h, score step size δ

1: Take a single step along the score function: x̃i ← xi + δŝ(xi) for i = 1, . . . , n

2: Compute the debiased kernel density estimate: p̂(x) = 1
nhd

∑n
i=1 K

(
x−x̃i

h

)
Theorem 1 (Optimal Bandwidth and Step Size selection for Algorithm 1). Let {xi}ni=1 be i.i.d.
samples from a smooth density p in Rd. Let ŝ be the exact score function of p. Let K be a symmetric
kernel with mean 0 and covariance

∫
uu⊤K(u)du = I . The debiased kernel density estimate p̂

obtained by running Algorithm 1 with bandwidth h and step size δ is given by

p̂(x) =
1

nhd

n∑
i=1

K

(
x− (xi + δŝ(xi))

h

)
.

The asymptotically optimal bandwidth and step size for Algorithm 1 are given by

hopt = O
(
n−1/(d+8)

)
, δopt =

h2
opt

2
.

The resulting debiased kernel density estimate p̂ satisfies

MISE := E
[∫

(p̂(x)− p(x))
2
dx

]
= O

(
n−8/(d+8)

)
.

We include the detailed proof of Theorem 1 in Appendix A.

Discussion. Theorem 1 demonstrates that, when a score oracle is available, one can eliminate the
asymptotically dominant term, thereby reducing the bias from the conventional order of O

(
h4

)
to

O
(
h8

)
. Although a higher-order kernel—such as the effective spline kernel described by Silverman

(1984)—can similarly achieve a similar bias reduction, it typically introduces regions where the esti-
mated density assumes negative values. This drawback poses a significant practical challenge, as the
numerical normalization of the resulting probability density function is computationally intractable
(Song & Ermon, 2019).

We note that our method flexibly allows a variety of kernels to be used for KDE, since the only
requirement for the kernel is in symmetricity and covariance structure, both of which can be conve-
niently satisfied (Chen, 2017).

Although Theorem 1 requires the knowledge of the score function, we observe empirically that a
small discrepancy of the estimated score function and the underlying score function under some
level may only have minimal effect on the performance. See Section 3 for more details.

3 EXPERIMENTS

3.1 1D SYNTHETICS

Experimental setup. We test the empirical performance of the SD-KDE method on density esti-
mation of 1D Gaussian mixture models, and include a similar analysis for Laplace mixture models
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Figure 1: MISE error as a function of n for the three Gaussian mixtures for Silverman vs. SD-KDE.
Each point is the average MISE over 50 random seeds. The slopes inside each subplot are fitted
regression lines in log–log scale, indicating how quickly each method’s error decays as n increases.

in Appendix C.2. We sample data from three mixtures, where

p(x) = πN
(
x | µ1, σ

2
1

)
+

(
1− π

)
N
(
x | µ2, σ

2
2

)
and each mixture’s parameters (π, µ1, σ1, µ2, σ2) are outlined in Table 1. We compare the SD-
KDE method with a baseline based on the classical Silverman KDE, using Silverman’s bandwidth
formula (Silverman, 1986), given by h = 0.9 ·min(σ̂, IQR/1.34) · n−1/5, where IQR is the inter-
quartile range. To investigate how sensitive our method is to the estimation accuracy of the score
function, we test the performance of our method when only given access to a noisy score function
estimate, e.g. we observe S̃(x) = S(x) + ϵ, where S(x) is the score function and ϵ ∼ N(0, σ) for a
given standard deviation σ. Performance is evaluated with mean integrated squared error (MISE).

SD-KDE is robust to noisy score function estimate. In Figure 1, we show the MISE of the SD-
KDE (as a function of the number of observed samples, n), with varying degree of added noise and
compare to the Silverman KDE. Each point in the plot represents an average over 50 seeds. We see
that the SD-KDE method has a significantly better asymptotic scaling than the Silverman baseline,
up to a score function noise level with σ = 4. Even in the presence of a highly noisy score function,
we find the SD-KDE method provides a significant gain. We also display the fitted regression slope
associated with each line, along with the theoretical asympototic convergence rate of n−8/9. We
note the close tracking between the SD-KDE asymptotic decay (−0.85 for mixture 1, and−0.93 for
mixture 3) compared with the theoretical predicted decay (= −8/9 = −0.86). For mixture 2, all
models have weaker performance due to the challenging mixture shape, indicating that larger n is
needed to reach the theoretical decay rate. For n = 5× 104, the SD-KDE has an order of magnitude
smaller MISE error on average across 50 seeds compared with the Silverman method.
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Figure 2: Histogram of MISE difference of the SD-KDE method and the Silverman method, for
n = 100 samples and 50 random seeds per mixture. The SD-KDE method is consistently having
lower MISE than the Silverman baseline; for mixtures 1 and 2, SD-KDE method outperforms for all
100 samples, and for the third mixture, it is better in 95% of samples.
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Figure 3: Comparison of the true 2D spiral density vs. Silverman and SD-KDE. For SD-KDE, we
evaluate with both the true and learned (diffusion model) score. SD-KDE outperforms Silverman
with the oracle score function, and achieves comparable performance even using a noisy score.

SD-KDE consistently beats Silverman baseline. In Figure 2, we examine the consistency of the
performance gains across multiple data seeds for n = 100. We observe that the SD-KDE method is
consistently better than the Silverman baseline; for mixtures 1 and 2, SD-KDE method outperforms
for all 100 samples, and for the third mixture, it is better in 95% of samples.

3.2 2D SYNTHETICS

We present preliminary results on 2D synthetic tasks, a spiral distribution (Figure 3) and a mixture
of Gaussians (Figure 11), following Liu et al. (2020); Grathwohl et al. (2019).

In Figure 3, we compare the 2D Silverman method to SD-KDE for the spiral distribution. We com-
pare the accuracy of our method using the true score function to using an estimate of the score
function obtained by training a denoising diffusion probabilistic model (DDPM) from scratch on the
training data. For the diffusion model architecture, we use a 3-layer MLP with hidden dimension
512, and we train the model with Adam for 1500 steps. We use 1000 diffusion steps during training.
Using the true score function, our proposed method outperforms the Silverman method both quali-
tatively (via visual assessment) and quantitatively, as measured by the MISE. When employing the
score estimated from the diffusion model, our method achieves performance comparable to that of
the Silverman method. We attribute this discrepancy with the method under the true score parameter
primarily to challenges encountered during the training of the diffusion model rather than to any
inherent limitations of the method itself, particularly given the accuracy observed when using the
true score.

3.3 MNIST DATASET

In this study, we follow a similar experimental setup to Liu et al. (2020) and explore the relationship
between generated image quality and estimated density using the MNIST dataset—a widely recog-
nized benchmark comprising 70,000 grayscale images (28×28 pixels) of handwritten digits (LeCun
& Cortes, 2010). We trained a DDPM on this dataset and, by selecting the lowest diffusion timestep
(t = 1), obtained an estimate of the score function for individual images. Using this score, we apply
SD-KDE in latent space to assess the realism of generated images. We ranked generated images
from highest to lowest estimated probability density, visualized in Figure 4. The images with higher
density appear more realistic and are correlated with higher quality.

4 CONCLUSION

In this work, we demonstrate that incorporating score information can asymptotically improve den-
sity estimation accuracy. We propose a method for score-debiased kernel density estimation that
achieves O

(
n−8/(d+8)

)
convergence rate in mean integrated squared error, improving upon the

classical O
(
n−4/(d+4)

)
rate of standard KDE. Our experiments on a variety of synthetic datasets

validate these theoretical predictions and show that the method remains effective even when us-
ing noisy score estimates, suggesting practical applicability beyond settings where the true score is
known.
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Gábor Lugosi and Andrew Nobel. Consistency of data-driven histogram methods for density esti-
mation and classification. The Annals of Statistics, 24(2):687–706, 1996.

Malik Magdon-Ismail and Amir Atiya. Neural networks for density estimation. Advances in Neural
Information Processing Systems, 11, 1998.

Emanuel Parzen. On estimation of a probability density function and mode. Annals of Mathe-
matical Statistics, 33:1065–1076, 1962. URL https://api.semanticscholar.org/
CorpusID:122932724.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Murray Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function. The An-
nals of Mathematical Statistics, 27(3):832 – 837, 1956. doi: 10.1214/aoms/1177728190. URL
https://doi.org/10.1214/aoms/1177728190.

David W Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610, 1979.

5

https://api.semanticscholar.org/CorpusID:8768364
https://api.semanticscholar.org/CorpusID:8768364
https://openreview.net/forum?id=rJxgknCcK7
http://jmlr.org/papers/v19/16-349.html
http://jmlr.org/papers/v19/16-349.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.pnas.org/doi/abs/10.1073/pnas.2101344118
https://www.pnas.org/doi/abs/10.1073/pnas.2101344118
https://api.semanticscholar.org/CorpusID:122932724
https://api.semanticscholar.org/CorpusID:122932724
https://doi.org/10.1214/aoms/1177728190


Published in the Workshop on Frontiers of Probabilistic Inference at ICLR 2025

David W. Scott. Multivariate density estimation and visualization. 2012. URL https://api.
semanticscholar.org/CorpusID:1253508.

Bernard W Silverman. Spline smoothing: the equivalent variable kernel method. The annals of
Statistics, pp. 898–916, 1984.

Bernard W Silverman. Density Estimation for Statistics and Data Analysis, volume 26. CRC Press,
1986.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Dongling Zhang, Yingjie Tian, and Peng Zhang. Kernel-based nonparametric regression method. In
2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Tech-
nology, volume 3, pp. 410–413. IEEE, 2008.

6

https://api.semanticscholar.org/CorpusID:1253508
https://api.semanticscholar.org/CorpusID:1253508


Published in the Workshop on Frontiers of Probabilistic Inference at ICLR 2025

A PROOF OF THEOREM 1

Proof. First, we decompose the MISE into the bias and the variance terms as

MISE =

∫
(E [p̂(x)]− p(x))

2
dx+

∫ (
E
[
p̂(x)2

]
− E [p̂(x)]

2
)
dx

=

∫
Bias [p̂(x)]

2
dx+

∫
Var [p̂(x)] dx,

where the variance term Var [p̂(x)] = E
[
p̂(x)2

]
−E [p̂(x)]

2 and the bias term Bias [p̂(x)] = p(x)−
E [p̂(x)].

The variance term is given by

Var [p̂(x)] =
1

n
Var

(
1

hd
K

(
x− (X + δŝ(X))

h

))
since p̂(x) is a sum of n i.i.d. terms. Using Taylor expansion at the kernel K around x−X

h yields

K

(
x− (X + δŝ(X))

h

)
= K

(
x−X

h

)
− δ

h
ŝ(X)⊤∇K

(
x−X

h

)
+O

(
δ2

h2

)
.

The variance is dominated by the leading order term, which gives

Var [p̂(x)] =
1

n
Var

(
1

hd
K

(
x−X

h

))
+O

(
δ2

nh2+d

)
= O

(
1

nhd
+

δ2

nhd+2

)
where we used the standard KDE variance result for the leading term.

Now, we analyze the bias term.

Bias[p̂(x)] = E[p̂(x)]− p(x).

We write the expectation of p̂(x) as

E [p̂(x)] =
1

hd
E
[
K

(
x− (X + δŝ(X))

h

)]
=

∫
1

hd
K

(
x− (y + δŝ(y))

h

)
p(y)dy.

We substitute u = x−y
h to obtain

E [p̂(x)] =

∫
K

(
u− δ

h
ŝ(x− hu)

)
p(x− hu)du. (1)

Taylor expansion will yield that

p(x− hu) = p(x)− hu⊤∇p(x) + h2

2
u⊤∇2p(x)u+O

(
h3

)
,

and that

K

(
u− δ

h
ŝ(x− hu)

)
= K

(
u− δ

h
ŝ(x) + δu⊤∇ŝ(x) +O (δh)

)
= K(u)− δ

h
ŝ(x)⊤∇K(u) + δuT∇ŝ(x)∇K(u) +

δ2

2h2
ŝ(x)⊤∇2K(u)ŝ(x) +O

(
δh+

δ2

h
+

δ3

h3

)
.

Substitute these expansions into Equation (1), and expand the product. We consider each term
separately.

1. K(u)p(x) integrates to p(x) by the definition of K.
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2. − δ
h ŝ(x)

⊤∇K(u)p(x) integrates to 0 since K is symmetric and decays to 0 at infinity.

3. K(u)
(
−hu⊤∇p(x)

)
integrates to 0 by the symmetry of K.

4. K(u)
(

h2

2 u⊤∇2p(x)u
)

integrates to h2

2 Tr
(
∇2p(x)

∫
uu⊤K(u)du

)
= h2

2 ∇2p(x).

5. − δ
h ŝ(x)

⊤∇K(u) · (−hu⊤∇p(x)). Integrate by parts on ∇K(u) to obtain

δŝ(x)⊤
∫

u⊤∇p(x)∇K(u)du = δŝ(x)⊤
(
−
∫

K(u)∇p(x)du
)

= −δŝ(x)⊤∇p(x).

Using ŝ(x) = ∇ log p(x), we have

−δŝ(x)⊤∇p(x) = −δ∇ log p(x)⊤∇p(x) = −δ ∥∇p(x)∥
2

p(x)
.

Using a standard multivariable calculus identity, we have

−δ ∥∇p(x)∥
2

p(x)
= −δ(∇2p(x)− p(x)∇2(log p(x))).

6. p(x)δuT∇ŝ(x)∇K(u). Again, after integration by parts, we obtain

δ

∫
uT∇ŝ(x)∇K(u)p(x)du = δ

∫
p(x)K(u)tr (∇ŝ(x)) du = δp(x)tr (∇ŝ(x)) = δp(x)∇2(log p(x)).

7. p(x) δ2

2h2 ŝ(x)
⊤∇2K(u)ŝ(x) integrates to 0.

Using smoothness, we then have that

E [p̂(x)]− p(x) =
h2

2
∇2p(x)− δ∇2p(x) +O

(
h3 + δh+

δ2

h
+

δ3

h3

)
Now, by choosing δ = h2

2 , we make the leading term zero, and the bias E [p̂(x)] − p(x) =

O
(
h3 + δh+ δ2

h + δ3

h3

)
= O

(
h3

)
. Using the standard KDE argument (symmetry of K and decay

to 0 at infinity), we can show that h3 terms in the bias also vanish. Thus, the bias is O
(
h4

)
.

Moreover, note that δ = h2

2 , so the variance term Var [p̂(x)] = O
(

1
nhd

)
.

For optimal error scaling, we balance the bias and the leading variance terms. The error due to bias
is O

(
h8

)
, and the leading error due to variance is O

(
1

nhd

)
.

Balancing these terms, we obtain hopt = O
(
n−1/(d+8)

)
.

Finally, the MISE is O
(
h8

)
= O

(
n−8/(d+8)

)
.

B ADDITIONAL DISCUSSION

Connections to Langevin dynamics. We note that the algorithm is an analog to the continuous
time Langevin dynamics, which uses the score function s and yields that the stochastic differential
equation

dXt =
1

2
s (Xt) dt+ dBt (2)

will have the stationary distribution according to the probability distribution function p, which corre-
sponds to the score function s (Song & Ermon, 2019; Song et al., 2020). Our work can be viewed as
a one-step Euler–Maruyama discretization of the Langevin dynamics to estimate the location-shifted
kernel from the sample points. This ensures both tractability as well as the benefit of bias-reduction
as seen in the main theorem (Theorem 1). To our knowledge, this is the first approach that employs
Langevin dynamics to inform a position-based debiased kernel density estimator.
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Bridging Score-Based and Sample-Based Density Estimation. While the paper (Song et al.,
2020) suggests a formulation of the flow ODE as an evolution of the density function from an
approximate posterior. This approach is prior-free and the flow maps a scaled Gaussian distribution
to the data distribution. However, this process does not utilize the availability of samples and relies
solely on the score estimate. Since this scheme requires spatial and temporal discretization for
density estimation, it is computationally less feasible due to the curse of dimensionality.

Many works in non-parametric methods (ie. KDE, histogram) (Silverman, 1986; Rosenblatt, 1956;
Parzen, 1962; Scott, 1979; Lugosi & Nobel, 1996) and neural-based density estimation (Liu et al.,
2021; Magdon-Ismail & Atiya, 1998; Rezende & Mohamed, 2015; Dinh et al., 2016; Berg et al.,
2018) use the sample points for the density estimation, but do not incorporate score function in the
density estimation framework.

A promising future direction is to consider a multi-step discretization of the Langevin dynamics to
obtain asymptotically superior debiasing. Using higher order discretization schemes is also an inter-
esting avenue that we are currently exploring. The multi-step approach introduces more challenges,
including non-Gaussianity of the final kernel, since it will be a convolution of multiple Gaussian
kernels with different score-dependent shifts.

C ADDITIONAL EXPERIMENTS

C.1 MNIST DATASET IMAGE

The following figure depicts the ordering of generated images based on estimated probability density
values.

Lowest Density 
Value

Highest Density 
Value

Figure 4: Generated MNIST images of digits 2, 3, and 7 are displayed in descending order of esti-
mated probability density as determined by score-based KDE. The ordering illustrates that images
with higher probability density estimates exhibit more realistic features.

C.2 SYNTHETIC 1D EXPERIMENTS

Figure 5 and Figure 6 shows the fitted densities for different noise levels of the SD-KDE method,
as well as the Silverman baseline, for n = 200 samples for three different Gaussian (and Laplace
respectively) mixture models, with parameters outlined in Table 1. In Figure 7, we examine the
consistency of the performance gains for the SD-KDE method over the Silverman baseline for a
mixture of Laplace densities. The Laplace mixtures use the same location and scale parameters as
the Gaussian Mixture, given in Table 1.

Next, we show the scaling in n for a density estimation task for Laplace Mixtures. Figure 8 shows
the results. In Figure 9, and 10, we show a visualization of the score function and the densities for
both the Gaussian and Laplace Mixtures.
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Figure 5: Drawing n = 200 samples from each of the three Gaussian mixtures in equation 3.1 The
dashed black line is the true PDF, while the colored lines represent the estimated PDFs.

Table 1: Parameters for the three univariate Gaussian mixtures used in our experiments. Each
mixture follows the generic form p(x) = πN (x | µ1, σ

2
1) + (1− π)N (x | µ2, σ

2
2).

Mixture π µ1 σ1 µ2 σ2

1 0.4 -2.0 0.5 2.0 1.0
2 0.3 -2.0 0.4 4.0 1.5
3 0.5 0.0 0.4 1.5 1.5
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Figure 6: Drawing n = 200 samples from each of the three Laplace mixtures in equation 3.1
The dashed black line is the true probability density function, while the colored lines represent the
estimated probability density functions.
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Figure 7: Histogram of MISE difference of the SD-KDE method and the Silverman method, for
n = 100 samples and 50 random seeds per mixture. A positive value in the plot indicates that the
SD-KDE method performed better for that seed. We observe that SD-KDE consistently performs
better than the Silverman method over multiple random seeds.

10



Published in the Workshop on Frontiers of Probabilistic Inference at ICLR 2025

101 102 103 104

n (log scale)

10−2

10−1

M
ea

n
M

IS
E

(l
og

sc
al

e)

Silverman KDE: -0.36
SD-KDE, std=0: -0.45
SD-KDE, std=2: -0.45
SD-KDE, std=4: -0.42
SD-KDE, std=8: -0.32

Laplace Mixture 1

101 102 103 104

n (log scale)

10−2

10−1

Silverman KDE: -0.26
SD-KDE, std=0: -0.31
SD-KDE, std=2: -0.29
SD-KDE, std=4: -0.26
SD-KDE, std=8: -0.18

Laplace Mixture 2

101 102 103 104

n (log scale)

10−3

10−2

10−1

Silverman KDE: -0.43
SD-KDE, std=0: -0.62
SD-KDE, std=2: -0.62
SD-KDE, std=4: -0.59
SD-KDE, std=8: -0.53

Laplace Mixture 3

Silverman KDE

SD-KDE, std=0

SD-KDE, std=2

SD-KDE, std=4

SD-KDE, std=8

Figure 8: MISE error as a function of n for each of the three gaussian mixtures. For each point,
we compute the MISE with 50 random seeds per mixture. Each subplot plots the mean integrated
squared error as a function of n. The legend compares Silverman KDE to SD-KDE at multiple noise
settings. The slopes inside each subplot are fitted regression lines in log–log scale indicating how
quickly each method’s error decays as n increases.
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Figure 9: In each subplot, we plot the Gaussian mixture’s density (blue, left axis) and the log-density
derivative (score) in red (right axis).
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Figure 10: In each subplot, we plot the Laplace mixture’s density (blue, left axis) and the log-density
derivative (score) in red (right axis).

C.3 SYNTHETIC 2D MIXTURE OF GAUSSIANS

In Figure 11, on a mixture of Gaussians ground-truth density, we compare the Silverman method
with SD-KDE.
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Figure 11: Comparison of a true 2D mixture of Gaussians density vs. the Silverman method and
our SD-KDE method using the true score. Given the oracle score function, SD-KDE outperforms
Silverman in MISE by nearly an order of magnitude.

12


	Introduction
	Method and Theoretical Results
	Experiments
	1D Synthetics
	2D Synthetics
	MNIST Dataset

	Conclusion
	Proof of thm:onestepchoice
	Additional Discussion
	Additional Experiments
	MNIST Dataset Image
	Synthetic 1D experiments
	Synthetic 2D mixture of Gaussians


