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Abstract

Vertical federated learning (VFL) is a distributed learning paradigm, where
computing clients collectively train a model based on the partial features
of the same set of samples they possess. Current research on VFL fo-
cuses on the case when samples are independent, but it rarely addresses an
emerging scenario when samples are interrelated through a graph. In this
work, we train a graph neural network (GNN) through VFL, where each
client owns a part of the node features and a different edge set. This data
scenario incurs a significant communication overhead, not only because of
the handling of distributed features but also due to neighborhood aggre-
gation in a GNN. Moreover, the training analysis is faced with a challenge
caused by the biased stochastic gradients. We propose a model-splitting
method that splits a backbone GNN across the clients and the server and a
communication-efficient algorithm, GLASU, to train such a model. GLASU
adopts lazy aggregation and stale updates to skip communication in neigh-
borhood aggregation and in model updates, respectively, greatly reducing
communication while enjoying convergence guarantees. We conduct exten-
sive numerical experiments on real-world datasets, showing that GLASU
effectively trains a GNN that matches the accuracy of centralized training,
while using only a fraction of the time due to communication saving.

1 Introduction

Vertical federated learning (VFL) is a newly developed machine learning scenario in dis-
tributed optimization, where clients share data with the same sample identity but each
client possesses only a subset of the features for each sample. The goal is for the clients
to collaboratively learn a model based on all features. Such a scenario appears in many
applications, including healthcare, finance, and recommendation systems.

Most of the current VFL solutions (Chen et al., 2020b; Liu et al., 2022) treat the case
where samples are independent, but omit their relational structure. However, the pairwise
relationship between samples emerges in many occasions and it can be crucial in several
learning scenarios, including the low-labeling-rate scenario in semi-supervised learning and
the no-labeling scenario in self-supervised learning.

Consider, for example, a company that offers news recommendations to its subscribed users.
Several departments may be maintaining a separate user graph in their own compute in-
frastructure: a professional network where users are connected through occupational ties;
a personal network where users are connected through personal life interactions; a follower
network where a user is a follower of another on social media, etc. Further, the user data in
each graph may contain different features (e.g., occupation related, life related, and interest
related, respectively). To offer personal recommendations, the company sets up a server
that communicates with each client (each department’s computer), to train a model that
predicts multiple labels for each user without revealing each client’s raw local data. See
Figure 1 for an illustration.
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Figure 1: Data isolation of vertically dis-
tributed graph-structured data over three
clients.

One of the most effective machine learning
models for such a prediction task is graph
neural networks (GNNs) (Kipf & Welling,
2016; Hamilton et al., 2017; Chen et al.,
2018; Velickovic et al., 2018; Chen et al.,
2020a). This model performs neighborhood
aggregation in every feature transformation
layer, such that the prediction of a graph
node is based on not only the information
of this node but also that of its neighbors.

VFL on graph-structured data is not as well
studied as that on other data, in part be-
cause of the challenges incurred by an enormous amount of communication. The communi-
cation overhead comes not only from the aggregation of the partial features/representations
of a datum, but also from the neighborhood aggregation unique to GNNs. That is, com-
munication occurs in each layer of the neural network, so that the latest representation
of a neighboring node can be used to update the representation of the center node. One
solution to reduce communication is that each client uses a local GNN to extract node rep-
resentations from its own graph and the server aggregates these representations to make
predictions (Zhou et al., 2020). The drawback of this method is that the partial features of
a node outside one client’s neighborhood are not used, even if this node appears in another
client’s neighborhood. Another solution is to simulate centralized training: intermediate
representations of each node are aggregated by the server, from where neighborhood ag-
gregation is performed (Ni et al., 2021). This method suffers the communication overhead
incurred in each layer computation.

In this work, we propose GLASU for communication-efficient VFL on graph data. The
GNN model is split across the clients and the server, such that the clients can use a ma-
jority of existing GNNs as the backbone, while the server contains no model parameters.
The server only aggregates and disseminates processed data (e.g., node embeddings) with
the clients. The communication frequency between the clients and the server is mitigated
through lazy aggregation and stale updates (hence the name of the method). For an L-layer
GNN, GLASU communicates partial node representations only in K layers and in every
other Q iterations, enjoying the reduction of communication by a factor of QL/K. GLASU
can be considered as a framework that encompasses several well-known models and algo-
rithms as special cases, including Liu et al. (2022) when the graphs are absent, Zhou et al.
(2020) when all aggregations but the final one are skipped (K = 1), Ni et al. (2021) when
no aggregations are skipped (K = L), and centralized training when only a single client
exists.

With the enjoyable reduction in communication, another difficulty is the convergence anal-
ysis, which admits two challenges: the biased gradient caused by neighborhood sampling
in training GNNs and the correlated updates due to the use of stale node representations.
We conduct an analysis based on the error decomposition of the gradient, showing that the
training admits a convergence rate of O((TQ)−1), where T is the number of training rounds,
each of which contains Q iterations.

We summarize the main contributions of this work below:

1. Model design: We propose a flexible, federated GNN architecture that is compatible with
a majority of existing GNN backbones.

2. Algorithm design: We propose the communication-efficient GLASU algorithm to train
the model. Therein, lazy aggregation saves communication for each joint inference round,
through skipping some aggregation layers in the GNN; while stale updates further save
communication by allowing the clients to use stale global information for multiple local
model updates.

3. Theoretical analysis: We provide theoretical convergence analysis for GLASU by ad-
dressing the challenges of biased stochastic gradient estimation caused by neighborhood
sampling and correlated update steps caused by using stale global information. To the
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best of our knowledge, this is the first convergence analysis for federated learning with
graph data.

4. Numerical results: We conduct extensive experiments on seven datasets, together with
ablation studies, to demonstrate that GLASU can achieve a comparable performance
as the centralized model on multiple datasets and multiple GNN backbones, and that
GLASU effectively saves communication and reduces training time.

2 Problem, background, and related works

Problem setup: Consider M clients, indexed by m = 1, . . . ,M , each of which holds
a part of a graph with the node feature matrix X ∈ RN×d and the edge set E . Here,
N is the number of nodes in the graph and d is the feature dimension. The number of
clients is restricted by the feature dimension and is typically small. We assume that each
client has the same node set and the same set of training labels, y, but a different edge

set Em and a non-overlapping node feature matrix Xm ∈ RN×dm , such that E =
⋃M

m=1 Em,

X = [X1, . . . ,XM ], and d =
∑M

m=1 dm. We denote the client dataset as Dm = {Xm, Em,y}
and the full dataset as D = {X, E ,y}. The task is for the clients to collaboratively infer the
labels of nodes in the test set.

2.1 Graph convolutional network

The graph convolution network (GCN) (Kipf & Welling, 2016) is a typical example of the
family of GNNs. Inside GCN, a graph convolution layer reads

H[l + 1] = σ
(
A(E) ·H[l] ·W[l]

)
, (1)

where σ(·) denotes the point-wise nonlinear activation function, A(E) ∈ RN×N denotes
the adjacency matrix defined by the edge set E with proper normalization, H[l] ∈ RN×d[l]

denotes the node representation matrix at layer l, and W[l] ∈ Rd[l]×d[l+1] denotes the weight
matrix at the same layer. The initial node representation matrix H[0] = X. The classifier
is denoted as ŷ = f(H[L],W[L]) with weight matrix W[L] and the loss function is denoted
as ℓ(y, ŷ). Therefore, the overall model parameter is W = {W[0], . . . ,W[L− 1],W[L]}.
Mini-batch training of GCN (and GNNs in general) faces a scalability challenge, because
computing one or a few rows of H[L] (i.e., the representations of a mini-batch) requires
more and more rows of H[L−1], H[L−2], . . . recursively, in light of the multiplication with
A(E) in (1). This is known as the explosive neighborhood problem unique to graph-structured
data. Several sampling strategies were proposed in the past to mitigate the explosion; in this
work, we adopt the layer-wise sampling proposed by FastGCN (Chen et al., 2018). Starting
from the output layer L, which is associated with a mini-batch of training nodes, S[L], we
iterate over the layers backward such that at layer l, we sample a subset of neighbors for
S[l + 1], namely S[l]. In doing so, at each layer, we form a bipartite graph with edge set
E [l] = {(i, j)|i ∈ S[l + 1], j ∈ S[l]}. Then, each graph convolution layer becomes

H[l + 1][S[l + 1]] = σ
(
A(E [l]) ·H[l][S[l]] ·W[l]

)
, (2)

where A(E [l]) ∈ R|S[l+1]|×|S[l]| is a properly scaled submatrix of A(E) and H[l][S[l]] denotes
the rows of H[l] corresponding to the sampled neighbor set S[l].
2.2 Related works
Vertical federated learning is a learning paradigm where the features of the data are
distributed across clients, who collaborate to train a model that incorporate all features (Liu
et al., 2022; Chen et al., 2020b; Romanini et al., 2021; Yang et al., 2019b; Gu et al., 2021;
Yang et al., 2019a; Xu et al., 2021). Thus, the global model is split among clients and the
key challenge is the heavy communication costs on exchanging partial sample information
for computing the losses and the gradients for each sample. Most works consider simple
models (e.g., linear) because complex models incur multiple rounds of communication for
prediction.

Federated learning with graphs includes four scenarios. The graph-level scenario is
horizontal, where each client possesses a collection of graphs and all clients collaborate to
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Figure 2: Illustration of the
split model on M = 3
clients with lazy aggregation.
In the model, the second
server aggregation layer is
skipped and the graph size
used by each layer gradually
decreases, due to neighbor-
hood aggregation (inverse of
neighborhood sampling).

train a unified model (Zhang et al., 2021a; He et al., 2021; Bayram & Rekik, 2021; Xie et al.,
2021). The task is to predict graph properties (such as molecular properties).

The subgraph-level scenario could be either vertical or horizontal. In the vertical scenario,
each client holds a part of the node features, a part of the whole model, and additionally
a subgraph of the global graph (Zhou et al., 2020; Ni et al., 2021). The clients aim to
collaboratively train a global model (combined from those of each client) to predict node
properties (such as the category of a paper in a citation network). Our work addresses this
scenario.

The subgraph-level, horizontal scenario, on the other hand, considers training a GNN for
node property prediction in a distributed manner: a graph is partitioned and each client
holds one partition (Zhang et al., 2021b; Wu et al., 2021; Chen et al., 2022; Yao & Joe-
Wong, 2022). A challenge to address is the aggregation of information along edges crossing
different clients. This scenario differs from the vertical scenario in that features are not
partitioned among clients and the graph partitions do not overlap.

The fourth scenario is node-level : the clients are connected by a graph and thus each of them
is treated as a node. In other words, the clients, rather than the data, are graph-structured.
It is akin to decentralized learning, where clients communicate to each other via the graph
to train a unified model (Lalitha et al., 2019; Meng et al., 2021; Caldarola et al., 2021; Rizk
& Sayed, 2021).

Due to the space limitation, please see Appendix A for in-depth discussions of the related
works.

3 Proposed approach

In this section, we present the proposed model and the training algorithm GLASU for feder-
ated learning on vertically distributed graph data. The neighborhood aggregation in GNNs
poses communication challenges distinct from conventional VFL. To mitigate this challenge,
we propose lazy aggregation and stale updates to effectively reduce the communication be-
tween the clients and the server, while maintaining comparable prediction performance as
centralized models. For notational simplicity, we present the approach by using the full-
graph notation (1) but note that the implementation involves neighborhood sampling, where
a more precise notation should follow (2), and that one can easily change the backbone from
GCN to other GNNs.

3.1 GNN model splitting

We split the GNN model among the clients and the server, approximating a centralized
model. Specifically, each GNN layer contains two sub-layers: the client GNN sub-layer and
the server aggregation sub-layer. At the l-th layer, each client computes the local feature
matrix

H+
m[l] = σ

(
A(Em) ·Hm[l] ·Wm[l]

)
with the local weight matrix Wm[l] and the local graph Em, where we use the superscript +

to denote local representations before aggregation. Then, the server aggregates the clients’
representations and outputs H[l + 1] as

H[l + 1] = Agg(H+
1 [l], . . . ,H

+
M [l]),
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where Agg(·) is an aggregation function. In this paper, we only consider parameter-free
aggregations, including averaging and concatenation. The server broadcasts the aggregated
H[l + 1] to the clients so that computation proceeds to the next layer. In the final layer,
each client computes a prediction. This layer is the same among clients because they receive
the same H[L].

The two aggregation operations of our choice render a rather simple implementation of
the server. They bring in two advantages: parameter-free and memory-less. Since the
operations do not contain any learnable parameters, the server does not need to perform
gradient computations. Moreover, in the backward pass, these operations do not require
data from the forward pass to back-propagate the gradients (memory-less). Specifically, for
averaging, the server back-propagates 1

M∇H[l+1]L to each client, where L denotes the loss;
while for concatenation, the server back-propagates the corresponding block of ∇H[l+1]L.
We illustrate in Figure 2 the split of each GNN layer among the clients and the server.
Note the difference of our approach from existing approaches. Our model splitting resem-
bles federated split learning (SplitFed) (Thapa et al., 2022); but in SplitFed, each client
can collaborate with the server to perform inference or model updates without accessing
information from other clients, whereas in our case, all clients collectively perform the job.
Our approach also differs from conventional VFL that splits the local feature processing
and the final classifier among the clients and the server respectively, such that each model
update requires a single U-shape communication (Chen et al., 2020b). In our case, due to
the graph structure, each GNN layer contains one client-server interaction and the number
of interactions is equal to the number of GNN layers (we will relax this in the following
subsection).

3.2 Lazy aggregation

The development in the preceding subsection approximates a centralized model, but it is
not communication friendly because each layer requires one round of client-server commu-
nication. We propose two communication-saving strategies in this subsection and the next.
We first consider lazy aggregation, which skips aggregation in certain layers.

Instead of performing server aggregation at each layer, we specify a subset of K indices,
I = {l1, . . . , lK} ⊂ [L], such that aggregation is performed only at these layers. That is, at a
layer l ∈ I, the server performs aggregation and broadcasts the aggregated representations to
the clients, serving as the input to the next layer: Hm[l+1] = H[l+1]; while at a layer l /∈ I,
each client uses the local representations as the input to the next layer: Hm[l+1] = H+

m[l].
By doing so, the amount of communication is reduced from O(L) to O(K).

There are subtleties caused by neighborhood sampling, similar to those faced by FastGCN
(see Section 2.1). First, it requires additional rounds of communication to synchronize
the sample indices, because whenever server aggregation is performed, it must be done
on the same set of sampled nodes across clients. Hence, in the additional communication
rounds, the server takes the union of the clients’ index sets Sm[lk] and broadcasts S[lk] =⋃M

m=1 Sm[lk] to the clients. Second, when server aggregation is skipped at a layer l /∈
I, each client can use its own set of sampled nodes, Sm[l], which may differ from each
other. Such a procedure is more flexible than conventional VFL where sample features are
generally processed synchronously. The sampling procedure is summarized in Algorithm 2
in Appendix B.1.

3.3 Stale updates

To further reduce communication, we consider stale updates, which skip aggregation in
certain iterations and use stale node representations to perform model updates. The key
idea is to use the same mini-batch, including the sampled neighbors at each layer, for training
Q iterations. In every other Q iterations, the clients store the aggregated representations at
the server aggregation layers. Then, in the subsequent iterations, every server aggregation
is replaced by a local aggregation between a client’s up-to-date node representations and
other clients’ stale node representations. By doing so, the clients and the server only need
to communicate once in every Q iterations.
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Algorithm 1 Training Procedure. All referenced algorithms are detailed in Appendix B.1.

for t = 0, . . . , T do
Server/Client (Algorithm 2): Sample {St

m[l]}Ll=0.

Client: Wt,0
m =

{
Wt−1,Q

m , t > 0

W0
m, t = 0

.

Server/Client (Algorithm 3): {Ht
−m[l + 1]}l∈I = JointInference(Wt,0

m ,Dm, {St
m[l]}Ll=0).

for q = 0, . . . , Q− 1 do
Client (Algorithm 4): Wt,q+1

m = LocalUpdate(Wt,q
m ,Dm, {St

m[l]}Ll=0, {Ht
−m[l + 1]}l∈I).

end for
end for
Output: {WT,Q

m }Mm=1

Specifically, let a round of training contain Q iterations and use t to index the rounds. At
the beginning of each round, the clients and the server jointly decide the set of nodes used for
training at each layer. Then, they perform a joint inference on the representations Ht,+

m [l]
at every layer l ∈ I. Each client m will store the “all but m” representation Ht

−m[l + 1]
through extracting such information from the aggregated representations Ht

m[l + 1]:

Ht
−m[l + 1] = Extract(Ht

m[l + 1],Ht,+
m [l]).

For example, when the server aggregation is averaging, the extraction is

Extract(Ht
m[l + 1],Ht,+

m [l]) = Ht
m[l + 1]− 1

M
Ht,+

m [l],

Afterward, the clients perform Q iterations of model updates, indexed by q = 0, . . . , Q−1, on
the local parameters Wt,q

m in parallel, using the stored aggregated information Ht
−m[l+1] to

perform local computation, replacing server aggregation. The name “stale updates” comes
from the fact that Ht

−m[l+1] is computed by using stale model parameters {Wt,0
m′}m′ ̸=m at

all iterations q ̸= 0. The extraction and the local updates are summarized in Algorithm 3
and Algorithm 4, respectively, in Appendix B.1.

3.4 Summary

The overall training procedure is summarized in Algorithm 1. For communication savings,
lazy aggregation brings in a factor of L/K and stale updates bring in a factor of Q. There-
fore, the overall saving factor is QL/K. Note that the algorithm assumes that all clients
have the training labels. If the labels can be held by only one client (say, A), a slight mod-
ification by broadcasting the gradient with respect to the final-layer output possessed by
A, suffices. See Appendix B.2 for details. Although privacy is not the major focus of this
paper, we argue that GLASU is also compatible with existing privacy-preserving approaches
and provide discussion in Appendix C.

3.5 Special cases

It is interesting to note that GLASU encompasses several well-known methods as special
cases.

Conventional VFL. VFL algorithms can be viewed as a special case of GLASU, where
A(Em) = I for all m. In this case, no neighborhood sampling is needed and GLASU reduces
to Liu et al. (2022).

Existing VFL algorithms for graphs. The model of Zhou et al. (2020) is a special case
of GLASU, with K = 1; i.e., no communication is performed except the final prediction
layer. In this case, the clients omit the connections absent in the self subgraph but present
in other clients’ subgraphs. The model of Ni et al. (2021) is also a special case of GLASU,
with K = L. This case requires communication at all layers and is less efficient.

Centralized GNNs. When there is a single client (M = 1), our setting is the same
as centralized GNN training. Specifically, by letting K = L and properly choosing the
server aggregation function Agg(·), our split model can achieve the same performance as a
centralized GNN model. Note that using lazy aggregation (K ̸= L) and choosing the server
aggregation function as concatenation or averaging will make the split model different from
a centralized GNN.
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4 Convergence analysis

In this section, we analyze the convergence behavior of GLASU under lazy aggregation and

stale updates. To start the analysis, denote by St = {St
m[l]}L,M

l=1,m=1 the samples used at

round t (which include all sampled nodes at different layers and clients); by S = |St
m[L]| the

batch size; and by L(W;S) the training objective, which is evaluated at the overall set of
model parameters across clients, W = {Wm}Mm=1, and a batch of samples, S.
A few assumptions are needed (see Appendix D.1 for formal statements). A1: The loss
function ℓ is Gℓ-smooth with Lℓ-Lipschitz gradient; and a client’s prediction function fm
is Gf -smooth with Lf -Lipschitz gradient. A2: The training objective L(W;D) is bounded
below by a finite constant L⋆. A3: The samples St are uniformly sampled from the neighbor
set in each layer.

Theorem 1. Under assumptions A1–A3, by running Algorithm 1 with constant step size
η ≤ C−1

0 · (1 + 2Q2M)−1, with probability at least p = 1− δ, the averaged squared gradient
norm is bounded by:

1

TQ

T−1∑
t=0

Q−1∑
q=0

E
∥∥∇L(Wt,q;D)

∥∥2 ≤ 2∆L

ηTQ
+

28ηM ·
(
C0 +

√
M + 1Q

)
3

σ,

where ∆L = L(W0,0) − L⋆, C0 = GℓLf + LℓG
2
f , and σ > 0 is a function of

log(TQ/δ), Lf , Lg, Gf and Gg.

Remark 1. There are two key challenges in the analysis. (1) Owing to neighborhood sam-
pling, the stochastic gradient is biased (i.e., ES ∇L(W;S) ̸= ∇L(W;D)). (2) The stale
updates in one communication round are correlated, as they use the same mini-batch and
samples. Hence, the general unbiasedness and independence assumptions on the stochastic
gradients in the analysis of SGD-type of algorithms do not apply. We borrow the technique
by Ramezani et al. (2020) to bound the error of the stochastic gradient through the bias-
variance decomposition and extend the analysis by Liu et al. (2022) for VFL with correlated
updates to establish our proof. For details, see Appendix D.

Remark 2. To better expose the convergence rate, assuming that Q is upper bounded by
C0√
M+1

, one may set η =
√

3∆L
28MC0σTQ , such that

1

TQ

T−1∑
t=0

Q−1∑
q=0

E
∥∥∇L(Wt,q;D)

∥∥2 ≤ 8

√
7∆LMC0σ

3TQ
.

Ignoring the logarithmic factor log(TQ/δ) in σ, the above bound states that the squared gra-
dient norm decreases as O((TQ)−1). Note that this bound holds only when T is sufficiently
large, because the choice of η must satisfy the condition of Theorem 1.

Remark 3. Based on the preceding remark, we see that to achieve ϵ-stationarity, the number
of model updates is QT = O( 1

ϵ2 ). That is, as long as Q obeys the upper bound, running
more local updates (Q) reduces the amount of communications (T ). To the best of our
knowledge, this is the first result for VFL on graph data.

Remark 4. While we have analyzed the impact of stale updates (Q), lazy aggregation (K)
does not play a role in convergence, because it does not affect model updates. Instead, it
affects model accuracy in a manner similar to how changing a neural network impacts the
prediction accuracy.

Remark 5. If we consider the impact of the number of clients, the factor M in the numerator
of the bound indicates a slowdown when more clients participate training. Similar results
are seen in FedBCD (Liu et al., 2022), but therein one can use a large batch size S to counter
the slowdown. For graphs, however, S does not appear in the bound because of the biased
gradient estimation. Nevertheless, we note that unlike other federated scenarios, in VFL,
M is very small because it is limited by, e.g., the feature length.

5 Numerical experiments

In this section, we conduct numerical experiments on a variety of datasets and demonstrate
the effectiveness of GLASU in training with distributed graph data. We first compare
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Table 1: Test accuracy (%). The compared algorithms are Centralized training (Cent.);
Standalone training (StAl.); Simulated centralized training (Sim.); GLASU with no stale
updates, i.e., Q = 1 (GLASU-1); and GLASU with stale updates Q = 4 (GLASU-4).

Dataset Cent. StAl. Sim. GLASU-1 GLASU-4

Cora 80.9± 0.6 74.6± 0.5 80.1± 1.2 81.0± 1.3 80.3± 1.2
PubMed 84.9± 0.6 77.2± 0.5 82.7± 1.2 82.3± 1.6 83.8± 1.8
CiteSeer 70.2± 0.8 64.4± 0.5 70.0± 1.2 70.0± 1.7 68.8± 3.3

Suzhou 94.3± 0.3 51.6± 0.9 93.5± 0.6 92.7± 1.4 90.4± 0.8
Venice 95.7± 0.5 33.5± 2.1 93.1± 1.3 92.2± 0.6 91.0± 1.6

Amsterdam 94.6± 0.1 59.8± 1.0 95.5± 0.8 93.1± 0.8 94.9± 0.4

Reddit 95.6± 0.1 87.3± 0.3 95.3± 0.7 95.7± 0.6 94.7± 1.1

its performance with related methods, including those tackling a different assumption on
the data distribution and communication pattern. Then, we examine the communication
saving owing to the use of lazy aggregation and stale updates. We further showcase the
flexibility of GLASU through demonstration with different GNN backbones and varying
clients. The experiments are conducted on a distributed cluster with three Tesla V100
GPUs communicated through Ethernet.

5.1 Datasets

We use seven datasets (in three groups) with varying sizes and data distributions: the
Planetoid collection (Yang et al., 2016), the HeriGraph collection (Bai et al., 2022), and the
Reddit dataset (Hamilton et al., 2017). Each dataset in the HeriGraph collection (Suzhou,
Venice, and Amsterdam) contains data readily distributed: three subgraphs and more than
three feature blocks for each node. Hence, we use three clients, each of which handles one
subgraph and one feature block. For the other four datasets (Cora, PubMed, and CiteSeer in
the Planetoid collection; and Reddit), each contains one single graph and thus we manually
construct subgraphs through randomly sampling the edges and splitting the input features
into non-overlapping blocks, so that each client handles one subgraph and one feature block.
The dataset statistics are summarized in Table 4 and more details are given in Appendix E.1.

5.2 Accuracy

We compare GLASU with three training methods: (a) centralized training, where there is
only a single client (M = 1), which holds the whole dataset without any data distribution
and communication; (b) standalone training (Zhou et al., 2020), where each client trains
a model with its local data only and they do not communicate; (c) simulated centralized
training (Ni et al., 2021), where each client possesses the full graph but only the partial
features, so that it simulates centralized training through server aggregation in each GNN
layer. Methods (b) and (c) are typical VFL methods; they are also special cases of our
method (see Section 3.5). Except for centralized training, the number of clients M = 3.
The number of training rounds, T , and the learning rate η are optimized through grid search.
See Appendix E.2 for details.

We use GCNII (Chen et al., 2020a) as the backbone GNN. GCNII improves over GCN
through including two skip connections, one with the current layer input and the other with
the initial layer input. We set the number of layers L = 4 and the mini-batch size S = 16.
For neighborhood sampling, the sample size is three neighbors per node on average. We set
K = 2; i.e., lazy aggregation is performed in the middle and the last layer.

Table 1 reports the average classification accuracy of GLASU and the compared training
methods, repeated five times. As expected, standalone training produces the worst results,
because each client uses only local information and misses edges and node features present in
other clients. The centralized training and its simulated version lead to similar performance,
also as expected, because server aggregation (or its equivalence in centralized training) on
each GNN layer takes effect. Our method GLASU, which skips half of the aggregations,
yields prediction accuracy rather comparable with these two methods. Using stale updates
(Q = 4) is generally outperformed by no stale updates (Q = 1), but occasionally it is better
(see PubMed and Amsterdam). The gain in using lazy aggregation and stale updates occurs
in timing, as will be demonstrated next.
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Table 2: Test accuracy (%), runtime (seconds), and saving in runtime (%) under different
numbers of lazy aggregation layers (K = 4, 2, 1). The saving is with respect to K = 4. Left:
PubMed; right: Amsterdam.

# Layer K = 4 K = 2 K = 1 K = 4 K = 2 K = 1

Accuracy 82.5± 1.0 83.8± 1.8 82.2± 0.7 93.6± 0.7 94.9± 0.4 92.0± 1.7
Runtime 130± 12 96.6± 9.9 81.3± 6.5 913± 76 544± 44 382± 35
Saving − 25.7 37.5 − 40.4 58.2

Table 3: Test accuracy (%) and runtime (seconds) un-
der different numbers of stale updates (Q = 2, 4, 6, 16)
for the same accuracy threshold. Top: PubMed
(threshold: 82%); bottom: Amsterdam (threshold:
89%).

# Stale Q = 2 Q = 4 Q = 8 Q = 16

Accuracy 82.5± 1.6 82.0± 2.4 82.1± 0.3 N/A
Runtime 66.1± 5.0 43.8± 4.0 88.9± 7.4 > 128

# Stale Q = 2 Q = 4 Q = 8 Q = 16

Accuracy 89.2± 0.4 89.3± 0.7 90.7± 0.5 90.3± 1.1
Runtime 1323± 44 521± 44 324± 31 250± 24

Figure 3: Test accuracy un-
der three backbone GNNs on
PubMed.

5.3 Communication saving
To further investigate how the two proposed techniques affect the model performance and
save the communication, we conduct a study on (a) the lazy aggregation parameter K and
(b) the stale update parameter Q.

Lazy aggregation: We use a 4-layer GCNII as the backbone and set K = 1, 2, 4. The
aggregation layers are “uniform” across the model layers. That is, when K = 1, server
aggregation is performed on the last layer; when K = 2, on the middle layer and the last
layer; and when K = 4, on all layers. The test accuracy and runtime are listed in Table 2.
We observe that the runtime decreases drastically when using fewer and fewer aggregation
layers: from K = 4 to K = 1, the reduction is 37.5% for PubMed and 58.2% for Amsterdam.
The accuracy is comparable in all cases.

Stale updates: We experiment with a few choices of Q: 2, 4, 8, and 16. We report the time
to reach the same test accuracy threshold in Table 3. We see that stale updates help speed
up training by using fewer communication rounds, corroborating Remark 3 of the theory in
Section 4. This trend occurs on the Amsterdam dataset even when taking Q as large as 16.
The trend is also noticeable on PubMed, but at some point (Q = 8) it is reverted, likely
because it gets harder and harder to reach the accuracy threshold. We speculate that the
target 82% can never be achieved at Q = 16. This observation is consistent with Remark 2
of the theory, requiring Q to be upper bounded to claim O((TQ)−1) convergence.

5.4 Flexibility
To demonstrate the flexibility of GLASU, we conduct experiments to show the performance
under (a) different GNN backbones and (b) different numbers of clients, M . We first test
GLASU on three representative GNN backbones: GCN, GAT (Velickovic et al., 2018), and
GCNII. The test accuracy over training rounds is plotted in Figure 3. We set M = 3, 5, 7
and investigate the change in performance for different training methods. Due to space
limitations, we include the experiment results and the discussions in Appendix E.3.

6 Conclusion
We have presented a flexible model splitting approach for VFL with vertically distributed
graph data and proposed a communication-efficient algorithm, GLASU, to train the result-
ing GNN. Due to the graph structure, VFL on GNNs incurs heavy communication and
poses an extra challenge in the convergence analysis, as the stochastic gradients are no
longer unbiased. To overcome these challenges, our approach uses lazy aggregation to skip
server-client communication and stale global information to update local models, leading
to significant communication reduction. Our analysis makes no assumptions on unbiased
gradients. We provide extensive experiments to show the flexibility of the model and the
communication saving in training, without compromise on the model quality.
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