

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REASONING PATH DIVERGENCE: A NEW METRIC AND CURATION STRATEGY TO UNLOCK LLM DIVERSE THINKING

Anonymous authors

Paper under double-blind review

ABSTRACT

While Test-Time Scaling (TTS) effectively enhances the reasoning capabilities of Large Language Models (LLMs), its potential is often bottlenecked by low output diversity. This limitation raises questions about the standard *one problem, one solution* (1P1S) fine-tuning paradigm, which, by rewarding a single canonical answer, may encourage models to overfit to specific reasoning paths. To address this, we argue that adopting a *one problem, multiple solutions* (1PNS) training paradigm is crucial for cultivating reasoning diversity and unlocking the full potential of LLM reasoning. However, a central challenge of this paradigm lies in quantifying the semantic difference between complex, multi-step reasoning paths. To address this, we introduce Reasoning Path Divergence (RPD), a novel, fine-grained metric that operates at the step-level of Long Chain-of-Thought solutions. Using RPD, we curate a training set composed of maximally diverse solutions for each problem. Experiments with Qwen3-4B-Base demonstrate that training on our RPD-curated data significantly enhances output diversity and yields substantial gains in pass@k performance. Specifically, our 1PNS approach surpasses the 1P1S baseline by an average of 2.80% on pass@16 across challenging math benchmarks, with the improvement reaching 4.99% on AIME24, making Test-Time Scaling more effective.

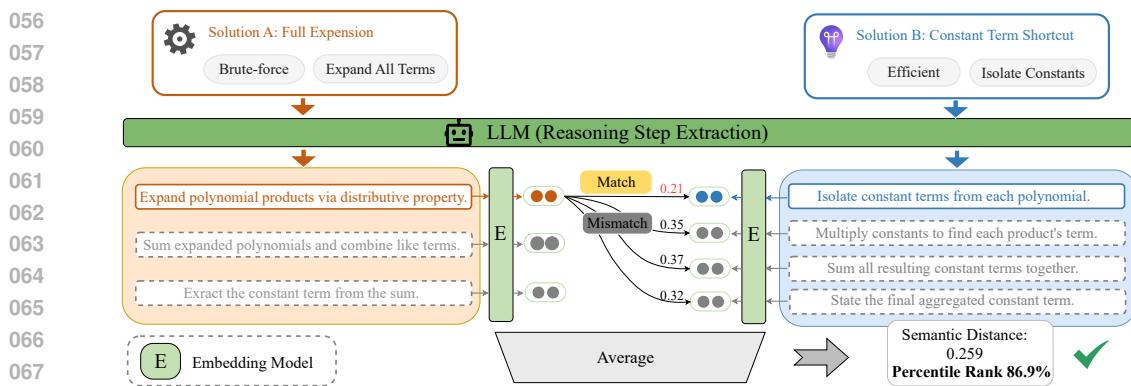
1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Chowdhery et al., 2023; Touvron et al., 2023) have achieved unprecedented success in complex reasoning domains, tackling challenges in areas like competitive mathematics and theoretical physics that were once considered beyond the reach of automated systems. This progress has been largely driven by Chain-of-Thought (CoT) prompting (Wei et al., 2022; Nye et al., 2021), which elicits step-by-step reasoning from language models. Building upon CoT, Test-Time Scaling (TTS) methods have become standard practice, particularly in recent models such as OpenAI’s o1 series (Jaech et al., 2024). By generating multiple reasoning trajectories at inference time and selecting among them through techniques like Best-of-N sampling (Brown et al., 2024; Song et al., 2024) and self-consistency (Wang et al., 2022), TTS methods achieve substantial improvements on complex reasoning tasks. However, the effectiveness of TTS methods critically depends on the diversity of generated reasoning paths (Chen et al., 2025; Dang et al., 2025; Yao et al., 2025; Chow et al., 2025). When models produce only minor variations of the same flawed reasoning, the benefits of additional sampling diminish rapidly.

This diversity bottleneck arises in part from how current models are trained on reasoning tasks. Standard training datasets typically provide only a single solution path for each problem, teaching models to converge on one “correct” way of reasoning rather than exploring the space of valid alternatives. While prior work has proposed various modifications to loss functions to encourage diversity (Li et al., 2025c; Chen et al., 2025; Yao et al., 2025), fundamental questions about the relationship between training data diversity and model output diversity remain open. Therefore, the central question we explore in this paper is:

Can a one problem, multiple solutions training paradigm effectively mitigate output homogenization and improve TTS performance?

054 **Problem:** Find the constant term of the polynomial $(x^2 + 2x + 1)(x^2 - 3x - 2) + (x^2 + 4x + 3)(x^2 - 2x - 1)$
 055



061 **Figure 1:** The workflow of our Reasoning Path Divergence (RPD) metric. Given two solutions (A
 062 and B), an LLM first decomposes them into step-level summaries. An asymmetric matching is then
 063 performed: each step in the shorter summary (A) is matched to its semantically closest counterpart
 064 in the longer summary (B) based on embedding cosine distance. The final RPD score is the average
 065 of these minimum distances. Detailed examples with analysis is provided in Appendix C.
 066

067 In this work, we explore a pragmatic approach to address this diversity bottleneck: training models
 068 on datasets where each problem is paired with multiple distinct solutions. To construct such datasets,
 069 we first need to solve a fundamental challenge: reliably measuring semantic diversity between com-
 070 plex reasoning paths. Common approaches, such as computing cosine similarity on embeddings
 071 (Reimers & Gurevych, 2019) of the entire solution text, fail for Long Chain-of-Thought solutions
 072 because they conflate high-level strategic differences with low-level computational details and nar-
 073 rative style. To address this, we introduce Reasoning Path Divergence (RPD), a novel diversity
 074 metric that leverages Large Language Models to summarize solutions into their core logical steps,
 075 then employs an asymmetric matching process to quantify semantic overlap. This design enables
 076 RPD to distinguish genuine strategic novelty from superficial variations, providing the foundation
 077 for systematic diversity-driven data curation.
 078

079 Equipped with this metric, we selected the OpenThought3 dataset (Guha et al., 2025) as our testbed.
 080 Its primary advantage is providing a large-scale collection of 53,125 mathematical problems, each
 081 accompanied by 16 Long-CoT answers. These properties establish the dataset as a premier testbed
 082 for our subsequent diversity-driven data curation experiments.
 083

084 Our main contributions in this work are:
 085

- **A Novel Metric and Diversity-Driven Curation Strategy.** We first propose and validate Reasoning Path Divergence (RPD), a novel metric for quantifying the semantic diversity between Long-CoT solutions. Building on this metric, we develop a data curation pipeline that systematically constructs a high-quality *one problem, multiple solutions* training set by selecting the most semantically distinct solutions for each problem.
- **Demonstrated Gains in Diversity and Performance.** Models fine-tuned on our multi-solution (1PNS) dataset achieve an average improvement of **2.80%** in *pass@16* performance across challenging math benchmarks, highlighted by a peak gain of **4.99%** on the AIME24 benchmark, while simultaneously exhibiting higher output diversity as measured by our RPD metric. These gains demonstrate that multi-solution training effectively addresses the diversity bottleneck in Test-Time Scaling, thereby boosting its effectiveness.

2 RELATED WORK

104 **Test-Time Scaling.** A significant branch of Test-Time Scaling (TTS) focuses on improving per-
 105 formance by generating and aggregating multiple candidate solutions, which can be broadly divided
 106 into selection and fusion strategies. Selection-based methods identify the single best answer from
 107

108 a pool of candidates, such as selecting the one with the highest verifier score in Best-of-N (Brown
 109 et al., 2024; Song et al., 2024) or the most frequent one via Majority Voting (Wang et al., 2022).
 110 To improve sample efficiency, some works filter candidates before the final selection or voting
 111 (Munkhbat et al., 2025; Chen et al., 2024; Wu et al., 2025). In contrast, fusion-based methods
 112 merge multiple answers, for instance, by prompting an LLM to act as a summarizer (Jiang et al.,
 113 2023; Li et al., 2025b;a). Crucially, the effectiveness of these methods is fundamentally bottle-
 114 necked by low output diversity, as conventional training encourages the model to overfit to a single,
 115 canonical reasoning path.

116 **LLM Generation Diversity.** A large body of work confirms that standard supervised fine-tuning
 117 is detrimental to generation diversity (O’Mahony et al., 2024; Chen et al., 2025; Li et al., 2025c),
 118 prompting explorations into various training-phase optimizations to mitigate this issue, especially
 119 as recent studies establish a strong positive correlation between a model’s solution diversity and its
 120 reasoning potential (Yao et al., 2025). These algorithm-centric approaches are varied, ranging from
 121 modifying the training objective with techniques like confidence regularization (Chen et al., 2025)
 122 or direct Best-of-N optimization (Chow et al., 2025), to altering the training process via sparse
 123 updates (Li et al., 2025c), checkpoint ensembling (Dang et al., 2025), and lightweight, diversity-
 124 aware parameter tuning (Chung et al., 2025). Complementing these effective, algorithm-centric
 125 strategies, our work explores a data-centric perspective aimed at directly enriching the reasoning
 126 diversity within the training data itself.

127 **Data Curation.** The importance of curating high-quality and diverse datasets for fine-tuning is a
 128 widely recognized principle (Albalak et al., 2024). Existing efforts to enhance diversity have pri-
 129 marily targeted *inter-problem* diversity, focusing on ensuring a broad mix of distinct problems by
 130 using automated selection frameworks (Liu et al., 2024), removing semantic duplicates (Abbas et al.,
 131 2023), or optimizing domain mixtures (Xie et al., 2023). In contrast, cultivating *intra-problem* di-
 132 versity—teaching a model multiple ways to solve the same problem—remains a largely unexplored
 133 challenge, a critical gap that our work aims to fill.

135 3 METHOD

136 Enabling the *one problem, multiple solutions* training paradigm hinges on the ability to identify
 137 and select semantically distinct reasoning paths. To address this core challenge, this section first
 138 introduces Reasoning Path Divergence (RPD), a novel, fine-grained metric designed specifically for
 139 Long-CoT solutions. We then detail our 1PNS Curation Pipeline, which employs RPD to system-
 140 atically construct a high-diversity training set from the OpenThought3 dataset (Guha et al., 2025), a
 141 large collection of 53,125 mathematical problems, each accompanied by 16 Long-CoT answers.

144 3.1 REASONING PATH DIVERGENCE (RPD): A STEP-LEVEL DIVERSITY METRIC

145 Conventional metrics that apply embeddings to the full solution text are poorly-suited for assessing
 146 Long-CoT diversity. By flattening a solution’s entire logical structure into a single vector, they
 147 conflate high-level strategic shifts with superficial textual variations. Our RPD metric overcomes
 148 this limitation by analyzing the reasoning process at the step-summary level, focusing on high-level
 149 logic rather than implementation details. The computation, illustrated in Figure 1, involves two core
 150 stages:

151 **1. Reasoning Step Extraction.** We use a LLM (Qwen3-14B; Team, 2025), guided by the prompt
 152 detailed in Appendix A.1, to decompose two Long-CoT solutions, S_A and S_B , into their core logical
 153 steps. This process transforms each verbose solution into a structured list of concise step summaries:
 154 $L_A = \{a_1, \dots, a_m\}$ and $L_B = \{b_1, \dots, b_n\}$.

155 **2. Asymmetric Distance Computation.** The second stage quantifies the semantic distance between
 156 the two step lists using an asymmetric matching process. First, each step summary is converted into
 157 a high-dimensional vector using Qwen3-Embedding-8B (Zhang et al., 2025). Next, we identify the
 158 solution with fewer steps ($m \leq n$) as the reference, say S_A , and for each of its steps a_i , we find its
 159 closest semantic match within the other solution, S_B , by calculating the minimum cosine distance:

$$161 d_i = \min_{j=1, \dots, n} \left(1 - \frac{\vec{e}_{a_i} \cdot \vec{e}_{b_j}}{\|\vec{e}_{a_i}\| \|\vec{e}_{b_j}\|} \right) \quad (1)$$

162 The overall RPD score, $D(S_A, S_B)$, is the average of these minimum distances:
 163

$$164 \quad D(S_A, S_B) = \frac{1}{m} \sum_{i=1}^m d_i \quad (2)$$

165
 166

167 The robustness of this asymmetric design stems from its ability to handle potential inconsistencies
 168 in summarization granularity. It quantifies how well the core logic of the shorter path is covered
 169 by the longer one. This ensures that if one solution is simply a more detailed variant of another,
 170 the RPD score will be low, whereas fundamentally different strategies will yield a high score. The
 171 complete procedure is formalized in Appendix A.2.

172

173 3.2 THE 1PNS CURATION PIPELINE

174

175 Our pipeline curates the raw OpenThought3 dataset into a high-diversity 1PNS training set through
 176 two main phases.

177 **Phase 1: Initial Quality Filtering.** We began with a pool of 10,000 mathematical problems from
 178 OpenThought3. Given the absence of ground-truth labels, we first applied a multi-stage filtering
 179 protocol to ensure data quality. The protocol involved two key steps: first, length-based filtering to
 180 help determine a practical `max_new_tokens` for inference, and second, an LLM-based screening
 181 (using Qwen3-14B) to discard ambiguous problems and solutions that were incomplete or lacked a
 182 final answer. This initial phase yielded a high-quality candidate set of 1,600 problems, each with
 183 at least 10 candidate solutions that passed the screening protocol. The specifics of this protocol are
 184 detailed in Appendix B.1.

185 Before proceeding to the core selection, we investigated the natural diversity within this candidate
 186 set using a summary-based LLM Judge. As detailed in Appendix B.2, we prompted a Qwen3-14B
 187 model to assess the overall diversity across the set of all candidate solution summaries for each prob-
 188 lem. The analysis showed a significant lack of diversity: a majority of problems, **58%**, were found
 189 to contain solutions that all followed the same single reasoning strategy, with only minor variations.
 190 This observation underscores that a high number of solutions does not inherently guarantee strategic
 191 reasoning diversity, making an explicit problem selection phase essential.

192 **Phase 2: Diversity-Driven Selection.** This phase consists of a two-stage process guided by our
 193 RPD metric:

194 **1. Problem Selection.** We first rank problems by their intrinsic solution diversity. For each problem
 195 P with k solutions, we compute its overall diversity score, $\text{Score}_{\text{div}}(P)$, by averaging the pairwise
 196 RPD scores across all its unique solution pairs:

197

$$198 \quad \text{Score}_{\text{div}}(P) = \frac{2}{k(k-1)} \sum_{1 \leq i < j \leq k} D(S_i, S_j)$$

199
 200

201 We then select the top- N problems from this ranked list.

202 **2. Solution Selection.** For each of the top- N problems, we then curate a concise set of M maximally
 203 diverse solutions. This is accomplished using a greedy algorithm that iteratively selects the solution
 204 exhibiting the highest average RPD to the already chosen subset.

205 This two-stage process results in a final training set rich in strategically diverse reasoning paths. The
 206 detailed algorithm is provided in Appendix A.3.

207

208 4 EXPERIMENTS

209

211 To validate the core hypothesis of our work—that diversity-driven data curation can enhance a
 212 model’s Test-Time Scaling (TTS) performance, we designed and conducted a series of experiments.
 213 Our evaluation is twofold: first, we directly assess how effectively our proposed Reasoning Path
 214 Divergence (RPD) metric identifies strategic diversity among solutions; second, we evaluate the im-
 215 pact of a training set curated with this metric on the final `pass@k` performance of a model in the
 downstream reasoning task.

216 4.1 RPD METRIC EVALUATION
217

218 **Setup.** To evaluate RPD’s effectiveness in identifying semantically diverse reasoning paths, we
219 randomly sample 100 problems and their solutions from the high-quality candidate set established
220 in our curation pipeline (Sec. 3.2). For each problem, every compared method selects the pair of
221 solutions it predicts to be the most diverse. A powerful LLM Judge then assesses whether the
222 selected pair exhibits diverse problem-solving approaches and strategies, and we report the **success**
223 **rate** as our primary evaluation criterion. The reliability of this LLM Judge has been validated against
224 human annotations (see Appendix D.1.2 for the full prompt and alignment study).

225 **Methods Compared.** We evaluate the following methods:
226

- 227 • **Random:** Randomly selects a pair of solutions, serving as a lower-bound baseline.
228
- 229 • **Raw Embedding (Raw Emb.):** Selects the pair with the greatest cosine distance between
230 the embeddings of the full solution texts.
231
- 232 • **Summary Embedding (Summary Emb.):** Selects the pair with the greatest cosine dis-
233 tance between the embeddings of solution summaries.
234
- 235 • **LLM Selection:** A LLM (Qwen3-14B) selects the most diverse pair based on the sum-
236maries of all candidate solutions (see Appendix D.1.1 for details).
237
- 238 • **Ours (RPD):** Our proposed asymmetric, step-level semantic distance metric.
239

240 **Results and Analysis.** As shown in Table 1, our RPD metric achieves a **53%** success rate, significantly out-
241 performing all baselines, including those based on raw
242 embeddings (40%), summary embeddings (48%), and
243 even a powerful LLM selector (44%). These results of-
244 fer two key insights. First, RPD’s fine-grained, step-
245 level analysis is crucial for overcoming the limitations
246 of holistic embedding methods that conflate high-level
247 strategy with superficial text. Second, its systematic
248 pairwise comparison proves more robust than a heuris-
249 tic LLM judgment when faced with identifying the
250 most diverse pair from a large candidate pool. This performance confirms RPD’s effectiveness
251 as an automated metric for our diversity-driven curation pipeline.
252

253 4.2 EFFECTIVENESS OF MULTI-SOLUTION FINE-TUNING
254

255 In this experimental section, we aim to answer the following research questions:
256

257 **Q1:** Does fine-tuning with the *one problem, multiple solutions* (1PNS) paradigm lead to superior
258 downstream reasoning performance, as measured by `pass@k`, compared to the standard
259 *one problem, one solution* (1P1S) approach?
260

261 **Q2:** Within the 1PNS paradigm, does curating solutions for high strategic diversity using our
262 RPD metric yield better `pass@k` performance than other baselines?
263

264 4.2.1 EXPERIMENTAL SETUP
265

266 **Model.** We use the Qwen3-4B-Base model (Team, 2025) for our primary experiments. To ensure
267 the robustness of our findings, corresponding results for the Qwen2.5-3B model (Team, 2024) are
268 provided in the Appendix E.2.
269

270 **Benchmark.** We evaluate the model’s performance on three challenging mathematical reasoning
271 benchmarks that align with our training data domain: AIME24¹, MATH500 Level 5 (Hendrycks
272 et al., 2021), and Olympiad Bench² (He et al., 2024). Performance is measured using the `pass@k`
273 metric.
274

275 ¹https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

276 ²For our evaluation, we selected an English, text-only, deterministic-answer mathematical subset of the
277 Olympiad Bench to align with our training set.
278

Table 1: Effectiveness of various diversity metrics.

Method	Success Rate (%)
Random	27
Raw Emb.	40
LLM Selection	44
Summary Emb.	48
Ours (RPD)	53

270 **Baselines.** To comprehensively evaluate our diversity-driven data curation method, we conduct a
 271 comparison against several baselines. For our main experiments, we standardize the multi-solution
 272 format to **one problem and three solutions (1P3S)**. The impact of varying the number of solutions
 273 per problem is investigated in our ablation studies (Sec 4.2.3). To ensure a fair comparison, the total
 274 number of training instances is held constant at 300 across all methods.

275 Our proposed method, **Ours (RPD)**, constructs a training set of 100 problems and 3 solutions per
 276 problem, guided by our RPD metric’s diversity scores. We compare it against the following base-
 277 lines, which are grouped into two categories. The detailed construction methodology for each is
 278 provided in Appendix D.2.

279 *1. Comparison of 1P1S vs. 1P3S paradigms.*

280

- 281 • **Random 1P1S:** The standard SFT baseline, constructed by randomly selecting 300 unique
 282 problems and pairing each with one randomly chosen solution. This baseline is used to
 283 measure the fundamental performance gain of the 1P3S approach.

284 *2. Comparison of diversity selection metrics (all using a 1P3S structure).*

285

- 286 • **Random 1P3S:** A naive multi-solution approach. We randomly select 100 problems and
 287 use 3 randomly chosen solutions for each.
- 288 • **LLM Selection:** An LLM is prompted to select 100 problems and generate 3 diverse
 289 solutions for each.
- 290 • **Raw Embedding (Raw Emb.) :** We select the 100 problems and 3 corresponding solutions
 291 that maximize diversity based on the cosine distance between the embeddings of the full
 292 answer texts.
- 293 • **Summary Embedding (Summary Emb.):** We select data by maximizing the cosine dis-
 294 tance between embeddings of AI-generated answer summaries for 100 problems and their
 295 3 solutions.

296 **Implementation Details.** We fine-tune the Qwen3-4B-Base model using supervised fine-tuning
 297 with 4-bit QLoRA (rank=16, alpha=32). The model is trained for 12 epochs in BF16 precision on
 298 NVIDIA H20 GPUs. We use the AdamW optimizer with an batch size of 16 and a cosine learning
 299 rate scheduler, peaking at 5×10^{-5} . For inference, we use nucleus sampling (temperature=0.6,
 300 top_p=0.95) with maximum generation lengths tailored to each benchmark (14K for AIME24, 10K
 301 for MATH500, 8K for Olympiad). To ensure statistical robustness, we report average scores over
 302 multiple runs (4 for AIME24/MATH500, 2 for Olympiad).

303 **4.2.2 RESULTS AND ANALYSIS**

304 To answer our research questions, we present the experimental results in two parts. First, we com-
 305 pare the *one problem, multiple solutions* (1PNS) paradigm against the standard *one problem, one*
 306 *solution* (1P1S) baseline. Second, we evaluate the effectiveness of our diversity metric against vari-
 307 ous alternative selection strategies.

308 **Q1: Superiority of the 1PNS Paradigm**

309 To address our first research question, we compare the performance of our 1P3S training method
 310 against the standard 1P1S baseline across all three benchmarks.

311 As shown in Figure 2, while the performance of our 1PNS approach is comparable to the 1P1S
 312 baseline at `pass@1`, it significantly outperforms the baseline at larger values of k . On average,
 313 our method achieves a `pass@16` gain of **2.80%** across all benchmarks. The improvement peaks on
 314 highly challenging mathematical reasoning problems like AIME24, with the gain reaching **4.99%** on
 315 this benchmark. These results support our core hypothesis that the *one problem, multiple solutions*
 316 paradigm is a more effective strategy for enhancing the Test-Time Scaling performance of models
 317 on complex reasoning tasks.

318 **Q2: Effectiveness of the RPD Metric**

319 Next, we evaluate how our diversity metric performs against other data selection strategies. All com-
 320 pared selection strategies follow the *1P3S (one problem, three solutions) format*. Table 2 presents

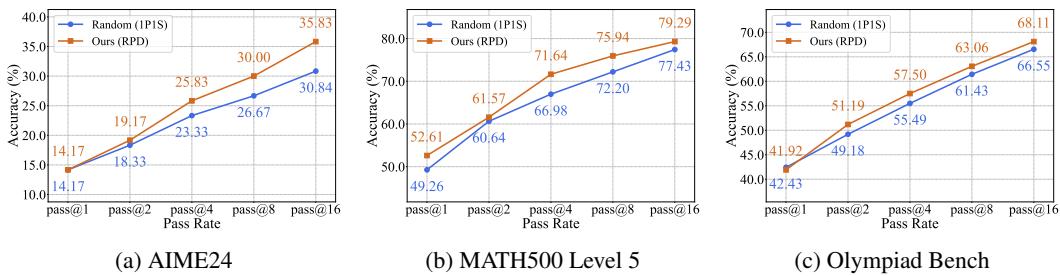


Figure 2: Performance comparison of our 1P3S approach against the 1P1S baseline across three mathematical reasoning benchmarks. Each subplot corresponds to a different benchmark, showing the pass@k accuracy for k=1, 2, 4, 8, 16.

Table 2: Comparison of different diversity selection methods on the MATH500 Level 5 benchmark. All methods except *Base* use a **1P3S** (100 problems, 3 solutions) structure.

Method	pass@1 (%)	pass@2	pass@4	pass@8	pass@16
<i>Base</i>	46.08	56.90	64.37	71.27	75.00
Random (1P3S)	49.07	59.70	68.66	73.32	77.24
Raw Emb.	50.19	59.14	67.54	71.64	77.80
Summary Emb.	52.24	59.89	68.66	73.14	77.43
LLM Selection	49.81	58.96	66.23	73.51	77.61
Ours (RPD)	52.61	61.57	71.64	75.94	79.29

the results on the MATH500 Level 5 benchmark (results for AIME24 and Olympiad Bench are in Appendix E.1).

The results in Table 2 demonstrate that our RPD-guided data selection method consistently outperforms all baseline strategies across every pass@k metric. While some methods, such as Summary Emb., are competitive at pass@1, our approach establishes a more decisive lead at higher values of k. For instance, it creates a nearly **+3.0%** performance gap over the next-best strategies at pass@4. This performance gap highlights RPD’s superior ability to discern true strategic diversity, a quality not fully captured by holistic embedding distances or heuristic LLM selection.

4.2.3 ABLATION STUDIES

We conduct a series of ablation studies to provide a comprehensive analysis of our method and its properties. We begin by evaluating our method’s impact on the diversity of generated solutions. We then analyze the sensitivity to a key hyperparameter—the number of solutions curated for each problem—before disentangling the individual contributions of our problem and answer selection components. Subsequently, we explore the interplay between our fine-tuning approach and inference-time temperature sampling. Finally, we validate the scalability of our paradigm on a larger training set.

Analysis of Solution Diversity. To verify that 1PNS training increases output diversity, we analyzed 16 generated solutions for each problem in MATH Level5 test set. We partitioned problems into a *moderately-solved group* (2-12 correct solutions) and a *well-solved group* (13-16 correct solutions) to analyze performance on problems of varying difficulty. Diversity was measured using our RPD metric, which is the average pairwise RPD among correct solutions within each problem, and Div-Self-BLEU (100 - Self-BLEU) (Kirk et al., 2023). For both metrics, a higher score indicates greater output diversity.

The results in Table 3 reveal a notable adaptability in our fine-tuned model. On moderately-solved (i.e., more difficult) problems, it generates the most diverse outputs, as measured by both RPD and Div-Self-BLEU. On well-solved problems, however, its output diversity is lower than the 1P1S baseline, indicating a high-confidence convergence. We interpret this behavior as a highly efficient strategy for Test-Time Scaling: the model learns to *selectively apply exploration on challenging problems while defaulting to exploitation on simpler ones*. This adaptability is key to optimizing overall pass@k performance.

378 Table 3: Diversity scores for different methods on the MATH500 Level 5 test set, evaluated on the
 379 Qwen3 4B Base model. Scores are partitioned by the number of correct solutions (pass count) out
 380 of 16 attempts.

Method	Div-Self-BLEU		Our Metric	
	Pass Count 2-12	Pass Count 13-16	Pass Count 2-12	Pass Count 13-16
Random (1P1S)	35.27	15.26	15.17	13.30
Random (1P3S)	32.52	14.62	15.57	14.00
LLM Selection ((1P3S))	36.36	14.19	15.11	13.31
Raw Emb. (1P3S)	33.94	14.23	15.39	13.08
Summary Emb. (1P3S)	37.42	14.46	15.69	12.98
RPD (1P3S)	38.20	14.31	15.80	12.62

390 Table 4: Ablation study on the number of diverse solutions selected by **our RPD metric** per problem
 391 on the MATH500 Level 5 benchmark, compared against the 1P1S baseline. The total sample size is
 392 kept constant at 300.

Configuration	pass@1 (%)	pass@2	pass@4	pass@8	pass@16
Random (1P1S)	49.26	60.64	66.98	72.20	77.43
RPD (1P2S)	52.43	61.57	69.96	74.63	77.99
RPD (1P3S)	52.61	61.57	71.64	75.94	79.29
RPD (1P4S)	52.24	59.70	70.90	74.63	79.10
RPD (1P5S)	53.92	61.20	67.73	73.88	78.54

401 Table 5: Ablation study on the contributions of the problem (Q) and answer (A) selection compo-
 402 nents on the MATH500 Level 5 benchmark. All configurations use a 100Q, 3A structure.

Method (Problem + Answer)	pass@1 (%)	pass@2	pass@4	pass@8	pass@16
Random-Q + Random-A	49.07	59.70	68.66	73.32	77.24
Random-Q + RPD-A	50.93	61.38	68.47	73.69	77.43
RPD-Q + Random-A	49.81	59.52	67.91	74.82	78.36
RPD-Q + RPD-A (Ours)	52.61	61.57	71.64	75.94	79.29

411 **Impact of the Number of Solutions per Problem.** Next, we investigate how the number of solu-
 412 tions for each problem affects final model performance, keeping the total training sample size fixed
 413 at 300. As shown in Table 4, we compare our method’s performance when configured to select two,
 414 three, four, and five diverse solutions per problem against the standard single-solution baseline.

416 The results in Table 4 first and foremost demonstrate the clear superiority of the 1PNS paradigm, as
 417 all multi-solution configurations consistently outperform the single-solution baseline, particularly at
 418 larger values of k . Focusing on these metrics reveals an optimal balance: performance peaks with
 419 the **RPD (1P3S)** configuration and declines as more solutions are added per problem. This suggests
 420 a critical trade-off between “diversity depth” and “problem breadth,” and while the optimal balance
 421 is likely contingent on the source data’s intrinsic diversity, the 1P3S configuration proves to be the
 422 most effective for the OpenThought3 dataset.

423 **Quantifying the Impact of Problem and Answer Selection Strategies.** To disentangle the indi-
 424 vidual contributions of our problem selection (RPD-Q) and answer selection (RPD-A) strategies, we
 425 evaluate our full method against ablations where each component is replaced by a random selection
 426 baseline. The results are presented in Table 5.

427 The results in Table 5 lead to three key findings. First, any configuration incorporating our diversity-
 428 driven selection—either for problems or answers—outperforms the fully random baseline at larger
 429 pass@ k values. Second, when comparing their individual impacts, problem selection (RPD-Q) is
 430 more critical for enhancing Test-Time Scaling, providing a **+1.12%** gain at pass@16 over the ran-
 431 dom baseline, substantially larger than the **+0.19%** gain from selecting for diverse answers (RPD-A)
 432 alone. Finally, our full method, which combines both strategies, achieves the best performance by a

432 Table 6: Performance comparison on the MATH500 Level 5 benchmark between our method and
 433 the random baseline across various sampling temperatures (T).
 434

Method	Temp (T)	pass@1 (%)	pass@2	pass@4	pass@8	pass@16
Random	0.2	51.12	58.96	65.30	69.96	73.13
RPD	0.2	50.00	57.46	66.79	71.46	74.82
Random	0.4	54.11	60.26	68.10	72.39	76.31
RPD	0.4	47.95	60.08	69.03	75.19	77.80
Random	0.6	49.26	60.64	66.98	72.20	77.43
RPD	0.6	52.61	61.57	71.64	75.94	79.29
Random	0.8	51.87	61.57	69.22	74.44	78.36
RPD	0.8	50.56	60.82	69.47	74.82	78.92
Random	1.0	45.34	59.71	68.66	73.88	76.87
RPD	1.0	48.51	59.89	69.22	73.88	77.80

447
 448 significant margin (e.g., improving pass@16 by nearly another full percentage point over the next-
 449 best configuration). This demonstrates a clear synergistic effect, confirming that while Diverse-Q
 450 provides a strong foundation, both components are indispensable for maximizing reasoning perfor-
 451 mance.

452 **Interaction with Inference-Time Sampling Temperature.** A common method for increasing out-
 453 put diversity at inference time is to raise the sampling temperature (T). A key question is whether
 454 the diversity benefits from our fine-tuning method are redundant with, or complementary to, this
 455 technique. To investigate this, we evaluate the performance of our method (RPD 1P3S) against
 456 the baseline (Random 1P1S) under five different temperature settings, from low ($T = 0.2$) to high
 457 ($T = 1.0$). We set `top_p` to 0.95 and `top_k` to -1.

458 The results presented in The results in Table 6 show that the performance gap between our method
 459 and the baseline widens as k increases, regardless of temperature. For smaller values of k (e.g.,
 460 pass@1, pass@2), the performance between our method and the random baseline is competi-
 461 tive, with neither showing a decisive advantage across all temperatures. However, as k increases, a
 462 clear and consistent pattern emerges: at larger values of k (pass@8 and pass@16), our method
 463 consistently outperforms the baseline across the entire spectrum of temperature settings.

464 This observation directly supports our conclusion: our RPD-guided training is orthogonal and
 465 complementary to inference-time temperature sampling. Our method fundamentally enriches the
 466 model’s accessible solution space by exposing it to diverse reasoning pathways during training.
 467 Temperature, in contrast, acts as an independent tool to control the stochasticity of navigating that
 468 solution space at inference time. The consistent performance advantage at higher k -values confirms
 469 that our approach provides a distinct and foundational benefit that is not made redundant by simply
 470 tuning inference-time parameters.

471 **Scalability to Larger Datasets.** We further validated the scalability of our 1PNS paradigm by
 472 increasing the training set size to 1,500 samples. As detailed in the Appendix E.3, our diversity-
 473 driven strategy maintains its significant performance advantage over the traditional 1P1S baseline at
 474 this larger scale.

476 5 CONCLUSION

477 To enable the *one problem, multiple solutions* (1PNS) paradigm, we introduce a novel metric
 478 for quantifying reasoning diversity, Reasoning Path Divergence (RPD), and leverage it to curate
 479 a dataset of maximally diverse solutions. Our experiments validate the superiority of the 1PNS
 480 paradigm over the standard 1P1S baseline, as training on this RPD-curated data mitigates output ho-
 481 mogeneization while yielding significant pass@ k gains. These findings establish that our proposed
 482 approach provides a direct pathway to boosting the effectiveness of test-time scaling.

486
487

ETHICS STATEMENT

488
489
490
491
492
493
494
495

The research presented in this paper adheres to the ICLR Code of Ethics. Our work is motivated by the goal of advancing machine learning research and we have carefully considered its potential ethical implications. All datasets and models utilized in our experiments are publicly available and open-source, and we have followed all their terms of use. We acknowledge that our methods could have unforeseen applications, and we encourage the community to build upon our work with a strong consideration for societal impact and fairness. To the best of our knowledge, our work does not introduce new biases, and we have been transparent in our experimental setup and reporting to allow for community scrutiny.

496
497

REPRODUCIBILITY STATEMENT

498
499
500
501
502
503
504
505

We are committed to the full reproducibility of our research. To facilitate this, we provide detailed descriptions of our algorithms, model architectures, and key hyperparameters within the main paper and a comprehensive appendix. Crucially, as our methodology involves large language models, we have included the exact prompts used for our experiments in the appendix to ensure transparency and replicability. Our entire experimental framework relies exclusively on publicly available open-source models, standard benchmarks, and datasets, removing barriers to independent verification. We believe the extensive details provided in our paper and appendices are sufficient for our peers to reproduce our core results with ease.

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Amro Kamal Mohamed Abbas, Kushal Tirumala, Daniel Simig, Surya Ganguli, and Ari S Morcos.
543 Semdedup: Data-efficient learning at web-scale through semantic deduplication. In *ICLR 2023*
544 *Workshop on Mathematical and Empirical Understanding of Foundation Models*, 2023. 2

545 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
546 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
547 report. *arXiv preprint arXiv:2303.08774*, 2023. 1

548 Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
549 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
550 for language models. *arXiv preprint arXiv:2402.16827*, 2024. 2

551 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
552 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
553 *arXiv preprint arXiv:2407.21787*, 2024. 1, 2

554 Feng Chen, Allan Raventos, Nan Cheng, Surya Ganguli, and Shaul Druckmann. Rethinking fine-
555 tuning when scaling test-time compute: Limiting confidence improves mathematical reasoning.
556 *arXiv preprint arXiv:2502.07154*, 2025. 1, 2

557 Lingjiao Chen, Jared Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James Zou.
558 Are more lm calls all you need? towards the scaling properties of compound ai systems. In
559 *Proceedings of the 38th International Conference on Neural Information Processing Systems*, pp.
560 45767–45790, 2024. 2

561 Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Aviral Kumar, Rishabh
562 Agarwal, Sridhar Thiagarajan, Craig Boutilier, and Aleksandra Faust. Inference-aware fine-tuning
563 for best-of-n sampling in large language models. In *The Thirteenth International Conference on*
564 *Learning Representations*, 2025. 1, 2

565 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
566 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
567 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
568 1–113, 2023. 1

569 Ho-Lam Chung, Teng-Yun Hsiao, Hsiao-Ying Huang, Chun erh Cho, Jian-Ren Lin, Zhang Ziwei,
570 and Yun-Nung Chen. Revisiting test-time scaling: A survey and a diversity-aware method for
571 efficient reasoning. *arXiv preprint arXiv:2506.04611*, 2025. 2

572 Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, and Aditi Raghunathan. Weight ensem-
573 bling improves reasoning in language models. *arXiv preprint arXiv:2504.10478*, 2025. 1, 2

574 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
575 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
576 Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
577 Wanja Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
578 Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
579 Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
580 Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
581 Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
582 Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
583 2025. URL <https://arxiv.org/abs/2506.04178>. 1, 3

584 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
585 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
586 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
587 *arXiv:2402.14008*, 2024. 4.2.1

588 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
589 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
590 *preprint arXiv:2103.03874*, 2021. 4.2.1

594 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 595 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 596 preprint arXiv:2412.16720, 2024. 1
 597

598 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
 599 with pairwise ranking and generative fusion. In *Proceedings of the 61st Annual Meeting of the*
 600 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14165–14178, 2023. 2

601 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 602 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 603 diversity. *arXiv preprint arXiv:2310.06452*, 2023. 4.2.3

604 Cheryl Li, Tianyuan Xu, and Steven Y Guo. Reasoning-as-logic-units: Scaling test-time reasoning
 605 in large language models through logic unit alignment. In *Forty-second International Conference*
 606 *on Machine Learning*, 2025a. 2

607 Zichong Li, Xinyu Feng, Yuheng Cai, Zixuan Zhang, Tianyi Liu, Chen Liang, Weizhu Chen, Haoyu
 608 Wang, and Tuo Zhao. Llms can generate a better answer by aggregating their own responses.
 609 *arXiv preprint arXiv:2503.04104*, 2025b. 2

610 Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Zhi-Quan Luo, and Ruoyu Sun.
 611 Preserving diversity in supervised fine-tuning of large language models. In *ICLR*, 2025c. 1, 2

612 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
 613 ment? a comprehensive study of automatic data selection in instruction tuning. In *The Twelfth*
 614 *International Conference on Learning Representations*, 2024. 2

615 Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
 616 training elicits concise reasoning in large language models. *CoRR*, 2025. 2

617 Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
 618 David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
 619 your work: Scratchpads for intermediate computation with language models. *arXiv preprint*
 620 *arXiv:2112.00114*, 2021. 1

621 Laura O’Mahony, Leo Grinsztajn, Hailey Schoelkopf, and Stella Biderman. Attributing mode col-
 622 lapse in the fine-tuning of large language models. In *ICLR 2024 Workshop on Mathematical and*
 623 *Empirical Understanding of Foundation Models*, volume 2, 2024. 2

624 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 625 networks. *arXiv preprint arXiv:1908.10084*, 2019. 1

626 Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
 627 Evaluation of llms should not ignore non-determinism. *arXiv preprint arXiv:2407.10457*, 2024.
 628 1, 2

629 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>. 4.2.1

630 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 631 3.1, 4.2.1

632 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 633 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 634 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023. 1

635 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 636 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 637 *arXiv preprint arXiv:2203.11171*, 2022. 1, 2

638 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 639 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 640 *neural information processing systems*, 35:24824–24837, 2022. 1

648 Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
649 less: Understanding chain-of-thought length in llms. *arXiv preprint arXiv:2502.07266*, 2025. 2
650

651 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
652 Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
653 language model pretraining. *Advances in Neural Information Processing Systems*, 36:69798–
654 69818, 2023. 2

655 Jian Yao, Ran Cheng, Xingyu Wu, Jibin Wu, and Kay Chen Tan. Diversity-aware policy optimization
656 for large language model reasoning. *arXiv preprint arXiv:2505.23433*, 2025. 1, 2
657

658 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
659 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
660 ing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*,
661 2025. 3.1

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 THE USE OF LARGE LANGUAGE MODELS (LLMs)
703

704 In accordance with the ICLR 2026 policy, we disclose that a large language model (LLM) was used
705 as a writing-assistance tool in the preparation of this manuscript. Its role was strictly limited to minor
706 copy-editing tasks, such as improving grammar, rephrasing sentences for clarity, and polishing the
707 overall language. The LLM did not contribute to any of the core research ideas, methodologies,
708 experimental designs, or result interpretations presented herein. The authors have meticulously
709 reviewed all text and take full responsibility for the scientific integrity and accuracy of the entire
710 paper’s content.

711
712 A RPD CURATION METHOD IMPLEMENTATION
713714 A.1 STEP-WISE SOLUTION SUMMARIZATION VIA LLM
715

716 Our proposed diversity metric relies on a fine-grained, step-by-step summary of the reasoning path
717 for each solution. To create these summaries, we use an LLM (Qwen3-14B) to break down each
718 solution into its core logical steps. A key challenge is to ensure these summaries accurately reflect
719 the original methodology while maintaining a consistent level of granularity. Overly concrete sum-
720 maries might capture superficial numerical differences, while overly abstract summaries might fail
721 to distinguish between genuinely different strategies.

722 To solve this, we design a detailed prompt that controls the LLM’s output format and level of ab-
723 straction. This prompt instructs the model to produce a structured JSON object containing 3 to 5
724 method-focused steps. This strict format helps maintain uniformity across all summarized solutions.
725 The complete prompt is provided below.

726 **Prompt for Step-wise Solution Summarization**
727

728 You are a specialized AI expert in analyzing mathematical solutions. Your task is to first
729 provide a step-by-step analysis of a solution, and then, based on your analysis, generate a
730 final JSON output that is concise, direct, and method-focused.

731 REQUIRED OUTPUT STRUCTURE
732

733 Your response **MUST** have two distinct parts in the following order:

734 **Part 1: Analysis & Thinking Process**
735

- Start this section with the heading `### Analysis`.
- Briefly explain your reasoning as you deconstruct the provided solution. This is your “scratchpad”.

736 **Part 2: Final JSON Output**
737

- After your analysis, provide the final JSON output enclosed in `//boxed{[]}`.
- This part must contain *only* the `//boxed{...}` block and nothing else.

738 CONTENT RULES FOR THE FINAL JSON
739

1. **Step Count:** The JSON must contain **strictly 3 to 5 logical steps**.

740 **2. Output Style:**
741

- **Use direct, active verb phrases.** Start each description with a verb (e.g., “Calculate”, “Identify”, “Apply”).
- **DO NOT use narrative phrasing** like “The author identifies...” or “The solution then calculates...”.

742 **3. Abstraction Level:**
743

- Be abstract about numbers and variables, but **be specific about the methodology**.
- **BAD (Too Vague):** “Use a formula to get the result.”
- **BAD (Too Concrete):** “Calculate $1/3 + 1/6 = 1/2$.”
- **GOOD (Balanced):** “Combine the individual rates to find the total work rate.”

756
757
758
759
760
761
762
763
764
765

JSON STRUCTURE SPECIFICATION

- The root object must have one key: "logical_steps".
- The value of "logical_steps" must be a list ([]) of step objects.
- Each step object ({{}}) must contain two keys:
 - "step_title": A short title for the step (e.g., "Step 1: Combine Rates"). Use null if not applicable.
 - "step_description": A concise summary of the action, following all rules above.

766
767
768
769
770
771

EXAMPLE OF THE COMPLETE TWO-PART OUTPUT

Input Solution: "Pipe A fills a tank in 3 hours, so its rate is $1/3$ tank/hr. Pipe B fills it in 6 hours, so its rate is $1/6$ tank/hr. Together, their rate is $1/3 + 1/6 = 1/2$ tank/hr. Therefore, the time to fill the tank together is the reciprocal of the rate, which is $1 / (1/2) = 2$ hours."

Your Required Output:772
773
774
775
776
777
778

```
#### Analysis
The solution addresses a classic work-rate problem.
1. First, it calculates the individual rate for each pipe.
2. Second, it sums these rates to get a combined rate.
3. Finally, it converts the combined rate back into total
   time.

The logic is broken down into three clear, abstract steps.

//boxed{{{
  "logical_steps": [
    {
      "step_title": "Step 1: Determine Individual Rates",
      "step_description": "Determine the individual work rate
        of each component based on the time taken."
    },
    {
      "step_title": "Step 2: Combine Rates",
      "step_description": "Combine the individual rates to
        find the total system work rate."
    },
    {
      "step_title": "Step 3: Calculate Total Time",
      "step_description": "Calculate the total time by taking
        the reciprocal of the combined work rate."
    }
  ]
}}}
```

797
798

YOUR TASK

Math Problem:

{question_text}

Chain-of-Thought Solution to Analyze:

{answer_cot}

802
803
804
805
806
807
808
809

810
811

A.2 REASONING PATH DIVERGENCE (RPD) CALCULATION

812
813
814

After summarizing each solution into a series of core logical steps, the next phase is to compute the pairwise diversity using our **Reasoning Path Divergence (RPD)** metric. RPD is designed to quantify the semantic distance between the step-lists of two solutions, S_A and S_B .

815
816
817
818
819
820

The calculation begins by embedding each logical step using the **Qwen3-Embedding-8B** model. Subsequently, it computes an asymmetric score by finding the average minimum cosine distance from the steps of the shorter solution to all steps in the longer one. This asymmetric design is crucial: it ensures that a solution containing a genuinely novel step is considered distant, even if its other steps are subsumed by a more comprehensive solution. The formal algorithm is detailed below.

821
822**Algorithm 1** Reasoning Path Divergence (RPD) Calculation823
824

Require: Two Long-CoT solutions, S_A and S_B .

Ensure: A scalar diversity score $D \in [0, 1]$.

825
826
827
828

1: $L_A \leftarrow \text{ExtractSteps}(S_A); L_B \leftarrow \text{ExtractSteps}(S_B)$

2: **if** L_A is empty or L_B is empty **then**

3: **return** 1.0

4: **end if**

829
830

5: $E_A \leftarrow \{\text{Embed}(a_i) \mid a_i \in L_A\}; E_B \leftarrow \{\text{Embed}(b_j) \mid b_j \in L_B\}$

831
832
833

6: $(E_{\text{shorter}}, E_{\text{longer}}) \leftarrow \begin{cases} (E_A, E_B) & \text{if } |E_A| \leq |E_B| \\ (E_B, E_A) & \text{otherwise} \end{cases}$

834
835

7: $\text{min_distances} \leftarrow \emptyset$
8: **for all** $\vec{e}_s \in E_{\text{shorter}}$ **do**

836
837

9: $d_{\text{min}} \leftarrow \min_{\vec{e}_l \in E_{\text{longer}}} \left(1 - \frac{\vec{e}_s \cdot \vec{e}_l}{\|\vec{e}_s\| \|\vec{e}_l\|} \right)$

10: $\text{min_distances} \leftarrow \text{min_distances} \cup \{d_{\text{min}}\}$

838
839
840
841

11: **end for**

12: $D_{\text{final}} \leftarrow \text{Mean}(\text{min_distances})$

13: **return** D_{final}

842
843
844845
846
847848
849
850851
852
853854
855
856857
858
859860
861
862

863

864 A.3 DIVERSITY-DRIVEN DATA CURATION
865

866 Our data curation process is a two-stage procedure designed to build a training set rich in strategic
867 diversity. First, we perform **Problem Selection** to identify problems that naturally exhibit a wide
868 range of solutions by scoring each problem based on its total intrinsic diversity. Second, for each of
869 these top-ranked problems, we execute a greedy **Solution Selection** algorithm to curate a small but
870 maximally diverse subset of M solutions. This two-stage approach ensures both inter-problem and
871 intra-problem diversity. The algorithms for both stages are detailed below.

872

873 **Algorithm 2** Stage 1: Problem selection by intrinsic diversity

874 **Require:** Candidate problem set \mathcal{P} , target count N , pairwise distance function $D(\cdot, \cdot)$
875 **Ensure:** Top- N problems \mathcal{P}_{top} ranked by intrinsic diversity
876 1: Initialize empty list of pairs $\mathcal{L} \leftarrow []$
877 2: **for all** problem $P \in \mathcal{P}$ **do**
878 3: Let $\mathcal{S}_P = \{S_1, \dots, S_{k_P}\}$ be its candidate solutions
879 4: **if** $k_P < 2$ **then**
880 5: append $(P, -\infty)$ to \mathcal{L}
881 6: **continue**
882 7: **end if**
883 8: Compute all pairwise distances $\{D(S_i, S_j) : 1 \leq i < j \leq k_P\}$
884 9: $\text{avgD} \leftarrow \frac{2}{k_P(k_P - 1)} \sum_{i < j} D(S_i, S_j)$
885 10: append (P, avgD) to \mathcal{L}
886 11: **end for**
887 12: Sort \mathcal{L} by score (second element) in descending order
888 13: $\mathcal{P}_{\text{top}} \leftarrow \text{first } \min(N, |\mathcal{P}|)$ problems from sorted \mathcal{L}
889 14: **return** \mathcal{P}_{top}

890
891

892 **Algorithm 3** Stage 2: Greedy Selection

893 **Require:** Candidate solutions $\mathcal{S}_{\text{cand}} = \{S_1, \dots, S_k\}$, pairwise distance matrix $\mathbf{D} \in \mathbb{R}^{k \times k}$, target
894 size M
895 **Ensure:** Selected index set $\mathcal{I}_{\text{select}}$ with $|\mathcal{I}_{\text{select}}| = \min(M, k)$
896 1: **if** $M \leq 0$ **or** $k = 0$ **then return** \emptyset
897 2: **end if**
898 3: **if** $M \geq k$ **then return** $\{1, \dots, k\}$
899 4: **end if**
900 5: $i_{\text{first}} \leftarrow \arg \max_i \sum_{j \neq i} \mathbf{D}_{ij}$
901 6: $\mathcal{I}_{\text{select}} \leftarrow \{i_{\text{first}}\}$; $\mathcal{I}_{\text{remain}} \leftarrow \{1, \dots, k\} \setminus \{i_{\text{first}}\}$
902 7: **for each** $r \in \mathcal{I}_{\text{remain}}$ **set** $m[r] \leftarrow \mathbf{D}_{r, i_{\text{first}}}$
903 8: **while** $|\mathcal{I}_{\text{select}}| < M$ and $\mathcal{I}_{\text{remain}} \neq \emptyset$ **do**
904 9: $r^* \leftarrow \arg \max_{r \in \mathcal{I}_{\text{remain}}} m[r]$
905 10: $\mathcal{I}_{\text{select}}.\text{append}(r^*)$; $\mathcal{I}_{\text{remain}}.\text{remove}(r^*)$
906 11: **for each** $r \in \mathcal{I}_{\text{remain}}$: $m[r] \leftarrow \min(m[r], \mathbf{D}_{r, r^*})$
907 12: **end while**
908 13: **return** $\mathcal{I}_{\text{select}}$

909
910
911
912
913
914
915
916
917

918 **B DATASET PREPROCESSING AND ANALYSIS**
919920 **B.1 DETAILED DATASET FILTERING PROTOCOL**
921922 The OpenThought3 dataset is a valuable open-source resource, containing approximately 53,000
923 mathematical problems, each with 16 corresponding completions. However, the raw dataset presents
924 several challenges for direct use in supervised fine-tuning. Key issues include the absence of ground
925 truth labels, the possibility of encountering ambiguous or ill-posed problems, and the fact that some
926 solutions may be unfinished or lack a definitive final answer. Furthermore, the length of the provided
927 solutions varies dramatically.928 To curate a high-quality training corpus and ensure computational efficiency during model inference,
929 we implement a rigorous two-stage filtering protocol on a subset of 10,000 problems from
930 OpenThought3. This protocol addresses both solution length and quality.
931932 **Stage 1: Length-Based Filtering.** Our first step is to control for solution length. This measure is
933 primarily motivated by the practical need to set a reasonable `max_new_tokens` parameter during
934 inference. Accordingly, we filter out any problem whose average token count across all its solutions
935 exceeds 14,000 tokens.
936937 **Stage 2: Quality and Completeness Filtering.** Next, we address the issue of solution quality and
938 completeness. We employ an LLM (Qwen3-14B) as a judge to verify whether each solution is valid.
939 For every solution in the length-filtered set, we provide its final 500 tokens as input to the LLM. The
940 model is instructed to determine if the solution concludes properly by presenting a clear and final
941 answer. Solutions that the LLM judge flags as incomplete or inconclusive are discarded, and any
942 problem subsequently left with fewer than 10 valid solutions is also removed.943 This comprehensive filtering pipeline refines the initial pool of 10,000 problems into a high-quality,
944 curated set of **approximately 1,600 problems**. Each problem in this final set has an average solution
945 length of less than 14,000 tokens and is accompanied by at least 10 complete, validated solutions.
946 This curated 1,600-problem dataset serves as the foundation for all subsequent experiments con-
947 ducted in this work.
948949 **B.2 DATASET DIVERSITY ANALYSIS**
950951 To better inform our data curation, we first analyze the existing strategic diversity within our high-
952 quality candidate set. We use a summary-based LLM Judge to classify whether the solutions for
953 each problem are strategically uniform or diverse.954 For each problem, we concatenate the step-wise summaries of all its candidate solutions (detailed in
955 Appendix A.1) into a single string. This, along with the original problem statement, is provided to
956 an LLM Judge (Qwen3-14B). The judge’s task is to perform a binary classification on the entire set
957 of solutions, identifying if at least two different solution strategies are present.958 We specifically write the prompt to instruct the model to ignore superficial differences in wording or
959 calculation, and instead focus on fundamental strategic choices, such as using direct casework ver-
960 sus complementary counting. We do this so that the classification reflects genuine methodological
961 diversity, not just surface-level variations. The insights from this analysis, as reported in the main
962 text, confirm the need for our subsequent diversity-driven problem selection phase. The complete
963 prompt for this task is detailed below.
964965 **Prompt for Problem Classification**
966967 You are a master mathematician and an expert in pedagogical analysis. Your task is to
968 classify a problem based on the methodological diversity of its proposed solutions.
969 Your goal is to perform a binary classification:970

- **Class 2 (Diverse):** If there are at least two distinct core methodologies present
971 across all the provided solution summaries.

972
 973
 974
 975
 976
 977

- **Class 1 (Not Diverse):** If all solutions use the same core methodology, or if the differences are only superficial (e.g., a different order of calculation, or using standard procedural equivalents like substitution vs. elimination).

978

1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA

979 Your primary task is to act as a discerning analyst. You must distinguish between minor
 980 procedural choices and significant differences in core steps. Assume that most solutions
 981 might share a high-level strategy; your goal is to find answers that execute core steps in a
 982 meaningfully different way.

983

Defining Methodological Difference (Your Core Criteria):

984

What IS NOT a Significant Difference (Methodologically Similar):

985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997

- **Order of Calculation:** Calculating value A then B, versus B then A, before combining them in the same way.
- **Algebraic Equivalence:** Using the form $(a + b)^2$ versus $a^2 + 2ab + b^2$.
- **Variable Naming or Notation:** Using n vs x .
- **Choice of Standard Procedural Equivalents:** One summary describes solving a system of equations using **substitution**, while the other uses **elimination**. These are considered standard, interchangeable procedures within the same overall algebraic approach.
- **Rigorous Proof vs. Heuristic Assumption:** If the overall strategy is the same, simply proving a result versus assuming it does not constitute a diverse approach. Both are still following the same high-level logical path.

998

What IS a Significant Difference (Methodologically Diverse):

999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

- This difference represents a **completely distinct, independent, high-level strategic choice** that fundamentally alters the entire problem-solving path from beginning to end.
- **Example 1 (Different Overall Framework):** One solution to a geometry problem uses **coordinate geometry**, another uses **synthetic geometry**, and a third uses **vector analysis**.
- **Example 2 (Completely Different Logical Path):** To solve a counting problem, one answer uses **direct casework**, another uses **complementary counting**, and a third uses **recurrence relation**.
- **Example 3 (Change in Analytical Tool):** A solution to an optimization problem uses **calculus**, a second uses **inequalities** (like AM-GM), and a third uses **linear programming**.

1012

2. CONTENT TO ANALYZE

1013

Problem:

1014 {question}

1015

Proposed Solutions (Summarized by Logical Steps):

1016 {summaries_text}

1020

3. OUTPUT REQUIREMENT

1021 Based on the final criteria review, classify the diversity of the solutions.

1022

Output Requirement:

1023 Immediately after your classification, provide your final answer in a strict JSON format

1026 within a special block. The JSON should be a single integer, either 1 or 2. Do not provide
1027 any other text.
1028
1029 Example of Final Output Structure for a **Diverse** problem:
1030 //boxed{{2}}
1031
1032 Example of Final Output Structure for a **Not Diverse** problem:
1033 //boxed{{1}}
1034 Begin Analysis and Provide Output:
1035

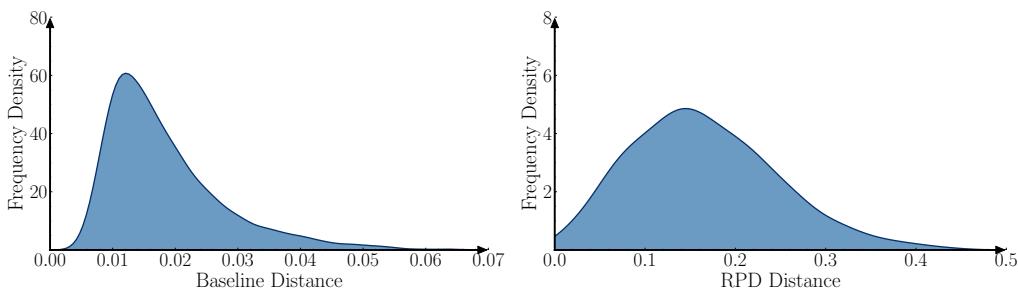
1036 This classification process is applied to the 1,600 high-quality problems in our candidate pool, yield-
1037 ing the diversity distribution statistics reported in Section 3.2.
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

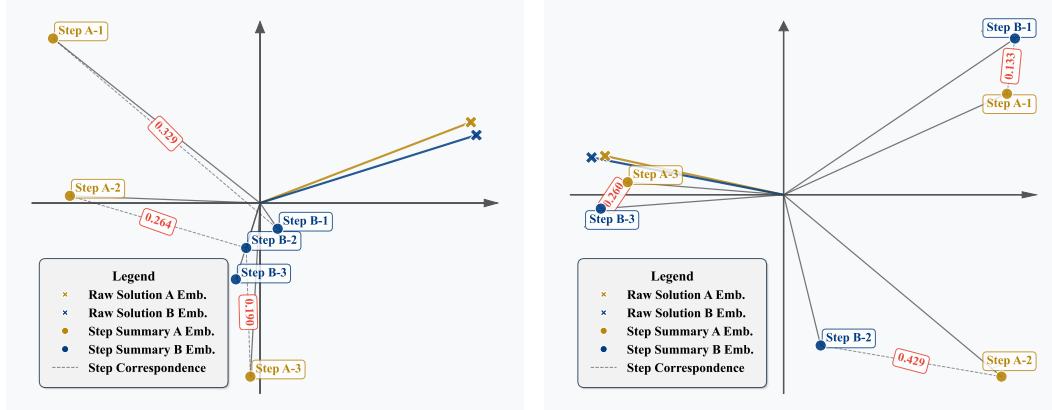
1080 **C CASE STUDIES AND ANALYSIS OF THE RPD METRIC**
1081

1082 To provide a deeper insight into the effectiveness of our RPD metric, this section presents both a
1083 statistical overview and concrete, illustrative examples comparing it against a standard baseline.
1084

1085 **C.1 STATISTICAL DISTRIBUTION OF DIVERSITY SCORES**
1086

1087 We first analyze the overall behavior of RPD compared to a common baseline. The baseline method
1088 calculates the cosine distance between the embeddings of the full, raw solution texts. We sampled
1089 100 problems from our candidate pool and computed all pairwise diversity scores for their solutions
1090 using both methods, resulting in a total of 8,986 data points (i.e., solution pairs) for each distribution.
1091

1092 Figure 3 illustrates the resulting score distributions. The baseline scores are heavily concentrated
1093 in a very narrow range near zero (0.00–0.04). This indicates that full-text embeddings are largely
1094 insensitive to the underlying reasoning structure, assigning nearly identical low-diversity scores to
1095 most pairs and failing to distinguish between subtle and significant strategic differences. In contrast,
1096 our RPD metric produces a much wider and more uniform distribution. This indicates that RPD
1097 possesses significantly higher resolution and sensitivity, allowing it to capture a continuous spectrum
1098 of strategic differences, from the subtle to the substantial.
1099

1100 Figure 3: Distribution of pairwise diversity scores on 100 problems for the baseline (left) and our
1101 RPD metric (right). RPD provides a significantly better-separated distribution.
1102

1134 C.2 ILLUSTRATIVE EXAMPLES
11351136 The following case studies provide concrete examples of this phenomenon.
11371151 (a) Case Study 1
1152 Raw Emb. Distance: 0.015 (Percentile: 44.46%)
1153 RPD Distance: 0.259 (Percentile: 86.92%)1151 (b) Case Study 2
1152 Raw Emb. Distance: 0.016 (Percentile: 52.14%)
1153 RPD Distance: 0.274 (Percentile: 90.44%)1154 Figure 4: PCA visualization of raw solution and step summary embeddings. The step embeddings
1155 for the two solutions occupy distinct regions of the space, reflecting a strategic diversity that our RPD
1156 metric correctly identifies. In contrast, the raw solution embeddings are nearly collinear, causing the
1157 baseline method to fail to distinguish them.
11581159 Case Study 1: Summaries for Figure 4a
1160

- **Question:** Find the constant term in the polynomial $(x^2 + 2x + 1)(x^2 - 3x - 2) + (x^2 - 2x - 1)(x^2 + 4x + 3)$ after it is factored.
- **Solution A (Full Expansion):**
 - Step 1: Expand each trinomial product using the distributive property.
 - Step 2: Add the expanded polynomials together and combine like terms.
 - Step 3: Extract the constant term from the resulting polynomial.
- **Solution B (Constant Term Shortcut):**
 - Step 1: Determine the constant term of each product by multiplying the constant terms of the individual polynomials.
 - Step 2: Add the constant terms from each product to find the constant term of the entire expression.
 - Step 3: Verify that the constant term remains unchanged when the polynomial is factored.

1175 Case Study 2: Summaries for Figure 4b
1176

- **Question:** Determine the largest real value of a such that the equation $ax = x^3 + 1$ has a real solution.
- **Solution A (Calculus Approach):**
 - Step 1: Rewrite the equation to express a as a function of x , $a = \frac{x^3+1}{x}$.
 - Step 2: Find the critical points of the function $f(x) = \frac{x^3+1}{x}$ by taking its derivative and setting it to zero.
 - Step 3: Evaluate the function at the critical point to find the value of a where the equation has a double root, ensuring the largest a for which the equation has a real solution.

1188

• **Solution B (Geometric Interpretation):**

1189

- Step 1: Interpret the equation as the intersection of a line $y = ax$ and a curve $y = x^3 + 1$.
- Step 2: Set the derivative of the cubic function equal to the slope of the line to find the point of tangency.
- Step 3: Solve the system of equations to find the largest real value of a corresponding to the tangency condition.

1190

1191

1192

1193

1194

1195

1196

Analysis: The two case studies in Figure 4 illustrate a consistent pattern where our RPD metric succeeds and the baseline fails. In both examples, the solution pairs employ fundamentally different strategies. The baseline Raw Embedding Distance assigns very low scores (0.015 and 0.016) that correspond to mediocre percentiles (44-52%). This indicates the method is unable to reliably distinguish these solutions from the vast majority of superficially similar pairs. In stark contrast, our RPD metric assigns high scores (0.259 and 0.274) that fall into high percentiles (87-90%), correctly identifying the significant strategic divergence. The PCA visualizations visually corroborate this finding: the well-separated step embeddings in both (a) and (b) confirm that the solutions follow distinct reasoning paths, a fact that only RPD consistently captures.

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 **D EXPERIMENT IMPLEMENTATION DETAILS**
12431244 **D.1 RPD METRIC EVALUATION (DETAILS FOR SEC. 4.1)**
12451246 In this section, we provide the implementation details for the RPD metric evaluation, including the
1247 prompts used for the LLM-based baseline and the evaluation judge.
12481249 **D.1.1 PROMPT FOR THE LLM-SELECTION BASELINE**
12501251 To create the “LLM Selection” baseline, we prompt the Qwen3-14B model to identify the most
1252 diverse pair of solutions from all available candidates for a given problem. The prompt is designed
1253 to encourage a focus on strategic differences rather than superficial text variations.
12541255 **Prompt for Selecting the Most Methodologically Diverse Solution Pair**
12561257 You are a master mathematician and an expert in pedagogical analysis. Your task is to
1258 analyze multiple proposed solutions for a given problem and select a single pair of answers
1259 that represents the maximum possible methodological diversity. If no such pair exists, you
1260 must indicate this.1261 Your goal is to identify **one pair of answers** that represents a significant difference in a
1262 core step or sub-methodology. If all solutions follow a fundamentally similar strategy, your
1263 answer will be to select “**No**”.1264 **1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA**
12651266 Your primary task is to act as a discerning analyst. You must distinguish between minor
1267 procedural choices and significant differences in core steps. Assume that most solutions
1268 might share a high-level strategy; your goal is to find answers that execute core steps in a
1269 meaningfully different way.
12701271 **Defining Methodological Difference (Your Core Criteria):**
12721273 **What IS NOT a Significant Difference (Methodologically Similar):**
12741275

- **Order of Calculation:** Calculating value A then B, versus B then A, before combining them in the same way.
- **Algebraic Equivalence:** Using the form $(a + b)^2$ versus $a^2 + 2ab + b^2$.
- **Variable Naming or Notation:** Using n vs x .
- **Choice of Standard Procedural Equivalents:** One summary describes solving a system of equations using **substitution**, while the other uses **elimination**. These are considered standard, interchangeable procedures within the same overall algebraic approach.
- **Rigorous Proof vs. Heuristic Assumption:** If the overall strategy is the same, simply proving a result versus assuming it does not constitute a diverse approach. Both are still following the same high-level logical path.

1276 **What IS a Significant Difference (Methodologically Diverse):**
12771278

- This difference represents a **completely distinct, independent, high-level strategic choice** that fundamentally alters the entire problem-solving path from beginning to end.
- **Example 1 (Different Overall Framework):** One solution to a geometry problem uses **coordinate geometry**, another uses **synthetic geometry**, and a third uses **vector analysis**.
- **Example 2 (Completely Different Logical Path):** To solve a counting problem, one answer uses **direct casework**, another uses **complementary counting**, and a third uses a **recurrence relation**.

1296
1297
1298
1299
1300

- **Example 3 (Change in Analytical Tool):** A solution to an optimization problem uses **calculus**, a second uses **inequalities** (like AM-GM), and a third uses **linear programming**.

1301
1302
1303
1304
1305

2. CONTENT TO ANALYZE

Problem:

{question}

Proposed Solutions (Summarized by Logical Steps):

{summaries_text}

1306
1307
1308

3. FINAL INSTRUCTIONS & OUTPUT REQUIREMENT

Your Task:

Based on the final criteria review, analyze the solutions and make one of two possible determinations:

1311
1312
1313
1314
1315
1316
1317

1. Identify the single pair of answers with the maximum methodological diversity.
2. Conclude that no pair meets the criteria for significant diversity, meaning all solutions follow a fundamentally similar approach.

Step 1: Brief Comparative Analysis

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

- **If you find a diverse pair:** Write a single, brief paragraph. Do not summarize each solution individually. Instead, group the solutions by common methodology and justify your selection of the most diverse pair. For example: “Solution A uses direct casework, while Solution B uses complementary counting. This represents the most significant methodological difference.”
- **If you do NOT find a diverse pair:** Write a single, brief paragraph explaining why. State that all solutions follow a similar core strategy and briefly describe that common approach. For example: “All solutions utilize a system of linear equations to solve for the variables. While they use different methods like substitution or elimination, this does not represent a significant strategic divergence. Therefore, no pair is methodologically diverse.”

Step 2: Final JSON Output Immediately after your brief analysis paragraph, provide your final answer in a strict JSON format within a special block.

1330
1331
1332
1333
1334
1335
1336

- **If a diverse pair is found:** The JSON should be a list containing the single selected answer ID pair.
- **If no diverse pair is found:** The JSON should contain the string “No” within the list structure to maintain format consistency.

Example of Final Output Structure (Diverse Pair):

[Your brief analysis justifying the choice...]

```
//boxed_json{ { [ [ id_A, id_B ] ] } }
```

Example of Final Output Structure (No Diverse Pair):

[Your brief analysis explaining the lack of diversity...]

```
//boxed_json{ { [ [ "No" ] ] } }
```

Begin Analysis and Provide Output:

1346
1347
1348
1349

1350 D.1.2 THE LLM EVALUATION JUDGE
13511352 To automate the calculation of the “success rate,” a LLM Judge (Qwen3-14B) is used to provide a
1353 final verdict on the diversity of a solution pair selected by a given method (e.g., RPD, Raw Emb.,
1354 etc.). This section details the prompt used to guide the judge and the study conducted to validate its
1355 alignment with human judgment.1356 **Judge Prompt.** The judge is provided with the problem statement and a single pair of solutions. Its
1357 task is to assess whether the two solutions employed genuinely different problem-solving strategies.
1358 The prompt explicitly instructs the judge to ignore minor differences in wording or calculation and
1359 focus on the core reasoning approach.
13601361 **Prompt for Methodological Similarity Rating**
13621363 You are an expert Answer Analysis Assistant, specializing in understanding and comparing
1364 the logic and methodology behind problem-solving. Your task is to receive a question, two
1365 full answers with their summaries, and rate them strictly based on the similarity of their
1366 **methodology**.
13671368 **Note:** Based on your prior analysis, you should assume that all proposed solutions for this
1369 problem follow a similar high-level strategy. Your task is to find and rate the **methodological**
1370 **diversity within this shared high-level strategy**.
13711372 **RATING CRITERIA**
13731374 Your task is to determine if the two answers are **Methodologically Similar** or **Methodologically Diverse** based on the criteria below, and assign a corresponding rating.
13751376 • **Rating 1 (Methodologically Similar):** The two answers are considered similar
1377 if the differences are superficial. The following are **NOT** considered significant
1378 methodological differences:
13791380

- **Order of Calculation:** Calculating value A then B, versus B then A, before
1381 combining them in the same way.
- **Algebraic Equivalence:** Using the form $(a+b)^2$ versus $a^2 + 2ab + b^2$.
- **Variable Naming or Notation:** Using n vs x .
- **Choice of Standard Procedural Equivalents:** One summary describes solving
1382 a system of equations using **substitution**, while the other uses **elimination**. These are considered standard, interchangeable procedures within the
1383 same overall algebraic approach.
- **Rigorous Proof vs. Heuristic Assumption:** If the overall strategy is the same,
1384 simply proving a result versus assuming it does not constitute a diverse approach. Both are still following the same high-level logical path.

13851386 • **Rating 2 (Methodologically Diverse):** The two answers are considered diverse if
1387 the difference represents a **completely distinct, independent, high-level strategic**
1388 **choice** that fundamentally alters the entire problem-solving path from beginning to
1389 end.
13901391

- **Example 1 (Different Overall Framework):** One solution to a geometry
1392 problem uses **coordinate geometry**, another uses **synthetic geometry**, and
1393 a third uses **vector analysis**.
- **Example 2 (Completely Different Logical Path):** To solve a counting problem,
1394 one answer uses **direct casework**, another uses **complementary counting**, and a third uses a **recurrence relation**.
- **Example 3 (Change in Analytical Tool):** A solution to an optimization problem
1395 uses **calculus**, a second uses **inequalities** (like AM-GM), and a third uses
1396 **linear programming**.

1404
1405 OUTPUT REQUIREMENT
1406

1407 First, provide a detailed analysis explaining the methodological similarities and differences
1408 based on the criteria above. After your analysis is complete, provide the final rating on a new
1409 line in the format //boxed{{rating_number}}. **DO NOT ONLY GIVE OUT YOUR**
1410 **RATE!**

1411 Begin Analysis:

1413 [Question]:
1414 {question}

1416 [Answer A]:
1417 {answer_a}

1418 [Answer A summary]:
1419 {summary_a}

1421 [Answer B]:
1422 {answer_b}

1424 [Answer B summary]:
1425 {summary_b}

1427
1428 **Validation.** To ensure the reliability of the LLM Judge used as our primary evaluation criterion in
1429 Sec. 4.1, we conduct an alignment study with human annotations.

1430 To validate the judge, we first construct a ded-
1431 icated test set. Human annotators select 100
1432 pairs of solutions from our candidate pool, cre-
1433 ating a balanced ground-truth dataset composed
1434 of 50 pairs with semantically *diverse* reason-
1435 ing paths and 50 pairs with the *same* underlying
1436 reasoning path.

1437 The LLM Judge is then tasked with making a
1438 binary diversity judgment on each of these 100
1439 pairs. The results are presented in the confusion matrix in Table 7. Overall, the LLM Judge achieves
1440 an accuracy of 78%, demonstrating a strong alignment with human judgment and performing sig-
1441 nificantly better than a random baseline (50%). We observe that the judge is quite effective at
1442 identifying truly diverse pairs (Recall 82%), though it is slightly prone to false positives (classifying
1443 similar paths as diverse). This level of agreement validates our use of the LLM Judge as a reliable
1444 automated proxy for evaluating reasoning diversity in our main experiment.

1445

1446 D.2 DETAILS FOR MULTI-SOLUTION FINE-TUNING (SEC. 4.2)

1447
1448 This section provides detailed implementation procedures for the main fine-tuning experiment, fo-
1449 cusing on how the baseline training sets were constructed. Each method aims to select 100 problems
1450 and 3 solutions per problem, but they differ in their core selection strategy.

1451

1452 D.2.1 RANDOM SELECTION BASELINE

1453
1454 The **Random 1P3S** baseline was constructed through a naive sampling process. We first randomly
1455 selected 100 problems from our 1,600-problem candidate pool without replacement. For each of
1456 these 100 problems, we then randomly selected 3 of its available solutions to form the training data.
1457 This method serves as a fundamental baseline to measure the benefits of any systematic diversity-
driven selection.

Table 7: Confusion matrix of LLM Judge verdicts
against human annotations on 100 solution pairs.

		LLM Judge Verdict	
		Diverse	Same
Human Label	Same	41 (TP)	9 (FN)
		13 (FP)	37 (TN)

1458 D.2.2 LLM SELECTION BASELINE
1459

1460 This baseline leverages the powerful Qwen3-14B model to simulate an expert’s judgment in a two-
1461 stage curation process. First, the LLM performs a binary classification to identify whether a prob-
1462 lem’s solutions are methodologically diverse. We then selected 100 problems that were positively
1463 classified as containing diverse solution methods. Second, for these selected problems, the LLM is
1464 prompted again to choose the set of 3 solutions that are maximally distinct from each other. The
1465 specific prompts for each stage are provided below.

1466 **Prompt for Problem Diversity Classification**
1467

1468 You are a master mathematician and an expert in pedagogical analysis. Your task is to
1469 classify a problem based on the methodological diversity of its proposed solutions.
1470 Your goal is to perform a binary classification:

- 1471 • **Class 2 (Diverse):** If the provided solution summaries showcase more than one
1472 distinct core methodology.
- 1473 • **Class 1 (Not Diverse):** If all solutions use the same core methodology, or if the dif-
1474 ferences are only superficial (e.g., a different order of calculation, or using standard
1475 procedural equivalents like substitution vs. elimination).

1477 1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA
1478

1479 Your primary task is to act as a discerning analyst. You must distinguish between minor
1480 procedural choices and significant differences in core steps. Assume that most solutions
1481 might share a high-level strategy; your goal is to find answers that execute core steps in a
1482 meaningfully different way.

1483 **Defining Methodological Difference (Your Core Criteria):**1484 **What IS NOT a Significant Difference (Methodologically Similar):**

- 1485 • **Order of Calculation:** Calculating value A then B, versus B then A, before com-
1486 bining them in the same way.
- 1487 • **Algebraic Equivalence:** Using the form $(a + b)^2$ versus $a^2 + 2ab + b^2$.
- 1488 • **Variable Naming or Notation:** Using n vs x .
- 1489 • **Choice of Standard Procedural Equivalents:** One summary describes solving a
1490 system of equations using **substitution**, while the other uses **elimination**. These are
1491 considered standard, interchangeable procedures within the same overall algebraic
1492 approach.
- 1493 • **Rigorous Proof vs. Heuristic Assumption:** If the overall strategy is the same,
1494 simply proving a result versus assuming it does not constitute a diverse approach.
1495 Both are still following the same high-level logical path.

1496 **What IS a Significant Difference (Methodologically Diverse):**

- 1497 • This difference represents a **completely distinct, independent, high-level strate-**
1498 **gic choice** that fundamentally alters the entire problem-solving path from beginning
1500 to end.
- 1501 • **Example 1 (Different Overall Framework):** One solution to a geometry prob-
1502 lem uses **coordinate geometry**, another uses **synthetic geometry**, and a third uses
1503 **vector analysis**.
- 1504 • **Example 2 (Completely Different Logical Path):** To solve a counting problem,
1505 one answer uses **direct casework**, another uses **complementary counting**, and a
1506 third uses a **recurrence relation**.
- 1507 • **Example 3 (Change in Analytical Tool):** A solution to an optimization problem
1508 uses **calculus**, a second uses **inequalities** (like AM-GM), and a third uses **linear**
1509 **programming**.

1512
 1513 2. CONTENT TO ANALYZE
 1514 **Problem:**
 1515 {question}
 1516
 1517 **Proposed Solutions (Summarized by Logical Steps):**
 1518 {summaries_text}
 1519
 1520 3. OUTPUT REQUIREMENT
 1521 Based on the final criteria review, classify the diversity of the solutions.
 1522 **Output Requirement:** Immediately after your classification, provide your final answer in
 1523 a strict JSON format within a special block. The JSON should be a single integer, either 1
 1524 or 2. Do not provide any other text.
 1525 **Example of Final Output Structure for a Diverse problem:**
 1526 //boxed{{2}}
 1527 **Example of Final Output Structure for a Not Diverse problem:**
 1528 //boxed{{1}}
 1529 **Begin Analysis and Provide Output:**

1530
 1531
 1532
 1533 **Prompt for Diverse Solution Selection**
 1534
 1535 You are a master mathematician and an expert in pedagogical analysis. Your task is to
 1536 analyze multiple proposed solutions for a given problem and select a set of {num_to_select}
 1537 answers that, as a set, represents the maximum possible methodological diversity.
 1538 Your goal is to identify a single set of {num_to_select} answers where each chosen answer
 1539 has a significant methodological difference from every other answer in the set. Think of it as
 1540 finding a set of three solutions that are all mutually distinct in their core approach.
 1541
 1542 1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA
 1543 Your primary task is to act as a discerning analyst. You must distinguish between minor
 1544 procedural choices and significant differences in core steps. Assume that most solutions
 1545 might share a high-level strategy; your goal is to find answers that execute core steps in a
 1546 meaningfully different way.
 1547 **Defining Methodological Difference (Your Core Criteria):**
 1548 **What IS NOT a Significant Difference (Methodologically Similar):**
 1549 • **Order of Calculation:** Calculating value A then B, versus B then A, before com-
 1550 bining them in the same way.
 1551 • **Algebraic Equivalence:** Using the form $(a + b)^2$ versus $a^2 + 2ab + b^2$.
 1552 • **Variable Naming or Notation:** Using n vs x .
 1553 • **Choice of Standard Procedural Equivalents:** One summary describes solving a
 1554 system of equations using **substitution**, while the other uses **elimination**. These are
 1555 considered standard, interchangeable procedures within the same overall algebraic
 1556 approach.
 1557 • **Rigorous Proof vs. Heuristic Assumption:** If the overall strategy is the same,
 1558 simply proving a result versus assuming it does not constitute a diverse approach.
 1559 Both are still following the same high-level logical path.
 1560
 1561 **What IS a Significant Difference (Methodologically Diverse):**
 1562 • This difference represents a **completely distinct, independent, high-level strate-**
 1563 **gic choice** that fundamentally alters the entire problem-solving path from beginning
 1564 to end.

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

- **Example 1 (Different Overall Framework):** One solution to a geometry problem uses **coordinate geometry**, another uses **synthetic geometry**, and a third uses **vector analysis**.
- **Example 2 (Completely Different Logical Path):** To solve a counting problem, one answer uses **direct casework**, another uses **complementary counting**, and a third uses a **recurrence relation**.
- **Example 3 (Change in Analytical Tool):** A solution to an optimization problem uses **calculus**, a second uses **inequalities** (like AM-GM), and a third uses **linear programming**.

2. CONTENT TO ANALYZE

Problem:

{question}

Proposed Solutions (Summarized by Logical Steps):

{summaries_text}

3. FINAL INSTRUCTIONS & OUTPUT REQUIREMENT

Your Task: Based on the final criteria review, analyze the solutions.

Step 1: Brief Comparative Analysis First, write a single, brief paragraph for your analysis. Do not summarize each solution individually. Instead, group the solutions by common methodology and justify your selection of the set of {num_to_select} most diverse answers. For example: Solutions A and C use direct casework, while Solution B uses complementary counting, and Solution D uses a geometric approach. The most diverse set is [A, B, D] as it captures these three distinct methods.

Step 2: Final JSON Output Immediately after your brief analysis paragraph, provide your final answer in a strict JSON format within a special block. The JSON should be a list containing the {num_to_select} selected answer IDs.

Example of Final Output Structure:

[Your brief analysis...]

//boxed_json{{[id_A, id_B, id_C]}}

Begin Analysis and Provide Output:

D.2.3 EMBEDDING-BASED BASELINE

To rigorously evaluate the effectiveness of our RPD metric, we compare it against two baseline distance metrics. For a fair comparison, all training datasets—both for our method and the baselines—are constructed using the identical **two-stage data curation framework** detailed previously. This framework consists of **Stage 1: Problem Selection** (Algorithm 2) and **Stage 2: Greedy Solution Selection** (Algorithm 3).

The sole difference between our method and the baselines is the specific pairwise distance function, $\mathcal{D}(S_i, S_j)$, that is plugged into this framework. The baseline metrics are defined below.

Raw Solution Cosine Distance (D_{raw}) This baseline metric computes the cosine distance between the embedding vectors of the complete solution texts. For all embedding tasks, we use the Qwen3-Embedding-8B model. Let $\mathcal{M}_{\text{embed}}$ be this model.

$$D_{\text{raw}}(S_i, S_j) = 1 - \frac{\mathcal{M}_{\text{embed}}(S_i) \cdot \mathcal{M}_{\text{embed}}(S_j)}{\|\mathcal{M}_{\text{embed}}(S_i)\| \|\mathcal{M}_{\text{embed}}(S_j)\|}$$

Summary Cosine Distance (D_{summary}) This baseline first concatenates the step-level summaries for a solution to form a single composite summary text. The diversity is then computed as the cosine

1620 distance between the embeddings of these composite summaries.
 1621

1622
$$D_{\text{summary}}(S_i, S_j) = 1 - \frac{\mathcal{M}_{\text{embed}}(\text{Summary}_{\text{comp}}(S_i)) \cdot \mathcal{M}_{\text{embed}}(\text{Summary}_{\text{comp}}(S_j))}{\|\mathcal{M}_{\text{embed}}(\text{Summary}_{\text{comp}}(S_i))\| \|\mathcal{M}_{\text{embed}}(\text{Summary}_{\text{comp}}(S_j))\|}$$

 1623

1624
 1625 Based on the framework detailed previously, we generate three distinct training datasets:
 1626

1627

- **Ours (RPD):** Constructed by applying the two-stage framework with our proposed RPD
 1628 metric (D_{RPD}).
- **Raw Emb.:** Constructed using the same framework but with the D_{raw} metric.
- **Summary Emb.:** Constructed using the same framework but with the D_{summary} metric.

 1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674 E EXPERIMENT RESULTS

1675

1676 This appendix presents the complete experimental results for both models. The tables are structured
 1677 to clearly distinguish between the pre-trained baseline model, fine-tuning with a one-problem-one-
 1678 solution (1P1S) paradigm, and fine-tuning with a one-problem-three-solution (1P3S) paradigm.
 1679

1680 E.1 COMPLETE RESULTS FOR QWEN3-4B-BASE MODEL

1681

1682 The following tables present the comprehensive performance of the Qwen3-4B-Base model on the
 1683 AIME24 and Olympiad Benchmarks, which complements the MATH500 Level 5 results from the
 1684 main paper. As shown in Table 8, our **RPD** method demonstrates a significant performance improve-
 1685 ment by adopting the *one problem, multiple solutions* paradigm. It elevates the `pass@16` score to
 1686 **35.83%** on AIME24, surpassing the standard 1P1S baseline (Random 1P1S) by an impressive **4.99**
 1687 percentage points. Furthermore, our RPD-guided curation strategy also proves its superiority over
 1688 other 1P3S methods, with its `pass@16` score outperforming the next-best baseline (Random 1P3S)
 1689 by **2.50** percentage points on the same benchmark. This pattern holds for the Olympiad Bench (Ta-
 1690 ble 9), where our method achieves a leading `pass@16` score of **68.11%**, which is **1.56** percentage
 1691 points higher than the 1P1S baseline and **0.75** percentage points higher than the best alternative
 1692 1P3S method. These results provide strong evidence for the effectiveness of our approach in both
 1693 paradigm and data curation strategy.

1694 Table 8: Full comparison on the **AIME24** benchmark using the **Qwen3-4B-Base** model.

1695 Paradigm	1696 Method	1697 <code>pass@1 (%)</code>	1698 <code>pass@2 (%)</code>	1699 <code>pass@4 (%)</code>	1700 <code>pass@8 (%)</code>	1701 <code>pass@16 (%)</code>
1702 Pre-trained	1703 Base	1704 8.34	1705 13.33	1706 16.67	1707 21.67	1708 27.50
1709 1P1S	1710 Random 1P1S	1711 14.17	1712 18.33	1713 23.33	1714 26.67	1715 30.84
	1716 Random 1P3S	1717 9.17	1718 12.50	1719 19.17	1720 28.34	1721 33.33
	1722 Raw Emb.	1723 12.50	1724 16.67	1725 20.00	1726 25.84	1727 33.33
	1728 1P3S	1729 Summary Emb.	1730 10.00	1731 12.50	1732 17.50	1733 25.00
	1734 LLM Selection	1735 10.83	1736 15.84	1737 20.83	1738 25.83	1739 30.83
	1740 Ours (RPD)	1741 14.17	1742 19.17	1743 25.83	1744 30.00	1745 35.83

1704 Table 9: Full comparison on the **Olympiad Bench** using the **Qwen3-4B-Base** model.

1707 Paradigm	1708 Method	1709 <code>pass@1 (%)</code>	1710 <code>pass@2 (%)</code>	1711 <code>pass@4 (%)</code>	1712 <code>pass@8 (%)</code>	1713 <code>pass@16 (%)</code>
1714 Pre-trained	1715 Base	1716 39.54	1717 47.11	1718 53.56	1719 61.13	1720 65.95
1721 1P1S	1722 Random 1P1S	1723 42.43	1724 49.18	1725 55.49	1726 61.43	1727 66.55
	1728 Random 1P3S	1729 40.13	1730 50.15	1731 56.75	1732 62.61	1733 67.36
	1734 Raw Emb.	1735 39.91	1736 47.48	1737 56.38	1738 61.42	1739 66.62
	1740 1P3S	1741 Summary Emb.	1742 40.88	1743 49.78	1744 57.05	1745 62.69
	1746 LLM Selection	1747 39.62	1748 48.30	1749 56.60	1750 62.83	1751 67.06
	1752 Ours (RPD)	1753 41.92	1754 51.19	1755 57.50	1756 63.06	1757 68.11

1716 E.2 COMPLETE RESULTS FOR QWEN2.5-3B MODEL

1717 To demonstrate the robustness and generalizability of our findings, we also fine-tuned the Qwen2.5-
 1718 3B model. Specifically, we employed supervised fine-tuning using 4-bit QLoRA (rank=16, al-
 1719 pha=32), training the model for **15 epochs** in BF16 precision. We utilized the AdamW optimizer
 1720 with a cosine learning rate scheduler, setting the peak learning rate to 4×10^{-5} . We then evaluated
 1721 its performance across the same three benchmarks (Tables 10, 11, and 12).

1722 The results consistently reaffirm our core hypothesis. For instance, on the AIME24 benchmark
 1723 (Table 10), our **RPD** method’s advantage is particularly pronounced when evaluating with a larger
 1724 sample set. Focusing on the key `pass@16` metric, our approach achieves a score of **22.50%**. This
 1725 represents a substantial 5.00 percentage point improvement over the 1P1S baseline and demonstrates
 1726 a clear advantage over other multi-solution strategies, outperforming the next-best 1P3S methods
 1727

1728 by 0.83 percentage points. The outperformance on AIME24 exemplifies a consistent trend also
 1729 observed on the MATH500 and Olympiad benchmarks, which solidifies the conclusion that our
 1730 RPD-guided data curation is a general and effective technique for enhancing Test-Time Scaling.
 1731

1732 Table 10: Full comparison on the **AIME24** benchmark using the **Qwen2.5-3B** model.
 1733

Paradigm	Method	pass@1 (%)	pass@2 (%)	pass@4 (%)	pass@8 (%)	pass@16 (%)
Pre-trained	Base	4.17	4.17	10.00	16.67	16.67
1P1S	Random 1P1S	4.17	8.34	10.00	13.33	17.50
	Random 1P3S	6.67	8.33	14.17	18.33	20.00
	Raw Emb.	5.84	8.34	14.17	18.33	20.83
	Summary Emb.	3.33	6.67	13.33	18.33	21.67
	LLM Selection	2.50	5.00	13.33	16.67	21.67
	Ours (RPD)	7.50	10.00	15.00	20.00	22.50

1744 Table 11: Full comparison on the **MATH500 Level 5** benchmark using the **Qwen2.5-3B** model.
 1745

Paradigm	Method	pass@1 (%)	pass@2 (%)	pass@4 (%)	pass@8 (%)	pass@16 (%)
Pre-trained	Base	23.70	32.65	43.84	55.60	63.62
1P1S	Random 1P1S	29.11	41.05	51.31	60.45	67.73
	Random 1P3S	31.72	42.91	50.94	60.82	68.28
	Raw Emb.	28.92	40.86	51.31	60.08	69.22
	Summary Emb.	27.05	38.06	51.12	60.26	67.35
	LLM Selection	27.61	37.87	49.82	60.26	67.91
	Ours (RPD)	28.55	40.30	51.49	61.20	69.97

1755 Table 12: Full comparison on the **Olympiad Bench** using the **Qwen2.5-3B** model.
 1756

Paradigm	Method	pass@1 (%)	pass@2 (%)	pass@4 (%)	pass@8 (%)	pass@16 (%)
Pre-trained	Base	21.81	30.27	37.54	45.55	51.93
1P1S	Random 1P1S	19.14	27.45	35.68	45.48	52.89
	Random 1P3S	22.33	30.79	39.10	47.11	53.93
	Raw Emb.	22.03	30.05	39.10	46.52	52.90
	Summary Emb.	22.85	31.34	38.95	46.63	53.82
	LLM Selection	21.96	30.79	39.25	47.11	53.94
	Ours (RPD)	20.40	30.19	39.10	47.18	54.16

1782 E.3 ABLATION STUDY: PERFORMANCE AT A LARGER SCALE (1500 SAMPLES)
1783

1784 To assess the scalability of our 1PNS paradigm, we conducted an additional experiment by increasing
 1785 the total training data size to 1,500 samples. This study compares our diversity-driven (500Q,
 1786 3A) configuration against a traditional (1500Q, 1A) baseline. The results, presented in Table 13,
 1787 show that our approach maintains a significant advantage, particularly on the `pass@k` metrics. This
 1788 confirms that the benefits of multi-solution fine-tuning are robust and effective even at a larger data
 1789 scale.

1790 Table 13: Performance comparison of our 1PNS approach against the 1P1S baseline across three
 1791 mathematical reasoning benchmarks.

Benchmark	Method	pass@1 (%)	pass@2	pass@4	pass@8	pass@16
AIME24	Random (1P1S)	13.33	16.67	18.34	25.00	30.00
	RPD (1P3S)	12.50	19.17	22.50	25.84	35.00
MATH500 Level 5	Random (1P1S)	52.80	62.32	68.66	72.58	75.94
	RPD (1P3S)	51.49	58.96	66.61	72.95	78.18
Olympiad Bench	Random (1P1S)	39.77	49.48	55.86	62.24	66.62
	RPD (1P3S)	39.99	49.33	57.20	63.21	67.51