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ABSTRACT

While Test-Time Scaling (TTS) effectively enhances the reasoning capabilities of
Large Language Models (LLMs), its potential is often bottlenecked by low output
diversity. This limitation raises questions about the standard one problem, one
solution (1P1S) fine-tuning paradigm, which, by rewarding a single canonical an-
swer, may encourage models to overfit to specific reasoning paths. To address
this, we argue that adopting a one problem, multiple solutions (1PNS) training
paradigm is crucial for cultivating reasoning diversity and unlocking the full po-
tential of LLM reasoning. However, a central challenge of this paradigm lies in
quantifying the semantic difference between complex, multi-step reasoning paths.
To address this, we introduce Reasoning Path Divergence (RPD), a novel, fine-
grained metric that operates at the step-level of Long Chain-of-Thought solutions.
Using RPD, we curate a training set composed of maximally diverse solutions
for each problem. Experiments with Qwen3-4B-Base demonstrate that training
on our RPD-curated data significantly enhances output diversity and yields sub-
stantial gains in pass@k performance. Specifically, our 1PNS approach surpasses
the 1P1S baseline by an average of 2.80% on pass@16 across challenging math
benchmarks, with the improvement reaching 4.99% on AIME24, making Test-
Time Scaling more effective.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Chowdhery et al., 2023; Touvron et al., 2023)
have achieved unprecedented success in complex reasoning domains, tackling challenges in areas
like competitive mathematics and theoretical physics that were once considered beyond the reach of
automated systems. This progress has been largely driven by Chain-of-Thought (CoT) prompting
(Wei et al., 2022; Nye et al., 2021), which elicits step-by-step reasoning from language models.
Building upon CoT, Test-Time Scaling (TTS) methods have become standard practice, particularly
in recent models such as OpenAI’s o1 series (Jaech et al., 2024). By generating multiple reasoning
trajectories at inference time and selecting among them through techniques like Best-of-N sampling
(Brown et al., 2024; Song et al., 2024) and self-consistency (Wang et al., 2022), TTS methods
achieve substantial improvements on complex reasoning tasks. However, the effectiveness of TTS
methods critically depends on the diversity of generated reasoning paths (Chen et al., 2025; Dang
et al., 2025; Yao et al., 2025; Chow et al., 2025). When models produce only minor variations of the
same flawed reasoning, the benefits of additional sampling diminish rapidly.

This diversity bottleneck arises in part from how current models are trained on reasoning tasks.
Standard training datasets typically provide only a single solution path for each problem, teaching
models to converge on one “correct” way of reasoning rather than exploring the space of valid
alternatives. While prior work has proposed various modifications to loss functions to encourage
diversity (Li et al., 2025c; Chen et al., 2025; Yao et al., 2025), fundamental questions about the
relationship between training data diversity and model output diversity remain open. Therefore, the
central question we explore in this paper is:

Can a one problem, multiple solutions training paradigm effectively mitigate output
homogenization and improve TTS performance?

1
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Figure 1: The workflow of our Reasoning Path Divergence (RPD) metric. Given two solutions (A
and B), an LLM first decomposes them into step-level summaries. An asymmetric matching is then
performed: each step in the shorter summary (A) is matched to its semantically closest counterpart
in the longer summary (B) based on embedding cosine distance. The final RPD score is the average
of these minimum distances. Detailed examples with analysis is provided in Appendix C.

In this work, we explore a pragmatic approach to address this diversity bottleneck: training models
on datasets where each problem is paired with multiple distinct solutions. To construct such datasets,
we first need to solve a fundamental challenge: reliably measuring semantic diversity between com-
plex reasoning paths. Common approaches, such as computing cosine similarity on embeddings
(Reimers & Gurevych, 2019) of the entire solution text, fail for Long Chain-of-Thought solutions
because they conflate high-level strategic differences with low-level computational details and nar-
rative style. To address this, we introduce Reasoning Path Divergence (RPD), a novel diversity
metric that leverages Large Language Models to summarize solutions into their core logical steps,
then employs an asymmetric matching process to quantify semantic overlap. This design enables
RPD to distinguish genuine strategic novelty from superficial variations, providing the foundation
for systematic diversity-driven data curation.

Equipped with this metric, we selected the OpenThought3 dataset (Guha et al., 2025) as our testbed.
Its primary advantage is providing a large-scale collection of 53,125 mathematical problems, each
accompanied by 16 Long-CoT answers. These properties establish the dataset as a premier testbed
for our subsequent diversity-driven data curation experiments.

Our main contributions in this work are:

• A Novel Metric and Diversity-Driven Curation Strategy. We first propose and validate
Reasoning Path Divergence (RPD), a novel metric for quantifying the semantic diversity
between Long-CoT solutions. Building on this metric, we develop a data curation pipeline
that systematically constructs a high-quality one problem, multiple solutions training set by
selecting the most semantically distinct solutions for each problem.

• Demonstrated Gains in Diversity and Performance. Models fine-tuned on our multi-
solution (1PNS) dataset achieve an average improvement of 2.80% in pass@16 perfor-
mance across challenging math benchmarks, highlighted by a peak gain of 4.99% on the
AIME24 benchmark, while simultaneously exhibiting higher output diversity as measured
by our RPD metric. These gains demonstrate that multi-solution training effectively ad-
dresses the diversity bottleneck in Test-Time Scaling, thereby boosting its effectiveness.

2 RELATED WORK

Test-Time Scaling. A significant branch of Test-Time Scaling (TTS) focuses on improving per-
formance by generating and aggregating multiple candidate solutions, which can be broadly divided
into selection and fusion strategies. Selection-based methods identify the single best answer from
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a pool of candidates, such as selecting the one with the highest verifier score in Best-of-N (Brown
et al., 2024; Song et al., 2024) or the most frequent one via Majority Voting (Wang et al., 2022).
To improve sample efficiency, some works filter candidates before the final selection or voting
(Munkhbat et al., 2025; Chen et al., 2024; Wu et al., 2025). In contrast, fusion-based methods
merge multiple answers, for instance, by prompting an LLM to act as a summarizer (Jiang et al.,
2023; Li et al., 2025b;a). Crucially, the effectiveness of these methods is fundamentally bottle-
necked by low output diversity, as conventional training encourages the model to overfit to a single,
canonical reasoning path.

LLM Generation Diversity. A large body of work confirms that standard supervised fine-tuning
is detrimental to generation diversity (O’Mahony et al., 2024; Chen et al., 2025; Li et al., 2025c),
prompting explorations into various training-phase optimizations to mitigate this issue, especially
as recent studies establish a strong positive correlation between a model’s solution diversity and its
reasoning potential (Yao et al., 2025). These algorithm-centric approaches are varied, ranging from
modifying the training objective with techniques like confidence regularization (Chen et al., 2025)
or direct Best-of-N optimization (Chow et al., 2025), to altering the training process via sparse
updates (Li et al., 2025c), checkpoint ensembling (Dang et al., 2025), and lightweight, diversity-
aware parameter tuning (Chung et al., 2025). Complementing these effective, algorithm-centric
strategies, our work explores a data-centric perspective aimed at directly enriching the reasoning
diversity within the training data itself.

Data Curation. The importance of curating high-quality and diverse datasets for fine-tuning is a
widely recognized principle(Albalak et al., 2024). Existing efforts to enhance diversity have pri-
marily targeted inter-problem diversity, focusing on ensuring a broad mix of distinct problems by
using automated selection frameworks (Liu et al., 2024), removing semantic duplicates (Abbas et al.,
2023), or optimizing domain mixtures (Xie et al., 2023). In contrast, cultivating intra-problem di-
versity—teaching a model multiple ways to solve the same problem—remains a largely unexplored
challenge, a critical gap that our work aims to fill.

3 METHOD

Enabling the one problem, multiple solutions training paradigm hinges on the ability to identify
and select semantically distinct reasoning paths. To address this core challenge, this section first
introduces Reasoning Path Divergence (RPD), a novel, fine-grained metric designed specifically for
Long-CoT solutions. We then detail our 1PNS Curation Pipeline, which employs RPD to systemat-
ically construct a high-diversity training set from the OpenThought3 dataset (Guha et al., 2025), a
large collection of 53,125 mathematical problems, each accompanied by 16 Long-CoT answers.

3.1 REASONING PATH DIVERGENCE (RPD): A STEP-LEVEL DIVERSITY METRIC

Conventional metrics that apply embeddings to the full solution text are poorly-suited for assessing
Long-CoT diversity. By flattening a solution’s entire logical structure into a single vector, they
conflate high-level strategic shifts with superficial textual variations. Our RPD metric overcomes
this limitation by analyzing the reasoning process at the step-summary level, focusing on high-level
logic rather than implementation details. The computation, illustrated in Figure 1, involves two core
stages:

1. Reasoning Step Extraction. We use a LLM (Qwen3-14B; Team, 2025), guided by the prompt
detailed in Appendix A.1, to decompose two Long-CoT solutions, SA and SB , into their core logical
steps. This process transforms each verbose solution into a structured list of concise step summaries:
LA = {a1, ..., am} and LB = {b1, ..., bn}.
2. Asymmetric Distance Computation. The second stage quantifies the semantic distance between
the two step lists using an asymmetric matching process. First, each step summary is converted into
a high-dimensional vector using Qwen3-Embedding-8B (Zhang et al., 2025). Next, we identify the
solution with fewer steps (m ≤ n) as the reference, say SA, and for each of its steps ai, we find its
closest semantic match within the other solution, SB , by calculating the minimum cosine distance:

di = min
j=1,...,n

(
1−

e⃗ai
· e⃗bj

∥e⃗ai∥∥e⃗bj∥

)
(1)
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The overall RPD score, D(SA, SB), is the average of these minimum distances:

D(SA, SB) =
1

m

m∑
i=1

di (2)

The robustness of this asymmetric design stems from its ability to handle potential inconsistencies
in summarization granularity. It quantifies how well the core logic of the shorter path is covered
by the longer one. This ensures that if one solution is simply a more detailed variant of another,
the RPD score will be low, whereas fundamentally different strategies will yield a high score. The
complete procedure is formalized in Appendix A.2.

3.2 THE 1PNS CURATION PIPELINE

Our pipeline curates the raw OpenThought3 dataset into a high-diversity 1PNS training set through
two main phases.

Phase 1: Initial Quality Filtering. We began with a pool of 10,000 mathematical problems from
OpenThought3. Given the absence of ground-truth labels, we first applied a multi-stage filtering
protocol to ensure data quality. The protocol involved two key steps: first, length-based filtering to
help determine a practical max new tokens for inference, and second, an LLM-based screening
(using Qwen3-14B) to discard ambiguous problems and solutions that were incomplete or lacked a
final answer. This initial phase yielded a high-quality candidate set of 1,600 problems, each with
at least 10 candidate solutions that passed the screening protocol. The specifics of this protocol are
detailed in Appendix B.1.

Before proceeding to the core selection, we investigated the natural diversity within this candidate
set using a summary-based LLM Judge. As detailed in Appendix B.2, we prompted a Qwen3-14B
model to assess the overall diversity across the set of all candidate solution summaries for each prob-
lem. The analysis showed a significant lack of diversity: a majority of problems, 58%, were found
to contain solutions that all followed the same single reasoning strategy, with only minor variations.
This observation underscores that a high number of solutions does not inherently guarantee strategic
reasoning diversity, making an explicit problem selection phase essential.

Phase 2: Diversity-Driven Selection. This phase consists of a two-stage process guided by our
RPD metric:

1. Problem Selection. We first rank problems by their intrinsic solution diversity. For each problem
P with k solutions, we compute its overall diversity score, Scorediv(P ), by averaging the pairwise
RPD scores across all its unique solution pairs:

Scorediv(P ) =
2

k(k − 1)

∑
1≤i<j≤k

D(Si, Sj)

We then select the top-N problems from this ranked list.

2. Solution Selection. For each of the top-N problems, we then curate a concise set of M maximally
diverse solutions. This is accomplished using a greedy algorithm that iteratively selects the solution
exhibiting the highest average RPD to the already chosen subset.

This two-stage process results in a final training set rich in strategically diverse reasoning paths. The
detailed algorithm is provided in Appendix A.3.

4 EXPERIMENTS

To validate the core hypothesis of our work—that diversity-driven data curation can enhance a
model’s Test-Time Scaling (TTS) performance, we designed and conducted a series of experiments.
Our evaluation is twofold: first, we directly assess how effectively our proposed Reasoning Path
Divergence (RPD) metric identifies strategic diversity among solutions; second, we evaluate the im-
pact of a training set curated with this metric on the final pass@k performance of a model in the
downstream reasoning task.

4
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4.1 RPD METRIC EVALUATION

Setup. To evaluate RPD’s effectiveness in identifying semantically diverse reasoning paths, we
randomly sample 100 problems and their solutions from the high-quality candidate set established
in our curation pipeline (Sec. 3.2). For each problem, every compared method selects the pair of
solutions it predicts to be the most diverse. A powerful LLM Judge then assesses whether the
selected pair exhibits diverse problem-solving approaches and strategies, and we report the success
rate as our primary evaluation criterion. The reliability of this LLM Judge has been validated against
human annotations (see Appendix D.1.2 for the full prompt and alignment study).

Methods Compared. We evaluate the following methods:

• Random: Randomly selects a pair of solutions, serving as a lower-bound baseline.

• Raw Embedding (Raw Emb.): Selects the pair with the greatest cosine distance between
the embeddings of the full solution texts.

• Summary Embedding (Summary Emb.): Selects the pair with the greatest cosine dis-
tance between the embeddings of solution summaries.

• LLM Selection: A LLM (Qwen3-14B) selects the most diverse pair based on the sum-
maries of all candidate solutions (see Appendix D.1.1 for details).

• Ours (RPD): Our proposed asymmetric, step-level semantic distance metric.

Table 1: Effectiveness of various diversity
metrics.

Method Success Rate (%)
Random 27
Raw Emb. 40
LLM Selection 44
Summary Emb. 48
Ours (RPD) 53

Results and Analysis. As shown in Table 1, our RPD
metric achieves a 53% success rate, significantly out-
performing all baselines, including those based on raw
embeddings (40%), summary embeddings (48%), and
even a powerful LLM selector (44%). These results of-
fer two key insights. First, RPD’s fine-grained, step-
level analysis is crucial for overcoming the limitations
of holistic embedding methods that conflate high-level
strategy with superficial text. Second, its systematic
pairwise comparison proves more robust than a heuris-
tic LLM judgment when faced with identifying the
most diverse pair from a large candidate pool. This performance confirms RPD’s effectiveness
as an automated metric for our diversity-driven curation pipeline.

4.2 EFFECTIVENESS OF MULTI-SOLUTION FINE-TUNING

In this experimental section, we aim to answer the following research questions:

Q1: Does fine-tuning with the one problem, multiple solutions (1PNS) paradigm lead to superior
downstream reasoning performance, as measured by pass@k, compared to the standard
one problem, one solution (1P1S) approach?

Q2: Within the 1PNS paradigm, does curating solutions for high strategic diversity using our
RPD metric yield better pass@k performance than other baselines?

4.2.1 EXPERIMENTAL SETUP

Model. We use the Qwen3-4B-Base model (Team, 2025) for our primary experiments. To ensure
the robustness of our findings, corresponding results for the Qwen2.5-3B model (Team, 2024) are
provided in the Appendix E.2.

Benchmark. We evaluate the model’s performance on three challenging mathematical reasoning
benchmarks that align with our training data domain: AIME241, MATH500 Level 5 (Hendrycks
et al., 2021), and Olympiad Bench2 (He et al., 2024). Performance is measured using the pass@k
metric.

1https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
2For our evaluation, we selected an English, text-only, deterministic-answer mathematical subset of the

Olympiad Bench to align with our training set.
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Baselines. To comprehensively evaluate our diversity-driven data curation method, we conduct a
comparison against several baselines. For our main experiments, we standardize the multi-solution
format to one problem and three solutions (1P3S). The impact of varying the number of solutions
per problem is investigated in our ablation studies (Sec 4.2.3). To ensure a fair comparison, the total
number of training instances is held constant at 300 across all methods.

Our proposed method, Ours (RPD), constructs a training set of 100 problems and 3 solutions per
problem, guided by our RPD metric’s diversity scores. We compare it against the following base-
lines, which are grouped into two categories. The detailed construction methodology for each is
provided in Appendix D.2.

1. Comparison of 1P1S vs. 1P3S paradigms.

• Random 1P1S: The standard SFT baseline, constructed by randomly selecting 300 unique
problems and pairing each with one randomly chosen solution. This baseline is used to
measure the fundamental performance gain of the 1P3S approach.

2. Comparison of diversity selection metrics (all using a 1P3S structure).

• Random 1P3S: A naive multi-solution approach. We randomly select 100 problems and
use 3 randomly chosen solutions for each.

• LLM Selection: An LLM is prompted to select 100 problems and generate 3 diverse
solutions for each.

• Raw Embbeding (Raw Emb.) : We select the 100 problems and 3 corresponding solutions
that maximize diversity based on the cosine distance between the embeddings of the full
answer texts.

• Summary Embbeding (Summary Emb.): We select data by maximizing the cosine dis-
tance between embeddings of AI-generated answer summaries for 100 problems and their
3 solutions.

Implementation Details. We fine-tune the Qwen3-4B-Base model using supervised fine-tuning
with 4-bit QLoRA (rank=16, alpha=32). The model is trained for 12 epochs in BF16 precision on
NVIDIA H20 GPUs. We use the AdamW optimizer with an batch size of 16 and a cosine learning
rate scheduler, peaking at 5 × 10−5. For inference, we use nucleus sampling (temperature=0.6,
top p=0.95) with maximum generation lengths tailored to each benchmark (14K for AIME24, 10K
for MATH500, 8K for Olympiad). To ensure statistical robustness, we report average scores over
multiple runs (4 for AIME24/MATH500, 2 for Olympiad).

4.2.2 RESULTS AND ANALYSIS

To answer our research questions, we present the experimental results in two parts. First, we com-
pare the one problem, multiple solutions (1PNS) paradigm against the standard one problem, one
solution (1P1S) baseline. Second, we evaluate the effectiveness of our diversity metric against vari-
ous alternative selection strategies.

Q1: Superiority of the 1PNS Paradigm

To address our first research question, we compare the performance of our 1P3S training method
against the standard 1P1S baseline across all three benchmarks.

As shown in Figure 2, while the performance of our 1PNS approach is comparable to the 1P1S
baseline at pass@1, it significantly outperforms the baseline at larger values of k. On average,
our method achieves a pass@16 gain of 2.80% across all benchmarks. The improvement peaks on
highly challenging mathematical reasoning problems like AIME24, with the gain reaching 4.99% on
this benchmark. These results support our core hypothesis that the one problem, multiple solutions
paradigm is a more effective strategy for enhancing the Test-Time Scaling performance of models
on complex reasoning tasks.

Q2: Effectiveness of the RPD Metric

Next, we evaluate how our diversity metric performs against other data selection strategies. All com-
pared selection strategies follow the 1P3S (one problem, three solutions) format. Table 2 presents
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Figure 2: Performance comparison of our 1P3S approach against the 1P1S baseline across three
mathematical reasoning benchmarks. Each subplot corresponds to a different benchmark, showing
the pass@k accuracy for k=1, 2, 4, 8, 16.

Table 2: Comparison of different diversity selection methods on the MATH500 Level 5 benchmark.
All methods except Base use a 1P3S (100 problems, 3 solutions) structure.

Method pass@1 (%) pass@2 pass@4 pass@8 pass@16

Base 46.08 56.90 64.37 71.27 75.00
Random (1P3S) 49.07 59.70 68.66 73.32 77.24
Raw Emb. 50.19 59.14 67.54 71.64 77.80
Summary Emb. 52.24 59.89 68.66 73.14 77.43
LLM Selection 49.81 58.96 66.23 73.51 77.61

Ours (RPD) 52.61 61.57 71.64 75.94 79.29

the results on the MATH500 Level 5 benchmark (results for AIME24 and Olympiad Bench are in
Appendix E.1).

The results in Table 2 demonstrate that our RPD-guided data selection method consistently outper-
forms all baseline strategies across every pass@k metric. While some methods, such as Summary
Emb., are competitive at pass@1, our approach establishes a more decisive lead at higher values of
k. For instance, it creates a nearly +3.0% performance gap over the next-best strategies at pass@4.
This performance gap highlights RPD’s superior ability to discern true strategic diversity, a quality
not fully captured by holistic embedding distances or heuristic LLM selection.

4.2.3 ABLATION STUDIES

We conduct a series of ablation studies to provide a comprehensive analysis of our method and its
properties. We begin by evaluating our method’s impact on the diversity of generated solutions. We
then analyze the sensitivity to a key hyperparameter—the number of solutions curated for each prob-
lem—before disentangling the individual contributions of our problem and answer selection compo-
nents. Subsequently, we explore the interplay between our fine-tuning approach and inference-time
temperature sampling. Finally, we validate the scalability of our paradigm on a larger training set.

Analysis of Solution Diversity. To verify that 1PNS training increases output diversity, we analyzed
16 generated solutions for each problem in MATH Level5 test set. We partitioned problems into a
moderately-solved group (2-12 correct solutions) and a well-solved group (13-16 correct solutions)
to analyze performance on problems of varying difficulty. Diversity was measured using our RPD
metric, which is the average pairwise RPD among correct solutions within each problem, and Div-
Self-BLEU (100 - Self-BLEU) (Kirk et al., 2023). For both metrics, a higher score indicates greater
output diversity.

The results in Table 3 reveal a notable adaptability in our fine-tuned model. On moderately-solved
(i.e., more difficult) problems, it generates the most diverse outputs, as measured by both RPD
and Div-Self-BLEU. On well-solved problems, however, its output diversity is lower than the 1P1S
baseline, indicating a high-confidence convergence. We interpret this behavior as a highly efficient
strategy for Test-Time Scaling: the model learns to selectively apply exploration on challenging
problems while defaulting to exploitation on simpler ones. This adaptability is key to optimizing
overall pass@k performance.
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Table 3: Diversity scores for different methods on the MATH500 Level 5 test set, evaluated on the
Qwen3 4B Base model. Scores are partitioned by the number of correct solutions (pass count) out
of 16 attempts.

Div-Self-BLEU Our Metric

Method Pass Count 2-12 Pass Count 13-16 Pass Count 2-12 Pass Count 13-16

Random (1P1S) 35.27 15.26 15.17 13.30
Random (1P3S) 32.52 14.62 15.57 14.00
LLM Selection ((1P3S)) 36.36 14.19 15.11 13.31
Raw Emb. (1P3S) 33.94 14.23 15.39 13.08
Summary Emb. (1P3S) 37.42 14.46 15.69 12.98
RPD (1P3S) 38.20 14.31 15.80 12.62

Table 4: Ablation study on the number of diverse solutions selected by our RPD metric per problem
on the MATH500 Level 5 benchmark, compared against the 1P1S baseline. The total sample size is
kept constant at 300.

Configuration pass@1 (%) pass@2 pass@4 pass@8 pass@16

Random (1P1S) 49.26 60.64 66.98 72.20 77.43

RPD (1P2S) 52.43 61.57 69.96 74.63 77.99
RPD (1P3S) 52.61 61.57 71.64 75.94 79.29
RPD (1P4S) 52.24 59.70 70.90 74.63 79.10
RPD (1P5S) 53.92 61.20 67.73 73.88 78.54

Table 5: Ablation study on the contributions of the problem (Q) and answer (A) selection compo-
nents on the MATH500 Level 5 benchmark. All configurations use a 100Q, 3A structure.

Method (Problem + Answer) pass@1 (%) pass@2 pass@4 pass@8 pass@16

Random-Q + Random-A 49.07 59.70 68.66 73.32 77.24
Random-Q + RPD-A 50.93 61.38 68.47 73.69 77.43
RPD-Q + Random-A 49.81 59.52 67.91 74.82 78.36

RPD-Q + RPD-A (Ours) 52.61 61.57 71.64 75.94 79.29

Impact of the Number of Solutions per Problem. Next, we investigate how the number of solu-
tions for each problem affects final model performance, keeping the total training sample size fixed
at 300. As shown in Table 4, we compare our method’s performance when configured to select two,
three, four, and five diverse solutions per problem against the standard single-solution baseline.

The results in Table 4 first and foremost demonstrate the clear superiority of the 1PNS paradigm, as
all multi-solution configurations consistently outperform the single-solution baseline, particularly at
larger values of k. Focusing on these metrics reveals an optimal balance: performance peaks with
the RPD (1P3S) configuration and declines as more solutions are added per problem. This suggests
a critical trade-off between “diversity depth” and “problem breadth,” and while the optimal balance
is likely contingent on the source data’s intrinsic diversity, the 1P3S configuration proves to be the
most effective for the OpenThought3 dataset.

Quantifying the Impact of Problem and Answer Selection Strategies. To disentangle the indi-
vidual contributions of our problem selection (RPD-Q) and answer selection (RPD-A) strategies, we
evaluate our full method against ablations where each component is replaced by a random selection
baseline. The results are presented in Table 5.

The results in Table 5 lead to three key findings. First, any configuration incorporating our diversity-
driven selection—either for problems or answers—outperforms the fully random baseline at larger
pass@k values. Second, when comparing their individual impacts, problem selection (RPD-Q) is
more critical for enhancing Test-Time Scaling, providing a +1.12% gain at pass@16 over the ran-
dom baseline, substantially larger than the +0.19% gain from selecting for diverse answers (RPD-A)
alone. Finally, our full method, which combines both strategies, achieves the best performance by a

8
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Table 6: Performance comparison on the MATH500 Level 5 benchmark between our method and
the random baseline across various sampling temperatures (T ).

Method Temp (T ) pass@1 (%) pass@2 pass@4 pass@8 pass@16

Random 0.2 51.12 58.96 65.30 69.96 73.13
RPD 0.2 50.00 57.46 66.79 71.46 74.82

Random 0.4 54.11 60.26 68.10 72.39 76.31
RPD 0.4 47.95 60.08 69.03 75.19 77.80

Random 0.6 49.26 60.64 66.98 72.20 77.43
RPD 0.6 52.61 61.57 71.64 75.94 79.29

Random 0.8 51.87 61.57 69.22 74.44 78.36
RPD 0.8 50.56 60.82 69.47 74.82 78.92

Random 1.0 45.34 59.71 68.66 73.88 76.87
RPD 1.0 48.51 59.89 69.22 73.88 77.80

significant margin (e.g., improving pass@16 by nearly another full percentage point over the next-
best configuration). This demonstrates a clear synergistic effect, confirming that while Diverse-Q
provides a strong foundation, both components are indispensable for maximizing reasoning perfor-
mance.

Interaction with Inference-Time Sampling Temperature. A common method for increasing out-
put diversity at inference time is to raise the sampling temperature (T ). A key question is whether
the diversity benefits from our fine-tuning method are redundant with, or complementary to, this
technique. To investigate this, we evaluate the performance of our method (RPD 1P3S) against
the baseline (Random 1P1S) under five different temperature settings, from low (T = 0.2) to high
(T = 1.0). We set top p to 0.95 and top k to -1.

The results presented in The results in Table 6 show that the performance gap between our method
and the baseline widens as k increases, regardless of temperature. For smaller values of k (e.g.,
pass@1, pass@2), the performance between our method and the random baseline is competi-
tive, with neither showing a decisive advantage across all temperatures. However, as k increases, a
clear and consistent pattern emerges: at larger values of k (pass@8 and pass@16), our method
consistently outperforms the baseline across the entire spectrum of temperature settings.

This observation directly supports our conclusion: our RPD-guided training is orthogonal and
complementary to inference-time temperature sampling. Our method fundamentally enriches the
model’s accessible solution space by exposing it to diverse reasoning pathways during training.
Temperature, in contrast, acts as an independent tool to control the stochasticity of navigating that
solution space at inference time. The consistent performance advantage at higher k-values confirms
that our approach provides a distinct and foundational benefit that is not made redundant by simply
tuning inference-time parameters.

Scalability to Larger Datasets. We further validated the scalability of our 1PNS paradigm by
increasing the training set size to 1,500 samples. As detailed in the Appendix E.3, our diversity-
driven strategy maintains its significant performance advantage over the traditional 1P1S baseline at
this larger scale.

5 CONCLUSION

To enable the one problem, multiple solutions (1PNS) paradigm, we introduce a novel metric
for quantifying reasoning diversity, Reasoning Path Divergence (RPD), and leverage it to curate
a dataset of maximally diverse solutions. Our experiments validate the superiority of the 1PNS
paradigm over the standard 1P1S baseline, as training on this RPD-curated data mitigates output ho-
mogenization while yielding significant pass@k gains. These findings establish that our proposed
approach provides a direct pathway to boosting the effectiveness of test-time scaling.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research presented in this paper adheres to the ICLR Code of Ethics. Our work is motivated
by the goal of advancing machine learning research and we have carefully considered its potential
ethical implications. All datasets and models utilized in our experiments are publicly available and
open-source, and we have followed all their terms of use. We acknowledge that our methods could
have unforeseen applications, and we encourage the community to build upon our work with a
strong consideration for societal impact and fairness. To the best of our knowledge, our work does
not introduce new biases, and we have been transparent in our experimental setup and reporting to
allow for community scrutiny.

REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of our research. To facilitate this, we provide detailed
descriptions of our algorithms, model architectures, and key hyperparameters within the main paper
and a comprehensive appendix. Crucially, as our methodology involves large language models, we
have included the exact prompts used for our experiments in the appendix to ensure transparency
and replicability. Our entire experimental framework relies exclusively on publicly available open-
source models, standard benchmarks, and datasets, removing barriers to independent verification.
We believe the extensive details provided in our paper and appendices are sufficient for our peers to
reproduce our core results with ease.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 policy, we disclose that a large language model (LLM) was used
as a writing-assistance tool in the preparation of this manuscript. Its role was strictly limited to minor
copy-editing tasks, such as improving grammar, rephrasing sentences for clarity, and polishing the
overall language. The LLM did not contribute to any of the core research ideas, methodologies,
experimental designs, or result interpretations presented herein. The authors have meticulously
reviewed all text and take full responsibility for the scientific integrity and accuracy of the entire
paper’s content.

A RPD CURATION METHOD IMPLEMENTATION

A.1 STEP-WISE SOLUTION SUMMARIZATION VIA LLM

Our proposed diversity metric relies on a fine-grained, step-by-step summary of the reasoning path
for each solution. To create these summaries, we use an LLM (Qwen3-14B) to break down each
solution into its core logical steps. A key challenge is to ensure these summaries accurately reflect
the original methodology while maintaining a consistent level of granularity. Overly concrete sum-
maries might capture superficial numerical differences, while overly abstract summaries might fail
to distinguish between genuinely different strategies.

To solve this, we design a detailed prompt that controls the LLM’s output format and level of ab-
straction. This prompt instructs the model to produce a structured JSON object containing 3 to 5
method-focused steps. This strict format helps maintain uniformity across all summarized solutions.
The complete prompt is provided below.

Prompt for Step-wise Solution Summarization

You are a specialized AI expert in analyzing mathematical solutions. Your task is to first
provide a step-by-step analysis of a solution, and then, based on your analysis, generate a
final JSON output that is concise, direct, and method-focused.

REQUIRED OUTPUT STRUCTURE
Your response MUST have two distinct parts in the following order:

Part 1: Analysis & Thinking Process
• Start this section with the heading ### Analysis.
• Briefly explain your reasoning as you deconstruct the provided solution. This is

your “scratchpad”.

Part 2: Final JSON Output
• After your analysis, provide the final JSON output enclosed in //boxed{{}}.
• This part must contain only the //boxed{{...}} block and nothing else.

CONTENT RULES FOR THE FINAL JSON
1. Step Count: The JSON must contain strictly 3 to 5 logical steps.
2. Output Style:

• Use direct, active verb phrases. Start each description with a verb (e.g.,
“Calculate”, “Identify”, “Apply”).

• DO NOT use narrative phrasing like “The author identifies...” or “The solu-
tion then calculates...”.

3. Abstraction Level:
• Be abstract about numbers and variables, but be specific about the method-

ology.
• BAD (Too Vague): “Use a formula to get the result.”
• BAD (Too Concrete): “Calculate 1/3 + 1/6 = 1/2.”
• GOOD (Balanced): “Combine the individual rates to find the total work rate.”
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JSON STRUCTURE SPECIFICATION
• The root object must have one key: "logical steps".
• The value of "logical steps" must be a list ([]) of step objects.
• Each step object ({{}}) must contain two keys:

– "step title": A short title for the step (e.g., “Step 1: Combine Rates”).
Use null if not applicable.

– "step description": A concise summary of the action, following all
rules above.

EXAMPLE OF THE COMPLETE TWO-PART OUTPUT
Input Solution: “Pipe A fills a tank in 3 hours, so its rate is 1/3 tank/hr. Pipe B fills it in 6
hours, so its rate is 1/6 tank/hr. Together, their rate is 1/3 + 1/6 = 1/2 tank/hr. Therefore, the
time to fill the tank together is the reciprocal of the rate, which is 1 / (1/2) = 2 hours.”

Your Required Output:

### Analysis
The solution addresses a classic work-rate problem.
1. First, it calculates the individual rate for each pipe.
2. Second, it sums these rates to get a combined rate.
3. Finally, it converts the combined rate back into total

time.
The logic is broken down into three clear, abstract steps.

//boxed{{
"logical_steps": [

{{
"step_title": "Step 1: Determine Individual Rates",
"step_description": "Determine the individual work rate

of each component based on the time taken."
}},
{{

"step_title": "Step 2: Combine Rates",
"step_description": "Combine the individual rates to

find the total system work rate."
}},
{{

"step_title": "Step 3: Calculate Total Time",
"step_description": "Calculate the total time by taking

the reciprocal of the combined work rate."
}}

]
}}

YOUR TASK
Math Problem:
{question text}

Chain-of-Thought Solution to Analyze:
{answer cot}
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A.2 REASONING PATH DIVERGENCE (RPD) CALCULATION

After summarizing each solution into a series of core logical steps, the next phase is to compute
the pairwise diversity using our Reasoning Path Divergence (RPD) metric. RPD is designed to
quantify the semantic distance between the step-lists of two solutions, SA and SB .

The calculation begins by embedding each logical step using the Qwen3-Embedding-8B model.
Subsequently, it computes an asymmetric score by finding the average minimum cosine distance
from the steps of the shorter solution to all steps in the longer one. This asymmetric design is
crucial: it ensures that a solution containing a genuinely novel step is considered distant, even if
its other steps are subsumed by a more comprehensive solution. The formal algorithm is detailed
below.

Algorithm 1 Reasoning Path Divergence (RPD) Calculation

Require: Two Long-CoT solutions, SA and SB .
Ensure: A scalar diversity score D ∈ [0, 1].

1: LA ← ExtractSteps(SA); LB ← ExtractSteps(SB)
2: if LA is empty or LB is empty then
3: return 1.0
4: end if

5: EA ← {Embed(ai) | ai ∈ LA}; EB ← {Embed(bj) | bj ∈ LB}

6: (Eshorter, Elonger)←
{
(EA, EB) if |EA| ≤ |EB |
(EB , EA) otherwise

7: min distances← ∅
8: for all e⃗s ∈ Eshorter do
9: dmin ← mine⃗l∈Elonger

(
1− e⃗s·e⃗l

∥e⃗s∥∥e⃗l∥

)
10: min distances← min distances ∪ {dmin}
11: end for

12: Dfinal ← Mean(min distances)
13: return Dfinal
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A.3 DIVERSITY-DRIVEN DATA CURATION

Our data curation process is a two-stage procedure designed to build a training set rich in strategic
diversity. First, we perform Problem Selection to identify problems that naturally exhibit a wide
range of solutions by scoring each problem based on its total intrinsic diversity. Second, for each of
these top-ranked problems, we execute a greedy Solution Selection algorithm to curate a small but
maximally diverse subset of M solutions. This two-stage approach ensures both inter-problem and
intra-problem diversity. The algorithms for both stages are detailed below.

Algorithm 2 Stage 1: Problem selection by intrinsic diversity

Require: Candidate problem set P , target count N , pairwise distance function D(·, ·)
Ensure: Top-N problems Ptop ranked by intrinsic diversity

1: Initialize empty list of pairs L ← []
2: for all problem P ∈ P do
3: Let SP = {S1, . . . , SkP

} be its candidate solutions
4: if kP < 2 then
5: append (P,−∞) to L
6: continue
7: end if
8: Compute all pairwise distances {D(Si, Sj) : 1 ≤ i < j ≤ kP }
9: avgD← 2

kP (kP − 1)

∑
i<j D(Si, Sj)

10: append (P, avgD) to L
11: end for
12: Sort L by score (second element) in descending order
13: Ptop ← first min(N, |P|) problems from sorted L
14: return Ptop

Algorithm 3 Stage 2: Greedy Selection

Require: Candidate solutions Scand = {S1, . . . , Sk}, pairwise distance matrix D ∈ Rk×k, target
size M

Ensure: Selected index set Iselect with |Iselect| = min(M,k)
1: if M ≤ 0 or k = 0 then return ∅
2: end if
3: if M ≥ k then return {1, . . . , k}
4: end if
5: ifirst ← argmaxi

∑
j ̸=i Dij

6: Iselect ← {ifirst}; Iremain ← {1, . . . , k} \ {ifirst}
7: for each r ∈ Iremain set m[r]← Dr,ifirst

8: while |Iselect| < M and Iremain ̸= ∅ do
9: r⋆ ← argmaxr∈Iremain m[r]

10: Iselect.append(r⋆); Iremain.remove(r⋆)
11: for each r ∈ Iremain: m[r]← min

(
m[r], Dr,r⋆

)
12: end while
13: return Iselect
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B DATASET PREPROCESSING AND ANALYSIS

B.1 DETAILED DATASET FILTERING PROTOCOL

The OpenThought3 dataset is a valuable open-source resource, containing approximately 53,000
mathematical problems, each with 16 corresponding completions. However, the raw dataset presents
several challenges for direct use in supervised fine-tuning. Key issues include the absence of ground
truth labels, the possibility of encountering ambiguous or ill-posed problems, and the fact that some
solutions may be unfinished or lack a definitive final answer. Furthermore, the length of the provided
solutions varies dramatically.

To curate a high-quality training corpus and ensure computational efficiency during model infer-
ence, we implement a rigorous two-stage filtering protocol on a subset of 10,000 problems from
OpenThought3. This protocol addresses both solution length and quality.

Stage 1: Length-Based Filtering. Our first step is to control for solution length. This measure is
primarily motivated by the practical need to set a reasonable max new tokens parameter during
inference. Accordingly, we filter out any problem whose average token count across all its solutions
exceeds 14,000 tokens.

Stage 2: Quality and Completeness Filtering. Next, we address the issue of solution quality and
completeness. We employ an LLM (Qwen3-14B) as a judge to verify whether each solution is valid.
For every solution in the length-filtered set, we provide its final 500 tokens as input to the LLM. The
model is instructed to determine if the solution concludes properly by presenting a clear and final
answer. Solutions that the LLM judge flags as incomplete or inconclusive are discarded, and any
problem subsequently left with fewer than 10 valid solutions is also removed.

This comprehensive filtering pipeline refines the initial pool of 10,000 problems into a high-quality,
curated set of approximately 1,600 problems. Each problem in this final set has an average solution
length of less than 14,000 tokens and is accompanied by at least 10 complete, validated solutions.
This curated 1,600-problem dataset serves as the foundation for all subsequent experiments con-
ducted in this work.

B.2 DATASET DIVERSITY ANALYSIS

To better inform our data curation, we first analyze the existing strategic diversity within our high-
quality candidate set. We use a summary-based LLM Judge to classify whether the solutions for
each problem are strategically uniform or diverse.

For each problem, we concatenate the step-wise summaries of all its candidate solutions (detailed in
Appendix A.1) into a single string. This, along with the original problem statement, is provided to
an LLM Judge (Qwen3-14B). The judge’s task is to perform a binary classification on the entire set
of solutions, identifying if at least two different solution strategies are present.

We specifically write the prompt to instruct the model to ignore superficial differences in wording or
calculation, and instead focus on fundamental strategic choices, such as using direct casework ver-
sus complementary counting. We do this so that the classification reflects genuine methodological
diversity, not just surface-level variations. The insights from this analysis, as reported in the main
text, confirm the need for our subsequent diversity-driven problem selection phase. The complete
prompt for this task is detailed below.

Prompt for Problem Classification

You are a master mathematician and an expert in pedagogical analysis. Your task is to
classify a problem based on the methodological diversity of its proposed solutions.
Your goal is to perform a binary classification:

• Class 2 (Diverse): If there are at least two distinct core methodologies present
across all the provided solution summaries.
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• Class 1 (Not Diverse): If all solutions use the same core methodology, or if the dif-
ferences are only superficial (e.g., a different order of calculation, or using standard
procedural equivalents like substitution vs. elimination).

1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA

Your primary task is to act as a discerning analyst. You must distinguish between minor
procedural choices and significant differences in core steps. Assume that most solutions
might share a high-level strategy; your goal is to find answers that execute core steps in a
meaningfully different way.

Defining Methodological Difference (Your Core Criteria):

What IS NOT a Significant Difference (Methodologically Similar):
• Order of Calculation: Calculating value A then B, versus B then A, before com-

bining them in the same way.
• Algebraic Equivalence: Using the form (a+ b)2 versus a2 + 2ab+ b2.
• Variable Naming or Notation: Using n vs x.
• Choice of Standard Procedural Equivalents: One summary describes solving a

system of equations using substitution, while the other uses elimination. These are
considered standard, interchangeable procedures within the same overall algebraic
approach.

• Rigorous Proof vs. Heuristic Assumption: If the overall strategy is the same,
simply proving a result versus assuming it does not constitute a diverse approach.
Both are still following the same high-level logical path.

What IS a Significant Difference (Methodologically Diverse):
• This difference represents a completely distinct, independent, high-level strate-

gic choice that fundamentally alters the entire problem-solving path from beginning
to end.

• Example 1 (Different Overall Framework): One solution to a geometry prob-
lem uses coordinate geometry, another uses synthetic geometry, and a third uses
vector analysis.

• Example 2 (Completely Different Logical Path): To solve a counting problem,
one answer uses direct casework, another uses complementary counting, and a
third uses a recurrence relation.

• Example 3 (Change in Analytical Tool): A solution to an optimization problem
uses calculus, a second uses inequalities (like AM-GM), and a third uses linear
programming.

2. CONTENT TO ANALYZE

Problem:
{question}

Proposed Solutions (Summarized by Logical Steps):
{summaries text}

3. OUTPUT REQUIREMENT

Based on the final criteria review, classify the diversity of the solutions.
Output Requirement:
Immediately after your classification, provide your final answer in a strict JSON format
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within a special block. The JSON should be a single integer, either 1 or 2. Do not provide
any other text.

Example of Final Output Structure for a Diverse problem:
//boxed{{2}}

Example of Final Output Structure for a Not Diverse problem:
//boxed{{1}}

Begin Analysis and Provide Output:

This classification process is applied to the 1,600 high-quality problems in our candidate pool, yield-
ing the diversity distribution statistics reported in Section 3.2.
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C CASE STUDIES AND ANALYSIS OF THE RPD METRIC

To provide a deeper insight into the effectiveness of our RPD metric, this section presents both a
statistical overview and concrete, illustrative examples comparing it against a standard baseline.

C.1 STATISTICAL DISTRIBUTION OF DIVERSITY SCORES

We first analyze the overall behavior of RPD compared to a common baseline. The baseline method
calculates the cosine distance between the embeddings of the full, raw solution texts. We sampled
100 problems from our candidate pool and computed all pairwise diversity scores for their solutions
using both methods, resulting in a total of 8,986 data points (i.e., solution pairs) for each distribution.

Figure 3 illustrates the resulting score distributions. The baseline scores are heavily concentrated
in a very narrow range near zero (0.00–0.04). This indicates that full-text embeddings are largely
insensitive to the underlying reasoning structure, assigning nearly identical low-diversity scores to
most pairs and failing to distinguish between subtle and significant strategic differences. In contrast,
our RPD metric produces a much wider and more uniform distribution. This indicates that RPD
possesses significantly higher resolution and sensitivity, allowing it to capture a continuous spectrum
of strategic differences, from the subtle to the substantial.
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Figure 3: Distribution of pairwise diversity scores on 100 problems for the baseline (left) and our
RPD metric (right). RPD provides a significantly better-separated distribution.
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C.2 ILLUSTRATIVE EXAMPLES

The following case studies provide concrete examples of this phenomenon.

0.329

0.264

0.190

Step A-1

Step A-2

Step A-3

Step B-1
Step B-2

Step B-3

(a) Case Study 1
Raw Emb. Distance: 0.015 (Percentile: 44.46%)
RPD Distance: 0.259 (Percentile: 86.92%)

0.
13

3

0.429

0.2
60

Step A-1

Step A-2

Step A-3

Step B-1

Step B-2

Step B-3

(b) Case Study 2
Raw Emb. Distance: 0.016 (Percentile: 52.14%)
RPD Distance: 0.274 (Percentile: 90.44%)

Figure 4: PCA visualization of raw solution and step summary embeddings. The step embeddings
for the two solutions occupy distinct regions of the space, reflecting a strategic diversity that our RPD
metric correctly identifies. In contrast, the raw solution embeddings are nearly collinear, causing the
baseline method to fail to distinguish them.

Case Study 1: Summaries for Figure 4a

• Question: Find the constant term in the polynomial (x2 + 2x+ 1)(x2 − 3x− 2) + (x2 −
2x− 1)(x2 + 4x+ 3) after it is factored.

• Solution A (Full Expansion):
– Step 1: Expand each trinomial product using the distributive property.
– Step 2: Add the expanded polynomials together and combine like terms.
– Step 3: Extract the constant term from the resulting polynomial.

• Solution B (Constant Term Shortcut):
– Step 1: Determine the constant term of each product by multiplying the constant terms

of the individual polynomials.
– Step 2: Add the constant terms from each product to find the constant term of the

entire expression.
– Step 3: Verify that the constant term remains unchanged when the polynomial is fac-

tored.

Case Study 2: Summaries for Figure 4b

• Question: Determine the largest real value of a such that the equation

ax = x3 + 1

has a real solution.
• Solution A (Calculus Approach):

– Step 1: Rewrite the equation to express a as a function of x, a = x3+1
x .

– Step 2: Find the critical points of the function f(x) = x3+1
x by taking its derivative

and setting it to zero.
– Step 3: Evaluate the function at the critical point to find the value of a where the

equation has a double root, ensuring the largest a for which the equation has a real
solution.
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• Solution B (Geometric Interpretation):
– Step 1: Interpret the equation as the intersection of a line y = ax and a curve y =
x3 + 1.

– Step 2: Set the derivative of the cubic function equal to the slope of the line to find the
point of tangency.

– Step 3: Solve the system of equations to find the largest real value of a corresponding
to the tangency condition.

Analysis: The two case studies in Figure 4 illustrate a consistent pattern where our RPD metric
succeeds and the baseline fails. In both examples, the solution pairs employ fundamentally different
strategies. The baseline Raw Embedding Distance assigns very low scores (0.015 and 0.016) that
correspond to mediocre percentiles (44-52%). This indicates the method is unable to reliably dis-
tinguish these solutions from the vast majority of superficially similar pairs. In stark contrast, our
RPD metric assigns high scores (0.259 and 0.274) that fall into high percentiles (87-90%), correctly
identifying the significant strategic divergence. The PCA visualizations visually corroborate this
finding: the well-separated step embeddings in both (a) and (b) confirm that the solutions follow
distinct reasoning paths, a fact that only RPD consistently captures.
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D EXPERIMENT IMPLEMENTATION DETAILS

D.1 RPD METRIC EVALUATION (DETAILS FOR SEC. 4.1)

In this section, we provide the implementation details for the RPD metric evaluation, including the
prompts used for the LLM-based baseline and the evaluation judge.

D.1.1 PROMPT FOR THE LLM-SELECTION BASELINE

To create the “LLM Selection” baseline, we prompt the Qwen3-14B model to identify the most
diverse pair of solutions from all available candidates for a given problem. The prompt is designed
to encourage a focus on strategic differences rather than superficial text variations.

Prompt for Selecting the Most Methodologically Diverse Solution Pair

You are a master mathematician and an expert in pedagogical analysis. Your task is to
analyze multiple proposed solutions for a given problem and select a single pair of answers
that represents the maximum possible methodological diversity. If no such pair exists, you
must indicate this.
Your goal is to identify one pair of answers that represents a significant difference in a
core step or sub-methodology. If all solutions follow a fundamentally similar strategy, your
answer will be to select “No”.

1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA

Your primary task is to act as a discerning analyst. You must distinguish between minor
procedural choices and significant differences in core steps. Assume that most solutions
might share a high-level strategy; your goal is to find answers that execute core steps in a
meaningfully different way.

Defining Methodological Difference (Your Core Criteria):

What IS NOT a Significant Difference (Methodologically Similar):
• Order of Calculation: Calculating value A then B, versus B then A, before com-

bining them in the same way.
• Algebraic Equivalence: Using the form (a+ b)2 versus a2 + 2ab+ b2.
• Variable Naming or Notation: Using n vs x.
• Choice of Standard Procedural Equivalents: One summary describes solving a

system of equations using substitution, while the other uses elimination. These are
considered standard, interchangeable procedures within the same overall algebraic
approach.

• Rigorous Proof vs. Heuristic Assumption: If the overall strategy is the same,
simply proving a result versus assuming it does not constitute a diverse approach.
Both are still following the same high-level logical path.

What IS a Significant Difference (Methodologically Diverse):
• This difference represents a completely distinct, independent, high-level strate-

gic choice that fundamentally alters the entire problem-solving path from beginning
to end.

• Example 1 (Different Overall Framework): One solution to a geometry prob-
lem uses coordinate geometry, another uses synthetic geometry, and a third uses
vector analysis.

• Example 2 (Completely Different Logical Path): To solve a counting problem,
one answer uses direct casework, another uses complementary counting, and a
third uses a recurrence relation.
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• Example 3 (Change in Analytical Tool): A solution to an optimization problem
uses calculus, a second uses inequalities (like AM-GM), and a third uses linear
programming.

2. CONTENT TO ANALYZE

Problem:
{question}

Proposed Solutions (Summarized by Logical Steps):
{summaries text}

3. FINAL INSTRUCTIONS & OUTPUT REQUIREMENT

Your Task:
Based on the final criteria review, analyze the solutions and make one of two possible deter-
minations:

1. Identify the single pair of answers with the maximum methodological diversity.
2. Conclude that no pair meets the criteria for significant diversity, meaning all solu-

tions follow a fundamentally similar approach.

Step 1: Brief Comparative Analysis
• If you find a diverse pair: Write a single, brief paragraph. Do not summarize

each solution individually. Instead, group the solutions by common methodology
and justify your selection of the most diverse pair. For example: “Solution A uses
direct casework, while Solution B uses complementary counting. This represents
the most significant methodological difference.”

• If you do NOT find a diverse pair: Write a single, brief paragraph explaining
why. State that all solutions follow a similar core strategy and briefly describe that
common approach. For example: “All solutions utilize a system of linear equations
to solve for the variables. While they use different methods like substitution or
elimination, this does not represent a significant strategic divergence. Therefore, no
pair is methodologically diverse.”

Step 2: Final JSON Output Immediately after your brief analysis paragraph, provide
your final answer in a strict JSON format within a special block.

• If a diverse pair is found: The JSON should be a list containing the single selected
answer ID pair.

• If no diverse pair is found: The JSON should contain the string “No” within the
list structure to maintain format consistency.

Example of Final Output Structure (Diverse Pair):
[Your brief analysis justifying the choice...]
//boxed_json{{[[id_A, id_B]]}}

Example of Final Output Structure (No Diverse Pair):
[Your brief analysis explaining the lack of diversity...]
//boxed_json{{[["No"]]}}

Begin Analysis and Provide Output:
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D.1.2 THE LLM EVALUATION JUDGE

To automate the calculation of the “success rate,” a LLM Judge (Qwen3-14B) is used to provide a
final verdict on the diversity of a solution pair selected by a given method (e.g., RPD, Raw Emb.,
etc.). This section details the prompt used to guide the judge and the study conducted to validate its
alignment with human judgment.

Judge Prompt. The judge is provided with the problem statement and a single pair of solutions. Its
task is to assess whether the two solutions employed genuinely different problem-solving strategies.
The prompt explicitly instructs the judge to ignore minor differences in wording or calculation and
focus on the core reasoning approach.

Prompt for Methodological Similarity Rating

You are an expert Answer Analysis Assistant, specializing in understanding and comparing
the logic and methodology behind problem-solving. Your task is to receive a question, two
full answers with their summaries, and rate them strictly based on the similarity of their
methodology.
Note: Based on your prior analysis, you should assume that all proposed solutions for this
problem follow a similar high-level strategy. Your task is to find and rate the methodological
diversity within this shared high-level strategy.

RATING CRITERIA

Your task is to determine if the two answers are Methodologically Similar or Methodolog-
ically Diverse based on the criteria below, and assign a corresponding rating.

• Rating 1 (Methodologically Similar): The two answers are considered similar
if the differences are superficial. The following are NOT considered significant
methodological differences:

– Order of Calculation: Calculating value A then B, versus B then A, before
combining them in the same way.

– Algebraic Equivalence: Using the form (a+b)ˆ2 versus aˆ2 + 2ab +
bˆ2.

– Variable Naming or Notation: Using n vs x.
– Choice of Standard Procedural Equivalents: One summary describes solv-

ing a system of equations using substitution, while the other uses elimina-
tion. These are considered standard, interchangeable procedures within the
same overall algebraic approach.

– Rigorous Proof vs. Heuristic Assumption: If the overall strategy is the same,
simply proving a result versus assuming it does not constitute a diverse ap-
proach. Both are still following the same high-level logical path.

• Rating 2 (Methodologically Diverse): The two answers are considered diverse if
the difference represents a completely distinct, independent, high-level strategic
choice that fundamentally alters the entire problem-solving path from beginning to
end.

– Example 1 (Different Overall Framework): One solution to a geometry
problem uses coordinate geometry, another uses synthetic geometry, and
a third uses vector analysis.

– Example 2 (Completely Different Logical Path): To solve a counting prob-
lem, one answer uses direct casework, another uses complementary count-
ing, and a third uses a recurrence relation.

– Example 3 (Change in Analytical Tool): A solution to an optimization prob-
lem uses calculus, a second uses inequalities (like AM-GM), and a third uses
linear programming.
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OUTPUT REQUIREMENT

First, provide a detailed analysis explaining the methodological similarities and differences
based on the criteria above. After your analysis is complete, provide the final rating on a new
line in the format //boxed{{rating number}}. DO NOT ONLY GIVE OUT YOUR
RATE!

Begin Analysis:

[Question]:
{question}

[Answer A]:
{answer a}

[Answer A summary]:
{summary a}

[Answer B]:
{answer b}

[Answer B summary]:
{summary b}

Validation. To ensure the reliability of the LLM Judge used as our primary evaluation criterion in
Sec. 4.1, we conduct an alignment study with human annotations.

Table 7: Confusion matrix of LLM Judge verdicts
against human annotations on 100 solution pairs.

LLM Judge Verdict

Diverse Same

Human Diverse 41 (TP) 9 (FN)
Label Same 13 (FP) 37 (TN)

To validate the judge, we first construct a ded-
icated test set. Human annotators select 100
pairs of solutions from our candidate pool, cre-
ating a balanced ground-truth dataset composed
of 50 pairs with semantically diverse reason-
ing paths and 50 pairs with the same underlying
reasoning path.

The LLM Judge is then tasked with making a
binary diversity judgment on each of these 100
pairs. The results are presented in the confusion matrix in Table 7. Overall, the LLM Judge achieves
an accuracy of 78%, demonstrating a strong alignment with human judgment and performing sig-
nificantly better than a random baseline (50%). We observe that the judge is quite effective at
identifying truly diverse pairs (Recall 82%), though it is slightly prone to false positives (classifying
similar paths as diverse). This level of agreement validates our use of the LLM Judge as a reliable
automated proxy for evaluating reasoning diversity in our main experiment.

D.2 DETAILS FOR MULTI-SOLUTION FINE-TUNING (SEC. 4.2)

This section provides detailed implementation procedures for the main fine-tuning experiment, fo-
cusing on how the baseline training sets were constructed. Each method aims to select 100 problems
and 3 solutions per problem, but they differ in their core selection strategy.

D.2.1 RANDOM SELECTION BASELINE

The Random 1P3S baseline was constructed through a naive sampling process. We first randomly
selected 100 problems from our 1,600-problem candidate pool without replacement. For each of
these 100 problems, we then randomly selected 3 of its available solutions to form the training data.
This method serves as a fundamental baseline to measure the benefits of any systematic diversity-
driven selection.
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D.2.2 LLM SELECTION BASELINE

This baseline leverages the powerful Qwen3-14B model to simulate an expert’s judgment in a two-
stage curation process. First, the LLM performs a binary classification to identify whether a prob-
lem’s solutions are methodologically diverse. We then selected 100 problems that were positively
classified as containing diverse solution methods. Second, for these selected problems, the LLM is
prompted again to choose the set of 3 solutions that are maximally distinct from each other. The
specific prompts for each stage are provided below.

Prompt for Problem Diversity Classification

You are a master mathematician and an expert in pedagogical analysis. Your task is to
classify a problem based on the methodological diversity of its proposed solutions.
Your goal is to perform a binary classification:

• Class 2 (Diverse): If the provided solution summaries showcase more than one
distinct core methodology.

• Class 1 (Not Diverse): If all solutions use the same core methodology, or if the dif-
ferences are only superficial (e.g., a different order of calculation, or using standard
procedural equivalents like substitution vs. elimination).

1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA

Your primary task is to act as a discerning analyst. You must distinguish between minor
procedural choices and significant differences in core steps. Assume that most solutions
might share a high-level strategy; your goal is to find answers that execute core steps in a
meaningfully different way.

Defining Methodological Difference (Your Core Criteria):

What IS NOT a Significant Difference (Methodologically Similar):
• Order of Calculation: Calculating value A then B, versus B then A, before com-

bining them in the same way.
• Algebraic Equivalence: Using the form (a+ b)2 versus a2 + 2ab+ b2.
• Variable Naming or Notation: Using n vs x.
• Choice of Standard Procedural Equivalents: One summary describes solving a

system of equations using substitution, while the other uses elimination. These are
considered standard, interchangeable procedures within the same overall algebraic
approach.

• Rigorous Proof vs. Heuristic Assumption: If the overall strategy is the same,
simply proving a result versus assuming it does not constitute a diverse approach.
Both are still following the same high-level logical path.

What IS a Significant Difference (Methodologically Diverse):
• This difference represents a completely distinct, independent, high-level strate-

gic choice that fundamentally alters the entire problem-solving path from beginning
to end.

• Example 1 (Different Overall Framework): One solution to a geometry prob-
lem uses coordinate geometry, another uses synthetic geometry, and a third uses
vector analysis.

• Example 2 (Completely Different Logical Path): To solve a counting problem,
one answer uses direct casework, another uses complementary counting, and a
third uses a recurrence relation.

• Example 3 (Change in Analytical Tool): A solution to an optimization problem
uses calculus, a second uses inequalities (like AM-GM), and a third uses linear
programming.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2. CONTENT TO ANALYZE

Problem:
{question}

Proposed Solutions (Summarized by Logical Steps):
{summaries text}

3. OUTPUT REQUIREMENT

Based on the final criteria review, classify the diversity of the solutions.

Output Requirement: Immediately after your classification, provide your final answer in
a strict JSON format within a special block. The JSON should be a single integer, either 1
or 2. Do not provide any other text.

Example of Final Output Structure for a Diverse problem:
//boxed{{2}}
Example of Final Output Structure for a Not Diverse problem:
//boxed{{1}}
Begin Analysis and Provide Output:

Prompt for Diverse Solution Selection

You are a master mathematician and an expert in pedagogical analysis. Your task is to
analyze multiple proposed solutions for a given problem and select a set of {num to select}
answers that, as a set, represents the maximum possible methodological diversity.
Your goal is to identify a single set of {num to select} answers where each chosen answer
has a significant methodological difference from every other answer in the set. Think of it as
finding a set of three solutions that are all mutually distinct in their core approach.

1. YOUR ANALYSIS FRAMEWORK & CORE CRITERIA

Your primary task is to act as a discerning analyst. You must distinguish between minor
procedural choices and significant differences in core steps. Assume that most solutions
might share a high-level strategy; your goal is to find answers that execute core steps in a
meaningfully different way.

Defining Methodological Difference (Your Core Criteria):

What IS NOT a Significant Difference (Methodologically Similar):
• Order of Calculation: Calculating value A then B, versus B then A, before com-

bining them in the same way.
• Algebraic Equivalence: Using the form (a+ b)2 versus a2 + 2ab+ b2.
• Variable Naming or Notation: Using n vs x.
• Choice of Standard Procedural Equivalents: One summary describes solving a

system of equations using substitution, while the other uses elimination. These are
considered standard, interchangeable procedures within the same overall algebraic
approach.

• Rigorous Proof vs. Heuristic Assumption: If the overall strategy is the same,
simply proving a result versus assuming it does not constitute a diverse approach.
Both are still following the same high-level logical path.

What IS a Significant Difference (Methodologically Diverse):
• This difference represents a completely distinct, independent, high-level strate-

gic choice that fundamentally alters the entire problem-solving path from beginning
to end.
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• Example 1 (Different Overall Framework): One solution to a geometry prob-
lem uses coordinate geometry, another uses synthetic geometry, and a third uses
vector analysis.

• Example 2 (Completely Different Logical Path): To solve a counting problem,
one answer uses direct casework, another uses complementary counting, and a
third uses a recurrence relation.

• Example 3 (Change in Analytical Tool): A solution to an optimization problem
uses calculus, a second uses inequalities (like AM-GM), and a third uses linear
programming.

2. CONTENT TO ANALYZE

Problem:
{question}

Proposed Solutions (Summarized by Logical Steps):
{summaries text}

3. FINAL INSTRUCTIONS & OUTPUT REQUIREMENT

Your Task: Based on the final criteria review, analyze the solutions.

Step 1: Brief Comparative Analysis First, write a single, brief paragraph for your analy-
sis. Do not summarize each solution individually. Instead, group the solutions by common
methodology and justify your selection of the set of {num to select} most diverse answers.
For example: Solutions A and C use direct casework, while Solution B uses complementary
counting, and Solution D uses a geometric approach. The most diverse set is [A, B, D] as it
captures these three distinct methods.

Step 2: Final JSON Output Immediately after your brief analysis paragraph, provide
your final answer in a strict JSON format within a special block. The JSON should be a list
containing the {num to select} selected answer IDs.

Example of Final Output Structure:
[Your brief analysis...]
//boxed json{{[id A, id B, id C]}}
Begin Analysis and Provide Output:

D.2.3 EMBEDDING-BASED BASELINE

To rigorously evaluate the effectiveness of our RPD metric, we compare it against two baseline
distance metrics. For a fair comparison, all training datasets—both for our method and the base-
lines—are constructed using the identical two-stage data curation framework detailed previously.
This framework consists of Stage 1: Problem Selection (Algorithm 2) and Stage 2: Greedy Solu-
tion Selection (Algorithm 3).

The sole difference between our method and the baselines is the specific pairwise distance function,
D(Si, Sj), that is plugged into this framework. The baseline metrics are defined below.

Raw Solution Cosine Distance (Draw) This baseline metric computes the cosine distance between
the embedding vectors of the complete solution texts. For all embedding tasks, we use the Qwen3-
Embedding-8B model. LetMembed be this model.

Draw(Si, Sj) = 1− Membed(Si) · Membed(Sj)

∥Membed(Si)∥∥Membed(Sj)∥

Summary Cosine Distance (Dsummary) This baseline first concatenates the step-level summaries
for a solution to form a single composite summary text. The diversity is then computed as the cosine
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distance between the embeddings of these composite summaries.

Dsummary(Si, Sj) = 1−
Membed(Summarycomp(Si)) · Membed(Summarycomp(Sj))

∥Membed(Summarycomp(Si))∥∥Membed(Summarycomp(Sj))∥

Based on the framework detailed previously, we generate three distinct training datasets:

• Ours (RPD): Constructed by applying the two-stage framework with our proposed RPD
metric (DRPD).

• Raw Emb.: Constructed using the same framework but with the Draw metric.
• Summary Emb.: Constructed using the same framework but with the Dsummary metric.
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E EXPERIMENT RESULTS

This appendix presents the complete experimental results for both models. The tables are structured
to clearly distinguish between the pre-trained baseline model, fine-tuning with a one-problem-one-
solution (1P1S) paradigm, and fine-tuning with a one-problem-three-solution (1P3S) paradigm.

E.1 COMPLETE RESULTS FOR QWEN3-4B-BASE MODEL

The following tables present the comprehensive performance of the Qwen3-4B-Base model on the
AIME24 and Olympiad Benchmarks, which complements the MATH500 Level 5 results from the
main paper. As shown in Table 8, our RPD method demonstrates a significant performance improve-
ment by adopting the one problem, multiple solutions paradigm. It elevates the pass@16 score to
35.83% on AIME24, surpassing the standard 1P1S baseline (Random 1P1S) by an impressive 4.99
percentage points. Furthermore, our RPD-guided curation strategy also proves its superiority over
other 1P3S methods, with its pass@16 score outperforming the next-best baseline (Random 1P3S)
by 2.50 percentage points on the same benchmark. This pattern holds for the Olympiad Bench (Ta-
ble 9), where our method achieves a leading pass@16 score of 68.11%, which is 1.56 percentage
points higher than the 1P1S baseline and 0.75 percentage points higher than the best alternative
1P3S method. These results provide strong evidence for the effectiveness of our approach in both
paradigm and data curation strategy.

Table 8: Full comparison on the AIME24 benchmark using the Qwen3-4B-Base model.

Paradigm Method pass@1 (%) pass@2 (%) pass@4 (%) pass@8 (%) pass@16 (%)

Pre-trained Base 8.34 13.33 16.67 21.67 27.50

1P1S Random 1P1S 14.17 18.33 23.33 26.67 30.84

1P3S

Random 1P3S 9.17 12.50 19.17 28.34 33.33
Raw Emb. 12.50 16.67 20.00 25.84 33.33
Summary Emb. 10.00 12.50 17.50 25.00 29.17
LLM Selection 10.83 15.84 20.83 25.83 30.83
Ours (RPD) 14.17 19.17 25.83 30.00 35.83

Table 9: Full comparison on the Olympiad Bench using the Qwen3-4B-Base model.

Paradigm Method pass@1 (%) pass@2 (%) pass@4 (%) pass@8 (%) pass@16 (%)

Pre-trained Base 39.54 47.11 53.56 61.13 65.95

1P1S Random 1P1S 42.43 49.18 55.49 61.43 66.55

1P3S

Random 1P3S 40.13 50.15 56.75 62.61 67.36
Raw Emb. 39.91 47.48 56.38 61.42 66.62
Summary Emb. 40.88 49.78 57.05 62.69 66.92
LLM Selection 39.62 48.30 56.60 62.83 67.06
Ours (RPD) 41.92 51.19 57.50 63.06 68.11

E.2 COMPLETE RESULTS FOR QWEN2.5-3B MODEL

To demonstrate the robustness and generalizability of our findings, we also fine-tuned the Qwen2.5-
3B model. Specifically, we employed supervised fine-tuning using 4-bit QLoRA (rank=16, al-
pha=32), training the model for 15 epochs in BF16 precision. We utilized the AdamW optimizer
with a cosine learning rate scheduler, setting the peak learning rate to 4× 10−5. We then evaluated
its performance across the same three benchmarks (Tables 10, 11, and 12).

The results consistently reaffirm our core hypothesis. For instance, on the AIME24 benchmark
(Table 10), our RPD method’s advantage is particularly pronounced when evaluating with a larger
sample set. Focusing on the key pass@16 metric, our approach achieves a score of 22.50%. This
represents a substantial 5.00 percentage point improvement over the 1P1S baseline and demonstrates
a clear advantage over other multi-solution strategies, outperforming the next-best 1P3S methods
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by 0.83 percentage points. The outperformance on AIME24 exemplifies a consistent trend also
observed on the MATH500 and Olympiad benchmarks, which solidifies the conclusion that our
RPD-guided data curation is a general and effective technique for enhancing Test-Time Scaling.

Table 10: Full comparison on the AIME24 benchmark using the Qwen2.5-3B model.

Paradigm Method pass@1 (%) pass@2 (%) pass@4 (%) pass@8 (%) pass@16 (%)

Pre-trained Base 4.17 4.17 10.00 16.67 16.67

1P1S Random 1P1S 4.17 8.34 10.00 13.33 17.50

1P3S

Random 1P3S 6.67 8.33 14.17 18.33 20.00
Raw Emb. 5.84 8.34 14.17 18.33 20.83
Summary Emb. 3.33 6.67 13.33 18.33 21.67
LLM Selection 2.50 5.00 13.33 16.67 21.67
Ours (RPD) 7.50 10.00 15.00 20.00 22.50

Table 11: Full comparison on the MATH500 Level 5 benchmark using the Qwen2.5-3B model.

Paradigm Method pass@1 (%) pass@2 (%) pass@4 (%) pass@8 (%) pass@16 (%)

Pre-trained Base 23.70 32.65 43.84 55.60 63.62

1P1S Random 1P1S 29.11 41.05 51.31 60.45 67.73

1P3S

Random 1P3S 31.72 42.91 50.94 60.82 68.28
Raw Emb. 28.92 40.86 51.31 60.08 69.22
Summary Emb. 27.05 38.06 51.12 60.26 67.35
LLM Selection 27.61 37.87 49.82 60.26 67.91
Ours (RPD) 28.55 40.30 51.49 61.20 69.97

Table 12: Full comparison on the Olympiad Bench using the Qwen2.5-3B model.

Paradigm Method pass@1 (%) pass@2 (%) pass@4 (%) pass@8 (%) pass@16 (%)

Pre-trained Base 21.81 30.27 37.54 45.55 51.93

1P1S Random 1P1S 19.14 27.45 35.68 45.48 52.89

1P3S

Random 1P3S 22.33 30.79 39.10 47.11 53.93
Raw Emb. 22.03 30.05 39.10 46.52 52.90
Summary Emb. 22.85 31.34 38.95 46.63 53.82
LLM Selection 21.96 30.79 39.25 47.11 53.94
Ours (RPD) 20.40 30.19 39.10 47.18 54.16
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E.3 ABLATION STUDY: PERFORMANCE AT A LARGER SCALE (1500 SAMPLES)

To assess the scalability of our 1PNS paradigm, we conducted an additional experiment by increas-
ing the total training data size to 1,500 samples. This study compares our diversity-driven (500Q,
3A) configuration against a traditional (1500Q, 1A) baseline. The results, presented in Table 13,
show that our approach maintains a significant advantage, particularly on the pass@k metrics. This
confirms that the benefits of multi-solution fine-tuning are robust and effective even at a larger data
scale.

Table 13: Performance comparison of our 1PNS approach against the 1P1S baseline across three
mathematical reasoning benchmarks.

Benchmark Method pass@1 (%) pass@2 pass@4 pass@8 pass@16

AIME24 Random (1P1S) 13.33 16.67 18.34 25.00 30.00
RPD (1P3S) 12.50 19.17 22.50 25.84 35.00

MATH500 Level 5 Random (1P1S) 52.80 62.32 68.66 72.58 75.94
RPD (1P3S) 51.49 58.96 66.61 72.95 78.18

Olympiad Bench Random (1P1S) 39.77 49.48 55.86 62.24 66.62
RPD (1P3S) 39.99 49.33 57.20 63.21 67.51
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