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Abstract: Recent advances in Vision-Language-Action (VLA) models can en-
able robots to perform a wide range of tasks based on language or goal-based
instructions. These VLA models typically encode text and images into disjoint
tokens, generating actions that align with the given instructions. This requires the
VLA models to simultaneously perform vision-language understanding and precise
closed-loop control, resulting in significant challenges for them to generalize to
new environments. However, contrastive pre-trained VLMs, such as CLIP, already
possess vision-language alignment capabilities, which are underutilized by current
VLA models. In this paper, we propose Early Fusion VLA (EF-VLA), a novel VLA
architecture that exploits CLIP’s vision-language understanding by performing
early fusion, extracting fine-grained vision-language tokens relevant to the task
instructions before passing them to the transformer policy. EF-VLA keeps the
VLM frozen, allowing it to effectively perform unseen tasks without requiring fine-
tuning, which often reduces generalization capabilities. Simulation and real-world
experiments suggest that EF-VLA outperforms state-of-the-art VLA models on
diverse tasks, with significant generalization capabilities in unseen environments.

1 Introduction

Figure 1: Real-world Robot Experiments. Early Fu-
sion VLA (EF-VLA) demonstrates significantly higher
success rates on both training and unseen real-world
tasks compared to the state-of-the-art models, Octo and
OpenVLA. Notably, EF-VLA exhibits better generaliza-
tion to unseen objects, maintaining strong performance
across a variety of novel tasks. Error bars represent the
standard error calculated over 100 runs across 10 train-
ing tasks and 70 runs across 7 unseen tasks.

Recent advancements in Large Language Mod-
els (LLMs) and Vision-Language Models
(VLMs) have inspired the exploration of scaling
datasets and computational resources for vision-
language-action (VLA) models [1, 2, 3, 4]. Dif-
ferent input modalities are usually encoded into
separate tokens: multi-view images encoded
via visual feature extractors, along with tok-
enized language instructions, optionally with
the robot’s proprioceptive states, are fed into a
transformer-based robot policy for end-to-end
action generalization. This approach requires
the policy network to connect the vision and
language information and conduct precise robot
control, which often presents significant chal-
lenges, especially in unseen environments.

Numerous works [5, 4] have demonstrated the
benefits of using pre-trained vision encoders or
vision-language models in robotics. While these
approaches already use the rich visual features extracted from pre-trained vision encoders, the
policy network—often a fine-tuned language model or a transformer trained from scratch—must
still learn to associate the language instructions with the visual information. However, models like
CLIP [6] and SigLIP [7] are already trained to align image and text instructions, with an impressive
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Figure 2: Model architecture of EF-VLA. At each timestep t, vision and language features are extracted by
a pre-trained CLIP model and fused into a set of tokens fvl (see Figure 3). The fused vision-language tokens
fvl and the text tokens fl are each processed through separate attention pooling layers, producing two single
tokens f ′

vl and f ′
l , respectively. The robot’s proprioception is encoded by an embodiment encoder to generate the

embodiment representation fe. The tokens f ′
l , f ′

vl, and fe are then concatenated along the channel dimension
to form ft, which serves as input to a causal transformer. Based on a context window of 12 steps, the model
autoregressively predicts the next 12 actions (at) at each step.

performance on various downstream tasks, including image classification, image-text retrieval. It
can even perform more fine-grained tasks like open-vocabulary segmentation, by extracting dense
patch-level correspondence in recent works [8, 9, 10]. Given the capabilities of these VLMs, it’s
redundant for the policy network to learn the vision-language alignment from scratch, particularly
since robot datasets are far less semantically diverse compared to large vision-language datasets [11]
where these VLMs are trained on. Additionally, despite the effort these large VLAs to generalize
to unseen tasks, there still exists a performance discrepancy between training tasks and unseen
tasks. Some prior works such as OpenVLA [4] have shown that fine-tuning the vision encoder is
critical for improving its performance on new tasks. However, fine-tuning, especially for language-
aligned encoders like CLIP, introduces a critical trade-off: it can impair generalization and long-tail
classification performance [12, 13, 9], posing notable over-fitting issues.

We seek to preserve the generalization capabilities of VLMs for effective performance under unseen
scenarios. To this end, we propose Early Fusion VLA (EF-VLA), a novel VLA architecture that
exploits CLIP’s vision-language understanding by performing early fusion, fusing vision and language
tokens before, rather than in, the policy network (late fusion). Furthermore, the extracted vision-
language information should contain dense spatial information for guiding the robot policy to generate
accurate actions. To extract dense and semantically meaningful vision-language features, we adopt
the architecture from ClearCLIP [9], where we directly use the clean text-patch correspondence as
our frozen vision-language representations, preserving the inherent vision-language understanding
ability of the pre-trained VLM to a large extent.

Figure 2 provides an overview of EF-VLA. In addition to the ClearCLIP model, EF-VLA also
encodes language instructions and the robot’s proprioceptive states. The policy network receives
the fused vision-language token, a language token, and the proprioception token to autoregressively
predict actions in a causal transformer. Importantly, we keep the CLIP model frozen during training
to preserve its pre-trained powerful vision-language alignment. Both physical and simulation experi-
ments show that EF-VLA significantly outperforms existing VLA models, demonstrating superior
generalization to novel objects and environments with minimal performance degradation (Figure 1).

To summarize, our contributions are:

1. we propose EF-VLA, a VLA model that performs fine-grained early-fusion of vision and
language information. It leverages a pre-trained CLIP model with ClearCLIP architecture to
extract fine-grained vision-language features for effective performance on robotic tasks.

2. EF-VLA can outperform the state-of-the-art VLA models and its ablations on diverse robot
manipulation tasks. More significantly, EF-VLA can perform unseen tasks in a zero-shot
manner without the need to finetune vision encoders, which maximally preserves and
leverages the superior generalization capabilities of pre-trained vision-language models.
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2 Related Work

2.1 Vision Language Pre-training

Vision-language pre-training (VLP) seeks to improve the performance of downstream tasks that
involve both vision and language by training models on extensive datasets of image-text pairs. A
prominent class of vision-language models leverages contrastive learning [14, 15, 16, 6, 17, 18, 7].
Among them, CLIP [6], which was trained on a private WIT-400M dataset of image-text pairs,
demonstrates impressive zero-shot capabilities across various downstream tasks, including image-text
retrieval and image classification through text prompts. Furthermore, CLIP shows potential for
application in broader fields such as decision-making and robotics, where robots are required to
perform language-specified tasks based on visual inputs. Recent early-fusion approaches, exemplified
by BLIP [19, 20], extract visual features using a language-aligned vision model and apply multilayered
cross-attention between encoded language features and visual features. The resulting features are
then passed into a language model. However, many researchers have observed that fine-tuning or
even applying additional layers on top of CLIP (instead of using raw CLIP features) [12, 9] may
result in models with weaker reasoning capabilities compared to vanilla CLIP.

2.2 Vision Language Action Models

In recent years, there has been a surge of interest in developing robot foundation models, largely
inspired by the success of large language models (LLMs) and vision-language models (VLMs)
[21, 22, 23, 24, 25, 26, 6, 20]. A key hypothesis driving this trend is that more capable robot
foundation models can emerge by scaling up robot datasets, increasing model capacity, and co-
training or pre-training models on vision and language datasets. This has led researchers in the robot
learning community to train robot foundation models, investigate pre-training strategies, and iterate
on model designs [27, 5, 4, 3, 28, 29, 30, 1, 31, 32].

Many existing VLMs [33, 34, 35] use a “late-fusion” approach, where visual features and languages
are directly passed into the LLM to generate answers. Similarly, the majority of Vision-Language-
Action (VLA) models also opt for late-fusion, where language, vision, and robot proprioception
data are separately encoded by modality-specific feature extractors before being fed into a single
transformer policy. This method has shown promise in many language-conditioned multi-task learning
models [29, 5, 28, 30, 1, 31], including current open-source state-of-the-art models such as Octo
[3] and OpenVLA [4]. In contrast to the late-fusion approach, “early-fusion” combines vision and
language inputs before feeding them into the language model or during visual feature extraction.
Early works such as FiLM [36] encode text information and fuse these features into each block of a
ResNet [37]. RT-1 [27], one of the first language-conditioned robot models, uses FiLM to encode
text information for action generation. However, FiLM and RT-1 need to learn the language-vision
alignment from task data, thus cannot leverage pre-trained models such as CLIP [6], where visual
features are already aligned with text.

Inspired by ClearCLIP [9], EF-VLA distinguishes itself by using a similarity-based fusion between
visual patch features and text token features from CLIP while also incorporating additional text tokens
and robot embodiment tokens as inputs to the robot policy. This approach allows us to leverage the
strengths of fine-grained features from the pre-trained vision-language models while maintaining the
flexibility to incorporate robot-specific information.

3 Method

We propose Early Fusion VLA, a vision-language-action model for learning a robot manipulation
policy through early fusion on the vision-language features. We first describe how EF-VLA employs
early-fusion between the vision and language modalities, then provide a more detailed explanation of
the model architecture.
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3.1 Vision-Language Early Fusion

EF-VLA utilizes a pre-trained CLIP for vision-language fusion. Consider a ViT-based CLIP vision
encoder [6] consisting of a series of residual attention blocks. Each of these blocks takes as input a
collection of visual tokens X , and outputs the feature Xout as shown below:

q = Projq(LN(X)), k = Projk(LN(X)), v = Projv(LN(X)) (1)
Xsum = Xres +Xattn = X + Proj(Attn(q, k, v)) (2)
Xout = Xsum + FFN(LN(Xsum)) (3)

Proj, LN, and FFN denote linear projection matrix, layer norm [38], and feed-forward network respec-
tively. A recent work ClearCLIP [9] shows improved training-free open-vocabulary segmentation
performance by using CLIP’s last self-attention block’s attention feature Xattn instead of the CLIP’s
output feature Xout, resulting in segmentation with less noise. Inspired by ClearCLIP, we use a
parameter-free method to extract task-relevant CLIP features.

Figure 3: Vision-Language Early Fusion We calculate the
similarity between the visual patch features and per-token
language features, then take the softmax over the patch feature
dimension. Intuitively, this give a distribution of semantic
similarity over all spatial locations. We then multiply the
visual patch features to retrieve the visual semantic features
that correspond to each token in the sentence.

In EF-VLA, we extract text per-token fea-
tures from CLIP’s language encoder fl (m
tokens). For the visual features, motivated
by the improved ability to capture text-
aligned semantics in the visual features as
shown in ClearCLIP, we specifically utilize
the attention output Xattn from the last vi-
sion attention layer, rather than the CLIP’s
output feature Xout, denoting it as fv (n
tokens), where n is the total number of
patch tokens from ViT. To illustrate the ef-
fectiveness of this approach, we provide a
visualization in Figure 6 that demonstrates
how using Xattn enhances the alignment
between visual features and language se-
mantics.

Since the language features and the visual
features have different dimensions, CLIP
uses a matrix per modality to project the
network’s output feature to the same latent
dimension, denoted as wl and wv for language and vision respectively. We normalize the text and
visual features for vision-language fusion. The text features are normalized using the final layer
normalization: f̂l = LNfinal(fl)wl. Similarly, the visual features are normalized using the post-
attention layer normalization: f̂v = LNpost(fv)wv . We apply L2 normalization to both text and visual
features: f̂l = f̂l/∥f̂l∥2 and f̂v = f̂v/∥f̂v∥2 as in standard CLIP.

With the normalized features, we perform temperature-weighted attention:

fvl = softmax(f̂lf̂⊤
v /τ, dim=1)f̂v (1)

where τ is the temperature parameter. Same as in CLIP [6], τ is learnable and is clipped between
0 and 100. The resulting feature fvl ∈ Rm×d are the fused vision-language tokens, where each
row is a linear combination of normalized visual features f̂v. Intuitively, the softmax serves as a
selection function, where patch features relevant to a particular language token are selected, and a
weighted average of these patches is calculated to provide cues to where the robot policy should pay
attention to. A smaller τ sharpens the softmax, concentrating the selection on the patch with the
most similar feature, while a larger τ produces a smoother, more evenly distributed selection across
patches. Critically, all parameters except the τ are frozen throughout the training.
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Figure 4: Example scenes in the simulation (left) and in the physical environments (right) using a Franka robot.
3.2 Model Architecture

Policy Network Input We compress the fused vision-language features fvl into a single token for
each camera. To achieve this, we apply a learnable cross-attention pooling operation to each camera’s
fvl to obtain a single feature f ′

vl. To facilitate both early and late fusion of language features for
better instruction following capabilities, we additionally employ another learnable cross-attention
pooling on the text features fl, resulting in a single text token f ′

l ∈ Rdl . The robot’s proprioceptive
state is encoded through an FFN to extract an embodiment feature fe. At time step t, we concatenate
the embodiment feature fe with the perception feature f ′

l and f ′
vl along the channel dimension to

create a single token ft. This token serves as input to a policy network for action prediction.

Policy Network and Action Head Our policy model is a transformer consists of 4 layers and 8
heads, with a hidden dimension of 512. Fed by the combined features from the perception and
embodiment, the model generates an action at. The model is trained with a context length of 12 steps.
For each output token at a given timestep, we use an FFN to predict the next 12 actions. More details
about our model architecture can be found in Appendix B. When executing the predicted actions,
we employ temporal ensembling [39] in conjunction with receding horizon control [40]. Through
experimentation, we determined that an action horizon of 8 steps yields optimal performance.

4 Experiments

We address two problem classes: language-conditioned multi-task learning and zero-shot generaliza-
tion in unseen environments. In language-conditioned multi-task learning, the policy must perform
the correct task from multiple possible tasks in the same scene based on a given language instruction.
In zero-shot generalization, the policy receives a language description of an unseen task and is
required to perform it in a novel environment. In this section, we first introduce our experimental
setup in Section 4.1. We compare EF-VLA against several baseline and ablation models in simulation
and real-world in Section 4.2 and Section 4.3. In Section 4.4, we further investigate EF-VLA’s
capabilities by scaling up models.

4.1 Environment Setup

Simulation Environment We use the LIBERO benchmark [41] for simulation evaluation. Specifi-
cally, we use LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-90 as the pre-training
dataset, which contains 120 tasks with diverse objects, scene layouts, and language instructions. Each
simulation task has 50 demonstrations. We evaluate EF-VLA’s capabilities on both in-distribution
tasks and unseen tasks. The in-distribution tasks are the 30 tasks in the original LIBERO-Spatial,
LIBERO-Object, and LIBERO-Goal, which can evaluate the model’s multi-task learning capabilities.
In addition, we also construct 10 novel tasks, where we modify the language instructions and cor-
responding objects of 10 original LIBERO-90 tasks. For the 10 unseen tasks, we follow the same
convention in LIBERO [41] about object initialization and goal configuration by defining task bddl
files. Example scenes in the simulation are shown in the left column of Figure 4.
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Method LIBERO-Spatial LIBERO-Object LIBERO-Goal Unseen

EF-VLA w.o. CLIP vision 59% ± 7.3% 62% ± 7.8% 68% ± 6.3% 29% ± 8.7%
LF-VLA 72% ± 9.2% 51% ± 7.4% 76% ± 8.4% 28% ± 11%
EF-VLA w.o. fe 62% ± 6.3% 58% ± 9.1% 61% ± 8.7% 48% ± 7.8%
EF-VLA w.o. f ′

l 61% ± 9.9% 47% ± 9.4% 57% ± 10.3% 49% ± 9.9%
EF-VLA (Ours) 71% ± 7.3% 64% ± 9.2% 73% ± 9.4% 59% ± 7.4%

Table 1: Simulation results on LIBERO. We evaluate EF-VLA and baselines on 300 trials on in-distribution
tasks, and 100 trials on unseen tasks.

Method Training Tasks Unseen Tasks

Finetuned Octo 15% ± 3.4% 12% ± 3.6%
EF-VLA w.o. CLIP vision 17% ± 2.9% 11% ± 2.5%
Finetuned OpenVLA 30% ± 3.9% 9%±3.1%
LF-VLA 29% ± 3.7% 4% ± 1.6%
EF-VLA (Finetune CLIP) 26% ± 4.0% 15% ± 3.9%
EF-VLA w.o. fe 40% ± 4.0% 29% ± 4.3%
EF-VLA w.o. f ′

l 57% ± 4.4% 53% ± 4.6%
EF-VLA (Ours) 68% ± 4.3% 62% ± 4.2%

Table 2: Physical results on 100 trials on in distribution training tasks and 70 trials on unseen tasks. EF-VLA
achieves similar success rate on the in distribution training tasks and unseen tasks, significantly outperforming
the baselines, highlighting the benefits of using early fusion and a frozen pre-trained VLM.

Real Robot Environment For real-robot evaluation, we assess models on pick-and-place tasks with
varying objects and target locations. Using a Franka robot, we collected a dataset of 10 tasks, each
with 50-80 human tele-operated demonstrations, totaling 724 demonstrations. We evaluate 10 training
tasks and 7 unseen tasks, where unseen tasks involve novel object and placement combinations.
Example scenes in real are shown in the right column of Figure 4. Each trial involves randomizing
object locations and the two distractor objects. For unseen tasks, novel objects or object-placement
combinations are introduced. We generate 10 randomized scenes per task, resulting in 100 trials
for training tasks and 70 for unseen tasks. Performance is scored based on task completion: 0.5 for
picking the correct object and 1 for also placing it correctly. Failure to pick the correct object scores
0. Models have 30 seconds per trial, except OpenVLA, which gets 60 seconds due to its slower
inference. Success rate averages are reported with standard error across all trials. The full lists of
simulation and real-world environments can be found Appendix A.

4.2 EF-VLA V.S. Late-fusion VLA

To evaluate if the early fusion in EF-VLA can better leverage the semantic understanding capabilities
of the pre-trained VLMs, we consider three baselines with late-fusion architectures, including two
state-of-the-art open-sourced VLA models and one late fusion variant of EF-VLA:

1. Octo [3], an open-sourced transformer-based policy trained from scratch on 800K trajectories
from the Open X-Embodiment dataset [1].

2. OpenVLA [4], a fine-tuned Prismatic-7B [35] VLM on the Open X-Embodiment dataset.

3. LF-VLA: a late fusion variant of EF-VLA where the text tokens, vision tokens are passed
to an attention pooling layer separately to obtain independent tokens, which are then
concatenated with the embodiment feature fe as the input to the transformer.

As Octo and OpenVLA are pre-trained on a real robotics dataset, we evaluate both models in the
physical environments. For fair comparisons, we train LF-VLA from scratch and fine-tune Octo
and OpenVLA on our real robot dataset using the same amount of learning steps. The physical
experiment results are reported in Table 2. For more details about model training and architectures,
please refer to Appendix B.
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In both training and unseen tasks, Octo struggles with identifying the correct object and placement,
resulting in a low success rate. We attribute this to two factors: first, Octo lacks a pre-trained VLM like
CLIP and instead trains its vision encoder from scratch using a robotic dataset (OXE [1]), which lacks
the semantic diversity of larger datasets like LAION [11]. Second, EF-VLA’s early-fusion strategy
on CLIP’s visual and text representations leads to better vision-language alignment, improving its
visual grounding and generalization, even with a smaller dataset. While OpenVLA and LF-VLA
perform better than Octo on training tasks, they still fail to generalize on unseen tasks, likely due to
the challenges late-fusion architectures face in learning generalizable vision-language connections on
small datasets. In contrast, EF-VLA benefits from early-fused features from the pre-trained VLM.

We also compare LF-VLA with EF-VLA in simulation as shown in Table 1. On LIBERO-Spatial
and LIBERO-Goal, LF-VLA and EF-VLA work similarly well. That’s because the task semantics
in LIBERO-Spatial and LIBERO-Goal can be easily distinguished. However, on LIBERO-Object,
LF-VLA is worse than EF-VLA because the objects are very similar, and LF-VLA cannot accurately
find the correct object to interact with. On unseen tasks, EF-VLA can outperform LF-VLA by a large
margin, which is aligned with the real-world experiments.

4.3 Ablations on Model Design

We consider the following ablations on the design choices of EF-VLA. Full details about model
training and architectures can be found in Appendix B.

1. EF-VLA w.o. fe: EF-VLA without the embodiment representation fe. The concatenated
text token f ′

l and fused vision-language token f ′
lv are passed as the input to the transformer.

2. EF-VLA w.o. f ′
l : EF-VLA without the text token f ′

l . Only f ′
lv and fe are concatenated as

the input to the transformer.

3. EF-VLA w.o. CLIP vision: EF-VLA using a small VIT to train from scratch instead of a
frozen pre-trained CLIP vision encoder.

4. EF-VLA (Finetune CLIP): EF-VLA with the CLIP initialized from the pre-trained weight
and fine-tuned end to end on the robotic dataset.
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Figure 5: We evaluate EF-VLA’s performance with
improved vision language features by scaling CLIP. In
particular, we train EF-VLA with three CLIP variants
with increasing FLOPs: ViT-B/32, ViT-B/16, and ViT-
L/16. We report the task performance vs. the inference
FLOPs per image on training and unseen tasks. The
results suggest that the EF-VLA can benefit from scaling
up vision-language model.

Simulation Results Table 1 presents the simula-
tion results of EF-VLA and other ablations. On
the in-distribution tasks, EF-VLA w.o. CLIP vi-
sion and EF-VLA work similarly well given suf-
ficient demonstrations, but EF-VLA w.o. CLIP
vision drops 51% on unseen tasks, which shows
the benefits of using a pre-trained VLM for bet-
ter generalization capabilities.

The performance of EF-VLA w.o. fe drops
about 10% on both the in-distribution and un-
seen tasks, indicating that fe is beneficial for
task completion as it provides explicit spatial
information of the robot. EF-VLA w.o. f ′

l is
also noticeably worse, especially for LIBERO-
Object and LIBERO-Goal. We hypothesize this
is due to the object are not very realistic in
simulation, so the early fusion in CLIP’s may
highlight multiple objects or wrong objects. f ′

l

can provide complementary information for the
transformer to interact with the correct objects.

Real-world Results Physical results in Table 2 suggest that the performance on both the training
tasks and the unseen tasks drop significantly for the ablations compared to EF-VLA.
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Similar to the simulation results, the performance of EF-VLA w.o. fe drops 28% on the training tasks
and 33% on the unseen tasks, indicating that fe is vital for task completion and generalization, likely
because it provides a physical grounding for decision-making. Without fe, the model’s understanding
of embodied features, possibly linked to the spatial or physical aspects of the task, is severely impaired.
EF-VLA w.o. f ′

l experiences a performance drop of around 10% on both training and unseen tasks
but maintain a decent performance, suggesting that f ′

l provides complementary information that may
help in more nuanced task understanding, aligned with the simulation results.

While EF-VLA w.o. CLIP vision shows decent performance on in distribution tasks in simulation
experiments, it has a significant performance drop of more than 50% on the training and unseen tasks
in physical experiments. The results of EF-VLA w.o. CLIP vision is similar to Octo which also trains
a vision encoder from scratch on the robotics dataset. This suggests that pre-trained VLM provides
more robust and transferable visual representations. Training a vision encoder from scratch can result
in poor performance, as it lacks the generalization capabilities learned from large-scale pre-training.

OpenVLA suggests that fine-tuning the vision encoder of the pre-trained VLM on the robotics
dataset is crucial for improving the performance of a late fusion VLA. However, we hypothesize that
fine-tuning a pre-trained VLM can diminish the general vision-language understanding capabilities of
a VLM obtained through pre-training on internet-scale vision language datasets. EF-VLA (Finetune
CLIP) shows worse performance on both the training tasks and the unseen tasks. This may be
attributed to that a fine-tuned CLIP vision encoder is easier to over-fit on the training data and that a
fine-tuned CLIP vision encoder has a degraded vision-language understanding capabilities. The large
performance discrepancy between the training tasks and unseen tasks of OpenVLA and EF-VLA
(Finetune CLIP) implies a worse vision-langauge generalization ability, showing the benefits of
EF-VLA for retaining the vision-language features from a frozen pre-trained VLM. It’s worth noting
that both early fusion of the vision-language features and the frozen VLM is crucial for learning a
VLA that can generalize to unseen tasks, as shown by the worse performance of LF-VLA with a
frozen VLM, EF-VLA (Finetune CLIP) that has a fine-tuned VLM and OpenVLA that is a late fusion
model with fine-tuned VLM.

4.4 Scaling up Vision-Language Model

The semantic understanding capability of VLMs scales with model capacity and compute [6]. To
understand whether EF-VLA can leverage the advances of pre-trained VLMs, we evaluate its
performance with three CLIP models with increasing floating point operations per model forward
pass: ViT-B/32, ViT-B/16, and ViT-L/14. The task success and the inference FLOPs per image are
provided in Figure 5. We observe significant improvements of EF-VLA when scaling up CLIP for
training and unseen tasks, indicating that EF-VLA is a scalable approach that effectively utilizes
pre-trained vision language models for downstream robotics tasks.

5 Limitations and Conclusions

While EF-VLA shows improved task completion rates compared to existing VLAs, it has limitations.
A key challenge is scaling to different morphologies, especially those not easily parameterized by
SE(3) transforms (e.g., multi-fingered hands), limiting its adaptability to various robotic platforms
and tasks. Additionally, this study has not investigated how EF-VLA scales with larger datasets
or more complex tasks. Future works can investigate its performance and generalization in more
challenging scenes.

In summary, we present EF-VLA, a vision-language-action model that implements early fusion
between vision and language features. This is achieved by utilizing a pre-trained vision-language
model and an early fusion method to extract task-relevant semantic information. The experimental
results demonstrate that this early fusion approach enables effective multi-task learning with few
demonstrations and facilitates extrapolation to unseen objects and environment configurations. The
results further suggest that EF-VLA has a higher task success rate in handling unseen scenes with
distractor objects than the existing state-of-the-art VLAs.
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A Environment Setup

A.1 Simulation Tasks

For the training tasks, we use the original tasks in LIBERO-Goal, LIBERO-Spatial, and LIBERO-Object. We
also build unseen evaluation tasks based on 10 original LIBERO-90 tasks, by changing language instructions
and target object color and type in the task bddl files. The 10 unseen tasks are listed in Table 3.

Changes Unseen

object type Put the moka pot in the bottom drawer of the cabinet
object type Put the moka pot on the wine rack
object type Pick up the ketchup and put it in the basket
object type Pick up the ketchup on the plate
object type Pick up the bottle and put it in the tray
object color Put the black bowl on top of the cabinet
object color Put the black bowl on the plate
object color Put the red mug to the right of the plate
object color Put the yellow and white mug in the front of the red mug
object color Put the red mug to the front of the moka

Table 3: The 10 in-distribution tasks and 7 unseen tasks we used in our real-world setting.

A.2 Real-world Tasks

The full list of tasks for our real-world evaluation is provided in Table 4.

In-Distribution Unseen

Put potato in pot to black bowl Put yellow cube in black bowl
Pickup potato Pick up radish and place it in grey bowl

Pick up and place deer in grey bowl Put blue bear in pink bowl
Pick up green triangle Put yellow cube in grey bowl
Put tiger to black bowl Put apple with a green leaf in black bowl

Put red cube into black bowl Pick up blue sponge and place it in steel pot
Put blue cube into grey bowl Pick up black dog and place it in the pink bowl
Put the red ball in black bowl

Put green triangle into pink bowl
Put blue cube in pink bowl

Table 4: The 10 in-distribution tasks and 7 unseen tasks we used in our real-world setting.

B Model and Training Details

B.1 Proprioception Parametrization

We parameterize the proprioception space using a 10-dimensional representation. This includes the absolute
end effector translation (x, y, z), a 6DoF rotation vector, and a continuous end-effector gripper state. The 6DoF
rotation vector is derived by flattening the first two rows of the SO(3) rotation matrix.

B.2 Action Parametrization

We employ delta end effector pose as our action parameterization. At each prediction step, the model pre-
dicts t actions. Given a sequence of absolute end effector action transforms T1, T2, · · · , Tt in a trajectory
and the current end-effector pose Tee, we define the relative transforms that the model needs to predict as
T−1

ee T1, T
−1
ee T2, · · ·T−1

ee Tt. We then append the continuous absolute gripper position to each delta action.
Similar to the proprioception representation, we express the delta action using the relative end effector translation
and a 6DoF rotation vector, resulting in a 10-dimensional action representation.
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B.3 Model Architecture for EF-VLA and Baselines

The details of our model parameters can be found in Table 5. All the baselines share the same hyper-parameters
with EF-VLA. For EF-VLA w.o. CLIP Vision, we use a ViT Encoder based on the implementation of https:
//github.com/google-research/vision_transformer with a ViT-Ti/16 configuration with half of the
number of attention layers. For EF-VLA w.o. fe and EF-VLA w.o. f ′

l , we use the same model configuration
but only remove the corresponding attention pooling layers. We incorporate action chunking into OpenVLA by
asking it to predict the next 16 actions, which performs better than vanilla OpenVLA which predicts only the
next step. For Octo, we use the official Hugging Face Checkpoint at hf://rail-berkeley/octo-small-1.5
which is in a comparable size with our model. During inference, we cache the CLIP feature outputs. This enables
the ViT-L/14 EF-VLA model to perform inference at > 15Hz on a single NVIDIA 3090Ti, allowing real-time
control.

Hyperparameter Value

CLIP Model ViT-L/14
# Pooling Readouts 4

# Pooling Attention Heads 8
# Pooling Attention Blocks 2

# Text-Pooling Output Dimension 128
# Image-Pooling Output Dimension 512

# Proprio-Pooling Output Dimension 64
Causal Transformer Parameters:

# Attention Blocks 4
# Attention Heads 8

# Latent Dimension 512
# Context Length 12

# Action Prediction Horizon 12
Table 5: Hyperparameters in model architecture.

B.4 Training Hyper-parameters

We use the AdamW optimizer with a cosine learning rate decay schedule and linear learning rate warm-up.
We list training hyperparameters in Table 6. All these hyper-parameters are shared between real-world and
simulation. All the models are trained on 4 NVIDIA A100 80GB GPUs.

Hyperparameter Value

Learning Rate 3e-4
Warmup Steps 2000
Weight Decay 0.01

Learning Rate Scheduler cosine
Gradient Clip Threshold 1

Batch Size 64
Total Gradient Steps 40000

Image Resolution 224 × 224
Random Resized Ratio [0.9, 1.1]

Random Brightness 0.2
Random Contrast [0.8, 1.2]

Random Saturation [0.8, 1.2]
Random Hue 0.1

Table 6: Hyperparameters used for training.

C Vision-Language Attention Visualization

In Figure 6, we visualize the cosine similarity between the output of the CLIP ViT-L/16 encoder and the per-token
text features in three different settings: (1) fine-tuning the encoder, (2) a frozen CLIP’s output features (Xout),
and (3) a frozen CLIP’s last attention block’s feature (Xattn) as described in Section 3.1.
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Figure 6: Examples of attention maps for CLIP fine-tuned with VLA (left) and frozen CLIP’s output (Xout)
(middle) and frozen CLIP’s attention features (Xattn) (right). The first column shows the side view observation
and the text query is below each attention map. Fine-tune CLIP pays attention to the background and the
frozen CLIP’s output (Xout) is noisy. In contrast, the frozen CLIP (Xattn) pays attention to the correct object
associated with the text query. These examples indicate that fine-tuning CLIP on robotic datasets can degrade
the performance of the pre-trained CLIP, especially when the robotics dataset is small. It also highlights the
benefits of using Xattn for fused vision-language features.
In the finetuning v.s. frozen CLIP (Xattn) comparison, fine-tuning EF-VLA’s CLIP results in overfitting to
foreground-background separation, causing it to lose zero-shot object detection ability. This limits the model’s
ability to highlight the correct object, leading to a significant drop in task success rates (26% vs 68% for training
tasks and 15 vs 62% for unseen tasks). Conversely, a frozen CLIP (Xattn) preserves object detection capabilities,
providing better downstream performance.

In the Vanilla CLIP output (Xout) v.s. ClearCLIP output (Xattn) comparison, CLIP produces noisy features,
degrading vision-language alignment and making object localization harder. By using the attention output
(Xattn) as in ClearCLIP [9] instead of the final feature map, EF-VLA can localize objects more accurately
without fine-tuning or additional parameters.

To provide further motivations for why using Xout (per [9]) instead of the output feature map of CLIP, we
compare the cosine similarity for each of these options respectively. Similar to what ClearCLIP has noted, after
adding residual connection and the final FFN, the features become noisy and worsen the alignment between
language and visual features. The noisy attention map makes it challenging for the model to identify the correct
features directly from the feature map, which makes it necessary for existing VLA (i.e. OpenVLA [42]) to
fine-tune the CLIP vision encoder. In comparison, by using Xattn, object localization becomes an easier task in
EF-VLA: we can extract the location of the object by getting the softmax across the attention map without using
any parameters (see Figure 3).

It may initially seem unexpected that this type of visualization is reasonable. However, this can be explained
by the fact that LayerNorm operates independently of the patch dimension, as it normalizes along the channel
dimension. When combined with the vision-alignment weight matrix wv , the operation f̂v = LNpost(fv)wv

remains linear. Therefore we can linearize the final attention block:

f̂v = LNpost(Xout)wv (2)
= LNpost(Xres +Xattn + FFN(LN(Xsum)))wv (3)
= LNpost(Xres)wv + LNpost(Xattn)wv + LNpost(FFN(LN(Xsum)))wv (4)

For ClearCLIP, or Frozen CLIP Xattn, we are visualizing the LNpost(Xattn)wv term.
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