
ToolGrad: Efficient Tool-use Dataset Generation with Textual “Gradients”

Anonymous ACL submission

Prior Art sentiment_dissatisfied Low annotation pass rate

To
o

lG
ra

d

mood High annotation pass rate

build

build buildbuild
build build buildbuild

build build

build

build build

build build

build

API Collection

personCan you

? Also,
, and can you

?

 provide me with
information on art openings in
Italy what is the current
weather like in Rome
suggest nearby places of interest,
especially art-related venues

personCan you

? Also,
, and can you

?

 provide me with
information on art openings in
Italy what is the current
weather like in Rome
suggest nearby places of interest,
especially art-related venues

build

image_search
build

sunny
build

travel_explore

build

image_search
build

sunny
build

travel_explore

build

image_search
build

image_search
build

sunny

Tool-use

Search

build
buildbuild

build build
build

API mini-batch

build
buildbuild

build build
build

API mini-batch

build
buildbuild

build build
build

API mini-batch

Annotation failure

Figure 1: Prior art for tool-use dataset generation (top) starts with a user query, followed by an expensive, failure-
prone tool search (e.g., DFS). In contrast, ToolGrad (bottom) first generates successful tool-use chains, then
annotates corresponding user queries, achieving superior efficiency and a 100% pass rate.

Abstract001

Prior work synthesizes tool-use LLM datasets002
by first generating a user query, followed by003
complex tool-use annotations like DFS. This004
inherently leads to inevitable annotation fail-005
ures and low efficiency in data generation. We006
introduce ToolGrad, an agentic framework that007
inverts this paradigm. ToolGrad first constructs008
valid tool-use chains through an iterative pro-009
cess guided by textual “gradients”, and then010
synthesizes corresponding user queries. This011
“answer-first” approach led to ToolGrad-5K, a012
dataset generated with more complex tool use,013
lower cost, and 100% pass rate. Experiments014
show that models trained on ToolGrad-5K out-015
perform those trained on expensive baseline016
datasets and proprietary LLMs, even on OOD017
benchmarks.018

1 Introduction019

Tool uses empower large language models (LLMs)020

by interfacing a parametric model with the external021

world through API calls. For instance, RAG (Lewis022

et al., 2020), an exemplary tool-use system, demon-023

strated its impact in reducing LLM hallucination024

and increasing AI response quality (Shuster et al., 025

2021). Further studies have extended the concept 026

and use programs and database retrieval to enhance 027

LLMs’ math reasoning and fact-checking capabili- 028

ties (Gao et al., 2023; Augenstein et al., 2024). 029

In practice, teaching LLM to use tools is non- 030

trivial – its main challenge lies in the dataset. 031

While prior work has collected large-scale API 032

databases (Shen et al., 2023; Yan et al., 2024), we 033

still lack a scalable method to create a pair of “user 034

prompt” and “tool-use chain” for training. Since it 035

is impractical to ask for human annotation at scale, 036

prior work primarily used an agent to search a tool- 037

use path with trial and error. Figure 1 (top) shows a 038

representative annotation approach, which includes 039

two steps: 1) generate a hypothetical user instruc- 040

tion from a sampled API pool, and 2) use a DFS 041

agent to find its tool-use solution. This approach 042

is inherently inefficient because its core concept is 043

to distill valuable trajectory from a complex agent 044

exploration for training an LLM. This implies that 045

exploration must be expensive by nature. More im- 046

portantly, the exploration has no guarantee of anno- 047

tation success, causing a waste of agent resources. 048

1

As a result, such a tool-use dataset generation usu-049

ally suffers from 1) a high agent cost and 2) a low050

pass rate.051

To address this issue, this work explores an al-052

ternative solution paradigm, i.e., we first generate053

a ground-truth tool-use chain and then annotate its054

corresponding user prompt. Intuitively, an explicit055

tool-use solution provides more unambiguous infor-056

mation than a prompt, making the annotation, from057

tool usage to the use query, much easier and requir-058

ing only one LLM step. At the same time, this new059

problem formulation introduces a new challenge:060

how can we effectively generate tool-use chains061

directly from a large-scale API database?062

In this work, we introduce ToolGrad, an agen-063

tic framework to chain APIs iteratively with mini-064

batches in a large database. Inspired by a standard065

ML optimization loop and TextGrad (Yuksekgonul066

et al., 2024), we design ToolGrad to boost textual067

“gradients” by chaining the best API in each itera-068

tion of the framework (Table 1), This is achieved by069

four modules that perform API proposal, execution,070

selection, and workflow update, respectively, which071

resemble the forward inference and backward prop-072

agation processes in ML. Using the framework,073

we created ToolGrad-5K, a tool-use dataset that074

contains 5k samples of user prompts with their cor-075

responding tool calls and AI responses to the user.076

Compared to a baseline dataset, ToolBench (Qin077

et al., 2023), ToolGrad-5K features more complex078

tool-use data and was generated with lower cost079

and a 100% pass rate. We further demonstrate that080

small LLMs fine-tuned on ToolGrad-5K can output081

SoTA proprietary LLMs. More importantly, our082

OOD evaluation shows that our models perform083

comparably or even outperform the same models084

fine-tuned in distribution and propriety LLMs.085

In summary, this work contributes 1) ToolGrad,086

an agentic framework for efficient data generation,087

2) ToolGrad-5K, a tool-use dataset, and 3) the cor-088

responding fine-tuned models, all of which will be089

open-sourced to support future research.090

2 Related Work091

2.1 Tool-use LLMs092

Researchers have studied tool-use LLMs in vari-093

ous fields (Patil et al., 2023; Huang et al., 2024b).094

In NLP, tool-use LLMs have shown improved per-095

formance in QA (Zhuang et al., 2023), fact check-096

ing (Nakano et al., 2022; Augenstein et al., 2024;097

Peng et al., 2023) and mathematical reasoning (Gao098

et al., 2023; Das et al., 2024; Schick et al., 2023). 099

The impact of tool-use LLMs extends beyond NLP, 100

with notable applications in VQA (Gupta and Kem- 101

bhavi, 2023; Surís et al., 2023), human-computer 102

interaction (De La Torre et al., 2024; Zhou et al., 103

2024)), and graphic modeling (Huang et al., 2024a; 104

Du et al., 2024). 105

Datasets play a critical role in advancing the 106

tool-use capability of LLMs. Initial efforts fo- 107

cused on constructing API databases from various 108

resources, such as Hugging Face APIs (Shen et al., 109

2023) and a community platform (Yan et al., 2024). 110

Given the API databases, there are two primary ap- 111

proaches for creating tool-use datasets that connect 112

user prompts with tool-use actions. The first group 113

of work relies on human annotations (Zhuang et al., 114

2023; Tang et al., 2023), which is often expensive 115

and difficult to scale up. Therefore, a large por- 116

tion of work developed synthetic datasets (Yang 117

et al., 2023; Wu et al., 2024). ToolBench (Qin 118

et al., 2023), for example, employs LLMs to gen- 119

erate user queries based on an API database and 120

then performs DFS to search its tool-use solution. 121

τ -bench (Yao et al., 2024) synthesizes multi-turn 122

user interactions with a multi-agent simulation. 123

This work follows the synthetic data approach 124

and targets the efficiency issue in the data gener- 125

ation process. As we will show in experiments, 126

ToolGrad can generate datasets with more complex 127

tool usage with a lower cost and a 100% pass rate. 128

2.2 Multi-agent Data Optimization 129

LLMs demonstrated their ability to solve problems 130

via simple prompts. This inspired researchers to 131

create multi-agent collaborative systems for var- 132

ious applications (Park et al., 2023; Wang et al., 133

2023). For example, AgentCoder (Huang et al., 134

2023) improves LLM code generation by having 135

a code generator and a verifier work collabora- 136

tively. MetaGPT (Hong et al., 2024) further sim- 137

ulates human collaboration in software develop- 138

ment by simulating different roles like code writ- 139

ers and planners. Additionally, research shows 140

that agents can self-improve by step-by-step self- 141

criticism (Madaan et al., 2023). Copper (Bo et al., 142

2024) further formulates the self-refinement prob- 143

lem with RL, and trains an agent that performs 144

better refinement. 145

Recent studies formulate LLM agents as opera- 146

tors in classical algorithms for data optimization in 147

various downstream applications (Chen et al., 2025; 148

Zhuge et al., 2024). For example, ProTeGi (Pryzant 149

2

et al., 2023) optimizes a prompt via LLM-based150

beam search, which iteratively evaluates, criticizes,151

and updates an initial prompt design. TextGrad152

further defined a unified framework for prompt153

optimization with textual “gradients”, and demon-154

strated its application in a larger domain (Yuksek-155

gonul et al., 2024).156

We extend the concept of TextGrad (Yuksek-157

gonul et al., 2024) into tool-use LLM dataset gener-158

ation. Unlike TextGrad, which optimizes LLMs159

with better prompts, we aim to generate better160

datasets to teach LLMs tool usage.161

3 Background: Prompt Optimization162

with Textual “Gradients”163

We first review how prior work defines textual “gra-164

dients” for prompt engineering in an agentic frame-165

work. Note that textual “gradients” are not actual166

mathematical gradients for numerically optimizing167

objective functions in ML. Recent work (Yuksek-168

gonul et al., 2024) generalizes the mathematical169

“gradient” concept into textual feedback from an170

LLM critic in an agentic framework, which guides171

LLMs to update a prompt.172

Formally, given an LLM, f(·;ϕ), instructed by a173

prompt ϕ, prompt optimization aims to iteratively174

refine an initial prompt ϕ0 into an optimized ver-175

sion ϕT , so that ϕT can better instruct LLM for the176

given downstream task. This is achieved from an177

agentic framework with textual “gradient” descents178

that resemble the standard ML optimization. In179

specific, given a batch of downstream task data,180

{(xi, yi)}, an agentic forward process is defined181

as ŷi = f(xi;ϕt), where ŷi is the LLM prediction182

on a given input xi using prompt ϕt on the tth iter-183

ation. The loss signal for the “gradient” descent,184

L, is computed by an LLM agent that criticizes185

the prediction ŷi. For example, in article summa-186

rization, a critic may comment that a generated187

summary does not fully summarize the core con-188

cept for some reason. This results in some textual189

feedback on the summarization tasks, i.e., the tex-190

tual “gradients”. Lastly, another LLM agent edits191

the prompt conditioned on the critic’s feedback,192

i.e., ϕt+1 ← LLM (ϕt,L).193

4 ToolGrad194

Instead of optimizing prompt engineering, Tool-195

Grad aims to generate a dataset to teach LLMs tool-196

use capability. Table 1 summarizes the analogy and197

difference of ToolGrad, compared to TextGrad and198

ML. In practice, generating a tool-use dataset is 199

more complicated than prompt refinement. Simul- 200

taneously updating the model and dataset is an in- 201

trinsically challenging analogy to bi-level optimiza- 202

tion, as the dataset is used to fine-tune a model, i.e., 203

the internal optimization loop. Therefore, we lever- 204

age LLM feedback for the iterative dataset con- 205

struction without training an LLM on the dataset 206

in each step. To achieve such LLM feedback, i.e., 207

the textual “gradients”, we devise four modules 208

that resemble forward and backward propagation 209

in each step. 210

4.1 Tool-use LLMs: Preliminary 211

We aim to generate aD = {(q,W, r)} to finetune a 212

tool-use LLM. q is a user query;W is an API work- 213

flow consisting of a collection of API-use chains: 214

W := {C1, C2, . . . , Cn}; and r is the response to q 215

conditioned onW . A chain is defined as a sequence 216

of API execution steps, C := API1 → · · · → APIn. 217

An API execution step contains 1) an API id, 2) the 218

input of this API request, and 3) the response from 219

this API request. 220

An inference model trained on our dataset differs 221

from the ReAct-based tool-use paradigm, i.e., the 222

default function calling method defined in the Ope- 223

nAI SDK. With this dataset, the model is trained to 224

predict all the tool uses in one shot, while ReAct 225

agents predict one tool use in each LLM step. See 226

more discussion in Appendix A. 227

4.2 ToolGrad: One Iteration Step 228

Figure 2 visualizes the pipeline of ToolGrad in 229

each iteration, which contains four core steps: 1) 230

propose top-k APIs to augment the existing API 231

workflows given a mini-batch of APIs, 2) execute 232

the selected APIs, generating API reports, 3) select 233

the best API to augment the current workflow, and 234

4) update a workflow with the selected API. 235

API Proposer. The API proposer, LLMpr, takes 236

an API mini-batch as input ({API}bs with size bs) 237

and output a list of selected APIs with its corre- 238

sponding instruction on how to use the API for 239

augmenting the current workflowWt: 240

{(APIi, insti)}i<m
i=0 = LLMpr

(
{API}bs;Wt

)
(1) 241

Parameter m is pre-specified to control the maxi- 242

mal number of API proposals in each step. Note 243

that we prompt LLMpr with simple API configura- 244

tion, and LLMpr cannot respond with a tool-calling 245

request. This design distills the most valuable APIs 246

3

Table 1: An analogy of ToolGrad to conventional machine learning and TextGrad (Yuksekgonul et al., 2024). D is a
tool-use LLM dataset, composed of many triplets of (query, API workflow, response), i.e., (q,W, r).

ML TextGrad ToolGrad
Model fθ(x) f(x;ϕ): prompted by ϕ f(x;D): fine-tuned on D

Parameter θ: weights ϕ: prompt D = {q,W, r}: dataset
Batches {(x, y)}: (query, reply) {(x, y)}: (query, reply) {API}: a small API set

“Gradients” ∇θL
(
fθ(x), y

)
LLM (“criticize it”) LLM (“select the best API”)

Optimizer θt+1 ← θt − η∇θL LLM updater Wt+1 ←Wt.add(APIt)

person
home_repair_service

(qt, 𝒲t, rt)

build build build build

build build

person
home_repair_service

(qt+1, 𝒲t+1, rt+1)

build build build build

build build build

API Proposerfilter_alt

A
P

I S
electo

r
check_box

API Selectorcheck_box

API Execution Reportassignment

API Execution Reportassignment

API Execution Reportassignment

API Executorplay_arrow
home_repair_service

home_repair_service

API Executorplay_arrow
home_repair_service

API Executorplay_arrow
home_repair_service

build

build

build

build
buildbuild

build build
build

One batch of APIs

API Selection

build
+

LLM Module Tool-calling LLM Module

Inverse P
red

ictio
n

person

Updated query
and response Updated workflow

home_repair_service
build build build build

build build build

API Execution Reportassignment

Short

Summary

Tool

Calling

History

Execution

Evaluation

person

build

person

build

person

build

Successcheck_circle Failurewarning

Figure 2: ToolGrad Framework. Each iteration starts with (qt,Wt, rt) and a mini-batch of APIs. An API Proposer
first predicts up to m APIs, and then m API Executors perform tool calls and return execution reports. An API
Selector finds the most valuable API to chainWt →Wt+1. Lastly, an LLM updater is used to predict qt+1, rt+1.

for use in subsequent requests, thereby improving247

overall system efficiency. Our intuition is that 1)248

most of the APIs in a randomly sampled batch are249

irrelevant to the current workflow, and 2) providing250

simple API configurations is sufficient for an LLM251

to decide which APIs are worth further in-depth252

execution. Therefore, m must be much smaller253

than bs to achieve such efficiency in practice.254

API Executor. The API proposals are then sent255

to m API executors, {LLMTex}m. LLMT is denoted256

as a tool-calling LLM agent that can return tool-257

calling requests, as opposed to LLM, which returns258

standard responses to the user. LLMTex takes an API259

proposal (APIi, insti) as input and return a report,260

repi = LLMTex (APIi, insti) . (2)261

The report contains the following information: 1)262

a full record of the API request history and 2) a263

boolean variable showing whether the execution is264

successful. This is the most expensive step in the265

ToolGrad framework because each selected API is266

paired with an LLM agent for parallel execution.267

This verifies the necessity of our API proposer step,268

which performs filtering, in one LLM step, to avoid269

redundant API calls. 270

API Selector. Given a set of execution re- 271

ports {repi}, we design an API selector, LLMsel, 272

to choose the best API that can augment the current 273

workflowWt. 274

j = argmax
i

V ({repi}m,Wt)

∼ LLMsel ({repi}m,Wt) ,
(3) 275

where V (·, ·) is a hypothetical value function. 276

In practice, instead of defining V and perform 277

argmaxV (·, ·), we use an LLM as its proxy. In- 278

tuitively, argmaxV (·, ·) is a process that chooses 279

the most valuable API from the reports, and we 280

hypothesize that an LLM can achieve this task con- 281

ditioned on the API execution reports, {repi}m, 282

and the current workflow, Wt. In addition, we 283

instruct LLMsel to specify which chain Ck ∈ Wt 284

the selected API (APIj) augments – or to create a 285

new chain if necessary. Therefore, the following 286

equation shows the API selector step at ToolGrad: 287

j, k = LLMsel ({repi}m,Wt) ,

where

{
j is the selected API id for APIj ,
k is the chain id for Ck.

(4) 288

4

The API selection is the core step that performs289

the “gradient” computation in our optimization290

loop (Table 1). As opposed to the LLM critic step291

that uses textual feedback as “gradient”, our API292

selector chooses a discrete API to augmentWt as293

“gradients” of data generation in ToolGrad.294

Workflow Updater. j and k from the API execu-295

tor provide clear information on 1) which API from296

the mini-batch the workflow updater should use and297

2) where (at which chain) the updater should ap-298

pend the API to. Therefore, the workflow updating299

process can be clearly defined as follow without300

using LLMs.301

Wt+1 ←Wt.add(APIj , Ck) (5)302

On the other hand, onceWt is updated toWt+1,303

we should also update (qt, rt) to maintain the co-304

herence of the sample triple (q,W, r). Therefore,305

in the workflow updating step, we perform the fol-306

lowing LLM step:307

qt+1, rt+1 = LLMupdater(Wt+1) (6)308

Intuitively, this step resembles summarization309

tasks that convert detailed texts (i.e., a tool-use310

workflow) to ambiguous messages (i.e., a user311

query and its response). This inverse prediction312

process is much more straightforward than the313

standard forward pass that explores answers with314

a given user query: W, r = LLMDFS(q), where315

LLMDFS is an agent using DFS (Qin et al., 2023).316

4.3 Sampling Negative APIs317

Given the (q,W, r) with the ground-truth tool uses,318

we post-process it by sampling negative tools. The319

objective is to simulate a real-world use scenario320

where an agent can access more APIs than neces-321

sary. Prompting the LLM with every API configu-322

ration is impractical given our API database’s size323

(8k). Therefore, we aim to simulate a benchmark324

for an RAG-like agent, in which the agent first sam-325

ples top-p APIs based on the text-embedding sim-326

ilarity and then prompts an LLM with the p APIs327

only. Formally, given a ground truth set {W}n of n328

positive APIs, we sample the top-(p−n) APIs most329

similar to these positives as our negative samples.330

4.4 Generation Configuration331

In this work, we choose the number of API propos-332

als as m = 3, and the API batch size bs = 50. Each333

generation loop takes 10 iteration steps, which we334

observed is sufficient to generate complex API-use335

workflows. We chose p = 20 when sampling neg- 336

ative APIs and gpt-4.1-mini as our LLM for data 337

generation. 338

5 Experiments 339

We conducted three experiments to demonstrate 340

the efficiency of the ToolGrad framework in vari- 341

ous aspects. This includes 1) the high-quality but 342

low-cost dataset generation, 2) high performance 343

of models trained on ToolGrad-5K, both in distri- 344

bution and OOD. 345

5.1 Efficiency of Generating ToolGrad-5K 346

Using ToolGrad, we collected ToolGrad-5K, a 347

dataset containing 5K triplets of (q,W, r). This 348

experiment presents details of our generation and 349

demonstrates the efficiency of our generation. 350

API Library. We used the API library provided 351

by ToolBench (Qin et al., 2023), which contains 352

approximately 16K APIs. We found some API 353

names and their corresponding configuration are 354

not well annotated (e.g., APIs named as “test_v5”, 355

“test_for_test”, etc.), which negatively affects our 356

generation. Therefore, we used gpt-4o-mini to filter 357

these APIs with low-quality annotations. 8,691 358

APIs remain in the API library for ToolGrad. 359

Baselines. We chose (Qin et al., 2023)’s DFS- 360

based data generation approach as our baseline. 361

ToolGrad-5K shares the same API databases with 362

ToolBench but differs in the data generation frame- 363

work. They chose the query-first generation, fol- 364

lowed by the DFS answer annotation. This helps 365

us control many factors and leaves the data gener- 366

ation framework as an independent factor for fair 367

comparison in the experiment. 368

Metrics. We incorporated four metrics to mea- 369

sure the data generation efficiency of a given frame- 370

work. Two metrics are used to evaluate the data 371

generation quality: 1) Pass rate and 2) the num- 372

ber of ground-truth tool uses. The pass rate deter- 373

mines whether the triplet (q,W, r) can be success- 374

fully generated. The number ground-truth tool uses 375

n = ||Wn||. The remaining two metrics show the 376

cost of data generation: 1) # of LLM calls and 2) 377

of tool calls. 378

Results. We evaluate the data generation effi- 379

ciency of the ToolGrad framework by considering 380

both 1) the generation quality (i.e., generation pass 381

rate and the trace of generated tool-use chains) and 382

2) the generation cost (i.e., the number of LLM 383

steps and tool calls). Table 2 summarizes the re- 384

5

Table 2: Generation efficiency comparison between
DFS (Qin et al., 2023) and ToolGrad. *: We only count
the trace of passed annotations. The overall discounted
value will be 3.3× 63.8% = 2.1.

DFS ToolGrad

Pass rate (%) ↑ 63.8 100.0
of gt tool uses ↑ 3.3* 6.1
LLM cost ↓ 64.5 45.9
Tool cost ↓ 34.3 <30.0

sults compared to the baseline method introduced385

in ToolBench (Qin et al., 2023). ToolGrad achieves386

a perfect 100.0% pass rate – a significant improve-387

ment from 63.8% for DFS, while producing more388

complex chains (an average of 6.1 ground-truth tool389

uses vs. 3.3 for DFS). More importantly, ToolGrad390

cuts down on the generation cost: LLM invocations391

drop from 64.5 to 45.9, and tool-use steps fall from392

34.3 to below 30.0. Note that we did not explic-393

itly track the number of tool-use steps, but we can394

prove its maximal number is 30, since ToolGrad395

has 3 tool-use LLM modules per iteration and uses396

10 iterations in total. The results demonstrate the397

high efficiency of ToolGrad for data generation:398

it generates more complex tool-use chains with399

higher pass rate and lower cost.400

5.2 ToolGrad-5K Improves LLM Tool Usage401

We then aim to understand the effectiveness of402

ToolGrad-5K to teach LLMs’ tool-use capability.403

Model Training. We used 90% of ToolGrad-5K404

for training and the rest for testing. We trained the405

models with three epochs, using three Gemma-3406

models (Team, 2025) (1B, 4B, and 12B). We use407

SFTTrainer on HuggingFace, and more detailed408

training configurations will be released with our409

code. We name the fine-tuned models ToolGrad-410

1B, ToolGrad-4B, and ToolGrad-12B, respectively.411

Appendix C shows the GPU budgets required to412

train the models in this paper.413

Baselines. We compare our models with SoTA414

general-purpose models. We chose three pro-415

prietary LLMs (gpt-4.1, gemini-2.5-flash1, and416

claude-3.7-sonnet) and two open-sourced models417

(deepseek-v3 and Llama-4-Maverick) as our base-418

line models. We disabled reasoning for those mod-419

els but additionally studied the effect of reasoning420

by benchmarking two reasoning models that sup-421

port tool use. We chose to compare o4-mini and422

1“gemini-2.5-pro” does not support disabled thinking.

70

80

90

100

ge
m

in
i-2

.5
-fl

as
h

82.4
78.4

87.8

77.2 74.8

86.9***

Base
Reason

Recall Success QoR70

80

90

100

gp
t-4

.1
-m

in
i/o

4-
m

in
i

84.8
82.1

89.7

83.0
78.8

88.1
*

*
Base
Reason

Figure 3: Comparison of base and reasoning Gemini /
GPT models on ToolGrad-5K. The error bar represents
the standard error. ∗ and ∗ ∗ ∗ denote as p < .05,
p < .001 in the paired t-test, respectively.

gemini-2.5-flash with their “corresponding” base 423

model2 (gpt-4.1-mini, and gemini-2.5-flash). 424

Metrics. We consider two metrics in these ex- 425

periments: 1) tool recall, 2) success rate, and 3) 426

quality of response (QoR), all scaled from 0 to 427

100. The tool recall evaluates whether the agent 428

can retrieve the correct tool given a user query. 429

The success rate further examined how many of 430

them are called successfully. Formally, the suc- 431

cess rate is defined as the number of recalled APIs 432

that receive a successful response divided by the 433

total number of ground-truth APIs. Therfore, the 434

success rate is always lower than or equal to the 435

tool recall by definition. The QoR further implic- 436

itly evaluates whether the successful call provides 437

valuable contexts for an LLM to formulate a sense- 438

making response. The score is rated by an LLM 439

judge (“gpt-4.1”), which is prompted with 1) a user 440

query, 2) a tool-use trace, and 3) a textual response 441

to the user query. We use a unified response writer 442

(“gpt-4.1-mini”) in this study to eliminate the bias 443

introduced by the different LLMs’ “writing” skills. 444

Results. Table 3 shows that our models, even 445

the 1B model, outperform all baseline models in 446

all metrics. The tool recall of our models reaches 447

∼99%, demonstrating that the fine-tuned models 448

can always retrieve the correct tool(s) to call while 449

the baseline LLMs can only retrieve 80∼85%. Fur- 450

thermore, our models can receive a successful re- 451

sponse from > 95% of ground-truth APIs, while 452

all baselines can only achieve ∼80%. Our models 453

2Since these are proprietary models, we are not able to
officially pair the reasoning model with its base model. We
chose this mapping based on the names and release dates.

6

Table 3: LLM Benchmark on ToolGrad-5K. The best score is highlighted in each metric across all models.

ToolGrad
gpt-4.1

gemini-2.5
flash

claude-3.7
sonnet

deepseek
v3

llama-4
maverick1B 4B 12B

Tool recall 98.8 99.3 99.6 84.1 82.4 84.9 83.9 83.4
Success rate 95.5 96.4 96.8 78.6 78.4 79.6 79.4 80.6
QoR 93.7 95.3 95.8 87.2 87.8 88.3 87.8 87.9

Table 4: OOD Experiment setups. Our models (stan-
dard) are evaluated OOD, and baselines (ReAct & DFS)
are evaluated in distribution.

Base model Llama-3.1/3.2 (1B, 3B, 8B)

Train set ToolGrad ToolBench
Size 5k 197k
Eval set ToolBench ToolBench
Framework Standard ReAct DFS

also show dominant performance on QoR. This re-454

sult demonstrates that ToolGrad-5K can effectively455

teach LLMs’ tool-use capability – a small LLM456

learned on the dataset can significantly outperform457

large LLMs.458

Figure 3 shows the performance comparison459

between a base model and its reasoning model.460

Surprisingly, the base model consistently outper-461

forms its reasoning model (e.g., tool recall: +5.2%,462

success rate: +3.6%, QoR: +0.9% for “gemini-463

2.5-flash”). A paired t-test of the data shows a464

significant difference between the base and rea-465

soning model’s performance in two metrics of the466

Gemini model and all metrics for the GPT model.467

We further investigated related benchmarks and468

found similar surprising results in BFCL (Yan469

et al., 2024), where 1) “gpt-4o” outperforms “o1”470

(score: +2.63), and 2) “gemini-2.0-flash” outper-471

forms “gemini-2.0-flash-thinking” (score: +1.31)472

when using prompt engineering. While it is out473

of scope to investigate the tool-use capability of474

reasoning models further, we hope our findings and475

dataset can inspire future exploration of this issue.476

5.3 OOD Evaluation on ToolBench477

We further evaluate the models trained on478

ToolGrad-5K using an out-of-distribution (OOD)479

benchmark, ToolBench (Qin et al., 2023). We will480

show that our models achieve better performance,481

as well as lower inference cost, compared to those482

trained on ToolBench (i.e., the in-distribution eval-483

uation of the baseline models).484

Setups. Table 4 shows our configuration for 485

model training and inference in experiments. We 486

use Llama-3 series models (Grattafiori et al., 2024) 487

(i.e., llama-3.2-1B, llama-3.2-3B and llama-3.1- 488

8B) as base models because the ToolBench source 489

code is more compatible with Llama compared to 490

Gemma. For each base LLM, we have two train- 491

ing setups: 1) fine-tuned on ToolGrad-5K, which 492

learns to use tools with standard LLM prompts and 493

inference framework. 2) fine-tuned on ToolBench, 494

which learns to use tools with ReAct/DFS frame- 495

works. All models are evaluated on ToolBench-I3, 496

the most universal and challenging test set in Tool- 497

Bench. This implies that we perform OOD evalu- 498

ation on our model while our baseline models are 499

evaluated in distribution. We test the ToolGrad 500

models with the standard framework, the Tool- 501

Bench models with both ReAct and DFS, respec- 502

tively. As a result, for each base LLM condition, 503

we report three performance values (i.e., “standard” 504

from ToolGrad, “ReAct”, and “DFS” from Tool- 505

Bench). 506

It is important to note the inference framework is 507

another moving factor in addition to the fine-tuning 508

datasets. This is mainly because the two datasets 509

we compare are deeply coupled with the inference 510

frameworks. This difference gives our baseline 511

methods advantages, as intuitively illustrated in 512

Figure 4. We conduct additional experiments to ver- 513

ify that the more complicated and costly inference 514

framework ReAct / DFS is an advantage for perfor- 515

mance: GPT models (gpt-4.1-nano, gpt-4.1-mini, 516

gpt-4.1) in three different inference frameworks 517

achieve DFS > ReAct > Standard in performance. 518

Metrics. We report metrics in two dimensions 519

that cover performance and costs. Performance- 520

wise, we use QoR, as both tool recall and success 521

rate are infeasible to compute here because Tool- 522

Bench does not contain ground-truth tool labels. As 523

shown in Table 3, the model ranking follows similar 524

orders in both QoR and “success rate”. This result 525

shows that our prompt design for the LLM judges 526

7

Table 5: Performance & Cost Results on ToolBench. “# LLMs” and “# Tools” are denoted as the number of LLM
steps and tool-calling requests, respectively. In each column, we highlight bold the best value with underline
the second best value. We also highlighted scores evaluated on the OOD dataset .

Evaluation Score↑ Inference Cost↓
Llama
3.2-1B

Llama
3.2-3B

Llama
3.1-8B

gpt-4.1
nano

gpt-4.1
mini

gpt-4.1 # LLMs # Tools

Standard (Ours) 23.95 23.00 26.34 26.14 25.69 26.36 1.00 2.69
ReAct 17.92 19.81 21.30 30.76 33.74 34.42 6.60 3.71
DFS 22.04 21.97 23.94 31.33 37.10 38.56 30.78 19.01

can provide sensing-making evaluation scores in527

the evaluation. Regarding the cost, we report the528

number of LLM steps and tool-use requests during529

the model inference.530

Results. Table 5 shows the results on perfor-531

mance and cost. Firstly, the inference cost shows532

that DFS is the most expensive framework, fol-533

lowed by ReAct, and our framework is the cheapest534

to run. This result is coherent with the performance535

results of GPT models, where the most expensive536

framework achieves the best performance. This ver-537

ifies that our experiment design favors our baseline538

conditions (the ToolBench ReAct and DFS mod-539

els). On the other hand, the results of the fine-tuned540

Llama-3 are “counter-intuitive”. Despite the frame-541

work disadvantage, the standard model trained on542

ToolGrad-5K consistently outperforms the ReAct543

and DFS condition model. Additionally, compar-544

ing all scores in the “standard” row, we find that a545

fine-tuned 8B model can achieve comparable per-546

formance, on an OOD benchmark, with the gpt-4.1547

model, and better than gpt-4.1-mini and gpt-4.1-548

nano. The results reinforce that ToolGrad-5K can549

better teach the LLM tool usage even on OOD550

benchmark.551

5.4 Discussion552

Contaminated Data with Unsolvable Queries.553

The performance of gpt-4.1 shows a large drop554

from our benchmark (Table 3) to ToolBench (Ta-555

ble 5). Its main reason is that many queries gener-556

ated by ToolBench are not solvable. As shown in557

Figure 1, ToolBench proposes a user query from558

an API set, and the proposed query cannot guar-559

antee its feasibility. The Toolbench training set in-560

cludes every sample, regardless of whether a DFS561

succeeds or fails. This results in a contaminated562

training set where a trained LLM needs to imitate563

low-value experience replays. In comparison, the564

query generated from our framework, ToolGrad, is565

grounded on a verified answer, and can guarantee 566

the resolvability. 567

Data Filtering vs. Inverse Prediction. One 568

common approach to eliminate such contamination 569

is to filter out failure samples (Du et al., 2024). This 570

approach is also suboptimal – It limits an agent’s 571

learning space to problems that a teacher agent 572

can solve. As a result, a student cannot outper- 573

form a teacher model (e.g., ToolLlama fails to beat 574

GPT-4 (Qin et al., 2023)). In contrast, ToolGrad 575

shows potential in bootstrapping an agent intelli- 576

gence with our unique design of answer-first data 577

generation. For example, Table 3 shows that “gpt- 578

4.1” can only call 78.6% of the APIs successfully 579

on the queries in ToolGrad-5K, generated by “gpt- 580

4.1-mini”. We further showed that even 1B model 581

trained on “gpt-4.1-mini”-generated data can out- 582

perform “gpt-4.1”. 583

Reasoning Agent Framework. While Table 5 584

shows that our models outperform ToolLlama with 585

the reasoning agent framework, the GPT-series 586

models still show superior performance on ReAct / 587

DFS frameworks, which also aligns with the recent 588

study (Lu et al., 2025). This indicates our dataset 589

quality outweighs the framework’s disadvantage. 590

Meanwhile, we encourage future work to extend 591

ToolGrad to formulate a training set for teaching 592

reasoning agents tool usage. 593

6 Conclusion 594

This work introduces ToolGrad, an agentic frame- 595

work for efficient tool-use dataset generation. Our 596

core concept is to first generate tool-use answers 597

with textual “gradients”, followed by query genera- 598

tion. We further contribute ToolGrad-5K, a dataset 599

containing complex tool usage, but was generated 600

with a lower cost and 100% pass rate. Experiments 601

show that models trained on ToolGrad-5K outper- 602

form those on expensive baseline datasets and pro- 603

prietary LLMs, even on the OOD benchmark. 604

8

Limitations605

Our models are limited in inferencing with the606

ReAct/DFS framework because our fine-tuning607

dataset does not contain reasoning examples. Ad-608

ditionally, this work focuses on demonstrating the609

usage of our dataset with supervised fine-tuning.610

Recent exploration highlights the benefit of teach-611

ing LLM tool usage with reinforcement learning612

(RL) (Qian et al., 2025). The value of our generated613

datasets for RL is underexplored.614

References615

Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha,616
Tanmoy Chakraborty, Giovanni Luca Ciampaglia,617
David Corney, Renee DiResta, Emilio Ferrara, Scott618
Hale, Alon Halevy, and 1 others. 2024. Factuality619
challenges in the era of large language models and620
opportunities for fact-checking. Nature Machine In-621
telligence, 6(8):852–863.622

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng,623
Lei Wang, Rui Li, Xu Chen, and Ji-Rong Wen. 2024.624
Reflective multi-agent collaboration based on large625
language models. Advances in Neural Information626
Processing Systems, 37:138595–138631.627

Minghui Chen, Ruinan Jin, Wenlong Deng, Yuanyuan628
Chen, Zhi Huang, Han Yu, and Xiaoxiao Li. 2025.629
Can textual gradient work in federated learning?630
arXiv preprint arXiv:2502.19980.631

Debrup Das, Debopriyo Banerjee, Somak Aditya,632
and Ashish Kulkarni. 2024. Mathsensei: A tool-633
augmented large language model for mathematical634
reasoning. Preprint, arXiv:2402.17231.635

Fernanda De La Torre, Cathy Mengying Fang,636
Han Huang, Andrzej Banburski-Fahey, Judith637
Amores Fernandez, and Jaron Lanier. 2024. LLMR:638
Real-Time Prompting of Interactive Worlds Using639
Large Language Models. In Proceedings of the 2024640
CHI Conference on Human Factors in Computing641
Systems, CHI ’24, New York, NY, USA. Association642
for Computing Machinery.643

Yuhao Du, Shunian Chen, Wenbo Zan, Peizhao Li,644
Mingxuan Wang, Dingjie Song, Bo Li, Yan Hu, and645
Benyou Wang. 2024. BlenderLLM: Training Large646
Language Models for Computer-Aided Design With647
Self-Improvement. Preprint, arXiv:2412.14203.648

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,649
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-650
ham Neubig. 2023. Pal: Program-aided language651
models. In International Conference on Machine652
Learning, pages 10764–10799. PMLR.653

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,654
Abhinav Pandey, Abhishek Kadian, Ahmad Al-655
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,656

Alex Vaughan, and 1 others. 2024. The llama 3 herd 657
of models. arXiv preprint arXiv:2407.21783. 658

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi- 659
sual Programming: Compositional Visual Reasoning 660
Without Training. In Proceedings of the IEEE/CVF 661
Conference on Computer Vision and Pattern Recog- 662
nition (CVPR), pages 14953–14962. 663

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, 664
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili 665
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 666
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 667
and Jürgen Schmidhuber. 2024. Metagpt: Meta pro- 668
gramming for a multi-agent collaborative framework. 669
Preprint, arXiv:2308.00352. 670

Dong Huang, Jie M Zhang, Michael Luck, Qingwen 671
Bu, Yuhao Qing, and Heming Cui. 2023. Agent- 672
coder: Multi-agent-based code generation with it- 673
erative testing and optimisation. arXiv preprint 674
arXiv:2312.13010. 675

Ian Huang, Guandao Yang, and Leonidas Guibas. 676
2024a. BlenderAlchemy: Editing 3D Graphics 677
With Vision-Language Models. ArXiv Preprint 678
ArXiv:2404.17672. 679

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 680
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 681
Neil Zhenqiang Gong, and Lichao Sun. 2024b. Meta- 682
Tool Benchmark for Large Language Models: De- 683
ciding Whether to Use Tools and Which to Use. In 684
The Twelfth International Conference on Learning 685
Representations. 686

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 687
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 688
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 689
täschel, Sebastian Riedel, and Douwe Kiela. 2020. 690
Retrieval-Augmented Generation for Knowledge- 691
Intensive NLP Tasks. In Advances in Neural Infor- 692
mation Processing Systems, volume 33, pages 9459– 693
9474. Curran Associates, Inc. 694

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph 695
Boen, and James Zou. 2025. Octotools: An agentic 696
framework with extensible tools for complex reason- 697
ing. Preprint, arXiv:2502.11271. 698

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 699
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 700
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 701
and 1 others. 2023. Self-refine: Iterative refinement 702
with self-feedback. Advances in Neural Information 703
Processing Systems, 36:46534–46594. 704

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 705
Long Ouyang, Christina Kim, Christopher Hesse, 706
Shantanu Jain, Vineet Kosaraju, William Saunders, 707
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen 708
Krueger, Kevin Button, Matthew Knight, Benjamin 709
Chess, and John Schulman. 2022. Webgpt: Browser- 710
assisted question-answering with human feedback. 711
Preprint, arXiv:2112.09332. 712

9

https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://doi.org/10.1145/3613904.3642579
https://doi.org/10.1145/3613904.3642579
https://doi.org/10.1145/3613904.3642579
https://doi.org/10.1145/3613904.3642579
https://doi.org/10.1145/3613904.3642579
https://arxiv.org/abs/2412.14203
https://arxiv.org/abs/2412.14203
https://arxiv.org/abs/2412.14203
https://arxiv.org/abs/2412.14203
https://arxiv.org/abs/2412.14203
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://doi.org/10.1016/b978-155860870-2/50039-5
https://doi.org/10.1016/b978-155860870-2/50039-5
https://doi.org/10.1016/b978-155860870-2/50039-5
https://doi.org/10.1016/b978-155860870-2/50039-5
https://doi.org/10.1016/b978-155860870-2/50039-5
https://doi.org/10.18653/v1/2022.naacl-main.162
https://doi.org/10.18653/v1/2022.naacl-main.162
https://doi.org/10.18653/v1/2022.naacl-main.162
https://arxiv.org/abs/2502.11271
https://arxiv.org/abs/2502.11271
https://arxiv.org/abs/2502.11271
https://arxiv.org/abs/2502.11271
https://arxiv.org/abs/2502.11271
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-713
ith Ringel Morris, Percy Liang, and Michael S Bern-714
stein. 2023. Generative agents: Interactive simulacra715
of human behavior. In Proceedings of the 36th an-716
nual acm symposium on user interface software and717
technology, pages 1–22.718

Shishir G. Patil, Tianjun Zhang, Xin Wang, and719
Joseph E. Gonzalez. 2023. Gorilla: Large Language720
Model Connected With Massive APIs. Preprint,721
arXiv:2305.15334.722

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,723
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou724
Yu, Weizhu Chen, and 1 others. 2023. Check your725
facts and try again: Improving large language models726
with external knowledge and automated feedback.727
arXiv preprint arXiv:2302.12813.728

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-729
guang Zhu, and Michael Zeng. 2023. Automatic730
Prompt Optimization With “Gradient Descent” and731
Beam Search. Preprint, arXiv:2305.03495.732

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang,733
Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, and734
Heng Ji. 2025. Toolrl: Reward is all tool learning735
needs. Preprint, arXiv:2504.13958.736

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan737
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,738
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,739
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,740
Zhiyuan Liu, and Maosong Sun. 2023. ToolLLM: Fa-741
cilitating Large Language Models to Master 16000+742
Real-World APIs. Preprint, arXiv:2307.16789.743

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta744
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-745
moyer, Nicola Cancedda, and Thomas Scialom. 2023.746
Toolformer: Language Models Can Teach Them-747
selves to Use Tools. In Advances in Neural Infor-748
mation Processing Systems, volume 36, pages 68539–749
68551. Curran Associates, Inc.750

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,751
Weiming Lu, and Yueting Zhuang. 2023. Hugging-752
gpt: Solving ai tasks with chatgpt and its friends753
in hugging face. Advances in Neural Information754
Processing Systems, 36:38154–38180.755

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,756
and Jason Weston. 2021. Retrieval Augmentation757
Reduces Hallucination in Conversation. Preprint,758
arXiv:2104.07567.759

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.760
ViperGPT: Visual Inference via Python Execution for761
Reasoning. In Proceedings of the IEEE/CVF Interna-762
tional Conference on Computer Vision (ICCV), pages763
11888–11898.764

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,765
Qiao Liang, Boxi Cao, and Le Sun. 2023. Toolalpaca:766
Generalized tool learning for language models with767
3000 simulated cases. Preprint, arXiv:2306.05301.768

Gemma Team. 2025. Gemma 3 Technical Report. 769
Preprint, arXiv:2503.19786. 770

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xi- 771
aojian Ma, and Yitao Liang. 2023. Describe, explain, 772
plan and select: Interactive planning with large lan- 773
guage models enables open-world multi-task agents. 774
arXiv preprint arXiv:2302.01560. 775

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 776
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and 777
Denny Zhou. 2022. Chain-of-Thought Prompting 778
Elicits Reasoning in Large Language Models. In 779
Advances in Neural Information Processing Systems, 780
volume 35, pages 24824–24837. Curran Associates, 781
Inc. 782

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. 783
2024. ToolPlanner: A Tool Augmented LLM for 784
Multi Granularity Instructions With Path Planning 785
and Feedback. Preprint, arXiv:2409.14826. 786

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, 787
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and 788
Joseph E. Gonzalez. 2024. Berkeley Function 789
Calling Leaderboard. https://gorilla.cs. 790
berkeley.edu/blogs/8_berkeley_function_ 791
calling_leaderboard.html. 792

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, 793
Xiu Li, and Ying Shan. 2023. GPT4Tools: Teach- 794
ing Large Language Model to Use Tools via Self- 795
Instruction. In Advances in Neural Information Pro- 796
cessing Systems, volume 36, pages 71995–72007. 797
Curran Associates, Inc. 798

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik 799
Narasimhan. 2024. τ -bench: A benchmark for 800
tool-agent-user interaction in real-world domains. 801
Preprint, arXiv:2406.12045. 802

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 803
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023. 804
ReAct: Synergizing Reasoning and Acting in Lan- 805
guage Models. In The Eleventh International Confer- 806
ence on Learning Representations. 807

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, 808
Sheng Liu, Zhi Huang, Carlos Guestrin, and James 809
Zou. 2024. TextGrad: Automatic “Differentiation” 810
via Text. Preprint, arXiv:2406.07496. 811

Zhongyi Zhou, Jing Jin, Vrushank Phadnis, Xiuxiu 812
Yuan, Jun Jiang, Xun Qian, Jingtao Zhou, Yiyi 813
Huang, Zheng Xu, Yinda Zhang, Kristen Wright, 814
Jason Mayes, Mark Sherwood, Johnny Lee, Alex Ol- 815
wal, David Kim, Ram Iyengar, Na Li, and Ruofei Du. 816
2024. InstructPipe: Building Visual Programming 817
Pipelines With Human Instructions Using LLMs. 818
Preprint, arXiv:2312.09672. 819

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and 820
Chao Zhang. 2023. ToolQA: A Dataset for LLM 821
Question Answering With External Tools. In Ad- 822
vances in Neural Information Processing Systems, 823
volume 36, pages 50117–50143. Curran Associates, 824
Inc. 825

10

https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://doi.org/10.18653/v1/2024.acl-long.150
https://doi.org/10.18653/v1/2024.acl-long.150
https://doi.org/10.18653/v1/2024.acl-long.150
https://doi.org/10.48550/arXiv.2104.07567
https://doi.org/10.48550/arXiv.2104.07567
https://doi.org/10.48550/arXiv.2104.07567
https://doi.org/10.1109/ICCV51070.2023.01092
https://doi.org/10.1109/ICCV51070.2023.01092
https://doi.org/10.1109/ICCV51070.2023.01092
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2503.19786
https://doi.org/10.18653/v1/2024.emnlp-main.55
https://doi.org/10.18653/v1/2024.emnlp-main.55
https://doi.org/10.18653/v1/2024.emnlp-main.55
https://arxiv.org/abs/2409.14826
https://arxiv.org/abs/2409.14826
https://arxiv.org/abs/2409.14826
https://arxiv.org/abs/2409.14826
https://arxiv.org/abs/2409.14826
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://doi.org/10.18653/v1/2023.findings-emnlp.907
https://doi.org/10.18653/v1/2023.findings-emnlp.907
https://doi.org/10.18653/v1/2023.findings-emnlp.907
https://doi.org/10.18653/v1/2023.findings-emnlp.907
https://doi.org/10.18653/v1/2023.findings-emnlp.907
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://doi.org/10.18653/v1/2024.findings-acl.840
https://doi.org/10.18653/v1/2024.findings-acl.840
https://doi.org/10.18653/v1/2024.findings-acl.840
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2312.09672
https://arxiv.org/abs/2312.09672
https://arxiv.org/abs/2312.09672
https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,826
Francesco Faccio, Dmitrii Khizbullin, and Jürgen827
Schmidhuber. 2024. Gptswarm: Language agents828
as optimizable graphs. In Forty-first International829
Conference on Machine Learning.830

11

LLM tool call msg

LLM thinking msg

tool-use request

DFSReActStandard

Figure 4: A visualized comparison among standard,
ReAct, DFS inference frameworks.

Appendix831

A Three Frameworks: Standard, ReAct832

and DFS833

This work involves three different inference frame-834

works: 1) standard (i.e., the ToolGrad inference835

framework), 2) ReAct, 3) DFS. Figure 4 visualizes836

their differences. In the standard framework that837

ToolGrad models use, an LLM is trained to predict838

multiple tool call requests in one shot, and thus,839

there is one single LLM step in the inference time.840

On the other hand, ToolLlama models (Qin et al.,841

2023) are trained to incorporate the ReAct (Yao842

et al., 2023) (a.k.a, CoT (Wei et al., 2022)) frame-843

work. In the ReAct framework, each LLM step844

returns a single tool call request. The LLM and845

tool use is called alternatively, with an optional846

thinking step inserted in between. The DFS frame-847

work extends the ReAct concept by enabling a tree848

search.849

B License For Artifacts850

This work has used ToolBench for data generation851

and benchmark. ToolBench is licensed under the852

Apache License 2.0, so we argue that our use is853

considered a fair use of the artifact.854

Additionally, we will also open-source our855

source code, dataset, and fine-tuned models. These856

artifacts will be under a BY-CC license.857

C Model Training Budgets858

In this work, we train LLMs using SFTTrainer on859

Hugging Face, configured with “flash_attention_2”860

and gradient checkpointing. We use “adamw_8bit”861

and “bfloat16” for training.862

We have trained three Gemma-3 models (1B,863

4B, 12B) on ToolGrad-5K. Training the 1B and864

4B models take 1.5 and 3.5 GPU hours on A100,865

respectively. The 12B model costs 4.5 GPU hours 866

on H200. 867

We also trained three Llama-3 models (1B, 3B, 868

8B) on both ToolGrad-5K and ToolBench. On 869

ToolGrad-5K, it takes 1 and 2.5 GPU hour(s) using 870

A100 to train 1B and 3B models, respectively. The 871

8B model costs 4 GPU hours on H200. On Tool- 872

Bench, it costs 13 GPU hours and 40 GPU hours 873

on A100 to train 1B and 3B models, respectively. 874

It costs 44 GPU hours to train the 8B models on 875

H200. 876

12

	Introduction
	Related Work
	Tool-use LLMs
	Multi-agent Data Optimization

	Background: Prompt Optimization with Textual ``Gradients''
	ToolGrad
	Tool-use LLMs: Preliminary
	ToolGrad: One Iteration Step
	Sampling Negative APIs
	Generation Configuration

	Experiments
	Efficiency of Generating ToolGrad-5K
	ToolGrad-5K Improves LLM Tool Usage
	OOD Evaluation on ToolBench
	Discussion

	Conclusion
	Three Frameworks: Standard, ReAct and DFS
	License For Artifacts
	Model Training Budgets

