ToolGrad: Efficient Tool-use Dataset Generation with Textual “Gradients”
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Figure 1: Prior art for tool-use dataset generation (top) starts with a user query, followed by an expensive, failure-
prone tool search (e.g., DFS). In contrast, 7To0olGrad (bottom) first generates successful tool-use chains, then
annotates corresponding user queries, achieving superior efficiency and a 100% pass rate.

Abstract

Prior work synthesizes tool-use LLM datasets
by first generating a user query, followed by
complex tool-use annotations like DFS. This
inherently leads to inevitable annotation fail-
ures and low efficiency in data generation. We
introduce ToolGrad, an agentic framework that
inverts this paradigm. ToolGrad first constructs
valid tool-use chains through an iterative pro-
cess guided by textual “gradients”, and then
synthesizes corresponding user queries. This
“answer-first” approach led to ToolGrad-5K, a
dataset generated with more complex tool use,
lower cost, and 100% pass rate. Experiments
show that models trained on To0lGrad-5K out-
perform those trained on expensive baseline
datasets and proprietary LLMs, even on OOD
benchmarks.

1 Introduction

Tool uses empower large language models (LLMs)
by interfacing a parametric model with the external
world through API calls. For instance, RAG (Lewis
et al., 2020), an exemplary tool-use system, demon-
strated its impact in reducing LLM hallucination

and increasing Al response quality (Shuster et al.,
2021). Further studies have extended the concept
and use programs and database retrieval to enhance
LLMs’ math reasoning and fact-checking capabili-
ties (Gao et al., 2023; Augenstein et al., 2024).

In practice, teaching LLLM to use tools is non-
trivial — its main challenge lies in the dataset.
While prior work has collected large-scale API
databases (Shen et al., 2023; Yan et al., 2024), we
still lack a scalable method to create a pair of “user
prompt” and “tool-use chain” for training. Since it
is impractical to ask for human annotation at scale,
prior work primarily used an agent to search a tool-
use path with trial and error. Figure 1 (top) shows a
representative annotation approach, which includes
two steps: 1) generate a hypothetical user instruc-
tion from a sampled API pool, and 2) use a DFS
agent to find its tool-use solution. This approach
is inherently inefficient because its core concept is
to distill valuable trajectory from a complex agent
exploration for training an LLM. This implies that
exploration must be expensive by nature. More im-
portantly, the exploration has no guarantee of anno-
tation success, causing a waste of agent resources.



As aresult, such a tool-use dataset generation usu-
ally suffers from 1) a high agent cost and 2) a low
pass rate.

To address this issue, this work explores an al-
ternative solution paradigm, i.e., we first generate
a ground-truth tool-use chain and then annotate its
corresponding user prompt. Intuitively, an explicit
tool-use solution provides more unambiguous infor-
mation than a prompt, making the annotation, from
tool usage to the use query, much easier and requir-
ing only one LLM step. At the same time, this new
problem formulation introduces a new challenge:
how can we effectively generate tool-use chains
directly from a large-scale API database?

In this work, we introduce ToolGrad, an agen-
tic framework to chain APIs iteratively with mini-
batches in a large database. Inspired by a standard
ML optimization loop and TextGrad (Yuksekgonul
et al., 2024), we design ToolGrad to boost textual
“gradients” by chaining the best API in each itera-
tion of the framework (Table 1), This is achieved by
four modules that perform API proposal, execution,
selection, and workflow update, respectively, which
resemble the forward inference and backward prop-
agation processes in ML. Using the framework,
we created ToolGrad-5K, a tool-use dataset that
contains 5k samples of user prompts with their cor-
responding tool calls and Al responses to the user.
Compared to a baseline dataset, ToolBench (Qin
et al., 2023), ToolGrad-5K features more complex
tool-use data and was generated with lower cost
and a 100% pass rate. We further demonstrate that
small LLMs fine-tuned on To0l/Grad-5K can output
SoTA proprietary LLMs. More importantly, our
OQOD evaluation shows that our models perform
comparably or even outperform the same models
fine-tuned in distribution and propriety LLMs.

In summary, this work contributes 1) ToolGrad,
an agentic framework for efficient data generation,
2) ToolGrad-5K, a tool-use dataset, and 3) the cor-
responding fine-tuned models, all of which will be
open-sourced to support future research.

2 Related Work

2.1 Tool-use LLMs

Researchers have studied tool-use LLMs in vari-
ous fields (Patil et al., 2023; Huang et al., 2024b).
In NLP, tool-use LLMs have shown improved per-
formance in QA (Zhuang et al., 2023), fact check-
ing (Nakano et al., 2022; Augenstein et al., 2024;
Peng et al., 2023) and mathematical reasoning (Gao

et al., 2023; Das et al., 2024; Schick et al., 2023).
The impact of tool-use LLMs extends beyond NLP,
with notable applications in VQA (Gupta and Kem-
bhavi, 2023; Suris et al., 2023), human-computer
interaction (De La Torre et al., 2024; Zhou et al.,
2024)), and graphic modeling (Huang et al., 2024a;
Du et al., 2024).

Datasets play a critical role in advancing the
tool-use capability of LLMs. Initial efforts fo-
cused on constructing API databases from various
resources, such as Hugging Face APIs (Shen et al.,
2023) and a community platform (Yan et al., 2024).
Given the API databases, there are two primary ap-
proaches for creating tool-use datasets that connect
user prompts with tool-use actions. The first group
of work relies on human annotations (Zhuang et al.,
2023; Tang et al., 2023), which is often expensive
and difficult to scale up. Therefore, a large por-
tion of work developed synthetic datasets (Yang
et al., 2023; Wu et al., 2024). ToolBench (Qin
et al., 2023), for example, employs LLMs to gen-
erate user queries based on an API database and
then performs DFS to search its tool-use solution.
T-bench (Yao et al., 2024) synthesizes multi-turn
user interactions with a multi-agent simulation.

This work follows the synthetic data approach
and targets the efficiency issue in the data gener-
ation process. As we will show in experiments,
ToolGrad can generate datasets with more complex
tool usage with a lower cost and a 100% pass rate.

2.2 Multi-agent Data Optimization

LLMs demonstrated their ability to solve problems
via simple prompts. This inspired researchers to
create multi-agent collaborative systems for var-
ious applications (Park et al., 2023; Wang et al.,
2023). For example, AgentCoder (Huang et al.,
2023) improves LLM code generation by having
a code generator and a verifier work collabora-
tively. MetaGPT (Hong et al., 2024) further sim-
ulates human collaboration in software develop-
ment by simulating different roles like code writ-
ers and planners. Additionally, research shows
that agents can self-improve by step-by-step self-
criticism (Madaan et al., 2023). Copper (Bo et al.,
2024) further formulates the self-refinement prob-
lem with RL, and trains an agent that performs
better refinement.

Recent studies formulate LL.M agents as opera-
tors in classical algorithms for data optimization in
various downstream applications (Chen et al., 2025;
Zhuge et al., 2024). For example, ProTeGi (Pryzant



et al., 2023) optimizes a prompt via LLM-based
beam search, which iteratively evaluates, criticizes,
and updates an initial prompt design. TextGrad
further defined a unified framework for prompt
optimization with textual “gradients”, and demon-
strated its application in a larger domain (Yuksek-
gonul et al., 2024).

We extend the concept of TextGrad (Yuksek-
gonul et al., 2024) into tool-use LLM dataset gener-
ation. Unlike TextGrad, which optimizes LLMs
with better prompts, we aim to generate better
datasets to teach LLMs tool usage.

3 Background: Prompt Optimization
with Textual “Gradients”

We first review how prior work defines textual “gra-
dients” for prompt engineering in an agentic frame-
work. Note that textual “gradients” are not actual
mathematical gradients for numerically optimizing
objective functions in ML. Recent work (Yuksek-
gonul et al., 2024) generalizes the mathematical
“gradient” concept into textual feedback from an
LLM critic in an agentic framework, which guides
LLMs to update a prompt.

Formally, given an LLM, f(+; ¢), instructed by a
prompt ¢, prompt optimization aims to iteratively
refine an initial prompt ¢ into an optimized ver-
sion ¢, so that ¢ can better instruct LLM for the
given downstream task. This is achieved from an
agentic framework with textual “gradient” descents
that resemble the standard ML optimization. In
specific, given a batch of downstream task data,
{(zi,yi)}, an agentic forward process is defined
as U; = f(x4; ¢¢), where g is the LLM prediction
on a given input x; using prompt ¢; on the ¢y, iter-
ation. The loss signal for the “gradient” descent,
L, is computed by an LLM agent that criticizes
the prediction g;. For example, in article summa-
rization, a critic may comment that a generated
summary does not fully summarize the core con-
cept for some reason. This results in some textual
feedback on the summarization tasks, i.e., the tex-
tual “gradients”. Lastly, another LLM agent edits
the prompt conditioned on the critic’s feedback,
ie., ¢t+1 < LLM (¢t7 ﬁ)

4 ToolGrad

Instead of optimizing prompt engineering, 7ool-
Grad aims to generate a dataset to teach LLMs tool-
use capability. Table 1 summarizes the analogy and
difference of ToolGrad, compared to TextGrad and

ML. In practice, generating a tool-use dataset is
more complicated than prompt refinement. Simul-
taneously updating the model and dataset is an in-
trinsically challenging analogy to bi-level optimiza-
tion, as the dataset is used to fine-tune a model, i.e.,
the internal optimization loop. Therefore, we lever-
age LLM feedback for the iterative dataset con-
struction without training an LLLM on the dataset
in each step. To achieve such LLM feedback, i.e.,
the textual “gradients”, we devise four modules
that resemble forward and backward propagation
in each step.

4.1 Tool-use LLMs: Preliminary

We aim to generate a D = {(q, W, r) } to finetune a
tool-use LLM. ¢ is a user query; W is an API work-
flow consisting of a collection of API-use chains:
W = {C1,Cs,...,C,}; and r is the response to g
conditioned on WW. A chain is defined as a sequence
of API execution steps, C' :== API; — - -- — API,.
An API execution step contains 1) an API id, 2) the
input of this API request, and 3) the response from
this API request.

An inference model trained on our dataset differs
from the ReAct-based tool-use paradigm, i.e., the
default function calling method defined in the Ope-
nAl SDK. With this dataset, the model is trained to
predict all the tool uses in one shot, while ReAct
agents predict one tool use in each LLM step. See
more discussion in Appendix A.

4.2 ToolGrad: One Iteration Step

Figure 2 visualizes the pipeline of ToolGrad in
each iteration, which contains four core steps: 1)
propose top-k APIs to augment the existing API
workflows given a mini-batch of APIs, 2) execute
the selected APIs, generating API reports, 3) select
the best API to augment the current workflow, and
4) update a workflow with the selected APL

API Proposer. The API proposer, LLM,,, takes
an API mini-batch as input ( {API}** with size bs)
and output a list of selected APIs with its corre-
sponding instruction on how to use the API for
augmenting the current workflow W;:

{(APT;, inst) }'<m = LLM,, ({API}bS; wt) 1)

Parameter m is pre-specified to control the maxi-
mal number of API proposals in each step. Note
that we prompt LLM,, with simple API configura-
tion, and LLM,, cannot respond with a tool-calling
request. This design distills the most valuable APIs



Table 1: An analogy of ToolGrad to conventional machine learning and TextGrad (Yuksekgonul et al., 2024). D is a
tool-use LLM dataset, composed of many triplets of (query, API workflow, response), i.e., (g, W, ).

Updated workflow

ML TextGrad ToolGrad
Model fo(x) f(x;¢): prompted by ¢  f(x;D): fine-tuned on D
Parameter 0: weights ¢: prompt D = {¢q, W, r}: dataset
Batches  {(z,y)}: (query, reply) {(z,v)}: (query, reply) {API}: a small API set
“Gradients” VoL ( fo(x), y) LLM (“criticize it”) LLM (“select the best API”)
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Figure 2: ToolGrad Framework. Each iteration starts with (g, W;, r;) and a mini-batch of APIs. An API Proposer
first predicts up to m APIs, and then m API Executors perform tool calls and return execution reports. An API
Selector finds the most valuable API to chain W; — W, . Lastly, an LLM updater is used to predict q;41, 7¢+1-

for use in subsequent requests, thereby improving
overall system efficiency. Our intuition is that 1)
most of the APIs in a randomly sampled batch are
irrelevant to the current workflow, and 2) providing
simple API configurations is sufficient for an LLM
to decide which APIs are worth further in-depth
execution. Therefore, m must be much smaller
than bs to achieve such efficiency in practice.

API Executor. The API proposals are then sent
to m API executors, {LLMZ,}™. LLM” is denoted
as a tool-calling LLM agent that can return tool-
calling requests, as opposed to LLM, which returns
standard responses to the user. LLMZ takes an API

X
proposal (API;, inst;) as input and return a report,

rep; = LLML, (API;, inst;). )

The report contains the following information: 1)
a full record of the API request history and 2) a
boolean variable showing whether the execution is
successful. This is the most expensive step in the
ToolGrad framework because each selected API is
paired with an LLM agent for parallel execution.
This verifies the necessity of our API proposer step,
which performs filtering, in one LLM step, to avoid

redundant API calls.

API Selector. Given a set of execution re-
ports {rep;}, we design an API selector, LLM;,
to choose the best API that can augment the current
workflow W;.

j =argmaxV ({rep,}"", W)
i 3)
~ LLMge; ({rep,; }™, W),

where V (-, -) is a hypothetical value function.
In practice, instead of defining V' and perform
argmax V (-, -), we use an LLM as its proxy. In-
tuitively, arg max V'(-, -) is a process that chooses
the most valuable API from the reports, and we
hypothesize that an LLM can achieve this task con-
ditioned on the API execution reports, {rep;}"™,
and the current workflow, W;. In addition, we
instruct LLM,.; to specify which chain C € W,
the selected API (API;) augments — or to create a
new chain if necessary. Therefore, the following
equation shows the API selector step at ToolGrad:

g,k = LLMge; ({rep, }", Wh) ,

h 7 is the selected API id for API;, “4)
WHETE 3 % is the chain id for Chk.



The API selection is the core step that performs
the “gradient” computation in our optimization
loop (Table 1). As opposed to the LLM critic step
that uses textual feedback as “gradient”, our API
selector chooses a discrete API to augment W; as
“gradients” of data generation in ToolGrad.

Workflow Updater. j and k from the API execu-
tor provide clear information on 1) which API from
the mini-batch the workflow updater should use and
2) where (at which chain) the updater should ap-
pend the API to. Therefore, the workflow updating
process can be clearly defined as follow without
using LLMs.

Wt+1 < Wtadd(APIj, Ck) (5)

On the other hand, once W is updated to W;1,
we should also update (g, ) to maintain the co-
herence of the sample triple (¢, W, r). Therefore,
in the workflow updating step, we perform the fol-
lowing LLM step:

qt+1,Tt+1 = LLMupdater(Wt+1) (6)

Intuitively, this step resembles summarization
tasks that convert detailed texts (i.e., a tool-use
workflow) to ambiguous messages (i.e., a user
query and its response). This inverse prediction
process is much more straightforward than the
standard forward pass that explores answers with
a given user query: W,r = LLMpgs(q), where
LLMprs is an agent using DFS (Qin et al., 2023).

4.3 Sampling Negative APIs

Given the (g, W, r) with the ground-truth tool uses,
we post-process it by sampling negative tools. The
objective is to simulate a real-world use scenario
where an agent can access more APIs than neces-
sary. Prompting the LLM with every API configu-
ration is impractical given our API database’s size
(8k). Therefore, we aim to simulate a benchmark
for an RAG-like agent, in which the agent first sam-
ples top-p APIs based on the text-embedding sim-
ilarity and then prompts an LLM with the p APIs
only. Formally, given a ground truth set {)V}" of n
positive APIs, we sample the top-(p—n) APIs most
similar to these positives as our negative samples.

4.4 Generation Configuration

In this work, we choose the number of API propos-
als as m = 3, and the API batch size bs = 50. Each
generation loop takes 10 iteration steps, which we
observed is sufficient to generate complex API-use

workflows. We chose p = 20 when sampling neg-
ative APIs and gpr-4.1-mini as our LLM for data
generation.

S Experiments

We conducted three experiments to demonstrate
the efficiency of the ToolGrad framework in vari-
ous aspects. This includes 1) the high-quality but
low-cost dataset generation, 2) high performance
of models trained on ToolGrad-5K, both in distri-
bution and OOD.

5.1 Efficiency of Generating ToolGrad-5K

Using ToolGrad, we collected ToolGrad-5K, a
dataset containing 5K triplets of (¢, W, r). This
experiment presents details of our generation and
demonstrates the efficiency of our generation.

API Library. We used the API library provided
by ToolBench (Qin et al., 2023), which contains
approximately 16K APIs. We found some API
names and their corresponding configuration are
not well annotated (e.g., APIs named as “test_v5”,
“test_for_test”, etc.), which negatively affects our
generation. Therefore, we used gpt-4o-mini to filter
these APIs with low-quality annotations. 8,691
APIs remain in the API library for ToolGrad.

Baselines. We chose (Qin et al., 2023)’s DFS-
based data generation approach as our baseline.
ToolGrad-5K shares the same API databases with
ToolBench but differs in the data generation frame-
work. They chose the query-first generation, fol-
lowed by the DFS answer annotation. This helps
us control many factors and leaves the data gener-
ation framework as an independent factor for fair
comparison in the experiment.

Metrics. We incorporated four metrics to mea-
sure the data generation efficiency of a given frame-
work. Two metrics are used to evaluate the data
generation quality: 1) Pass rate and 2) the num-
ber of ground-truth tool uses. The pass rate deter-
mines whether the triplet (¢, WV, ) can be success-
fully generated. The number ground-truth tool uses
n = |[W"||. The remaining two metrics show the
cost of data generation: 1) # of LLM calls and 2)
# of tool calls.

Results. We evaluate the data generation effi-
ciency of the ToolGrad framework by considering
both 1) the generation quality (i.e., generation pass
rate and the trace of generated tool-use chains) and
2) the generation cost (i.e., the number of LLM
steps and tool calls). Table 2 summarizes the re-



Table 2: Generation efficiency comparison between
DFS (Qin et al., 2023) and ToolGrad. *: We only count
the trace of passed annotations. The overall discounted
value will be 3.3 x 63.8% = 2.1.

DFS ToolGrad
Pass rate (%) 1 63.8 100.0
# of gt tool uses T 3.3* 6.1
LLM cost | 64.5 45.9
Tool cost |, 34.3 <30.0

sults compared to the baseline method introduced
in ToolBench (Qin et al., 2023). ToolGrad achieves
a perfect 100.0% pass rate — a significant improve-
ment from 63.8% for DFS, while producing more
complex chains (an average of 6.1 ground-truth tool
uses vs. 3.3 for DFS). More importantly, ToolGrad
cuts down on the generation cost: LLM invocations
drop from 64.5 to 45.9, and tool-use steps fall from
34.3 to below 30.0. Note that we did not explic-
itly track the number of tool-use steps, but we can
prove its maximal number is 30, since ToolGrad
has 3 tool-use LLM modules per iteration and uses
10 iterations in total. The results demonstrate the
high efficiency of ToolGrad for data generation:
it generates more complex tool-use chains with
higher pass rate and lower cost.

5.2 ToolGrad-5K Improves LLM Tool Usage

We then aim to understand the effectiveness of
ToolGrad-5K to teach LLMs’ tool-use capability.

Model Training. We used 90% of ToolGrad-5K
for training and the rest for testing. We trained the
models with three epochs, using three Gemma-3
models (Team, 2025) (1B, 4B, and 12B). We use
SFTTrainer on HuggingFace, and more detailed
training configurations will be released with our
code. We name the fine-tuned models ToolGrad-
1B, ToolGrad-4B, and ToolGrad-12B, respectively.
Appendix C shows the GPU budgets required to
train the models in this paper.

Baselines. We compare our models with SoTA
general-purpose models. We chose three pro-
prietary LLMs (gpt-4.1, gemini-2.5-flash!, and
claude-3.7-sonnet) and two open-sourced models
(deepseek-v3 and Llama-4-Maverick) as our base-
line models. We disabled reasoning for those mod-
els but additionally studied the effect of reasoning
by benchmarking two reasoning models that sup-
port tool use. We chose to compare o4-mini and

“gemini-2.5-pro” does not support disabled thinking.
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Figure 3: Comparison of base and reasoning Gemini /
GPT models on ToolGrad-5K. The error bar represents
the standard error. * and * % x denote as p < .05,
p < .001 in the paired t-test, respectively.

gemini-2.5-flash with their “corresponding” base
model? (gpt-4.1-mini, and gemini-2.5-flash).
Metrics. We consider two metrics in these ex-
periments: 1) tool recall, 2) success rate, and 3)
quality of response (QoR), all scaled from O to
100. The tool recall evaluates whether the agent
can retrieve the correct tool given a user query.
The success rate further examined how many of
them are called successfully. Formally, the suc-
cess rate is defined as the number of recalled APIs
that receive a successful response divided by the
total number of ground-truth APIs. Therfore, the
success rate is always lower than or equal to the
tool recall by definition. The QoR further implic-
itly evaluates whether the successful call provides
valuable contexts for an LLM to formulate a sense-
making response. The score is rated by an LLM
judge (“gpt-4.1”), which is prompted with 1) a user
query, 2) a tool-use trace, and 3) a textual response
to the user query. We use a unified response writer
(“gpt-4.1-mini”) in this study to eliminate the bias
introduced by the different LLMs’ “writing” skills.
Results. Table 3 shows that our models, even
the 1B model, outperform all baseline models in
all metrics. The tool recall of our models reaches
~99%, demonstrating that the fine-tuned models
can always retrieve the correct tool(s) to call while
the baseline LLMs can only retrieve 80~85%. Fur-
thermore, our models can receive a successful re-
sponse from > 95% of ground-truth APIs, while
all baselines can only achieve ~80%. Our models

2Since these are proprietary models, we are not able to
officially pair the reasoning model with its base model. We
chose this mapping based on the names and release dates.



Table 3: LLM Benchmark on 7o0lGrad-5K. The best score is highlighted in each metric across all models.

ToolGrad 4.1 gemini-2.5 claude-3.7 deepseek llama-4

IB 4B 12B | 8P flash sonnet v3 maverick
Toolrecall | 98.8 99.3 99.6 | 84.1 82.4 84.9 83.9 83.4
Successrate | 95.5 964 96.8 | 78.6 78.4 79.6 79.4 80.6
QoR 93.7 953 958 | 87.2 87.8 88.3 87.8 87.9

Table 4: OOD Experiment setups. Our models (stan-
dard) are evaluated OOD, and baselines (ReAct & DFS)
are evaluated in distribution.

Base model | Llama-3.1/3.2 (1B, 3B, 8B)
Train set ToolGrad ToolBench
Size 5k 197k
Eval set ToolBench ToolBench
Framework Standard | ReAct DFS

also show dominant performance on QoR. This re-
sult demonstrates that ToolGrad-5K can effectively
teach LLMs’ tool-use capability — a small LLM
learned on the dataset can significantly outperform
large LLMs.

Figure 3 shows the performance comparison
between a base model and its reasoning model.
Surprisingly, the base model consistently outper-
forms its reasoning model (e.g., tool recall: +5.2%,
success rate: +3.6%, QoR: +0.9% for “gemini-
2.5-flash”). A paired t-test of the data shows a
significant difference between the base and rea-
soning model’s performance in two metrics of the
Gemini model and all metrics for the GPT model.
We further investigated related benchmarks and
found similar surprising results in BFCL (Yan
et al., 2024), where 1) “gpt-40” outperforms “o1”
(score: +2.63), and 2) “gemini-2.0-flash” outper-
forms “gemini-2.0-flash-thinking” (score: +1.31)
when using prompt engineering. While it is out
of scope to investigate the tool-use capability of
reasoning models further, we hope our findings and
dataset can inspire future exploration of this issue.

5.3 OOD Evaluation on ToolBench

We further evaluate the models trained on
ToolGrad-5K using an out-of-distribution (OOD)
benchmark, ToolBench (Qin et al., 2023). We will
show that our models achieve better performance,
as well as lower inference cost, compared to those
trained on ToolBench (i.e., the in-distribution eval-
uation of the baseline models).

Setups. Table 4 shows our configuration for
model training and inference in experiments. We
use Llama-3 series models (Grattafiori et al., 2024)
(i.e., llama-3.2-1B, llama-3.2-3B and llama-3.1-
8B) as base models because the ToolBench source
code is more compatible with Llama compared to
Gemma. For each base LLM, we have two train-
ing setups: 1) fine-tuned on Tool/Grad-5K, which
learns to use tools with standard LLM prompts and
inference framework. 2) fine-tuned on ToolBench,
which learns to use tools with ReAct/DFS frame-
works. All models are evaluated on ToolBench-I3,
the most universal and challenging test set in Tool-
Bench. This implies that we perform OOD evalu-
ation on our model while our baseline models are
evaluated in distribution. We test the ToolGrad
models with the standard framework, the Tool-
Bench models with both ReAct and DFS, respec-
tively. As a result, for each base LLM condition,
we report three performance values (i.e., “standard”
from ToolGrad, “ReAct”, and “DFS” from Tool-
Bench).

It is important to note the inference framework is
another moving factor in addition to the fine-tuning
datasets. This is mainly because the two datasets
we compare are deeply coupled with the inference
frameworks. This difference gives our baseline
methods advantages, as intuitively illustrated in
Figure 4. We conduct additional experiments to ver-
ify that the more complicated and costly inference
framework ReAct / DFS is an advantage for perfor-
mance: GPT models (gpt-4.1-nano, gpt-4.1-mini,
gpt-4.1) in three different inference frameworks
achieve DFS > ReAct > Standard in performance.

Metrics. We report metrics in two dimensions
that cover performance and costs. Performance-
wise, we use QoR, as both tool recall and success
rate are infeasible to compute here because Tool-
Bench does not contain ground-truth tool labels. As
shown in Table 3, the model ranking follows similar
orders in both QoR and “success rate”. This result
shows that our prompt design for the LLM judges



Table 5: Performance & Cost Results on ToolBench. “# LLMs” and “# Tools” are denoted as the number of LLM
steps and tool-calling requests, respectively. In each column, we highlight bold the best value with underline
the second best value. We also highlighted scores ' evaluated on the OOD dataset .

Evaluation Score? Inference Cost|
Llama Llama Llama | gpt-4.1 gpt-4.1
32-1B 32-3B 3.1-8B | nano  mini SPUHD | #LLMs #Tools
Standard (Ours) | 23.95 23.00 26.34 | 26.14 2569  26.36 1.00 2.69
ReAct 1792  19.81 21.30 3076  33.74 34.42 6.60 3.71
DFS 22.04 2197 23.94 31.33  37.10 38.56 30.78 19.01

can provide sensing-making evaluation scores in
the evaluation. Regarding the cost, we report the
number of LLM steps and tool-use requests during
the model inference.

Results. Table 5 shows the results on perfor-
mance and cost. Firstly, the inference cost shows
that DFS is the most expensive framework, fol-
lowed by ReAct, and our framework is the cheapest
to run. This result is coherent with the performance
results of GPT models, where the most expensive
framework achieves the best performance. This ver-
ifies that our experiment design favors our baseline
conditions (the ToolBench ReAct and DFS mod-
els). On the other hand, the results of the fine-tuned
Llama-3 are “counter-intuitive”. Despite the frame-
work disadvantage, the standard model trained on
ToolGrad-5K consistently outperforms the ReAct
and DFS condition model. Additionally, compar-
ing all scores in the “standard” row, we find that a
fine-tuned 8B model can achieve comparable per-
formance, on an OOD benchmark, with the gpt-4.1
model, and better than gpt-4.1-mini and gpt-4.1-
nano. The results reinforce that Tool/Grad-5K can
better teach the LLM tool usage even on OOD
benchmark.

5.4 Discussion

Contaminated Data with Unsolvable Queries.
The performance of gpt-4.1 shows a large drop
from our benchmark (Table 3) to ToolBench (Ta-
ble 5). Its main reason is that many queries gener-
ated by ToolBench are not solvable. As shown in
Figure 1, ToolBench proposes a user query from
an API set, and the proposed query cannot guar-
antee its feasibility. The Toolbench training set in-
cludes every sample, regardless of whether a DFS
succeeds or fails. This results in a contaminated
training set where a trained LLM needs to imitate
low-value experience replays. In comparison, the
query generated from our framework, ToolGrad, is

grounded on a verified answer, and can guarantee
the resolvability.

Data Filtering vs. Inverse Prediction. One
common approach to eliminate such contamination
is to filter out failure samples (Du et al., 2024). This
approach is also suboptimal — It limits an agent’s
learning space to problems that a teacher agent
can solve. As a result, a student cannot outper-
form a teacher model (e.g., ToolLlama fails to beat
GPT-4 (Qin et al., 2023)). In contrast, ToolGrad
shows potential in bootstrapping an agent intelli-
gence with our unique design of answer-first data
generation. For example, Table 3 shows that “gpt-
4.1” can only call 78.6% of the APIs successfully
on the queries in ToolGrad-5K, generated by “gpt-
4.1-mini”. We further showed that even 1B model
trained on “gpt-4.1-mini”-generated data can out-
perform “gpt-4.1”.

Reasoning Agent Framework. While Table 5
shows that our models outperform ToolLlama with
the reasoning agent framework, the GPT-series
models still show superior performance on ReAct /
DFS frameworks, which also aligns with the recent
study (Lu et al., 2025). This indicates our dataset
quality outweighs the framework’s disadvantage.
Meanwhile, we encourage future work to extend
ToolGrad to formulate a training set for teaching
reasoning agents tool usage.

6 Conclusion

This work introduces ToolGrad, an agentic frame-
work for efficient tool-use dataset generation. Our
core concept is to first generate tool-use answers
with textual “gradients”, followed by query genera-
tion. We further contribute 7o0lGrad-5K, a dataset
containing complex tool usage, but was generated
with a lower cost and 100% pass rate. Experiments
show that models trained on ToolGrad-5K outper-
form those on expensive baseline datasets and pro-
prietary LLMs, even on the OOD benchmark.



Limitations

Our models are limited in inferencing with the
ReAct/DFS framework because our fine-tuning
dataset does not contain reasoning examples. Ad-
ditionally, this work focuses on demonstrating the
usage of our dataset with supervised fine-tuning.
Recent exploration highlights the benefit of teach-
ing LLM tool usage with reinforcement learning
(RL) (Qian et al., 2025). The value of our generated
datasets for RL is underexplored.
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Figure 4: A visualized comparison among standard,
ReAct, DFS inference frameworks.

Appendix

A Three Frameworks: Standard, ReAct
and DFS

This work involves three different inference frame-
works: 1) standard (i.e., the ToolGrad inference
framework), 2) ReAct, 3) DFS. Figure 4 visualizes
their differences. In the standard framework that
ToolGrad models use, an LLLM is trained to predict
multiple tool call requests in one shot, and thus,
there is one single LLM step in the inference time.
On the other hand, ToollLlama models (Qin et al.,
2023) are trained to incorporate the ReAct (Yao
et al., 2023) (a.k.a, CoT (Wei et al., 2022)) frame-
work. In the ReAct framework, each LLM step
returns a single tool call request. The LLM and
tool use is called alternatively, with an optional
thinking step inserted in between. The DFS frame-
work extends the ReAct concept by enabling a tree
search.

B License For Artifacts

This work has used ToolBench for data generation
and benchmark. ToolBench is licensed under the
Apache License 2.0, so we argue that our use is
considered a fair use of the artifact.

Additionally, we will also open-source our
source code, dataset, and fine-tuned models. These
artifacts will be under a BY-CC license.

C Model Training Budgets

In this work, we train LLMs using SFTTrainer on
Hugging Face, configured with “flash_attention_2"
and gradient checkpointing. We use “adamw_8bit”
and “bfloat16” for training.

We have trained three Gemma-3 models (1B,
4B, 12B) on ToolGrad-5K. Training the 1B and
4B models take 1.5 and 3.5 GPU hours on A100,
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respectively. The 12B model costs 4.5 GPU hours
on H200.

We also trained three Llama-3 models (1B, 3B,
8B) on both ToolGrad-5K and ToolBench. On
ToolGrad-5K, it takes 1 and 2.5 GPU hour(s) using
A100 to train 1B and 3B models, respectively. The
8B model costs 4 GPU hours on H200. On Tool-
Bench, it costs 13 GPU hours and 40 GPU hours
on A100 to train 1B and 3B models, respectively.
It costs 44 GPU hours to train the 8B models on
H200.
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