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Abstract

Text-to-video (T2V) generation has been recently enabled by transformer-based
diffusion models, but current T2V models lack capabilities in adhering to the real-
world common knowledge and physical rules, due to their limited understanding of
physical realism and deficiency in temporal modeling. Existing solutions are either
data-driven or require extra model inputs, but cannot be generalizable to out-of-
distribution domains. In this paper, we present PhyT2V, a new data-independent T2V
technique that expands the current T2V model’s capability of video generation to
out-of-distribution domains, by enabling chain-of-thought and step-back reasoning in
T2V prompting. Our experiments show that PhyT2V improves existing T2V models’
adherence to real-world physical rules by 2.3x, and achieves 35% improvement
compared to T2V prompt enhancers. The source codes are available at: https:
//github.com/pittisl/PhyT2V.

An apple falls on the 
hard ground
(quantity & material)

User Prompt

A pen scribbling 
on paper
(causality)

A muddy wheel 
splashes through 
a deep puddle
(fluid dynamics)

The river water 
is flooding over 
the riverbank
(fluid dynamics)

A rock tumbles 
down on a steep 
hillside
(motion & gravity)

Hot tea pouring 
from a kettle into 
a mug
(state & causality)

CogVideoX-5B only CogVideoX-5B + PhyT2V

Multiple apples, bouncing Single apple, no bouncing

Drawing content disappears Drawing with causality

No water splashing Water splashing

Calm water Flooding river

No tumbling rock Rock tumbling

No tea filling and steam of hot tea Tea is filling the cup with steam

Figure 1: Left: videos generated by the current text-to-video generation model (CogVideoX-5B [46])
cannot adhere to the real-world physical rules (described in brackets following the user prompt). Right:
our method PhyT2V, when applied to the same model, better reflects the real-world physical knowledge.

1 Introduction
Text-to-video (T2V) generation has recently marked a significant breakthrough of generative AI, with
the advent of transformer-based diffusion models such as Sora [3], Pika [13] and CogVideoX [47] that
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An apple falls on 
the hard ground

Initial T2V prompt T2V model Video captioning model

LLM
Step 1 

Step 2 

Step 3 

Semantic Mismatch:
Multiple apple, 
bouncing, … 

Physical rules:
Gravity, conservation of 
energy and momentum

Video Caption:
The video shows pieces 
of an apple falling and 
bouncing on a wooden 
surface.

List of Objects:
Apple, ground

Refined prompt:
An apple, dappled with few 
speckles, breaks free from…

Figure 2: One iteration of video and prompt self-refinement in PhyT2V. Such self-refinement will be
iteratively conducted in multiple rounds until the quality of generated video is satisfactory.

can produce videos conditioned on textual prompts. These models demonstrate astonishing capabilities
of generating complex and photorealistic scenes, and could even make it difficult for humans to
distinguish between real-world and AI-generated videos, in the aspect of individual video frames’
quality [33, 1].

On the other hand, as shown in Figure 1 - Left, current T2V models still have significant drawbacks
in adhering to the real-world common knowledge and physical rules, such as quantity, material,
fluid dynamics, gravity, motion, collision and causality, and such limitations fundamentally prevent
current T2V models from being used for real-world simulation [7, 27, 15]. Enforcement of real-world
knowledge and physical rules in T2V generation, however, is challenging because it requires the models’
understandings of not only individual objects but also how these objects move and interact with each
other. Further, unlike generating static images, T2V generation requires frame-to-frame consistency in
object appearance, shape, motion, lighting and other dynamics [11]. Current T2V models often lack
such temporal modeling, especially over long sequences [16], and the generated videos often contain
flickering, inconsistent motion and object deformations across frames [22].

Most of the existing solutions to these challenges are data-driven, by using large multimodal T2V
datasets that cover different real-world domains to train the diffusion model [45, 10, 37]. However,
these solutions heavily rely on the volume, quality and diversity of datasets [47, 38]. Since real-world
common knowledge and physical rules are not explicitly embedded in the T2V generation process,
the quality of video generation would largely drop in out-of-distribution domains that are not covered
by the training dataset, and the generalizability of T2V models is limited due to the vast diversity of
real-world scenario domains. Alternatively, researchers also use the existing 3D engines (e.g, Blender
[8], Unity3D [32] and Unreal [12]) or mathematical models of edge and depth maps [23, 24, 22] to
inject real-world physical knowledge into the T2V model, but these approaches are limited to fixed
physical categories and patterns such as predefined objects and movements [45, 22], similarly lacking
generalizability.

To achieve generalizable enforcement of physics-grounded T2V generation, we propose a fundamentally
different approach: instead of expanding the training dataset or further complicating the T2V model
architecture, we aim to expand the current T2V model’s capability of video generation from in-
distribution to out-of-distribution domains, by embedding real-world knowledge and physical rules
into the text prompts with sufficient and appropriate contexts. To avoid ambiguous and unexplainable
prompt engineering [9, 29, 28], our basic idea is to enable chain-of-thought (CoT) and step-back
reasoning in T2V generation prompting, to ensure that T2V models follow correct physical dynamics
and inter-frame consistency by applying step-by-step guidance and iterative refinement.

Based on this idea, this paper presents Physcial-grounded Text-to-Video (PhyT2V), a new T2V tech-
nique that harnesses the natural language reasoning capabilities of well-trained LLMs (e.g, ChatGPT-
4o), to facilitate CoT and step-back reasoning as described above. As shown in Figure 2, such reasoning
is iteratively conducted in PhyT2V, and each iteration autonomously refines both the T2V prompt
and generated video in three steps. In Step 1, the LLM analyzes the T2V prompt to extract objects
to be shown and physical rules to follow in the video via in-context learning. In Step 2, we first use
a video captioning model to translate the video’s semantic contents into texts according to the list of
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A skillfully thrown 
stone skims across 
the placid lake

Out of 
Distribution

Whisking egg into 
milk for scramble

Out of 
Distribution

Milk appears out of the air

Stone floating on water

A wooden block 
floats on the 
surface of a pond
In Distribution

Cream swirling 
into hearty soup
In Distribution 

Figure 3: Examples of videos generated from in-distribution and out-of-distribution prompts, using the
CogVideoX-5B model

objects obtained in Step 1, and then use the LLM to evaluate the mismatch between the video caption
and current T2V prompt via CoT reasoning. In Step 3, the LLM refines the current T2V prompt, by
incorporating the physical rules summarized in Step 1 and resolving the mismatch derived in Step 2,
through step-back prompting. The refined T2V prompt is then used by the T2V model again for video
generation, starting a new round of refinement. Such iterative refinement stops when the quality of
generated video is satisfactory or the improvement of video quality converges.

We evaluated PhyT2V by applying it onto multiple SOTA T2V models, by using ChatGPT4 o1-preview
[14] for LLM reasoning and Tarsier [35] as the video captioning model. We used two major T2V
prompt datasets that cover 7 different real-world domains, and compared PhyT2V with the most
competitive baselines of prompt enhancers. Our main findings are as follows.

• PhyT2V is highly effective. Without involving any model retraining efforts on any auxiliary
model inputs, PhyT2V can improve the adherence of the existing T2V models’ generated
videos to real-world physical rules by up to 2.3x, by only refining the text prompts to the T2V
model.

• PhyT2V is high generic. It can result in significant improvement of video quality in a large
diversity of real-world domains, covering solid, liquid, mechanics, optics, thermal, etc. It
is fully data independent, and its prompting templates can be applied to any existing T2V
models with different architectures and input formats.

• Based on LLM-guided reasoning and self-refinement, PhyT2V is fully automated and involve
the minimum amount of engineering and manual efforts.

2 Related Work and Motivation

2.1 T2V Generation Models

Early T2V techniques generate video frames from text-to-image model outputs with temporal extensions
[31], but cannot maintain temporal consistency and coherence over time, often producing visually
appealing but temporally disconnected outputs. Diffusion Transformers (DiT) [26] improved such
consistency with a transformer backbone capable of capturing more complex temporal dynamics and
relationships across frames through attention mechanism and long-range dependency modeling [47,
38]. Based on the DiT architecture, recent T2V models, such as OpenSora [49] and VideoCrafter [4],
demonstrated that T2V generation can be further improved by in-context learning when provided with
sufficient contextual information [40].
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However, as shown in Figure 3, although these T2V models demonstrate strong capabilities in video
generation when dealing with prompts aligned with the distributions found in the training data, they
encounter significant challenges with out-of-distribution prompts that are not covered by training data1.
In such cases, the outputs often contain physical illusions or artifacts, reflecting the model’s limitations
in generating realistic and coherent video contents under unfamiliar conditions. Such limitations can
be addressed by enlarging the training datasets, improving T2V model architectures or developing new
mechanisms for adaptation and error correction [41, 39], but these approaches are all prompt-specific
and lack generalizability.

Begin by cracking the egg into a mixing bowl and adding the milk. Using a whisk, beat the egg and 

milk together thoroughly until the mixture is completely smooth, with no streaks of yolk or whites. 

Continue whisking briskly to incorporate air, which will contribute to light and fluffy scrambled 

eggs. Ensure the ingredients are well-blended for a consistent texture throughout the scramble.

Figure 4: A video generated by enhancing the out-of-distribution prompt “Whisking egg into milk for
scramble” in Figure 3

On the other hand, as shown in Figure 4, recent research has demonstrated that the quality of video
generation with an out-of-distribution prompt can be improved by refining the prompt with sufficient
and appropriate details [47, 11]. These findings motivate our design of PhyT2V that embeds contexts
of real-world knowledge and physical rules into T2V prompts, to guide the T2V process for better
physical accuracy and temporal alignment. The existing works, however, could still fail when tackling
more intricate scenarios such as multi-object interactions, because the T2V model lacks an efficient
feedback mechanism to learn how the generated video deviates from the real-world knowledge and
physical rules. Researchers suggest to provide such feedback with extra input modalities to T2V models
such as sampled video frames, depth map or scribble images [40, 48], but incur significant amounts
of extra computing overhead and cannot be generalizable. Instead, in our design of PhyT2V, we aim
to fully automate the feedback with only text prompts, and enable iterative feedback for the optimum
video quality.

2.2 Using LLM in T2V Generation

LLMs with strong capabilities in natural language processing (NLP) have become a natural choice
for prompt refinement in text-to-image and text-to-video generation, and existing work has utilized
LLMs to interpret text prompts and orchestrate the initial layout configurations [19, 20, 21, 50, 42,
44]. However, since current LLMs generally lack inherent understandings of the real-world physical
laws, using LLMs with simple instructions usually result in videos that appear visually coherent but
lack accurate physical realism, particularly when generating scenes with complex object interactions.
Furthermore, these approaches frequently rely on static prompts or simple iterative refinements based
on bounding box and segmentation map, which may capture basic visual attributes but fail to adapt to
nuanced changes that require continuous physical modeling and adjustment.

An effective approach to addressing these limitations and providing effective feedback for prompt
refinement is to explicitly trigger in-context learning and reasoning in LLM. For example, as shown in
Figure 5, CoT reasoning deconstructs complex prompts into stepwise logical tasks, and hence ensures
a precise scheduling path to align generated content with the input prompt. However, CoT reasoning,
in some cases, could make errors in some intermediate steps, and step-back prompting can address this
limitation by further deriving the step-back question at a higher level of abstraction and hence avoiding
confusions and vagueness. In our design of PhyT2V, we will utilize such LLM reasoning to analyze
the inconsistency of the generated video to real-world common knowledge and physical rules, and use
the reasoning outcome as feedback for T2V prompt refinement.

1In Figure 3, the in-distribution prompts are picked from the ones listed in [46], and the out-of-distribution
prompts are our crafted ones for similar scenarios as the in-distribution prompts.
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What happens to the pressure, P, of an ideal 
gas if the temperature is increased by 2x and 
the volume is increased by 8x?

Original question

What are the physics principles behind the 
question above?

Step-back question

Ideal gas law: PV = nRT, where P is the pressure, 
V is the volume, n is the number of moles, R is 
the gas constant, and T is the temperature.

Step-back answer

Apply ideal gas law to find out the pressure. 
If the temperature is increased by 2x, then T 
becomes 2T. If the volume is increased by 8x, 
then V becomes 8V. 
Substituting these values into the ideal gas 
law, we get: P = nR(2T) / 8V, so  the pressure 
has decreased by 4x.

Final answer

Step 1: 
Abstraction

Step 2: 
Reasoning

Step-back PromptingCoT Prompting

What happens to the pressure, P, 
of an ideal gas if the temperature 
is increased by 2x and the 
volume is increased by 8x?

Original question

If temperature is increased by 
2x and the volume is 
increased by 2x, we can 
rewrite the ideal gas law as: 
2P' (8V) = nR(2T)…
Simplifying the equation, we 
get: …
Since n, R, and V are 
constants, we can write this 
as: P' = (1/8) * (nRT/V)…

CoT process

If the temperature is increased 
by 2x and the volume is 
increased by 8x, the pressure 
will decrease by 4x.

Final answer

Reasoning

Figure 5: Examples of CoT and step-back reasoning

3 Method

In this section, we present details of our PhyT2V design. In principal, PhyT2V’s refinement of T2V
generation is an iterative process consisting of multiple rounds. In each round, as shown in Figure
6, the primary objective of our PhyT2V design is to guide a well-trained LLM (e.g., ChatGPT-4o) to
generate a refined prompt that enables the pre-trained T2V model to generate videos that better match
the given user prompt and real-world physical rules, and the refined prompt will be iteratively used as
the new user prompt in the next round of refinement.

Each round of refinement is structured around decomposing the complex refinement problem into a
series of simpler subproblems, more specifically, two parallel subproblems and one final subproblem.
The two parallel subproblems are: Step 1) identifying the relevant physical rules that the generated
video should follow based on the user prompt, and Step 2) identifying semantic mismatches between
the user prompt and the generated video. Based on the knowledge about physical rules and semantic
mismatches, the final subproblem (Step 3) generates the refined prompt to better adhere to the physical
rules and resolve the mismatches.

To ensure proper identification in the parallel subproblems and prompt generation in the final sub-
problem, the core of PhyT2V design is two types of LLM reasoning processes within the prompt
enhancement loop: the local CoT reasoning for individual subproblems and global step-back reasoning
for the overall prompt refinement problem.

Local CoT reasoning is executed within the prompt for each subproblem, to prompt the LLM to
generate a detailed reasoning chain in its latent embedding space [34]. Addressing the parallel
subproblems facilitates LLM with a more concentrated attention on prerequisites of prompt refinement,
enabling a deeper comprehension of the physical laws that govern the video content as well as the
identification of discrepancies between the generated video and the user prompt. The outcomes derived
from these parallel subproblems reflect the language model’s abstraction in step-back reasoning on the
overarching prompt refinement.

Global step-back reasoning: To integrate various subproblems into a coherent framework for prompt
and video refinement, one intuitive approach involves employing CoT reasoning across these subprob-
lems, allowing the LLM to engage in self-questioning. However, this method may lead to the risk of
traversing incorrect reasoning pathways. Instead, we apply global step-back reasoning across subprob-
lems, by using a self-augmented prompt to incorporate the LLM-generated responses to high-level
questions about physical rules and semantic mismatches in earlier parallel problems, when generating
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# Task instruction

You are a physics expert. Your task is to identify the main object in the 

given user prompt and provide the physical rules in reality the main 

object should obey, with as much detail as possible in a descriptive way 

without giving formulas. Some in-context examples are provided for your 

reference, and you need to finish the current task. 

# In-context examples

User prompt: A rubber ball hits the ground and then bounces up

Main object: Rubber ball

Physical rule: Newton’s gravity law…

# Current task

User Prompt: <user prompt>. Let’s think step by step.

" 𝐼 𝐸 𝑇 𝑃𝑖 𝑡 " = 𝑃𝑠
(1)

𝐸

𝐼

𝑇 𝑃𝑖 𝑡

# Task instruction

You are a physics expert. Provide you a user prompt used as an input to a 

video generation model and a caption of the video generated by the model 

based on the prompt. The video content should follow the user prompt. 

Your task is summarizing what the video content described by caption 

mismatch the user prompt, if there is no mismatch, please reply "No". 

Some in-context examples are provided for your reference and you need to 

finish the current task.

# In-context examples

User prompt: A rubber ball hits the ground and then bounces up

Video caption: The rubber ball is rolling from left to right across …

Mismatch: Vertical vs. Horizontal Motion …

# Current task

User Prompt: <user prompt>. Let’s think step by step.

𝐸

𝐼

𝑇 𝑃𝑖 𝑡

Step 2: Identifying the Mismatch

Step 1: Identifying the Physical Rule and Main Object 

" 𝐼 𝐸 𝑇 𝑃𝑖 𝑡 " = 𝑃𝑠
(2)

# Task instruction

You are a prompt engineering expert. You are using a 

diffusion model to generating video by giving a prompt. 

Your task is to refine the prompt to make the video 

generated by the diffusion model a better performance on 

simulating the reality. The related physical rule the video 

should obey, the mismatch between current video content 

and current prompt are provided for your reference and 

you need to finish the current task. Some in-context 

examples and the score of current user prompt are also 

given for your refence, with the score higher than 0.5 

means a good prompt, the score lower than 0.5 means a 

bad prompt. You only need to give the refined prompt by 

describing the expected video content without 

mentioning the physical rule. The output cannot exceed 

120 words.

# In-context examples

User prompt: A rubber ball hits the ground and then 

bounces up

Refined prompt: A minuscule, radiant red rubber ball 

dramatically emerges from the top of the frame, …

𝐸

𝐼

𝑇 𝑃𝑖 𝑡

Step 3: Generating the Refined Prompt 

# Physical rule

<Physical rule>

# Mismatch

<Mismatch>

# Score

<Score>

# Current task

User Prompt: <user prompt>

𝑃𝑓 = " 𝐼 𝐴𝑠
(1)

𝐴𝑠
(2)

[𝑆] 𝐸 𝑇 𝑃𝑖 "

[𝐴𝑠
(1)

]

[𝐴𝑠
(2)

]

[𝑆]

LLM

Figure 6: Our design of PhyT2V, illustrated by one round of video refinement consisting of three steps.
Texts in brown are inputs from previous step. Texts in red are outputs to the next step; Texts in purple
are prompts to trigger LLM reasoning

the refined prompt in the final subproblem. In this way, we can improve the correctness of intermediate
reasoning steps in CoT reasoning, and enable consistent improvement across steps in reasoning.

Both reasoning processes are facilitated through appropriate task instruction prompting tailored to
different subproblems. In general, our prompting procedure follows the prompt modeling in [30],
which divides task instructions into several components. More details about these components in our
design of PhyT2V are elaborated as follows.

3.1 Prompting in Parallel Subproblems for Local CoT Reasoning

In both Step 1 and Step 2, the first part of prompt is a task instruction prompt [I] to instruct the LLM
to understand the task in the subproblem. [I] is designed with multiple components, each of which
corresponds to different functions. In the first sentence, it provides general guidance to relate the current
subproblem to the entire refinement problem, to better condition the subproblem answer. Afterwards, it
will include detailed descriptions of the task: identifying the physical rule and main object in Step 1,
and identifying the semantic mismatch between the user prompt and caption of the generated video
(generated by the video captioning model) in Step 2. It will also contain the requirements about the
expected information in LLM’s output. For example, in Step 1, the LLM’s output about the physical
rule should be in a descriptive way without giving formulas.

Besides, to ensure proper CoT reasoning, we follow the existing work [36, 18] and provide in-context
examples [E] about tasks. To facilitate LLM’s in-context learning [5, 6], [E] is given in the format of
QA pairs. That is, instead of fine-tuning a separate LLM checkpoint for each new task, we prompt the
LLM with a few input-output exemplars, to demonstrate the task and condition the task’s input-output
format to the LLM, to guide the LLM’s reasoning process.

Then, the final part of the prompt, denoted as [T ], is the information of the current instance of the task,
usually with the current user prompt (Pi) being embedded. As a common practice of CoT reasoning, it
also contains the hand-crafted trigger phrase (t), “Let’s think step by step”, to activate the local CoT
reasoning in LLM.

3.2 Prompting in the Final Subproblem for Global Step-Back Reasoning

In the final subproblem, we enforce global step-back reasoning, by using the outputs of the two parallel
subproblems above, i.e., knowledge about the physical rules and the prompt-video mismatch, as the
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high-level concepts and facts. Grounded on such high-level abstractions, we can make sure to improve
the LLM’s ability in following the correct reasoning path of generating the refined prompt.

Being similar to the prompts used in the two parallel subproblems above, the prompt structure in the
final subproblem also contains [I], [E] and [T ]. Furthermore, to ensure the correct reasoning path,
we also provide quantitative feedback to the LLM about the effectiveness of previous round’s prompt
refinement. Such effectiveness could be measured by the existing T2V evaluators, which judge the
semantic alignment and quality of physical common sense of the currently generated video2. For
example, the VideoCon-Physics evaluator [2] gives a score ([S]) between 0 and 1. If [S] is <0.5, it
indicates that the refined prompt produced in the previous round is ineffective, hence guiding the LLM
to take another alternative reasoning path.

Since the prompt in the final subproblem is rich with reasoning and inherently very long-tailed, we
removed the trigger prompt [t], to prevent incorporating the information in the final answer unrelated to
the user’s initial input prompt.

3.3 The Stopping Condition
The process of iterative refinement normally continues until the quality of the generated video is
satisfactory, measured by the T2V evaluator as described above. Furthermore, the current T2V models
naturally have limitations in generating some complicated or subtle scenes. In these cases, it would be
difficult, even for PhyT2V, to reach physical realism after multiple rounds of iterations, and PhyT2V’s
refinement would stop when the iterations converge, i.e., the improvement of video quality becomes
little over rounds.

4 Experiments
Models & Datasets: We applied PhyT2V on several DiT-based open-source T2V models, as listed
below, and evaluated how PhyT2V improves the generated videos’ adherence to real-world knowledge
and physical rules. We use ChatGPT4 o1-preview [14] as the LLM for reasoning, and Tarsier [35]
as the video captioning model. All generated videos last 6 seconds with 10 FPS and resolution of
720×480. Details of evaluation setup are in Appendix A.

• CogVideoX [47]: It can generate 10-second videos aligned from text prompts, with 16
FPS and 768×1360 resolution. It offers two model variants, with 2B and 5B parameters,
respectively.

• OpenSora 1.2 [49]: As an alternative to OpenAI’s Sora model [3], it contains 1.1B parameters
and can produce high-quality videos with 16 seconds, 720p resolution and different aspect
ratios.

• VideoCrafter [4]: With 1.8B parameters, it is capable of generating both images and videos
from text prompts, at the resolution of 576×1024, with special emphasis on video dynamics.

Since we target enhancing the T2V models’ capability of generating physics-grounded video contents,
we use the following two prompt benchmarks that emphasize physical laws and adherence as the text
prompts for T2V:

• VideoPhy [2] is designed to assess whether the generated videos follow physical common
sense for real-world activities. It consists 688 human-verified captions that describe interac-
tions between various types of real-world objects, including solid and fluid.

• PhyGenBench [25], similarly, allows evaluating the correctness of following physical com-
mon sense in T2V generation. It comprises 160 carefully crafted prompts spanning four
physical domains, namely mechanics, optics, thermal and material properties. Since the
domain of material properties has been covered by VideoPhy, we use the first three domains
listed above.

Evaluation metric: We use VideoCon-Physics evaluator provided with VideoPhy [2], to measure how
the generated video adheres to physical common sense (PC) and achieves semantic adherence (SA).
The PC metric evaluates whether the depicted actions and object’s state follow the real-world physics

2This video is generated using the prompt refined in the previous round, and is also used to generate the video
caption as the input in Step 2.
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laws. The SA metric measures if the actions, events, entities and their interactions specified in the
prompt are present. Both metrics yield binary outputs: 1 indicates adherence and 0 indicates otherwise.
On each T2V model and dataset, the binary outputs from all prompts are averaged.

Baselines: For fair comparison, we only use the existing T2V prompt enhancers as baselines, and other
existing work with extra inputs to T2V models [7, 27, 15, 23, 22] are not applicable. We involve two
prompt enhancers: 1) Directly using the existing LLM, particularly ChatGPT4, as the prompt enhancer
[24, 43]; 2) Promptist [17], which uses reinforcement learning to automatically refine and enhance
prompts in the model-preferred way.

4.1 Improvement of the Generated Video Quality

As shown in Table 1 and 2, when PhyT2V is applied to different T2V models, it can significantly
improve the generated video’s adherence to both the text prompt itself and the real-world physical rules,
compared to the videos generated by vanilla T2V models (i.e., in Round 1 of PhyT2V’s refinement).
In particular, such improvement is the most significant on the CogVideoX-2B model, where PC
improvement can be up to 2.2x and SA improvement can be up to 2.3x. On all the other models,
PhyT2V can also reach noticeable improvement, ranging from 1.3x to 1.9x.

Round 1 2 3 4

CogVideoX-5B [47] PC 0.26 0.32 0.39 0.42

SA 0.48 0.52 0.56 0.59

CogVideoX-2B [47] PC 0.13 0.19 0.27 0.29

SA 0.22 0.12 0.40 0.42

OpenSora [49] PC 0.17 0.29 0.27 0.31

SA 0.29 0.38 0.44 0.47

VideoCrafter [4] PC 0.15 0.25 0.29 0.33

SA 0.24 0.38 0.44 0.49

Table 1: The quality of videos generated by different T2V models using the VideoPhy prompt dataset,
over multiple rounds of iterative refinement in PhyT2V

Round 1 2 3 4

CogVideoX-5B [47] PC 0.28 0.32 0.38 0.42

SA 0.22 0.35 0.36 0.38

CogVideoX-2B [47] PC 0.16 0.19 0.24 0.27

SA 0.15 0.29 0.33 0.35

OpenSora [49] PC 0.21 0.25 0.24 0.26

SA 0.23 0.28 0.29 0.30

VideoCrafter [4] PC 0.20 0.24 0.32 0.36

SA 0.27 0.33 0.37 0.42

Table 2: The quality of videos generated by different T2V models using the PhyGenBench prompt
dataset, over multiple rounds of iterative refinement in PhyT2V

Meanwhile, results in Table 1 and 2 showed that PhyT2V’s process of iterative refinement converge
quickly and only takes few rounds. Most improvement of video quality happens in the first two rounds,
and little improvement can be observed in the fourth round. Hence, in practice, we believe that 3-4
iterative rounds would be sufficient.

Furthermore, as shown in Table 3 and 4, PhyT2V also largely outperforms the existing prompt enhancers
by at least 35%, when being applied to CogVideoX-5B and OpenSora models. In particular, ChatGPT
4, when being used as the prompt enhancer, delivers better performance than Promptist due to its
stronger language processing capabilities, but still cannot ensure physics-grounded T2V, due to the
lack of explicit reasoning on text-to-video alignment.
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CogVideoX-5B OpenSora

ChatGPT 4 [24] PC 0.33 0.21

SA 0.41 0.32

Promptist [17] PC 0.25 0.19

SA 0.39 0.33

Table 3: The quality of videos generated by enhancing the prompts in the VideoPhy dataset using
different prompt enhancers

CogVideoX-5B OpenSora

ChatGPT 4 [24] PC 0.27 0.20

SA 0.23 0.23

Promptist [17] PC 0.32 0.19

SA 0.24 0.21

Table 4: The quality of videos generated by enhancing the prompts in the PhyGenBench dataset using
different prompt enhancers

4.2 Different domains of Physical Rules
We also conducted in-depth analysis on PhyT2V’s performance on improving the generated video’s
quality in different domains of real-world physical rules, using the CogVideoX-5B as the T2V model and
ChatGPT 4 as the prompt enhancer. As shown in Table 5 and 6, PhyT2V achieves large improvements
in most domains of physical rules. Especially in domains where physical interaction between objects
are more subtle and difficult to be precisely captured, such as interaction with fluids and thermal-related
scene changes, such improvements will be even higher.

These improvements are also exemplified with sample videos and their related input prompts in Figure
7 and Figure 8. With LLM reasoning and iterative refinement, PhyT2V can largely enhance the
T2V model’s capability when encountering out-of-distribution prompts, by providing correct and
sufficient contexts to ensure that the T2V model’s video generation correctly capture the key objects
and interaction between objects. For example, when the prompt of “juice dropping from a bottle onto
the counter”, PhyT2V correctly depicts the juice’s slow diffusion on the counter. More examples can
be found in Appendix B.

4.3 Ablation Study
We conduct an ablation study to evaluate the necessity of both the physical rule reasoning (Step 1) and
the mismatch reasoning (Step 2) within our PhyT2V workflow, by removing one of these steps from
the refinement process to assess its impact on the quality of video generation.

Physical rule reasoning (Step 1). As shown in Figure 9, the Step 1 of physical rule reasoning
significantly enhances the T2V process by providing a more detailed and coherent description of the
principal object’s physical status, such as motion, states and deformation (red texts in Figure 9), all
grounded in relevant physical laws. By anchoring the prompt in established physical rules, this step
also help avoid unnecessary texts (brown texts in Figure 9) and vague physical rule descriptions (purple
texts in Figure 9), hence achieving a higher PC score.

Mismatch reasoning (Step 2). The Step 2 of mismatch reasoning addresses details that may have been
overlooked in the previous iteration of the generated video as shown in Figure 10. This step plays a
critical role in the iterative refinement process by identifying and correcting discrepancies between
expected and observed outputs. By enhancing the model’s focus on the principal object, the mismatch
reasoning step reduces the likelihood of losing attention to important features (brown and purple texts
in Figure 10), improving the fidelity and relevance of generated video content (red texts in Figure 10)
towards a higher SA score.

Overall, our study shows that both reasoning steps are integral to the PhyT2V workflow, contributing
to a more robust and semantically-aligned generation of refined prompts in Step 3. Detailed ablation
studies are in Appendix C.
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CogVideoX-5B CogVideoX-2B OpenSora VideoCrafter

Round 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Solid-Solid PC 0.21 0.28 0.34 0.32 0.09 0.13 0.14 0.22 0.12 0.27 0.29 0.30 0.19 0.22 0.27 0.28

SA 0.24 0.48 0.49 0.47 0.18 0.25 0.36 0.33 0.16 0.34 0.37 0.35 0.24 0.40 0.45 0.47

Solid-Fluid PC 0.22 0.27 0.28 0.30 0.11 0.18 0.28 0.27 0.17 0.21 0.24 0.25 0.18 0.24 0.25 0.26

SA 0.39 0.54 0.60 0.61 0.29 0.43 0.44 0.43 0.16 0.40 0.41 0.36 0.34 0.43 0.48 0.52

Fluid-Fluid PC 0.57 0.59 0.63 0.62 0.34 0.38 0.35 0.36 0.15 0.32 0.29 0.31 0.33 0.41 0.53 0.51

SA 0.41 0.57 0.59 0.67 0.27 0.42 0.39 0.44 0.31 0.44 0.45 0.46 0.32 0.42 0.49 0.51

Table 5: The improvement of generated video quality in different categories of physical rules in the
VideoPhy prompt dataset

Solid 

to

solid

Solid 

to 

fluid

Fluid 

to 

fluid

PhyT2V

T2V model 

only

Enhanced 

prompt

PhyT2V

T2V model 

only

Enhanced 

prompt

PhyT2V

T2V model 

only

Enhanced 

prompt

A stone plunges into a fast moving river, causing water 
to splash up.

Juice dripping from a bottle onto the counter.

The heavy curtain slides over the window. A puck flits swiftly across a clean ice surface.

Milk splattering into steaming coffee.Orange juice splashing into still water.

Figure 7: Examples of videos generated using different categories of prompts in the VideoPhy dataset

5 Conclusion
In this paper, we present PhyT2V, a new T2V technique that expands the existing T2V model’s
capability to out-of-distribution domains via LLM reasoning. Experiment results show that PhyT2V
can improve the generated video’s adherence to real-world physical rules by up to 2.3x.
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A Details of Evaluation Setup

Since our proposed technique of PhyT2V does not involve any efforts of retraining the T2V model, in
this section we describe details about our evaluation setup of the LLM inference for CoT and step-back
reasoning.

In our evaluations, we use 4 T2V generation models, including CogVideoX-5B [46], CogVideoX-2B
[46], OpenSora [49] and VideoCrafter [4]. We choose to use these models because they are all built
with transformer-based diffusion models, which enhance the semantic adherence by using the cross-
attention mechanism, and were ranked top on the leaderboards of both the VideoPhy and PhyGenBench
benchmarks. We use Tarsier [35] as the video captioning model, because it achieves SOTA performance
on multiple video question answering (VQA) datasets, hence ensuring precise and detailed video
captioning in our approach.

Since PhyT2V improves the quality of generated videos through text prompt refinement, we use the
Promptist [17] and GPT-4o [43] as the prompt enhancers, with the same model hyper-parameter settings
as used in PhyT2V, to maintain the consistency between these baselines and PhyT2V.

To fit the maximum token input length of the T2V model, we limit the word length of the refined
prompts to 120, by instructing the ChatGPT4 o1-preview model that is used as the LLM for reasoning.
To formatting the output and storage in our approach, the ChatGPT4 o1-preview model are instructed to
output in JSON format and output results in each step are saved in a CSV file by row. More specifically,
in our implementation, we invoke the ChatGPT4 model by using the OpenAI o1 APIs, with our
constructed prompts as described in Section 3. In each round of the refinement process, after Step 1
and Step 2 finish, their outputs are embedded to the prompt of Step 3 by replacing the pre-defined
place holder, and we then use the generated prompt as the input to LLM again to generated the refined
prompt for this round.

B More Examples of Physics-Grounded Videos Generated by PhyT2V

In this section, we extend Section 4 in the main text of the our paper, and provide more examples
of the physics-grounded videos generated by PhyT2V. We will first show more videos generated in
different categories of physical rules, and then show more details about the iterative process of prompt
refinement.

B.1 Examples of Generated Videos in Different Categories of Physical Rules

In this subsection, we present more examples of generated videos, with the CogVideoX-5B T2V model
on both the VideoPhy and PhyGenBench prompt datasets. Fig 11, Fig 12 & 13, and Fig 14 & Figure
15 show the generated videos in categories of fluid-to-fluid, solid-to-fluid, and solid-to-solid for the
VideoPhy dataset. Fig 16, 17 and 18 show the generated videos in categories of mechanics, optics and
thermal on the PhyGenBench dataset.

B.2 Details of Prompt Refinement in PhyT2V

In this subsection, we provide more detailed examples of the process of prompt refinement in PhyT2V,
with the CogVideoX-5B T2V model on the VideoPhy and PhyGenBench prompt datasets. Fig 19, 20,
and 21 show the generated videos in categories of solid-to-solid, solid-to-fluid, and fluid-to-fluid for
the VideoPhy dataset. Fig 22, 23 and 24 show the generated videos in categories of mechanics, optics
and thermal on the PhyGenBench dataset.

C Details of the Ablation Study

C.1 The Impact of T2V Model size

By comparing the videos generated by the CogVideoX-2B and CogVideoX-5B models with the same
text prompt, we found that the PhyT2V approach can unleash more power of physical-grounded video
generation and achieve better quality of the generated video, with a T2V model with larger parameter
sizes. Results are show in Figure 25.
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C.2 Components in Prompts

In this section, we remove some components from the prompts being used in two parallel subproblems
and the final subproblem described in Section 3.1 and 3.2 of the main texts of the paper, and investigate
how such removal affects the video generation. Results are shown in Figure 26, 27 and 28, respectively.
These results show that, without the first sentence of role indicator (“You are a physics expert.”),
the generated output content is lake of precise information, On the other hand, when the in-context
examples ([E]) are missing, the LLM can not generate the output in the expected format.

D Difficult T2V Cases

Finally, we also found that, even when using the PhyT2V to refine the T2V process for multiple rounds,
the generated video still failed to correctly reflect some real-world common knowledge. For example,
Figure 29 shows that the generated video would fail to precisely generate the human body, especially
the human hands. We believe that PhyT2V’s difficulty in these cases is consistent with the limitations
of the existing T2V models, and can only be addressed by further improving the design of T2V model
architectures.
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PhyT2V
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only
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prompt

PhyT2V

T2V 
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only

Enhanced 

prompt

PhyT2V

T2V 

model 

only

Enhanced 

prompt

Egg whites folding into cake batter Pouring milk into boiling tea Cream combining into warm soup

Water mixes with colourful fabric dye Wind driving rain against windows Coffee accepting a gentle pour of milk

Cream swirling into black coffee Juice melding into thick yogurt Cordial mixing with cold water

PhyT2V

T2V 

model 

only

Enhanced 

prompt

PhyT2V

T2V 

model 

only

Enhanced 

prompt

Cream melting into hot chocolate Colored droplet forming in watercolor painting Bubbles ascend in carbonated soda

Cola merging with fresh lemonade Oil dropping onto motionless water Oil pooling atop tangy vinegar

Figure 11: Examples of generated videos in the category of fluid to fluid in the VideoPhy dataset
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PhyT2V

T2V 
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only

Enhanced 
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PhyT2V

T2V 

model 

only

Enhanced 

prompt

A bucket scoops up sea water at the beach A paintbrush brushes a stroke of watercolour paint on canvas A sauce bottle drizzles ketchup onto a resh hotdog

A coin drops into a sparkling fountain A scooper drizzles melted chocolate onto a dessert A cotton cloth wipes away a coffee spill

A swimmer glides through the calm ocean waves An airplane zooms through a patch of fluffy clouds A rag wipes an oil stain off the kitchen countertop

PhyT2V

T2V 

model 

only

Enhanced 

prompt

PhyT2V

T2V 

model 

only

Enhanced 

prompt

PhyT2V

T2V 

model 

only

Enhanced 

prompt

A brush dips into watercolor on a palette A French fry dipping into tangy ketchup

A mechanic pours oil onto a piece of sandpaperJuice being poured into a glass for quenching thirstA plastic spoon stirs a cup of hot cocoa

Juice spilling from a cup onto the floor A paint roller spreading fresh paint onto a wall Water flows out from a towering dam

Ketchup squirting out of a sauce bottle onto a burger

Figure 12: Examples of generated videos in the category of solid to fluid in the VideoPhy dataset
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PhyT2V
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prompt

An aroma diffuser diffusing essential oil aroma into the air A surfer gracefully slides down a towering wave A paintbrush swipes across a canvas leaving streaks of paint

A leaf floats gently on a quiet pondAn apple submerging into a water A jug tips over pouring milk into a bowl of cereal

Figure 13: More examples of generated videos in the category of solid to fluid in the VideoPhy dataset
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PhyT2V
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Enhanced 

prompt

Cork place mat laid on solid oak dining table Tearing paper with hands Rattan handle grasping to woven basket

Lid clangs against the potA chisel breaks the stone into smaller pieces Sweeping dust with a broom

Rubber basketball bounces off a rough concrete wall Marble rolls down a slanted wooden table Carbon knife carving into a piece of wood

Figure 14: Examples of generated videos in the category of solid to solid in the VideoPhy dataset
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PhyT2V

T2V 

model 

only
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prompt

Rubber eraser rubs off pencil marks on paper Metal trash can crashes into wooden park bench Knife halves the apple

Pebble rocking in a tin can The jack crank raises the heavy car A snowball falls to the ground and splits apart

Bouncy ball rebounding off a rubber play mat Shoe squishes a bug Milk bottle carefully places on wobbly fridge shelf

PhyT2V

T2V 

model 

only

Enhanced 

prompt

PhyT2V

T2V 

model 

only

Enhanced 

prompt

Knife slices the tomato Mitten blocking a flying snowball Iron steams the clothes

The hat flopping against his head in the wind A glove catching the fast-moving baseball Child slides down a plastic slide

Figure 15: More examples of generated videos in the category of solid to solid in the VideoPhy dataset

21



PhyT2V

T2V 

model 

only

Enhanced 

prompt

PhyT2V

T2V 

model 

only

Enhanced 

prompt

PhyT2V

T2V 

model 

only
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prompt

A cup of water is slowly poured out in the space station A vibrant, elastic basketball is thrown forcefully towards the ground

A vibrant, elastic tennis ball is thrown forcefully towards the ground

A piece of white chalk  write on the rough, dark surface of a blackboard A blue marker is write on the smooth, white surface of a whiteboard

A piece of red crayon draw on the rough, white surface of a paper

Figure 16: Examples of generated videos in the category of mechanics in the PhyGenBench dataset
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PhyT2V

T2V 

model 

only

Enhanced 

prompt

A ray of light is shining diagonally on a glass bottle in the dark A bird is flying over a calm and clear lake surface

A magnifying glass is gradually moving closer to the petals of a flower A clear plastic straw is slowly inserted into a glass of crystal-clear water

A beam of light passes through a crystal chandelier A beam of light passes through a droplet of water

Figure 17: Examples of generated videos in the category of optics in the PhyGenBench dataset
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PhyT2V
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PhyT2V

T2V 

model 

only

Enhanced 

prompt

A timelapse captures the transformation of a piece of ice as the 

temperature rises

A timelapse captures the transformation as water vapor in a humid 

environment comes into contact with a cool glass surface

A timelapse captures the transformation of soup in a saucepan as the 

temperature rapidly rises

A timelapse captures the transformation of naphthalene as it is 

exposed to gradually increasing temperature

A timelapse captures the transformation of camphor as it is exposed to 

gradually increasing temperature
A timelapse captures the transformation of arsenic trioxide as it is 

exposed to gradually increasing temperature

Figure 18: Examples of generated videos in the category of thermal in the PhyGenBench dataset
Original prompt: An apple falls and bounces on the hard ground.

The key physical laws governing the apple's behaviour include Newton's Laws of Motion, the Law of Conservation of Energy, and the principles 

of partially elastic collisions and gravitational acceleration. 1. Gravitational Acceleration (Newton's Second Law of Motion): The apple falls 

because it is acted upon by the force of gravity, which causes it to accelerate towards the Earth's surface. According to Newton's Second Law, 

the force acting on the apple equals its mass times the gravitational acceleration - commonly around 9.8 m/s² on planet Earth. 2. Collision with 

the Ground (Partially Elastic and Inelastic Collisions): Upon hitting the hard ground, a collision occurs. The apple's largely inelastic nature 

means that a large portion of its energy gets absorbed in the form of heat and sound during collision, causing the apple not to bounce high. 3. 

Conservation of Energy: As the apple falls, it transforms potential energy into kinetic energy, with its velocity increasing continuously until 

impact. After bouncing, the apple follows the rules of projectile motion in gravity, accelerating upwards until it reaches a point where kinetic 

energy has been entirely converted back to potential energy - the point of zero velocity. The apple then starts falling again, continuing this 

process but with each bounce having less height due to energy losses in each collision.

Physical 

law:

Apple vs. Apple Pieces: The user prompt describes an intact apple falling and bouncing on the ground. However, the video caption shows 

pieces of an apple falling and bouncing. This is a significant difference because the behaviour (including bouncing dynamics and deformation) 

of an intact apple and apple pieces upon impact would be expected to be quite different. Ground vs. Wooden Surface: The user prompt 

specifies the apple falls and bounces on 'hard ground.' In contrast, the video shows the apple pieces falling and bouncing on a 'wooden surface.' 

While we can assume both are 'hard,' we can't be sure they have the same hardness, which might affect the bouncing behaviour. Deformation 

of Apple: According to the user prompt, an intact apple is expected to fall and bounce without significant deformation. However, the video 

caption describes the apple pieces being compressed and crushed upon impact. This level of deformation is inconsistent with the user prompt 

description of a single apple bouncing.

Mismatch:

A ripe, bold red apple, defying its tree's pull, is seen in mid-air above a rough, hard terrain. The apple plummets, obeying gravity's irresistible 

command. Its descent accelerates, and it nears the unforgiving ground with increasing speed. Collision is inevitable. Upon impact, it 

momentarily squashes, absorbing a portion of its kinetic energy, before exhibiting a modest upward recoil. This bouncing trajectory, though 

significantly less than its initial fall, is agreed upon with the stringent laws of energy conservation. With each bounce, it ascends lesser, 

painting a perfect illustration of energy transformation and loss amid the persistent pull of gravity.

Enhanced 

prompt:

Figure 19: An example showing details of PhyT2V’s prompt refinement, in the category of solid-to-
solid in the VideoPhy dataset
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Original prompt: A stone plunges into a fast-moving river, causing water to splash up.

The physics principles to note in this system include gravity, buoyancy, fluid resistance, and displacement of water by the falling stone. 1. 

Gravitational Acceleration (Newton's Second Law of Motion): The initial movement of the stone into the river is driven by gravity pulling on the 

stone's mass and creating acceleration. This leads to an initial downward motion of the stone. 2. Fluid Resistance: As the stone enters the 

water, it experiences fluid resistance which slows down its descent. This fluid resistance is proportional to the stone's velocity through the 

water and its size and shape. 3. Displacement of Water (Archimedes' Principle): As the stone plunges into the water, it displaces a volume of 

water equal to its own volume. According to the Archimedes' Principle, the buoyant force exerted on the stone is equal to the weight of the 

water displaced by the stone. The downward motion of the stone causes the water to be pushed aside and this sudden displacement causes the 

water to splash upwards. 4. Buoyancy: Depending on the mass and volume of the stone, buoyancy may play a role in determining whether the 

stone sinks or floats. A stone generally sinks because its density is greater than the water's density. However, if it is porous and air-filled, it 

could potentially float. The buoyant force working against gravity would determine the final resting position of the stone in the water.

Physical 

law:

Object Interaction with Water: The user prompt specifies a stone 'plunging' into a fast-moving river, implying that the stone is being dropped 

or thrown into the water from an external source, causing a splash. However, the video caption portrays a different scenario, where a large 

rock is already partially submerged in the water, around which the water flows and splashes. Absence of Splashing Caused by Stone: In line 

with the user prompt's narrative, the stone plunging into the water should cause a disturbance in the water, resulting in a visible splash. This 

crucial detail is missing in the video caption, which only mentions that water splashes because it encounters an obstacle - the rock - which is 

already partially submerged in it. Static vs Dynamic Position of the Stone: The user's prompt assumes the stone is actively interacting with 

the river by being dropped into it. It's a dynamic process. In the video caption, on the other hand, the rock is static, remaining stationary in 

the river while the river’s water flows around it.

Mismatch:

A moderately-sized stone abruptly drops from the frame's upper edge onto a shimmering, fast-moving, and vigorous river, causing an 

impactful plunge. As it pierces the water's surface, the force causes a dramatic eruption of clear, sparkling droplets to violently splash 

upward. The displaced water ripples out in expanding concentric circles, effectively depicting the stone's powerful intrusion. The stone's 

downward trajectory continues unwavering, gradually obscured by the depth and swirling churn of the river. The re-arranged water reforms 

itself, concealing the stone beneath its ever-moving, turbulent surface, while the resulting splashes gradually fall back, a few rebellious 

droplets catching the light before surrendering to the relentless flow of the river.

Enhanced 

prompt:

Figure 20: An example showing details of PhyT2V’s prompt refinement, in the category of solid-to-fluid
in the VideoPhy dataset
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Original prompt: Pouring milk into boiling tea.

The milk being poured into boiling tea should primarily follow the Law of Conservation of Mass and Energy, along with Thermodynamics and 

principles of fluid flow. 1. Conservation of Mass: As the milk is poured into the tea, the mass is conserved. This implies that the total mass of 

the milk and tea in the system remains constant during the process. 2. Thermodynamics (Heat Transfer): Due to the temperature difference 

between the milk and the boiling tea, heat will be transferred from the hotter object (the tea) to the cooler one (the milk). This heat transfer 

continues until both fluids reach a thermal equilibrium, where they have the same temperature. This process illustrates the Second Law of 

Thermodynamics, which states that heat will always move to areas of lower temperature until equilibrium is achieved. 3. Fluid Mechanics: The 

milk being poured is subjected to gravity and it flows via the principles of fluid dynamics, including viscosity and pressure. As per Pascal’s Law, 

pressure applied to any part of a fluid transmits equally in all directions. Hence, the milk disperses throughout the tea. 4. Solubility: If viewed 

at the molecular level, the milk proteins and fats will disperse in the tea due to the natural molecular motion and interactions leading to the 

eventual homogeneous mixture of the two liquids. This highlights the principle of solubility and spontaneous mixing due to entropy increase.

Physical 

law:

The user prompt specifies pouring 'milk into boiling tea', but the video caption depicts 'milk being poured into a pot of simmering broth'. The 

substance into which the milk is being poured does not match the user's provided prompt. Incorrect Physical Phenomenon: The video refers to 

buoyancy, describing the milk as initially floating because 'it is less dense than the broth'. This doesn't align with the real-life action of 

pouring milk into tea, where the milk will generally blend with the tea quickly rather than floating. Severity of Heat: 'Boiling tea' implies a 

higher heat level than 'simmering broth', affecting the interaction between the milk and the tea (or broth) at different heat levels. The 

mismatch in describing temperature might lead to different outcomes in the two scenarios.

Mismatch:

In a stoneware mug filled with scalding, steaming tea, cool, smooth milk cascades in a steady stream. As the dense white liquid merges with 

the boiling, amber tea, the color begins to shift, transforming into a richer, creamier hue. Gradually, any initial vestiges of division fade until 

the fluid becomes one harmonious blend, their temperatures equalizing in the warmth of the mug. Thermodynamics, fluid dynamics, and 

solubility principles are brilliantly on display, illustrating a soothing preparation ritual. The final shot reveals the comforting, perfectly 

steeped tea, gently wafting a fragrant steam, ready to sip.

Enhanced 

prompt:

Figure 21: An example showing details of PhyT2V’s prompt refinement, in the category of fluid-to-fluid
in the VideoPhy dataset
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Original prompt: A cup of water is slowly poured out in the space station.

While in the space station, the cup of water would be subject to several important physical laws including the Law of Conservation of Mass, 

Newton’s Laws of Motion, and the principle of surface tension. 1. Law of Conservation of Mass: Regardless of its location in space, the mass of 

the water remains the same. When the water is poured out from the cup, it doesn't disappear; rather it distributes in the area around it. 2. 

Newton's Laws of Motion: In zero gravity environment, actions and reactions will have a more noticeable impact. When water is poured from 

the cup, the act of forcing the water out would also push the cup in the opposite direction. This reaction is dictated by Newton's Third Law of 

Motion, which states that for every action, there is an equal and opposite reaction. 3. Surface Tension & Formation of Spheres: In space, 

without the influence of gravity, liquids naturally form a shape that gives the least surface area, which is a sphere. This is due to the cohesive 

forces between the molecules of the liquid (surface tension) which pulls the molecules together, thus forming a sphere. This is why when water 

is released into space, it forms globules or spheres that float around rather than spreading out like in earth’s gravity. 4. Law of Conservation of 

Momentum: If the water is poured forcefully from the cup, the sum of the momentum of the cup and water before being poured (if in relative 

rest, it is zero) and after being poured will be conserved.

Physical 

law:

Absence of Zero Gravity Condition: The user prompt describes a cup of water being poured out in the space station, which would be an 

environment with negligible gravity – the ‘zero-gravity’ or microgravity environment. In microgravity, liquids like water form into spherical 

drops or z and float in place rather than producing a flowing stream downwards. However, the video caption describes the water being poured 

from a cup in a way that would only happen in a terrestrial setting with gravity: forming a stream and falling down with deformation due to 

gravity. Ignoring the Space-Station Setting: The user prompt specifies this action to be occurring in a space station. In contrast, the video 

caption makes no mention of the space station and erroneously depicts a possible laboratory setting implying gravity. Misrepresentation of 

Fluid Behavior in Microgravity: As there is virtually no gravity in the space station, the water would not flow out and fall as it does under the 

influence of gravity. It would float in the air as droplets or form larger blobs due to cohesive forces. Hence, the video's depiction of the water 

forming a stream and falling due to gravity conflicts with the user prompt's specification.

Mismatch:

Amidst the ethereal tranquility of a space station, a cup gracefully tilts, gradually releasing an entrancing display of water. Unhindered by 

gravity, the water does not pour but emerges as perfect, shimmering spheres. Born of cohesion and surface tension, they form a mesmerizing 

constellation expanding from the cup's mouth. These watery orbs, imbued with spectral hues, disembark from the cup and peacefully float off 

in the surrounding area, embodying freedom, echoing the whisper of zero gravity that holds sway here. Each sphere, a miniature world to 

itself, adrift and unhurried, is testament to the complexities yet serenity of life in a space-bound microgravity environment.

Enhanced 

prompt:

Figure 22: An example showing details of PhyT2V’s prompt refinement, in the category of mechanics
in the PhyGenBench dataset
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Original prompt: A bird is flying over a calm and clear lake surface, with the reflection of the bird appearing on the water surface.

The flight of the bird obeys various physical principles, notably Newton's Laws of Motion and the Law of Reflection while the reflection obeys 

the Law of Reflection and Refraction. 1. Bird Flight (Newton's Laws of Motion, Lift, and Drag Force): Three laws are particularly relevant. The 

first law of motion states that an object will remain at rest or in uniform motion unless acted upon by an external force. Therefore, bird must 

exert a force greater than or equal to its weight to maintain altitude and speed in flight. The third law of motion states that for every action, 

there is an equal and opposite reaction, which means that as a bird flaps its wings downward, a lifting force is generated that enables the bird 

to stay airborne. Lastly, the second law of motion, which states that the extent of acceleration depends on the object's mass and the amount of 

net force exerted on it, is applicable when the bird changes its flight speed or direction. Additionally, the bird must also overcome drag and 

gravity to maintain forward momentum. 2. Reflection of Bird (Law of Reflection): The light that enables us to see the bird's reflection comes 

from the sun, hitting the bird and then reflecting off the lake to our eyes. According to the Law of Reflection, the angle at which the light hits 

the bird (the angle of incidence) is equal to the angle at which it bounces off the lake's surface (the angle of reflection). 3. Distortion in 

Reflection (Refraction): Though not explicitly stated, we can infer that any distortions in the bird’s reflection could be due to the physical 

property of water called refraction. Light speed changes when it moves from the air to water, causing the light to bend and hence the image to 

distort.

Physical 

law:

Position and Motion of the Bird: The user prompt describes a celestial bird sailing across a tranquil lake, creating a moving reflection on the 

water surface as it modifies its flight path. However, the video caption depicts a bird standing stationary on the water surface, flapping its 

wings but not flying or sailing. Reflection on the Water Surface: The user prompt refers to an enchanting double image of the bird and its 

flight reflected on the mirror-like lake. On the contrary, in the video, the reflected image correlates only to the bird's stationary position and 

wing movements. Interplay of Light: The prompt speaks to a captivating light play, with sunlight glancing off the bird's plumage and the 

water's surface. This aspect is completely unaddressed in the video caption. Effects of Wind: The user prompt mentions a soft wind causing 

gentle ripples on the water's surface, distorting the bird's reflection. In contrast, the ripples in the video caption occur solely due to the bird's 

wing movement. Physics Misinterpretations: The video caption erroneously attributes the bird's ability to stand on water to surface tension, 

while in reality, most birds float on water due to their lightweight bodies and waterproof feathers. The physics laws of surface tension aren't 

accurately portrayed.

Mismatch:

A celestial bird, feathered in iridescent plumage, effortlessly traces a majestic path across a tranquil and invitingly clear lake surface. The 

bird creates an enchanting double image, reflected with verisimilitude on the mirror-like water, revealing every intricacy of its sublime flight. 

The reflection of sunlight glimmers off the glossy plumage of the bird and the lustrous water surface, illuminating the scene with a 

captivating interplay of light. As the bird banks and alters its trajectory, the mirrored image dances and ripples with each movement, 

distorting tenderly under the soft breeze that ruffles the serene lake's surface.

Enhanced 

prompt:

Figure 23: An example showing details of PhyT2V’s prompt refinement, in the category of optics in
the PhyGenBench dataset
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Original prompt: A timelapse captures the transformation of arsenic trioxide as it is exposed to gradually increasing temperature.

The key physical laws that arsenic trioxide obeys in this scenario are primarily focused within the realms of thermodynamics and phase 

transition. 1. Heat Transfer and Thermodynamics: As the arsenic trioxide is exposed to increasing temperature, it's subject to the principles of 

thermodynamics, specifically the first law of thermodynamics which essentially states that energy cannot be created or destroyed, but only 

transformed. In this case, the thermal energy is transferred from the surrounding area to the arsenic trioxide, causing the chemical to heat up. 

2. Phase Transition: Arsenic trioxide should experience phase transition under sufficient heat. This is described by the phase transition theory, 

a subset of thermodynamics. Initially, arsenic trioxide at room conditions is in solid form, and as the thermodynamic equilibrium changes with 

heating, it undergoes a phase transition process, changing from solid to liquid, and eventually to gas, each phase bound by a certain range of 

temperature and pressure. The transformations are not instantaneous but happen over a period of time, thereby can be captured in a time-

lapse video. 3. Expansion due to Heating: The arsenic trioxide may also physically expand as it heats, which is explained by the principle of 

thermal expansion. As arsenic trioxide heats up, its molecules move more rapidly, causing the substance to expand. However, this may be more 

apparent in larger masses of matter and may not show significant effect in a small amount of arsenic trioxide. 4. Gas Laws: If the arsenic 

trioxide reaches a gaseous state, it then follows the gas laws, including Charles’s Law and Boyle's Law, which describe the relationships 

between the volume, pressure, and temperature of gases.

Physical 

law:

Absence of Transformation and Temperature Change: The user prompt asks for a video illustrating the change in arsenic trioxide when 

exposed to a gradually increasing temperature starting from room temperature. In contrast, the video caption describes a static close-up shot 

of arsenic trioxide without any transformation or interaction with a varying temperature environment. Misplaced Emphasis on Camera 

Physics: The prompt requests a physics demonstration or experiment involving chemical transformation under temperature changes. 

However, the video caption instead focuses on the physics related to the camera's zoom and focus, such as light refraction and lens 

adjustments. These aspects, although they involve physics, are completely unrelated to the user prompt regarding the thermochemical 

behavior of arsenic trioxide, indicating a significant mismatch. Misinterpretation of User Prompt: The video caption does not address the 

desired timelapse showing how arsenic trioxide changes when the temperature rises from room temperature. Instead, it provides a static shot 

of the substance without transformation or interaction with temperature changes. This deviates from the user's request, which involves 

observation of physical changes under different thermal conditions.

Mismatch:

A timelapse illustrates the transition of a crystalline lump of arsenic trioxide going through a radiant transformation. As the temperature 

gradually rises from room temperature, captured by a subtly placed thermometer, the seemingly motionless arsenic trioxide begins to stir. 

Initially, microscopic tremors agitate the lump as it slowly warms, and increasingly visible motions ensue as the temperature rises further. 

Solid arsenic oxide soon begins to liquefy, with sparkles capturing the process. Finally, the gas begins to wisps upwards. The entire spectacle 

reflects the grandeur of thermodynamics in action.

Enhanced 

prompt:

Figure 24: An example showing details of PhyT2V’s prompt refinement, in the category of thermal in
the PhyGenBench dataset

CogVideo-2b

CogVideo-5b

CogVideo-2b

CogVideo-5b

CogVideo-2b

CogVideo-5b

CogVideo-2b

CogVideo-5b

An apple falls and bounces on the hard ground

Tearing paper with hands

Rattan handle grasping onto woven basket

A skillfully thrown stone skims across the placid lake

A sauce bottle drizzles ketchup onto a fresh hotdog

A paintbrush brushes watercolour paint on canvas

Juice melding into thick yogurt

Chocolate melds richly into milk

Figure 25: The impact of T2V model size on the quality of generated video
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### Instruction

You are a physics expert. Your task is to identify the main object in the 

given user prompt and provide the physical laws in reality the main object 

should obey with as much detail as possible in a descriptive way without 

giving formulas. Some in-context examples are provided for your 

reference, and you need to finish the current task. 

### In-context examples

User prompt: a rubber ball hits the ground and then bounces up

Main object: rubber ball, 

Physical law: The primary physical law that should be obeyed by the video 

is Newton's Law of Motion along with the Law of Conservation of Energy, 

particularly focusing on elastic collisions and gravitational acceleration. 1. 

Gravitational Acceleration (Newton's Second Law of Motion): As the 

rubber ball falls toward the ground, it is acted upon by the force of 

gravity. According to Newton's Second Law, the force acting on the ball is 

the product of its mass and the gravitational acceleration, typically 9.8 

m/s² near the surface of the Earth. 2. Collision with the Ground (Elastic 

and Inelastic Collisions): When the ball hits the ground, a collision occurs. 

In reality, rubber balls exhibit partially elastic behavior, meaning that 

some energy is lost to heat and deformation during the impact. This leads 

to a bounce with less energy than the initial fall, and the ball does not 

reach the original height from which it was dropped. 3. Conservation of 

Energy: As the ball falls, its potential energy is converted into kinetic 

energy, the velocity of the ball keeps increasing until the impact. Once the 

ball bounces back up, it follows the rules of projectile motion under 

gravity, accelerating upwards until the velocity reaches zero at its highest 

point, where all kinetic energy has been converted back to potential 

energy. The ball then begins its downward motion again, repeating the 

cycle but with diminishing height due to energy loss at each bounce.

### Current task

User prompt: An apple falls and bounces on the hard ground.

Let's think step by step.

Main object: apple

Physical law:

1. Gravitational Acceleration

As the apple falls, it is influenced by the force of gravity. Gravity pulls the apple downward, causing it to accelerate 

toward the Earth. The apple's acceleration due to gravity is constant near the Earth's surface, regardless of its mass. Its 

velocity increases steadily during free fall unless influenced by air resistance.

2. Air Resistance (Drag Force)

While the apple is falling, it encounters air resistance, a force opposing its motion. The magnitude of air resistance 

depends on the apple's shape, size, and speed, as well as the density of the air. If the apple falls from a sufficient height, 

it may reach terminal velocity—a constant speed where the downward force of gravity equals the upward drag force.

3. Impact with the Hard Ground

When the apple hits the ground, it undergoes a collision. This interaction is governed by:

Newton's Third Law of Motion: The apple exerts a force on the ground, and the ground exerts an equal and 

opposite force on the apple.

Impulse and Momentum: During the collision, the apple’s momentum changes rapidly over a short period, 

depending on its velocity and mass.

Deformation and Elasticity: The apple, being a soft object, deforms on impact. The ground, being hard, undergoes 

minimal deformation. The extent to which the apple regains its shape determines the height of its bounce.

4. Conservation of Energy

Before the fall, the apple has gravitational potential energy due to its height above the ground.

As it falls, this potential energy is converted into kinetic energy.

At the moment of impact, some of the kinetic energy transforms into other forms:

Elastic Potential Energy (as the apple compresses and deforms).

Thermal Energy (heat generated due to internal friction in the apple and at the contact surface).

Sound Energy (the noise created upon impact).

During the bounce, the elastic potential energy in the apple partially converts back into kinetic energy. However, some 

energy is lost, resulting in a lower bounce height.

5. Coefficient of Restitution (COR)

The apple’s ability to bounce depends on the COR, a measure of how elastic the collision is. For the apple-ground system, 

the COR is less than 1, indicating an inelastic collision where energy is lost to deformation and other processes.

6. Post-Bounce Motion

After bouncing, the apple follows a parabolic trajectory dictated by gravitational forces. Its upward motion decelerates 

due to gravity until it momentarily stops at its maximum height. If the apple bounces multiple times, each subsequent 

bounce will be shorter due to cumulative energy losses.

Prompt Output

Figure 26: The original prompt and output

### Instruction

Your task is to identify the main object in the given user prompt and 

provide the physical laws in reality the main object should obey with as 

much detail as possible in a descriptive way without giving formulas. 

Some in-context examples are provided for your reference, and you need to 

finish the current task. 

### In-context examples

User prompt: a rubber ball hits the ground and then bounces up

Main object: rubber ball, 

Physical law: The primary physical law that should be obeyed by the video 

is Newton's Law of Motion along with the Law of Conservation of Energy, 

particularly focusing on elastic collisions and gravitational acceleration. 1. 

Gravitational Acceleration (Newton's Second Law of Motion): As the 

rubber ball falls toward the ground, it is acted upon by the force of 

gravity. According to Newton's Second Law, the force acting on the ball is 

the product of its mass and the gravitational acceleration, typically 9.8 

m/s² near the surface of the Earth. 2. Collision with the Ground (Elastic 

and Inelastic Collisions): When the ball hits the ground, a collision occurs. 

In reality, rubber balls exhibit partially elastic behavior, meaning that 

some energy is lost to heat and deformation during the impact. This leads 

to a bounce with less energy than the initial fall, and the ball does not 

reach the original height from which it was dropped. 3. Conservation of 

Energy: As the ball falls, its potential energy is converted into kinetic 

energy, the velocity of the ball keeps increasing until the impact. Once the 

ball bounces back up, it follows the rules of projectile motion under 

gravity, accelerating upwards until the velocity reaches zero at its highest 

point, where all kinetic energy has been converted back to potential 

energy. The ball then begins its downward motion again, repeating the 

cycle but with diminishing height due to energy loss at each bounce.

### Current task

User prompt: An apple falls and bounces on the hard ground.

Let's think step by step.

Main object: apple

Physical law:

1.Gravitational Acceleration (Newton's Second Law of Motion):

As the apple falls toward the ground, it is acted upon by the force of gravity. This force causes the apple to 

accelerate downward at a constant rate, typically 9.8 m/s² near the Earth's surface. The apple's velocity increases 

steadily as it descends due to this constant acceleration.

2.Collision with the Hard Ground (Inelastic Collision):

When the apple hits the hard ground, a collision occurs. Unlike a rubber ball, the apple is less elastic and more 

prone to deformation upon impact. The collision is primarily inelastic, meaning a significant portion of kinetic 

energy is lost to internal deformation, heat, and sound. This results in a less pronounced bounce compared to 

more elastic objects.

3.Conservation of Energy:

During the fall, the apple's gravitational potential energy is converted into kinetic energy, increasing its speed 

until impact. Upon collision with the ground, some kinetic energy transforms into other forms of energy: Heat 

Energy: Generated due to internal friction within the apple's structure. Sound Energy: Produced from the noise of 

the impact. Energy of Deformation: Used in changing the shape of the apple upon impact. If the apple bounces, 

the remaining kinetic energy propels it upward, but it will not reach the original height due to these energy 

losses.

4.Newton's Third Law of Motion:

During the collision, the apple exerts a force on the ground. The ground exerts an equal and opposite force back 

on the apple. This reaction force can cause the apple to bounce back upward, depending on how much kinetic 

energy remains after the impact.

5.Air Resistance:

As the apple falls and potentially bounces upward, it experiences air resistance. Air resistance opposes the 

motion of the apple through the air, reducing its acceleration during the fall. During the upward motion after a 

bounce, air resistance works against the apple's ascent, causing it to slow down more quickly.

6.Material Properties and Deformation:

The apple's ability to bounce is influenced by its material properties, such as elasticity and structural integrity. 

Being less elastic, the apple absorbs more energy through deformation upon impact. This absorption of energy 

reduces the amount of kinetic energy available to propel the apple back upward, resulting in a lower bounce 

height compared to elastic objects like rubber balls.

7.Energy Dissipation:

Energy lost during the collision and subsequent motions ensures the apple will not bounce back to its original 

height. Over successive bounces (if any), the apple's kinetic energy continues to decrease due to ongoing energy 

losses. Eventually, the apple comes to rest as all its kinetic energy is dissipated through deformation, heat, 

sound, and overcoming air resistance.

Prompt Output

Figure 27: The prompt without the sentence of role indicator (“You are a physics expert.”) and output
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### Instruction

You are a physics expert. Your task is to identify the main object in the given user prompt and provide the physical laws in reality the main object should obey with as much detail as 

possible in a descriptive way without giving formulas.

### Current task

User prompt: An apple falls and bounces on the hard ground.

Let's think step by step.

Prompt

Output

Main Object:

The main object in this scenario is the apple.

Physical Laws Governing the Apple’s Motion

Let us analyze the motion of the apple step by step:

Step 1: Initial Fall (Gravitational Pull)

The apple starts its motion due to gravity, which exerts a constant downward force. Gravity pulls the apple toward the Earth, causing it to accelerate uniformly. This is governed by Newton’s 

Second Law of Motion, where the net force on the apple results in an acceleration proportional to its mass.

Step 2: Interaction with Air (Air Resistance)

As the apple falls, it moves through the air and experiences air resistance, a force that opposes its downward motion. Air resistance depends on factors like the apple's speed, surface area, 

and shape, as well as the density of the air. If the apple falls from a sufficient height, it could reach a state called terminal velocity, where the upward force of air resistance balances the 

downward force of gravity, causing it to fall at a constant speed.

Step 3: Impact with the Ground (Collision Dynamics)

When the apple strikes the hard ground, it undergoes a collision. The interaction involves several physical principles: Newton’s Third Law of Motion: The apple exerts a force on the ground, 

and the ground exerts an equal and opposite force on the apple. Momentum Transfer: The apple’s momentum changes rapidly due to the impact. The exact nature of this change depends on 

the time duration of the collision and the material properties of the apple and the ground. Deformation and Elasticity: The apple deforms upon impact due to its soft and elastic nature. The 

hard ground, being rigid, undergoes negligible deformation.

Step 4: Energy Transformation at Impact

As the apple falls, its gravitational potential energy is converted into kinetic energy. Upon hitting the ground, part of the kinetic energy is transformed into: Elastic Potential Energy: Stored 

as the apple compresses during the collision. Thermal Energy: Generated through internal friction within the apple and at the contact point. Sound Energy: Produced as the collision 

generates noise. Energy losses during the impact mean that the apple does not fully regain its initial potential energy.

Step 5: The Bounce (Coefficient of Restitution)

The apple rebounds after the impact, driven by the release of elastic potential energy stored during its deformation. The height of the bounce is determined by the coefficient of restitution 

(COR), which measures the elasticity of the collision. For an apple-ground interaction, the COR is less than 1, indicating that the collision is inelastic, with significant energy losses. 

Consequently, the apple bounces to a height lower than its original drop point.

Step 6: Post-Bounce Motion

After the bounce, the apple follows a parabolic trajectory determined by gravity. Its upward motion slows as it loses kinetic energy and eventually stops momentarily at its peak height. The 

apple then falls back under the influence of gravity. If subsequent bounces occur, each is progressively shorter due to cumulative energy losses to heat, sound, and internal deformation. The 

apple eventually comes to rest due to friction and dissipation of energy.

Relevant Physical Laws

1.Newton’s Laws of Motion. First Law: The apple remains at rest or in motion unless acted upon by a force (gravity, air resistance, ground collision).. Second Law: The net force on the apple 

results in its acceleration toward the Earth. Third Law: During the collision, the ground exerts an equal and opposite force on the apple.

2.Law of Universal Gravitation. The gravitational force between the Earth and the apple governs its downward motion.

3.Energy Conservation and Transformation. Energy is converted between potential energy, kinetic energy, and other forms (elastic potential, thermal, sound). Energy losses due to 

inelasticity reduce the height of subsequent bounces.

4.Air Resistance Principles. Drag forces oppose the apple’s motion, particularly during free fall.

5.Collision Dynamics and Elasticity. The behavior of the apple during and after impact is influenced by the deformation, energy losses, and the coefficient of restitution. By analyzing the 

motion in these steps, the apple’s fall, impact, and bounce can be fully described.

Figure 28: The prompt without the in-context examples and output

Figure 29: Examples of difficult T2V cases of generating human hands
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