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Abstract

Graph Neural Networks (GNN) can capture the geometric properties of neural representa-
tions in EEG data. Here we utilise those to study how reinforcement-based motor learning
affects neural activity patterns during motor planning, leveraging the inherent graph struc-
ture of EEG channels to capture the spatial relationships in brain activity. By exploiting
task-specific symmetries, we define different pretraining strategies that not only improve
model performance across all participant groups but also validate the robustness of the
geometric representations. Explainability analysis based on the graph structures reveals
consistent group-specific neural signatures that persist across pretraining conditions, sug-
gesting stable geometric structures in the neural representations associated with motor
learning and feedback processing. These geometric patterns exhibit partial invariance to
certain task space transformations, indicating symmetries that enable generalisation across
conditions while maintaining specificity to individual learning strategies. This work demon-
strates how GNNs can uncover the effects of previous outcomes on motor planning, in a
complex real-world task, providing insights into the geometric principles governing neural
representations. Our experimental design bridges the gap between controlled experiments
and ecologically valid scenarios, offering new insights into the organisation of neural rep-
resentations during naturalistic motor learning, which may open avenues for exploring
fundamental principles governing brain activity in complex tasks.

Keywords: Motor Learning, Motor Planning, Neural Representations, Graph Neural Net-
works, EEG

1. Introduction

Motor learning, the acquisition and refinement of movement skills, is a fundamental aspect
of human cognition and behaviour. Understanding its neural mechanisms is crucial for de-
veloping effective strategies in rehabilitation, sports training, and brain-computer interfaces.
The use of EEG has been a longstanding approach in the investigation of neural activity
underlying motor learning processes. EEG-based research has uncovered dynamic patterns
of neural oscillations (Henz and Schöllhorn, 2016) and event-related synchronisation (Tan
et al., 2014; Haar and Faisal, 2020) that correspond to the distinct learning mechanisms.
These electrophysiological signatures have been associated with a variety of cognitive mech-
anisms essential to motor learning, such as attentional focus, sensorimotor integration, and
memory consolidation (Talsma and Woldorff, 2005; Berti, 2008).

Reinforcement learning principles have provided insights into how the brain processes
feedback and adapts behaviour based on previous experiences during motor learning. Neu-
ral activity patterns observed between trials have been found to reflect the processing of
performance feedback from the previous trial, influencing subsequent motor planning and
execution (Albert and Shadmehr, 2016; Luft, 2014; Yuan et al., 2015; Hou et al., 2022).
This feedback-dependent modulation of brain activity underscores the iterative nature of
motor skill acquisition and the importance of trial-to-trial learning in shaping neural rep-
resentations (Eliassen et al., 2012).
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Related Work Traditional statistical analysis approaches were often limited in fully
capturing the spatial connections between different brain regions, which are essential for
understanding the distributed nature of neural processing during complex tasks (Zaepffel
et al., 2013). However, recent advancements in machine learning have driven the develop-
ment of more sophisticated techniques. Neural networks and deep learning have emerged
as powerful tools for analysing EEG data, enabling the automatic extraction of complex
spatial-temporal representations from high-dimensional EEG signals (Schirrmeister et al.,
2017; Han et al., 2023a; Wang et al., 2018). Yet, these studies often face challenges in fully
capturing the complex relationships between brain regions and ensuring the explainability
of their findings.

Graph neural networks have emerged as a promising approach for analysing EEG data.
These models can capture the temporal dynamics and spatial dependencies of neural activ-
ity, making them well-suited for studying the intricate network of brain connections involved
in motor learning. However, the typical applications of deep learning have focused on static,
well-structured brain data, such as that from motor imagery tasks (Hou et al., 2022; Han
et al., 2023b; Sun et al., 2021). Applying these powerful models to dynamic real-world
brain data remains an area to be explored. This has the potential to enhance our under-
standing of how the brain learns and adapts, informing the development of more effective
training protocols, rehabilitation strategies, and brain-computer interfaces. Furthermore,
insights gained from studying brain patterns of complex motor skills could have broader
implications for our understanding of cognitive processes, strategy, decision-making, and
adaptation relevant to various aspects of human behavior.

In this work, we present a novel application of GNNs to investigate the neural correlates
of motor learning and planning in a real-world task. Based on an EEG dataset collected
during a real-world billiard task in an Embodied Virtual Reality environment (Nardi et al.,
2024), we trained a GNN model to predict the success or failure of the previous trial. The
model leverages the EEG data from the pre-movement window, aiming to capture how
the perceived success or failure of a given shot influences the neural processes involved in
the motor planning of the next shot. By applying GNNs to EEG data collected during
a dynamic real-world motor task, unlike previous studies which focused on static brain
imaging and motor imagery, we captured the intricate neural dynamics associated with
motor planning, execution, and feedback processing in a more naturalistic setting (Tsay
et al., 2024). Furthermore, we used multiple explainability methods and conducted extensive
analysis to identify which brain regions and functional interactions were most salient in the
model’s prediction. The results obtained contribute to our understanding of the neural
mechanisms underlying motor skill acquisition and demonstrate the potential of GNNs as
a powerful and explainable tool for the analysis of brain data.

2. Methods

Description of Dataset The dataset utilised in our research originates from experiments
conducted by Nardi et al. (2024), where 40 healthy, inexperienced participants engaged in a
real-world billiard task within an Embodied Virtual Reality (EVR) setup (Haar et al., 2021).
During the task, the participants performed a pool shot with the objective of pocketing a
target ball, while immersed in a virtual environment that was accurately aligned with a
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physical setup, comprising a pool stick and a pool table. Throughout the task, brain
activity was recorded with a wireless 14-channel EEG headset (Emotiv EPOC+) with a
256Hz sampling rate. The outcome variable examined was the success or failure during the
previous trial, as we aimed to investigate any changes in brain activity resulting from the
previous feedback.

The 2-second window preceding each shot was the focus of our analysis. This timeframe
was selected to capture motor planning processes, occurring before the “main” movement,
and to exclude any visual feedback from the model predictions, as participants observed the
ball trajectory only after the shot was performed. Indeed, this window was chosen to avoid
including signals unrelated to the primary movement, thereby directing our GNN model
training to the most relevant data.

Participants took part in two learning rounds with different feedback conditions and
shooting towards different pockets. Here we analyse brain activity only from the round with
the error feedback task (Nardi et al., 2024), from four groups of 10 participants, differing
by round and pocket: First Left (first round, shooting at the left pocket), First Right (first
round, shooting at the right pocket), Second Left (second round, shooting towards the left
pocket), and Second Right (second round, shooting towards the right pocket).

EEG Data Pre-processing EEG data was band-pass filtered at 1-45Hz using FIR fil-
ter, and cleaned by removing artifacts from the signals, including bad data segments and
problematic channels, employing the Artifact Subspace Reconstruction algorithm (Kothe,
2013). Furthermore, signal windows were removed based on thresholds for the maximum
standard deviation of bursts and the maximum fraction of contaminated channels allowed
in the final output data for each considered window. The prefrontal channels (AF3, AF4)
were removed from the EEG data to avoid the models wrongly classifying changes in eye
movement patterns instead of the proper underlying brain signal, resulting in a 12-channel
dataset. The data was segmented into 2-second epochs preceding each shot, as the motor
planning window. An independent component analysis (ICA) was conducted on the data
to eliminate muscle, eye, and cardiac artefacts. The missing channels were subsequently in-
terpolated from the remaining ones using spherical spline interpolation and a topographical
map. This preprocessing was informed by prior research on motor learning (e.g. Tan et al.,
2014; Haar and Faisal, 2020) and based on the 10-20 international EEG system.

Due to the limited data available for each participant, we combined together the 10
participants within each group. We created a balanced dataset for each group by accounting
for the number of successful and unsuccessful trials, to ensure that the models could predict
both classes with equal proficiency. To do so, we examined the angular error of each shot
relative to the pocket, and removed the failure trials closest to the success region, or the
worst successful trials - farthest from the centre of the pocket. This selection was based on
the expectation that any brain signals related to success feedback would be more prominent
for shots greatly differing from the opposite class. To ensure sufficient distinction between
trials belonging to different classes, we considered failures that were at least 2 degrees off
from the success area. Additionally, we removed the first trial of each block, as the preceding
trial was not performed immediately before it. One participant was excluded from the study
due to the too low number of trials after the EEG preprocessing pipeline.
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Figure 1: An Illustration of our Graph Neural Network Architecture.

Graph Formation and Model Architecture To model EEG data as brain graphs, we
constructed an adjacency matrix A, where Ai,j is each term of the matrix that indicates
the connection strength between EEG channels i and j. This strength is computed based
on spatial proximity, with closer channels having stronger connections. We used a ball tree
algorithm to assign channels within a predefined radius as neighbours and calculate the
edge weights inversely proportional to the squared distance between channel coordinates,
setting the maximum distance between neighbours to 75% of the head radius.

Given the relatively small size of our dataset and the limited number of channels, we
designed a shallow temporal CNN and GNN architecture to mitigate the risk of overfitting
(see Figure 1). The model processes raw EEG signals with a 1D convolution to capture
temporal features, followed by batch normalisation, Parametric ReLU activation, average
pooling, and dropout. These features are then input into a Chebyshev graph convolution
layer (Defferrard et al., 2016), which propagates information across the graph based on
the adjacency matrix A. The output is globally averaged and passed through a linear
classification layer. The model is trained with a cross-entropy loss function, using class
weights, balancing accurate classification with regularisation. The detailed methodology
for constructing the graph representation and the complete neural network architecture are
provided in Appendix B.

GNN Spatial Explainability To investigate the differences between the models applied
to the four groups, we implemented an explainability pipeline that seeks to identify the most
salient channels contributing to the model predictions (Han et al., 2023b). We implemented
node and edge masking techniques based on the GNNExplainer method (Ying et al., 2019)
to investigate the spatial characteristics of our biomarker. This approach involved freezing
the weights of the trained GNN model and applying learnable node and edge masks to the
raw data and the GNN’s edges, respectively. The sigmoid function was utilised to encourage
binary masking, enhancing the model’s ability to highlight significant spatial features during
the biomarker identification process.

The learnable masks were trained using a loss function (1) which combines classification
edge mask size loss LEMS , node mask entropy loss LNME , edge mask entropy loss LEME ,
cross-entropy loss LCES , and node mask size loss LNMS .
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Ltotal = LEMS + LNME + LEME + LCES + LNMS (1)

The classification loss ensured the masked model maintained the original classification
accuracy, while the size and entropy losses promoted the masks to be sparse and discrete.
The importance score of a node or edge was determined by the corresponding mask value
after optimisation, as higher mask values indicated higher importance for the model to
minimise the classification loss.

The purpose of this explainability technique is to identify the most salient EEG channels
that contribute significantly to the model’s predictions. By applying learnable node and
edge masks to the raw data and the graph neural network’s edges, we can determine the
importance of each spatial feature in the classification process. The goal is to find the mini-
mal set of nodes that can be removed while maintaining comparable classification accuracy,
thus highlighting the most influential channels for the model’s decisions.

Distance Measures between Maps To compare the similarity or divergence between
the contribution maps, we utilised a modified version of the Gromov-Wasserstein distance,
known as the Sliced Gromov-Wasserstein (SGW) distance, which is less intensive computa-
tionally than the Gromov-Wasserstein distance, while preserving the key advantages of the
original metric (Vayer et al., 2019). The SGW distance between two graphs is defined as

dSGW (G1, G2) = Eθ∼U(Sd−1) [W1 (pθ(G1), pθ(G2))] (2)

where G1 and G2 are the two graphs being compared, pθ(G) represents the projection of
graph G onto the random direction θ, which is sampled uniformly from the unit sphere
Sd−1. W1(pθ(G1), pθ(G2)) is the 1D-Wasserstein distance between the projected distri-
butions pθ(G1) and pθ(G2). The final SGW distance is the expected value of these 1D-
Wasserstein distances over all the random directions θ.

To define the maps for comparison, we transformed the Cartesian electrode coordinates
into polar coordinates and added the mask value as the third dimension. This approach
allowed us to consider both the mask differences and the spatial information when comparing
the maps. To assess the statistical significance of the differences observed between the
contribution maps across the various conditions, we performed Mann-Whitney U tests.
This non-parametric test was chosen as it does not require the data to follow a normal
distribution. In case of paired data, when the samples derived from the same underlying
distribution, we performed paired Wilcoxon signed-rank tests.

Training and Evaluation To improve model performance, and based on the assumption
of shared underlying features across the groups, we implemented a pre-training strategy
prior to the main model training, technique shown to be effective in boosting performances
(Hu et al., 2019). Although pretraining is typically defined as training the model on a
separate task (Erhan et al., 2010), the uniqueness of the experimental data led us to instead
pretrain each group on the other groups. Specifically, we implemented two pretraining
approaches: one based on the Pocket, and the other on the Round. That is, we pretrained
each group for 200 epochs on the two other groups belonging to the opposite pocket side or
the opposite round, in order to have two comparable groups in every pretraining scenario.
This pretraining approach allowed us to leverage the shared features across the groups,
potentially enhancing the model’s ability to generalise and improve its performance.

5



Proceedings Track

Figure 2: Performances of GNN models with (A) no pretraining, (B) pretraining on oppo-
site Round, (C) and pretraining on opposite Pocket. The 10-fold cross validation
accuracy distributions of the four groups are displayed separately for each pre-
training mode. Black dashed line represents chance level, while the green dashed
line shows the average accuracy across groups for the individual mode.

Following pretraining, a 10-fold cross-validation training procedure was then performed.
The split in folds was done ensuring that each participant was evenly represented across the
folds, while also maintaining a balance between the classes, due to the individual variability
in brain data. In this case, the model was trained for only 150 epochs due to the smaller
sample size. Both models were trained using a batch size of 32 and a learning rate

of 1e-4 to ensure a trade-off between optimality and training costs. To prevent overfitting,
we implemented L2-optimisation in the Adam optimiser, edge dropout in the initial graph
(p = 0.2), and dropout at the end of the temporal convolution layer (p = 0.35) in all the
models (Zhang, 2018; Rong et al., 2019; Srivastava et al., 2014). To evaluate the models
performances, we examined accuracy, precision, recall, and F1-score on the validation set,
which was not used for any training decisions or hyperparameter optimisation, to assess the
models’ ability to generalise and perform on unseen data.

3. Results

Model Performance The pretrained models, based on the Round or Pocket groupings,
led to significant improvements in model performance across all evaluation metrics. With-
out pretraining, our GNN models struggled to extract meaningful patterns from the EEG
data, achieving an average accuracy of only 0.54 across all groups, barely above chance level.
The introduction of pretraining, however, led to a significant boost in model performance.
Both Round -based (Figure 2B) and Pocket-based (Figure 2C) pretraining resulted in sub-
stantial improvements, with average accuracies across groups increasing to 65% and 66%
respectively, with values up to 70% in the individual groups. This consistent enhancement
across all participant groups suggests that pretraining enables the GNNs to learn more ro-
bust and generalisable features from the EEG data. The full metrics comparison is shown
in Appendix C.

Explainability Results The explainability analysis of our GNN models revealed con-
sistent group-specific neural signatures across different pretraining conditions. While the
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Figure 3: Brain activation maps across the four groups (First Left, First Right, Second Left,
Second Right). Arrows connect the pretraining maps used, based on opposite
round (first column) or opposite pocket (fourth column) to the final maps of the
four groups.

Round or Pocket pretraining maps are very different, the brain maps for each group exhib-
ited similar spatial patterns of importance, irrespective of the pretraining method (Figure
3). This consistency suggests that the models have identified stable neural representations
for each group. The persistence of these group-specific patterns across pretraining con-
ditions indicates the presence of underlying neural architectures unique to each group’s
learning experience. This finding implies potential differences in the effect of reinforcement
learning from the previous trial based on aspects of the task. To quantify the similarities
between these neural representations, we measured the Sliced Gromov-Wasserstein (SGW)
distances (Figure 4A), which showed the highest similarities between the four groups to
themselves across the different pretraining conditions. This structure provides evidence for
the stability of group-specific neural patterns, suggesting that the characteristics of each
group’s brain activity during the task remain relatively consistent and robust to varying
training conditions of the models.

Comparing the distances of each group’s pretraining map to their final map (Figure
4B - II-III) and the distances between the final maps of the groups (Figure 4B - IV), it
is evident that the GNNs primarily relied on the group-specific spatial information rather
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Figure 4: (A) Representation Distance Matrix between group maps (B) Distribution of
distances between groups of: (I) same pretraining strategies; final vs initial maps
when pretraining with opposite (II) round and (III) pocket; (IV) final maps within
group with different pretraining; final maps between groups that had the same
pretraining maps as starting point (V). The quantities reported in the boxplots
are framed in the RDM using the same colour scheme.

than the underlying common information. Similarly, the significant difference (p = 0.03)
between the distances of groups starting from the same pretraining (Figure 4B - V) and
the distances between the final maps (Figure 4B - IV) represents the distinctiveness of each
group’s neural representations, suggesting the minor importance of the pretraining strategy.
Noticeable distributional differences were found between the remaining features, although
these differences were not statistically significant due to the small sample size.

These results suggest that despite the complex nature of brain activity during motor
tasks, there exist discernible, group-specific patterns that can be identified by machine
learning models. The ability of the models to capture these consistent patterns across
different pretraining strategies demonstrates the adaptability of the GNN architecture in
processing complex EEG data, suggesting that these models can extract relevant features
from the spatial relationships between EEG channels, providing insights into the neural
basis of motor learning and feedback processing.

4. Discussion

This study used GNNs to understand the neural correlates of performance feedback in motor
planning in a real-world billiard task. By analysing the spatial relationships in the EEG
data, our models revealed consistent group-specific neural signatures, providing insights
into the complex brain activity underlying motor skill acquisition. GNNs have shown great
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promise in analysing static, well-structured brain data, such as that from motor imagery
tasks (Hou et al., 2022; Sun et al., 2022). Previous research has highlighted the ability of
GNNs to effectively capture spatial relationships in brain data (Kim et al., 2021; Azevedo
et al., 2022). Yet, the successful application of these models to dynamic, real-world tasks
remains an active area of research, where novel techniques are needed to overcome the
inherent complexities of brain activity in natural environments.

Here we manipulated the GNNs training pipeline, implementing different pretraining
strategies using both opposite Round or Pocket, which led to a significant improvement in
model performance, despite the unique and complex nature of the task, indicating that the
pretraining process enabled the GNNs to acquire more robust and generalisable features
from the EEG data. This consistent enhancement suggests that the pretraining methods
allowed the models to better navigate the intricate manifold of neural representations, co-
herently with previous studies (Hu et al., 2019, 2020). Notably, the comparable performance
gains for both pretraining approaches imply that the GNNs were able to effectively leverage
different aspects of the experimental design to enhance their predictive capabilities, hinting
at the presence of underlying neural patterns that persist across experimental conditions.

Interestingly, persistent group-specific patterns were observed in the brain maps gen-
erated through our explainability analysis. The GNN models exhibited robust spatial in-
variance, and consistently identified distinct spatial activation patterns for each of the four
groups, regardless of the pretraining approach. This consistency of group-specific neural
representations suggests that individual differences in motor learning strategies or feedback
processing mechanisms are reflected in stable, identifiable patterns of brain activity.

Taken together, these results suggest that the neural correlates underlying motor learn-
ing and performance feedback processing are influenced by both individual differences in
learning strategies as well as the specific demands and characteristics of the task. The
consistent detection of group-specific neural representations by the GNN models, irrespec-
tive of the pretraining method, underscores the robustness of our approach in extracting
meaningful neural signatures associated with complex cognitive and motor processes.

Limitations and Future Work This study provides valuable insights into the neural
correlates of motor learning using GNNs, but several limitations exist. The small sample
size restricts the generalisability of the findings and may have contributed to sub-optimal
model performance, suggesting the need to increase the sample size in future studies which
could enhance accuracy and robustness. Individual differences in brain activity and learn-
ing strategies also remain a challenge, suggesting the need for more personalised modelling
approaches and the integration of additional transfer learning techniques. Further work is
needed to connect the spatial patterns in EEG to specific cognitive processes and neuro-
physiological mechanisms, as well as investigate the temporal aspects of motor planning.
Lastly, the study focused on short-term feedback, leaving open the question of how neural
representations change over longer periods of skill acquisition.

Conclusion This study highlights the potential of Graph Neural Networks to provide
meaningful insights into complex real-world neural data. The consistent group-specific
spatial patterns found underscore the robustness of this method in capturing differences in
the underlying cognitive and motor processes. This study lays the groundwork for future
advancements in understanding complex neural representations using GNNs.
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Appendix A. Experimental Setup and Design

A.1. EVR Setup

Figure 5: (A) Billiard task in the Embodied Virtual Reality setup: participants playing
pool in real-world (right) are immersed in the VR environment in which visual
feedback manipulations are applied (left); (B) 12-channels EEG data sample used
for the GNN models: out of a window of 4 seconds around each trial, only the 2s
pre-shot window is considered for the analysis; (C) Experimental conditions of the
four groups: combinations of Left and Right pockets and First and Second rounds
were considered according to the session and shooting direction experienced by
the participants.
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A.2. Label Derivation

Figure 6: Distribution of all trials of all participants over the standardised angle range (0°
represents a perfect successful shot), divided by label. The No Decision category
includes the failure trials which are too close to the success funnel (in green),
according to a pre-determined threshold of 2 degrees. N = 39.
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Appendix B. Graph Formation and Model Architecture

B.1. Graph Formation

To represent our EEG data as brain graphs, we first construct an adjacency matrixA, where
A ∈ RC×C , with C denoting the total number of EEG channels (nodes). The elements of
the matrix, Ai,j , represent the connection strength or edge weight between nodes i and j,
which in our case correspond to the spatial proximity between EEG channels. A stronger
connection between two nodes results in a higher edge weight, while an absence of connection
is indicated by Ai,j = 0.

Given the spatial coordinates of the EEG channels, we employ a ball tree algorithm,
called the cKDTree, to efficiently identify neighbouring channels within a predefined radius r
(Narasimhulu et al., 2021). For each channel i, the algorithm identifies all channels j within
this radius, forming potential edges between them. We empirically found that r = 75% head
radius was the best trade-off between a low number of neighbours for each node, to avoid
misleading information coming from very far channels, and the inclusion of all the channels
in the headset.

The weight of the edge between nodes i and j is then computed as the inverse square
of the Euclidean distance between their corresponding coordinates. Mathematically, the
weight wi,j of the edge is given by:

wi,j =

{
1

∥xi−xj∥2 if ∥xi − xj∥ ≠ 0,

0 if ∥xi − xj∥ = 0,
(3)

where xi and xj are the spatial coordinates of channels i and j, respectively, and ∥xi−xj∥
denotes the Euclidean distance between these channels. The inverse square relationship
emphasizes stronger connections between closer nodes while diminishing the influence of
more distant nodes. Self-links (i.e., Ai,i) are avoided to ensure the adjacency matrix strictly
represents inter-channel relationships.

The resulting adjacency matrix A thus captures the spatial structure of the EEG chan-
nels, supported by neurophysiological findings that suggest connective strength diminishes
with squared distance.

B.2. GNN Architecture

We designed the model to have a shallow temporal CNN and GNN architecture, in order
to mitigate the risk of overfitting due to the relatively small sample size. Our model takes
in two primary inputs: the raw EEG signals, represented as node features with dimensions
C×T , where C denotes the number of channels (nodes) and T signifies the number of time
points, and the structural information of the graph, represented by the C × C adjacency
matrix A, which encodes the connectivity and edge weights among the nodes.

The architecture begins by applying a one-dimensional convolution (1D-CNN) along the
temporal axis of the raw EEG signals. The convolution operation uses a kernel size of fs

2 ,
where fs is the sampling rate of the EEG signals (Lawhern et al., 2018). This kernel size
is chosen to capture the relevant frequency information in the EEG signals effectively. The
temporal convolution layer is defined as:
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H1 = PReLU(Wconv ∗X+ bconv), (4)

where X ∈ RC×T is the input EEG data, Wconv is the convolutional kernel, bconv is
the bias term, and ∗ denotes the convolution operation along the time axis. After the
convolution, we apply batch normalisation and a Parametric ReLU (PReLU) activation
function to introduce non-linearity, followed by average pooling and dropout layers. The
average pooling layer reduces the temporal dimensionality, thereby lowering the risk of
overfitting in subsequent layers.

Following temporal feature extraction, the reduced node features are fed into a single
Chebyshev graph convolution layer to propagate information across neighbouring nodes
(EEG channels). The Chebyshev graph convolution is defined as:

H2 =
K−1∑
k=0

Tk(L̃)H1Θk, (5)

where L̃ = 2L/λmax − IC is the rescaled Laplacian matrix derived from the adjacency
matrix A, L = D−A is the graph Laplacian, D is the degree matrix, Tk(·) represents the
Chebyshev polynomial of order k, λmax is the maximum eigenvalue of L, and Θk are the
learnable parameters of the layer. This formulation allows for localised spectral filtering,
enabling the model to capture complex spatial dependencies among EEG channels while
maintaining computational efficiency.

The output from the Chebyshev GNN layer, H2, undergoes a Softplus activation to
ensure non-negative activations. Subsequently, global average pooling is applied across
all node features to aggregate the information into a single feature vector. Finally, the
aggregated feature vector hglobal is passed through a linear classification layer to perform
the final prediction. Overall, all layers in the architecture are trained to minimise a class-
weighted cross-entropy loss function, defined as:

L = − 1

N

N∑
n=1

C∑
c=1

yn,c log(ŷn,c), (6)

where N is the number of samples, C is the number of classes, yn,c is the true label of
class c for sample n, and ŷn,c is the predicted probability for class c after applying a softmax
function to the output of the linear classification layer.

This simple architecture efficiently leverages both temporal and spatial information from
the EEG data, allowing for accurate classification while minimising the risk of overfitting.
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Appendix C. Model Performances

No Pretraining Pretraining w/ Round Pretraining w/ Pocket
Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

First Left 0.55 0.55 0.57 0.55 0.63 0.61 0.74 0.67 0.64 0.61 0.80 0.69
First Right 0.56 0.53 0.57 0.54 0.63 0.63 0.65 0.64 0.64 0.64 0.66 0.65
Second Left 0.50 0.50 0.42 0.44 0.64 0.67 0.55 0.60 0.65 0.64 0.67 0.66
Second Right 0.56 0.58 0.53 0.54 0.68 0.69 0.65 0.67 0.70 0.71 0.68 0.69
Average 0.54 0.54 0.52 0.52 0.65 0.65 0.65 0.65 0.66 0.65 0.70 0.67

Table 1: GNN Model Performances for the four groups, obtained as the average of the
performances on the validation sets of the 10-fold cross validation. The three
groups of columns show metrics without any pretraining, pretraining on opposite
Round and opposite Pocket, respectively. The last row shows the average for the
metrics across the four groups.
Acc: Accuracy; Prec: Precision; Rec: Recall; F1 : F1-score.
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Appendix D. GNN Explainability Maps - Evolution over Learning

Figure 7: Brain Maps Evolution across learning when pretraining on opposite Round (A-D)
and Pocket (E-H), for the First Left (A,E), First Right (B,F), Second Left (C,G),
and Second Right (D, H) groups. The five columns show the explainability maps
for pretraining, epochs 10, 20, 50 and 150 respectively. The colour bar refers to all
the plots and represents the standardised contribution of the different channels,
according to explainability methods described in Section 2.
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