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Abstract

Real-world objects are composed of distinctive, object-specific parts. Identifying
these parts is key to performing fine-grained, compositional reasoning—yet, large
multimodal models (LMMs) struggle to perform this seemingly straightforward
task. In this work, we introduce PARTONOMY, an LMM benchmark designed
for pixel-level part grounding. We construct PARTONOMY from existing part
datasets and our own rigorously annotated set of images, encompassing 862 part
labels and 534 object labels for evaluation. Unlike existing datasets that simply
ask models to identify generic parts, PARTONOMY uses specialized concepts (e.g.,
agricultural airplane), and challenges models to compare objects’ parts, consider
part-whole relationships, and justify textual predictions with visual segmentations.
Our experiments demonstrate significant limitations in state-of-the-art LMMs (e.g.,
LISA-13B achieves only 5.9% gIoU), highlighting a critical gap in their part
grounding abilities. We note that existing segmentation-enabled LMMs (segment-
ing LMMs) have two key architectural shortcomings: they use special [SEG]
tokens not seen during pretraining which induce distribution shift, and they discard
predicted segmentations instead of using past predictions to guide future ones.
To address these deficiencies, we propose PLUM, a novel segmenting LMM that
uses span tagging instead of segmentation tokens and that conditions on prior
predictions in a feedback loop. We find that pretrained PLUM outperforms existing
segmenting LMMs on reasoning segmentation, VQA, and visual hallucination
benchmarks. In addition, PLUM finetuned on our proposed Explanatory Part Seg-
mentation task is competitive with segmenting LMMs trained on significantly more
segmentation data. Our work opens up new avenues towards enabling fine-grained,
grounded visual understanding in LMMs. The code and data are publicly available
at: https://github.com/AnselBlume/partonomy

1 Introduction

Real-world objects can be decomposed into distinctive parts. A banana boat (Fig. 2), for instance,
consists of a seating tube, a handle, a hull, and an inflation valve. Such parts characterize each concept,
differentiating one object from another. The ability to recognize and distinguish between parts is an
important element of holistic object understanding, with applications ranging from explainable object
recognition [3, 16, 28, 8, 58], to part-based novel concept design [10], and robotic manipulation
[52, 30, 14]. Decomposing objects into their key building blocks allows models to reason about
objects at a granular level [16, 29], allowing for more complex and nuanced interactions.

Unfortunately, Large Multimodal Models (LMMs), the backbones of today’s multimodal systems,
lack strong part recognition abilities [16, 29, 33]. While they perform well on visual reasoning
[43, 13, 42] and visual hallucination tasks [23], we find that they are unable to accurately identify
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What visible parts does this banana 
boat have in common with a fishing 
boat?

It has a hull.

Part Intersection

What is the name of this object?

Okay, what parts make this look like a torpedo?

It has a fuel tank, …, and a guidance system.

Whole-to-Part

What parts does this banana boat 
have which a fishing boat does not?
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Part Difference
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A: It has a paddle.
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…
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+

– + +
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Propulsion
Component Spraying Rig Wings Fuel TankFins Guidance System Propeller Warhead

...

...

This is a torpedo.

Figure 1: The PARTONOMY dataset evaluates LMMs’ part understanding through the Explanatory
Part Segmentation task. Given an input image, a segmentation-enabled LMM selects a textual
explanation and generates part segmentation masks which serve as textual and visual rationale for its
answer choice. Our question-answer mutation framework generates challenging answer choices by
predicting part co-occurrence and by selecting parts from confusable objects.

object parts in an image, occasionally regurgitating object parts memorized from text-only pre-training
(e.g. “a fish must have a fin”). Worse, LMMs that can generate segmentation masks, segmenting
LMMs [19, 37, 41, 49], lack the ability to ground these fine-grained regions despite being trained
on part segmentation data. This severely limits LMMs’ utility in real-world scenarios that require
fine-grained, part-level understanding.

To quantify the part recognition abilities of LMMs, we propose Explanatory Part Segmentation, a
task that assesses LMMs’ ability to recognize object parts, associate objects with their distinctive
parts, and use these grounded parts to predict object labels. We then introduce PARTONOMY, a
comprehensive benchmark for the Explanatory Part Segmentation task. We construct PARTONOMY
from existing part segmentation datasets [11, 7, 35] and our manually-annotated evaluation dataset of
1K specialized object-centric images with complex part annotations. This subset, PARTONOMY-Core,
contains 862 distinct part labels—more than any existing part datasets (Table 1).

We then note two shortcomings of existing segmenting LMMs’ architectures [19, 37, 41]. First, they
always rely on special [SEG] tokens not seen during pretraining, potentially hindering downstream
performance by introducing distribution shift. Second, these segmenting LMMs discard their predic-
tions after each output, missing the opportunity to incorporate prior information contained by the
masks they predicted during the decoding process. This design is in contrast to modern generative
frameworks, which condition future predictions on past ones [48, 44]. Based on these observations,
we propose PLUM, a Part-Level Understanding LMM. PLUM uses a text span tagging module
to avoid special segmentation tokens that induce distribution shift from the pre-trained LLM, and
employs a mask feedback mechanism to condition on past predictions (Section 4). Our results show
that pretrained PLUM retains its general reasoning abilities far better than other segmenting LMMs,
achieving stronger zero-shot segmentation performance and competitive finetuned performance to
models trained on significantly more segmentation data.

2 Related Work

Reasoning in Large Multimodal Models Reasoning capabilities in Large Language Models
(LLMs) uncovered by prompting techniques such as Chain-of-Thought (CoT) [51, 18] have led to
increased interest in their application to LMMs [31, 55, 12]. Previous work shows that reasoning
abilities of LLMs allow them to generate textual rationales given image inputs, allowing them to
handle complex visual reasoning tasks such as A-OKVQA [42] and ScienceQA [31]. Nonetheless,
LLMs’ output space is confined to text, limiting their spatial understanding and often leading to
hallucinatory text outputs [26]. While recent efforts on visual compositional reasoning attempt to
mitigate the gap between the text and image modalities in LMMs [54, 55, 32] by using external
modules such as object detectors [6] or code interpreters [46], most attempts don’t truly reflect the
innate visual reasoning capabilities of LMMs. Our proposed model and a recent line of LMMs
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Figure 2: An example of PLUM’s part understanding compared to recent segmenting LMMs trained
on part data.

[19, 37, 41] try to accomplish this by interleaving textual and visual rationale generated through
segmentations.

Segmentation-Enabled Large Multimodal Models LMMs such as LISA [19] and GLaMM [37]
have demonstrated the ability to generate text and grounded segmentation masks. Despite being
trained on part-level segmentation datasets such as PACO [35] and Pascal-Part [9], they struggle to
exhibit a part-level understanding of visual concepts. While they demonstrate the ability to understand
complex textual instructions [19, 37, 41, 53], current LMMs fail to relate concept-indicative parts to
their wholes, as shown in Fig. 2. Frequently, they fail to generate the specialized segmentation token
(e.g., [SEG]) added to their vocabulary, leading to no masks being generated for the parts. Even
state-of-the-art LMMs that seemingly “reason” struggle to establish attributive relationships between
objects and parts, implying that current models and datasets lack the coverage and capacity to handle
complex part understanding and grounding tasks. This observation motivates the proposal of our new
Explanatory Part Segmentation task, which requires LMMs to segment objects’ parts (i.e. producing
visual rationale) while generating the corresponding text rationale.

Part Semantic Segmentation Part segmentation is the task of decomposing objects into their
constituent parts through segmentation [7, 56, 57, 11, 35]. While this task has been studied in open-
vocabulary [24, 25, 59, 40] and multiple segmentation tasks [20], no existing work has evaluated
LMMs’ ability to segment objects’ “concept-indicative” parts—those that help define the object
category. In fact, most recent efforts on segmentation-enabled LMMs focus on concept labels or
referring expressions [37], ignoring part segmentation altogether. Our PARTONOMY dataset, which
includes our manually annotated PARTONOMY-Core evaluation set, integrates existing part-level
segmentation datasets such as PACO [35] and PartImagenet [11] to further the part and object-level
diversity of our benchmark.

3 PARTONOMY: A Dataset for Explanatory Part Segmentation

3.1 Task Overview

We motivate our task definition by characterizing a model with part understanding. First, such a
model should be able to identify parts. Given an image of an object, the model can list visible parts
and ground them in the image. Second, this model should be able to compare and associate object
parts. It recognizes that both dogs and tables have legs, despite their difference in form. On the
other hand, it understands that a passenger plane and a biplane both have wings, but that the biplane’s
double wings are a feature that distinguishes it from other aircraft. Finally, this model should be able
to use its part knowledge to predict object labels based on their parts. Identifying a key feature,
like a large scope, suggests to the model that a rifle is likely a sniper rather than assault rifle.

To evaluate these elements of part understanding, we define the Explanatory Part Segmentation
task. In this task, a model is provided with an image and a question about an object’s parts (e.g.
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Table 1: Comparison between part segmentation datasets. † indicates usage in PARTONOMY. “C”
refers to common objects (e.g. chair, airplane), “O” to organisms (e.g. dogs, snake), and “S”
to specialized objects (e.g. intersecting lines, highway map, fighter jet). PARTONOMY-
Core has over three times as many object labels and four times as many part labels as the widely used
PACO dataset, has more part labels than PartImageNet++ (which has twice as many object labels),
and contains specialized object parts annotated on object-centric images.

Datasets # Object Labels # Part Labels # Object-Part Labels # Images # Seg. Masks Object-Centric
Images

Object
Domain

PASCAL-Part† 20 30 193 10,103 111,960 ✗ C, O

PartImageNet† 158 14 14 24,000 112,000 ✓ C, O
PartImageNet++ 1000 818 3,308 100K 406.4K ✓ C, O

PACO† 75 200 456 84,027 641,000 ✗ C

PARTONOMY-Core† 534 862 1,976 1,068 4,968 ✓ C, O, S
PARTONOMY 606 975 2,507 74,500 407,101 ✓ C, O, S

“What visible parts does the agricultural plane in the image have?” Fig. 1). The model must then
select the best response and generate segmentation masks for the corresponding parts to explain
its selection (e.g. “The agricultural plane has wings, a propulsion component, and a spraying rig”).
Motivated by our characterization of part understanding, we define three classes of questions (Fig. 1):

Part Identification questions ask the LMM to identify then segment an object’s visible parts. These
questions test LMMs’ ability to recognize and ground parts without hallucination.

Part Comparison questions ask the LMM to identify an object’s visible parts and compare or contrast
them to the parts of another object. These questions test models’ knowledge of objects’ common
parts. Concretely, let PI and PC be the parts of an object in the image and the parts of a separate
comparative concept. We define two subtasks:

• Part Intersection. The model is asked which visible parts the object in the image has in
common with a specified query concept, PI ∩ PC , then segments them.

• Part Difference. The model is asked which visible parts the object in the image has which
the query concept does not, PI \ PC , then segments them.

Part-Whole Reasoning asks the LMM to identify an object or its parts as a consequence of the other.
These questions assess whether the model can apply its part knowledge to identify objects, or use an
object to identify its parts. Subtasks include:

• Part-to-Whole: The model is asked to identify and segment an object’s visible parts, and
based on the predicted parts, determine the object label.

• Whole-to-Part: The model is asked to identify the object in the image, and based on the
predicted object, identify and segment its visible parts.

The subtasks assess decomposable object recognition, where an object and its parts each provide
evidence for the other’s identity.

3.2 Dataset Construction

We introduce the PARTONOMY dataset to facilitate training and evaluation on Explanatory Part
Segmentation. PARTONOMY consists of three training and evaluation subsets—PARTONOMY-PACO,
PARTONOMY-PartImageNet, and PARTONOMY-PASCAL Part—which are constructed from their
respective datasets’ part annotations [35, 11, 7]. We further contribute an evaluation-only subset of
1K images of domain-specific objects, which we term PARTONOMY-Core.

PARTONOMY-Core Construction. To construct the PARTONOMY-Core ontology, we start from
broad object categories containing decomposable objects—for example, airplanes, garden tools,
weapons, and boats (details on dataset construction in the Appendix). We then manually select
objects which provide category coverage and which have readily identifiable parts.

With object classes selected, we use the Bing search API to download a preliminary set of object
images, and prompt an LLM (Llama 2-70B [47]) to generate part names for each object which are
visible and specific to that object or category. We manually review each object’s assigned parts,

4



removing those which are not outwardly visible or are not commonly found on the object. Part
annotation proceeds using a combination of CVAT.AI and a mask annotation interface we developed
to streamline the annotation process from multiple annotators2. Parts are further refined and pruned
during the annotation process depending on their visibility and frequency.

Explanatory Part Segmentation Data Generation Pipeline. Our Explanatory Part Segmentation
data generation pipeline is applicable to any part dataset containing object names, part segmentations,
and part names. We start with the ground truth set of object parts for each image and format these in
natural language as the parts the model must identify and ground. For Part Comparison questions,
we sample a separate object class with parts in common with those in the image, then intersect (for
Part Intersection) or subtract (for Part Difference) its parts to form the ground truth set of parts.

After constructing the answer choice with the ground-truth parts, we create incorrect answer choices
for each question. We adopt an answer mutation framework to generate plausible, challenging
wrong answers. For a set of ground truth parts, we repeatedly apply mutation operations which add,
remove, or replace an existing part. This process keeps wrong answers close to the original to require
deep part understanding of the evaluated model. Instead of randomly sampling parts for mutation
operations—which could result in unrelated part additions (e.g. “The airplane in the image has wings,
a row of windows, and an ice cream cone”)—we select those most related to the existing parts and
object. We train logistic regressors on part co-occurrence to predict likely parts given the current set
of parts, and restrict wrong answer parts to those from the same object category, if available (e.g.,
wrong parts for an airplane come from other airplanes’ parts). Challenging wrong object answers for
Part-Whole Reasoning questions are sampled in a similar way, selecting objects with high semantic
similarity to the ground truth object as measured by word embeddings (we use Sentence Transformers
[39] to measure similarity).

Differences from Existing Datasets. PARTONOMY is the only part segmentation dataset designed
for use with VLMs, testing not only part identification but also part reasoning and grounding. The
data generation pipeline’s extensibility and capacity to generate challenging questions serve as an
important asset for future part-based pretraining and evaluation.

PARTONOMY-Core has, to our knowledge, the most part classes of any part segmentation dataset,
with four times the number of part labels of the widely used PACO dataset [35] and more part
labels than PartImageNet++ [22] which has twice as many object classes. It has object-centric
images for consistent evaluation, unlike datasets like PACO, which frequently have partially occluded
objects. PARTONOMY-Core is lightweight to evaluate on, with only 1K images, but covers a wide
range of concepts with balanced instances (2 images per object), more than any dataset other than
PartImageNet++. These qualities, coupled with PARTONOMY-Core’s use of technical domains with
highly-specific objects (e.g., electric coffee grinder, city map, and combat drone), make it a unique
contribution for part segmentation evaluations.

3.3 Evaluation

Explanatory Part Segmentation requires models to choose the correct textual response and segment
parts in the image.

Text Evaluation To evaluate textual part predictions, we prefer a multiple choice over a generative
setting to avoid ambiguities in phrasing—e.g., where the model identifies a clip but the annotations
list the part as a clamp—and incomplete part annotations, e.g., where the model identifies a valid
part that isn’t annotated. We provide the model with one correct and four incorrect answer choices.
Incorrect choices either include non-visible parts or lack visible parts present in the correct response.
We select the predicted answer choice via language modeling probability, as is common in VQA
[2, 21]. For Part-Whole Reasoning questions, we select an answer choice twice in sequence: once to
predict the set of parts, and once to predict the object.

We evaluate answer selection via accuracy (random = 20% for 5 answer choices) for both part
prediction (all questions) and object prediction (Part-Whole Reasoning questions). However, some
wrong answer choices are better than others. Precision and recall capture the similarity of the
predicted parts to the ground truth set, and we adopt these as more fine-grained measurements of part
recognition by the LMMs.

2This interface and the dataset generation pipeline will be released to facilitate future dataset construction.
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Figure 3: Overview of PLUM. PLUM is not dependent on special tokens (e.g., <SEG>) added during
finetuning to generate segmentation masks. PLUM uses a bidirectional span extractor that automati-
cally determines which tokens should be passed to the mask decoder to generate segmentations. A
feedback loop based on SAM’s mask decoder enables PLUM to condition future segmentations on
those past.

Segmentation Evaluation We evaluate part segmentations via gIoU (global IoU), which measures
the average IoU over part annotations [19, 37]. micro-gIoU averages part IoUs over all masks in
the dataset, measuring how well the model segments the most common parts. macro-gIoU averages
part IoUs for each image, then averages these image IoUs over the entire dataset. This metric is less
affected by common parts, measuring how well a model segments parts in general.

4 PLUM: Part-Level Understanding LMM

Shortcomings of LMMs on Part Understanding We find that existing LMMs are unable to accu-
rately identify parts in an image. Even segmenting LMMs [19, 37, 41] trained on part segmentation
datasets such as PACO [35] and Pascal-Part [7] exhibit poor performance on part-level segmentation
(Fig. 4 and Table 2). We identify two key architectural deficiencies of segmenting LMMs: (1)
They rely on special tokens for segmentation (e.g. [SEG] or <p></p>). These tokens are not seen
during pretraining, so we hypothesize that their addition to the vocabulary and subsequent finetuning
perturbs models’ original token distributions (Table 5). (2) They discard prior mask predictions when
segmenting in sequence, conditioning only on past text during generation. Incorporating prior mask
predictions would likely help maintain consistency and better localize future predictions (Fig. 5a).

Proposed Method Based on these observations we propose PLUM, a segmenting LMM with
part-level understanding. PLUM consists of a vision-language model (initialized from LLaVA [28])
which takes image and text inputs, along with a mask decoder (initialized from SAM’s decoder [17])
that generates segmentation masks.

Let hL
i ∈Rd be the VLM’s last-layer embedding of token i (i = 1, . . . , N) of the output sequence.

We process these embeddings along two complementary pathways: (i) the Span Extractor, a
bidirectional self-attention block that tags beginning (B), inside (I), and outside (O) [36] positions
of tokens to segment, and (ii) a projection head that maps B/I embeddings into “mask queries,”
regularized by KL divergence. An overview is given in Fig. 3.

Token-level Query Selection (Span Extractor) The Span Extractor enables the selection of
segmentation-relevant text spans to pass to the mask decoder without the use of a dedicated seg-
mentation token. Given the last-layer token embeddings {hL

i }Ni=1, we apply a two-layer token-wise
MLP before infusing global context by passing the embeddings through a bidirectional Transformer
encoder block. This bidirectional attention is critical for reliable BIO span tagging, as otherwise the
LLM’s causal masking prevents embeddings from seeing future context. A final projection layer
maps these contextualized embeddings to {B, I,O} logits. We train the span extraction module
using cross entropy loss Lspan where B, I tags correspond to part names to segment.
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During inference, contiguous B→ I chains are greedily merged to form text spans that are projected
into segmentation queries. Note, we also enable users of PLUM to override the automatic tags with
manual span selection, enabling interactive, interpretable “highlight-to-segment” behavior.

Query Projection with KL Constraint Let S = {(is, js)}N+

s=1 be the set of contiguous B → I
spans produced by the span extractor, where is and js are the start and end token indices of span s,
and N+ = |S| is the total number of such spans in the sequence. For every span token k ∈ [is, js]
we obtain a “mask-query” vector qk = g(hL

k ) ∈ Rm, with g(·) a learned MLP projection. To keep
the span representations close to the pre-trained backbone VLM’s manifold, we pool the last-layer
embeddings of each span3 and impose a Gaussian KL penalty against the corresponding frozen

teacher embedding tLis:js : LKL = 1
N+

∑N+

s=1

∥∥hL
is:js

−tLis:js

∥∥2

2

2σ2 . This term is applied only to B/I spans,
preventing their hidden states from drifting away from the original language-representation space and
thereby preserving the VLM’s textual reasoning ability.

Mask Feedback Loop To incorporate previously predicted masks into the mask decoding process,
we inject feature-wise linear modulation (FiLM) [34] layers into the SAM decoder’s mask encoder
(Fig. 3). These layers allow us to encode the mask while conditioning on prior text spans, providing
semantics beyond a raw binary mask. We use this modified mask encoder to encode each prior mask
into a stack of text-enhanced feature maps. The stack of feature maps is pooled into a single feature
map via patch-wise attention pooling (over the stack dimension), with a learned feature map providing
an attentional query for each patch. This pooled feature map representing all prior predicted masks is
fed into the mask decoder (along with the pooled text embeddings) to generate the next mask.

Segmentation Mask Generation Tagged token embeddings qk are average pooled and passed to
the mask decoder, generating a mask M̂i. With ground-truth mask Mi we adopt the Focal-Tversky
loss [1], Lseg = 1

N+

∑
yi ̸=O LFT(Mi, M̂i). Focal-Tversky loss is a generalized version of the DICE

loss [45]. This gives the overall objective equal to L = LLM + λ1Lspan + λ2LKL + λ3Lseg + λ4LBCE,
where LLM is the standard language-generation loss and LBCE is per-pixel binary cross-entropy as
adopted from [19]. The BIO head precisely extracts segmentation spans, while the Focal-Tversky
loss, biased toward recall (α=0.7) and precision (β=0.3), encourages sharper, high-IoU masks at
fine-grained image regions. For additional details on the hyperparameter setting, refer to §A.1

5 Experiments

Implementation Details We use a pre-trained LMM, LLaVA-7B, and LLaVA-llama2-13B [28]
as backbones for PLUM (Sec. 4). PLUM follows the consecutive two-stage finetuning process: (1)
PLUM is first finetuned with a randomly sampled mixture of PACO-LVIS [35], Pascal Parts [7],
PartImageNet [11], COCO-Stuff [5], ADE20k [56], the RefCOCO line of datasets [15], a VQA
dataset from LLaVA (llava_instruct_150k), and a Reasoning Segmentation [19] dataset. This
setting is similar to the previous line of segmentation-enabled LMMs [19, 37, 41], and we refer to
the stage-1 checkpoint of PLUM as the zero-shot (or pretrained) baseline throughout this paper. (2)
To further finetune PLUM on our PARTONOMY training dataset, we take PARTONOMY-PACO,
-PartImageNet and -PascalParts to construct a training split and a validation split. Note, we do not
use the PARTONOMY-Core split as training data and use it only as evaluation data. We refer to the
Appendix for additional details on the hyperparameter settings and training details.

Baselines To evaluate PLUM’s proposed changes, we use LISA [19], GLaMM [37], and PixelLM
[41] as our primary baselines. All of these models use LLaVA as the base LMM and use SAM-style
decoders to generate segmentation masks [28, 17].

For segmentation, we also evaluate X-Decoder, SEEM, and Grounded SAM 2 as general open-
vocabulary segmentation models [59, 60, 40, 38]. As they do not understand question-based prompts,
we provide them with the ground truth (gt) parts to segment individually. We also include SegLLM, a
segmenting LMM based on LLaVAv1.5 and HIPIE [27, 50]. HIPIE is a decoder built for multi-scale
and part segmentation, and SegLLM is trained to perform multi-round segmentation on parts, allowing
it to refer back to previously predicted masks. The similarity of this mechanism to our feedback loop
motivates us to include SegLLM as a baseline, despite the imperfect comparison due to its use of a
newer LMM and different mask decoder.

3We use mean pooling; any differentiable pooling operator is admissible.
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Figure 4: Performance (micro/macro gIoU) on PARTONOMY validation splits.

For text evaluations, we include a random baseline (which randomly selects answers) to situate
the models’ part precision and recall. GPT-4o4, a frontier model, provides an upper bound on
performance. GPT-4o has an advantage as it must be provided with all four answer choices at once,
allowing it to take advantage of shortcuts not available to the other models (like identifying the base
answer from which the wrong answer choices are generated).

5.1 Explanatory Part Segmentation

Part Identification and Comparison Questions In Table 2, PLUM outperforms LISA and GLaMM
on all three part-segmentation question types in the zero-shot setting. We attribute this gain to (i)
span-level constraints that keep pre-trained textual semantics intact and (ii) our mask-feedback loop,
which refines each mask using its visual history. By contrast, Table 3 shows only marginal gaps in
text-only metrics (P, R, Acc.). PARTONOMY’s answer choices intentionally contain extensive lexical
overlap, demonstrating the language models’ difficulties in comparing similar answer choices.

Table 2: Explanatory Part Segmentation’s segmentation performance (gIoU) on PARTONOMY-
Core. “ft” = fine-tuned on Partonomy; “gt” = OV segmentation models given ground-truth answers.
Part2Whole and Whole2Part scores are reported only for part prediction.

Methods Extra Seg Data Identification Intersection Difference Part2Whole Whole2Part
micro macro micro macro micro macro micro macro micro macro

Open-Vocabulary Segmentation Models
X-Decoder (gt) [59] – 11.5 13.4 13.5 14.0 11.1 12.4 – – – –
SEEM (gt) [60] – 13.5 15.5 17.1 18.2 12.5 13.8 – – – –
Grounded SAM 2 (gt) [40] – 13.6 16.8 20.6 23.6 14.3 17.1 – – – –

LLaVAv1.5 + HIPIE [27, 50]
SegLLM – 29.6 32.4 32.2 33.8 28.5 30.7 29.4 32.3 29.3 32.2

LLaVA + SAM-style Mask Decoder [28, 17]
LISA-13B [19] ✗ 5.9 7.0 7.1 7.5 6.1 7.1 5.7 6.6 6.0 6.8
PixelLM-13B [41] ✓ 6.8 8.4 4.4 4.8 4.2 4.8 4.6 5.4 6.3 7.8
GLaMM [37] ✓ 5.3 5.9 5.9 6.2 5.2 6.0 4.8 5.6 4.9 5.8
PLUM-13B ✗ 14.5 27.4 23.7 29.9 14.9 24.8 14.3 26.8 15.4 27.5

LISA-13B (ft) ✗ 33.6 35.4 37.0 38.4 30.4 31.6 32.6 34.7 34.3 36.2
PixelLM-13B (ft) ✓ 36.8 35.4 34.7 38.5 11.2 12.1 34.9 33.6 32.9 34.2
GLaMM (ft) ✓ 36.6 38.8 40.3 42.1 33.6 34.8 36.1 38.5 35.7 38.0
PLUM-13B (ft) ✗ 36.2 41.6 42.1 45.9 33.0 39.4 36.7 40.8 36.2 39.8

Part-Whole Reasoning Questions The Part-Whole Reasoning results of Table 2 show that knowing
the object label prior to part segmentation leads to better mask prediction performance—the pretrained
models obtain higher Whole2Part than Part2Whole scores. This suggests that part mask prediction
benefits from object label conditioning. The advantage obtained by object conditioning evaporates
once the models have been trained on sufficient part data, however, as shown by the finetuned models.
Similarly, in Table 3 the models’ increase in object accuracy after conditioning on the object’s parts,
and their increase in part accuracy after conditioning on the object label, underscores the utility of
jointly predicting object labels and parts.

4Specifically, gpt-4o-2024-08-06.
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Table 3: Explanatory Part Segmentation text performance on PARTONOMY-Core. “ft” = fine-
tuned on the Partonomy training sets. P and R denote Precision and Recall; A is multiple-choice
accuracy. OA and PA refer to object and part accuracy for Part2Whole and Whole2Part questions.

Methods Identification Intersection Difference Part2Whole Whole2Part
P R A P R A P R A P R PA OA P R PA OA

LISA-13B [19] 88.4 67.3 21.9 68.5 57.8 47.9 83.2 61.9 24.5 87.2 68.8 25.0 65.4 88.5 68.8 27.2 58.0
PixelLM-13B [41] 90.4 73.6 35.0 66.1 57.0 46.1 83.3 71.1 35.8 87.6 73.6 33.2 60.4 94.5 84.3 57.9 41.2
GLaMM [37] 83.8 89.5 48.6 51.5 69.1 32.3 74.0 81.8 32.9 72.8 93.0 20.1 62.6 74.1 93.2 24.1 50.7
PLUM 86.6 95.6 60.2 49.1 72.7 26.6 73.9 88.8 35.0 85.6 94.5 58.6 71.5 90.6 95.9 70.9 59.3

LISA-13B (ft) 75.5 98.0 30.7 71.8 98.2 35.7 61.0 96.5 27.5 73.1 96.5 23.8 68.8 74.6 97.3 28.0 61.3
PixelLM-13B (ft) 87.2 64.3 16.5 58.3 49.6 36.9 83.3 60.8 22.7 84.8 64.2 16.1 49.9 87.2 66.3 22.1 36.0
GLaMM (ft) 75.9 87.2 30.1 48.1 68.1 26.0 68.6 81.1 21.9 80.4 78.5 31.8 56.3 79.6 78.3 32.0 43.6
PLUM (ft) 82.9 85.0 42.1 53.6 69.9 34.7 73.3 77.8 30.2 81.7 84.0 40.9 60.0 84.8 88.1 46.3 51.2

Random 76.2 76.7 20.0 44.1 54.1 20.0 70.9 73.3 20.0 75.3 76.7 20.0 20.0 75.5 76.5 20.0 20.0
SegLLM 90.6 86.4 51.9 61.7 70.2 47.0 77.1 79.8 73.3 92.3 81.1 48.4 69.7 94.2 89.3 65.3 62.8
GPT-4o 95.6 96.6 81.7 78.9 84.9 70.7 92.1 92.4 72.3 97.7 97.9 89.0 96.5 97.7 97.9 89.2 96.3

5.2 Additional Downstream Tasks and Ablation Study

We further evaluate PLUM on non part-centric downstream tasks to evaluate its generalizability and
whether our choice to omit special [SEG] tokens preserves PLUM’s pretraining knowledge. For
segmentation, we choose the Reasoning Segmentation task [19], which requires the model to reason
about the referenced object before segmenting it. To evaluate PLUM’s general visual reasoning,
we select the Visual Question Answering (VQA) tasks TextVQA [43] and GQA [13], and a visual
hallucination task, POPE [23].

Reasoning Segmentation PLUM demonstrates strong generalization to the Reasoning Segmen-
tation task proposed in [19]. As shown in Table 4, PLUM outperforms existing open-vocabulary
segmentation models such as X-Decoder and OVSeg, and also generates more accurate segmentations
than LISA, the model proposed for the task.

Table 4: Performance on the ReasonSeg benchmark. PLUM outperforms open-vocabulary seg-
mentation models and LISA, the original model trained for reasoning segmentation.

Method gIoU Method gIoU

OVSeg [24] 28.5 LISA-7B [19] 44.4
X-Decoder [59] 22.6 LISA-7B (ft) 52.9
SEEM [60] 25.5 LISA-13B 48.9
Grounded-SAM [40] 26.0 LISA-13B (ft) 56.2
LLaVA1.5-7B + OVSeg 38.2 PLUM-7B (ft) 53.5
LLaVA1.5-13B + OVSeg 37.9 PLUM-13B (ft) 57.3

Table 5: Accuracy (%) on VQA datasets and the POPE hallucination benchmark. Numbers in
parentheses show percentage change relative to the LLaVA-13B backbone. LISA and PixelLM lose
most of their vision-language reasoning abilities upon finetuning for segmentation, whereas PLUM’s
performance increases.

Method TextVQA GQA POPE

LISA-13B [19] 1.58 (−93.1%) 1.33 (−97.4%) 1.87 (−94.1%)
PixelLM-13B [41] 8.37 (−63.4%) 21.72 (−57.6%) 15.29 (−51.9%)
LLaVA-13B [28] 22.84 51.27 31.80

PLUM-13B (ours) 30.11 (+31.8%) 39.18 (−23.6%) 34.65 (+8.9%)

Distribution Shift Induced by Special Tokens To investigate whether PLUM’s removal of special
tokens mitigates distribution shift from LLaVA’s pre-trained representations, we compare PLUM’s
performance on VQA [43, 13, 23] tasks to those of models which use [SEG] tokens and to that of
the base LLaVA model Table 5. To our surprise, the performance of state-of-the-art segmenting
LMMs deteriorates significantly on VQA and visual hallucination [23] tasks. Through inspection, we
find that LISA tends to only generates irrelevant [SEG] tokens. While PixelLM performs somewhat
better, it still suffers due to its use of multiple specialized tokens [41]. In contrast, PLUM outperforms
the other segmenting LMMs, even outperforming the LLaVA backbone on 2/3 tasks. This strong
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performance demonstrates that our paradigm of segmentation through span extraction preserves the
visual reasoning capacity of the LMM.

Figure 5: Ablations (a) The feedback loop and tagging mechanism improve part segmentation on
PARTONOMY-PartImageNet; (b) Varying the KL-constraint weight λKL trades off segmentation
gIoU and TextVQA accuracy.

(a) Ablating key components of PLUM. F stands for the feed-
back loop. LISA has neither feedback loop nor span extractor.

Model(s) micro-gIoU macro-gIoU

LISA-13B 65.6 67.7
LISA-13B (+F ) 66.7 68.6
PLUM-13B (−F ) 61.4 73.9
PLUM-13B 67.9 80.3

(b) Effect of λKL on segmentation (PartIma-
geNet) and visual reasoning (TextVQA).

Ablating Key PLUM Components Removing the iterative mask-feedback loop lowers micro-gIoU
by 9.6% and macro-gIoU by 8%, though the span-based tag extractor alone still beats the LISA-13B
baseline by 8.4% macro-gIoU. When both components are active, PLUM tops LISA by 3.5% (micro)
and 20% (macro), showing that tag extraction broadens long-tail coverage while feedback refines
segmentation accuracy.

Effect of KL Divergence Increasing the KL-alignment weight λKL from 0 to 1.0 steadily trades
segmentation for reasoning: PartImageNet micro-gIoU falls by nearly 20%, whereas TextVQA
accuracy sees a 75% performance improvement. We set λKL = 0.1 in this work.

6 Limitations and Broader Impacts

Limitations Our work advances fine-grained, part-level understanding but still faces several con-
straints. Although PARTONOMY-Core includes the largest number of part labels to date, with
862 categories across 534 objects, it omits some rare or domain-specific parts and lacks the object
diversity of [11]. Expanding its coverage would further enhance LMM comprehension. While
PLUM mitigates major architectural limitations of prior segmenting LMMs via BIO tagging and
a FiLM-based feedback loop, it still struggles with small or ambiguous parts and may not scale
efficiently to high-resolution imagery.

Broader Impacts Part grounding is crucial for compositional visual reasoning and safety-critical
domains such as robotic manipulation, assistive systems, and automated inspection. Such scenarios
require accurate and interpretable part understanding, with mistakes in identifying and the grounding
of parts leading to catastrophic consequences. By introducing PARTONOMY and PLUM, we aim to
foster more reliable and interpretable LMMs. The high computational cost of large segmenting LMMs
also underscores the need for more efficient, sustainable architectures. We hope our benchmark and
analyses inspire continued research toward robust, efficient, and responsible part-grounding methods.

7 Conclusion

We introduce Explanatory Part Segmentation with the PARTONOMY benchmark to evaluate part-level
visual reasoning and segmentation at scale. PARTONOMY spans 606 object labels and 2,507 part
labels; its evaluation split, PARTONOMY-Core, alone contributes 534 objects, 862 unique parts,
1,068 images and 4,968 pixel masks—tripling PACO’s object diversity and quadrupling its part
vocabulary. By analysing current segmentation-enabled LMMs, we pinpoint two systemic flaws—(i)
distribution-shift from pre-trained weights and (ii) discarded visual context—and address them
with PLUM, a span-tagging, mask-feedback LMM that interleaves textual and visual reasoning
without extra tokens. PLUM outperforms fine-tuned LISA-13B on ReasonSeg and adds 31.8%
relative performance improvement on TextVQA compared to the LLaVA-13B backbone. Together,
PARTONOMY and PLUM lay a quantitative and methodological foundation for future research on
fine-grained, compositional, and interpretable multimodal models.
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A Appendix

A.1 Model Setup

Hyperparameter PLUM LISA PixelLM GLaMM

Backbone
Language model LLaMA-2-13B LLaMA-2-13B LLaMA-2-13B LLaMA-2-13B
Vision tower CLIP ViT-L/14 CLIP ViT-L/14 CLIP ViT-L/14 CLIP ViT-L/14
Mask decoder SAM ViT-H SAM ViT-H Conv-U-Net SAM ViT-H

I/O and training schedule
Input resolution (px2) 10242 10242 10242 10242

Max text length 512 512 512 512
Precision bf16 bf16 bf16 bf16
Epochs 25 (0-shot) | 4 (ft) / | 4 (ft) / | 4 (ft) / | 4 (ft)
Batch size 6 6 6 6
Grad. accumulation 10 10 10 10
Effective batch 10× bsz × GPU 10× bsz × GPU 10× bsz × GPU 10× bsz × GPU

Optimizer
Optimizer AdamW AdamW AdamW AdamW
Learning rate 3×10−4 3×10−4 3×10−4 3×10−4

Betas (0.9, 0.95) id. id. id.
Weight decay 0 0 0 0
Gradient clip 1.0 1.0 1.0 1.0

Loss weights
λCE (LM) 1.0 1.0 1.0 1.0
λseg (Dice/FTL) 8.0 (FTL†) 0.5 (Dice) 0.5 (Dice) 0.5 (Dice)
λBCE (mask) 2.0 2.0 2.0 2.0
λKL 0.1 — — —
λcls (BIO) 2.0 — — —
Dice scale factor 103 103 103 103

FTL (α, β) (0.7, 0.3) — — —

Additional Modules
BIO span tagger ✓ — — —
Bidirectional encoder 2048 — — —
Feedback Loop (Temporal Mask Pooler)) ✓ — — —
Trainable SAM parts decoder + prompt-enc. decoder — decoder
LoRA on LM (q,v) r=8, α=16, p=0.05 id. id. id.

Table 6: Hyperparameters used for all experiments. We juxtapose four segmenting LMMs,
including PLUM, against each other to illustrate the hyperparameter differences among the models.
“id.” indicates “identical” to the other model’s setting, “—” indicates “not applicable”, and “bsz”
indicates the batch size the models are trained on. †PLUM defaults to Focal-Tversky loss; when
we ablate it we fall back to standard Dice. ‡Cross-attention is enabled only in ablation runs when
explicitly specified.

Model Training and Evaluation PLUM is optimized in two stages: Stage-0 (“0-shot”) mixes four
publicly-available multi-task corpora—semantic segmentation [35, 11, 7, 56], referring segmentation
[15], visual-question answering and image captioning [28] (9:5:5:1 sampling ratio)—for 25 epochs.
Stage-1 then optionally finetunes on PARTONOMY-PACO, PARTONOMY-PartImageNet, PARTON-
OMY-PascalPart training splits for an additional 4 epochs, and we call this PLUM checkpoint PLUM
(ft) as shown in Tables 2 and 3. We resize every image to 10242 pixels and truncate text to 512
tokens.

Training uses DeepSpeed ZeRO-2 with bf16 precision, a per-GPU batch of 6, and
gradient_accumulation_steps= 10 (effective batch 10× bsz ×NGPU). Weights are updated by
AdamW (β=(0.9, 0.95), no weight-decay) with a peak learning-rate of 3× 10−4, linearly warmed
up for the first 100 optimization steps and clipped to a global norm of 1.0 thereafter.

We freeze the CLIP vision tower and the MM projection layer; all other components are trainable.
The LLaMA decoder receives LoRA adapters on q_proj,v_proj (r=8, α=16, dropout 0.05). On
the vision side we finetune the SAM mask-decoder and, when specified, the prompt-encoder. PLUM’s
additional heads, the bidirectional BIO encoder and the Temporal Mask Pooler for mask feedback
loop, are always optimized.
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Airplane

Attack Agriculture Tankers

Kitchen

Knife Coffee Maker Refrigerator

Landing Gear Spraying Rig Drip Tray Water Tank

Concept-Part Hierarchical Ontology

Question-Answer Mutator Framework

Explanatory Segmentation Tasks

Difference Q: What parts does this {object} have in common with {ground-truth-label} and NOT with {contrastive label}
A: The object has the following parts in common with {ground-truth-label}: {part_1}, ... {part_K}

Input Image

Segmenting LMM

A: The object has the following parts in common with
{ground-truth-label}: {part_1}, ... {part_K}

{part_1}, ... {part_K} → {part_1}, ... {part_K'}

Mutation
OperationsCorrect Answer

{part_1}, ... {part_K}
{part_1}, ... {part_K}

{part_1}, ... {part_K}, {part_K+1}

Deletion

Insertion

Substitution
Positive Seg.

Input Image

Segmenting LMM
(e.g., LISA, GLaMM)

Bottom-Up Task

Intersection
Segmentation

Q: What parts does this {ground-truth-label} have in common with {contrastive label}
A: It has: {part_1}, ... {part_K}

Negative
Segmentation

Q: What parts does this {ground-truth-label} NOT have in common with {contrastive label}
A: It has: {part_1}, ... {part_K}

Whole2Part
Q1: What is the name of this object? 
A1: This is a {predicted-truth label}
Q2: Okay, then what parts make this look like a {predicted-label}?
A2: It has: {part_1}, ... {part_K}

Part2Whole
Q1: What parts of this object highlight its most distinctive parts?
A1: It has: {part_1}, ... {part_K}
Q2: Okay, based on the parts you observed/highlighted, what is the name of this object?
A2: It's a {predicted-truth label}

Figure 6: Illustration of the hierarchical object-part ontology construction in PARTONOMY-Core. We
manually collect 562 object-level concepts and generate part-level concepts using LLM and manually
filter out overlapping parts. Our question-answer mutator then generates challenging answer choices
based on the part set overlap between object-level concepts.

The total loss is a weighted sum of (i) language modeling cross-entropy, (ii) BIO span classification
loss, (iii) Focal-Tversky5 and pixel-wise BCE for masks, (iv) KL divergence to a frozen teacher
snapshot of LLaMA. Loss weights follow Table 6; random seed is fixed to 42.

For model evaluation, we first divide the performance evaluation to two facets: (i) pixel-level mask
prediction evaluation as in Table 2, and (ii) multiple choice answer selection evaluation. Note, for
multiple choice answer selection, we take the argmin over the entropy of each answer choice (i.e., the
argmax over the sequence-level probability of each answer choice), and greedily select the answer
choice with the lowest entropy. For pixel-level mask prediction, we provide the ground-truth answer
choice and their part text (or [SEG] for LISA, PixelLM and GLaMM) so that the models can be
evaluated solely on their mask prediction performance per part text.

B PARTONOMY Construction

Ontology construction For PARTONOMY-Core, we first construct the object-part hierarchy as
illustrated in Figure 6. The hierarchy starts with a set of root-level, superordinate object categories
(e.g., airplane, kitchen tools), where each category contains a set of intermediate object-
level concepts (e.g., agricultural airplane, coffee maker) that fall under each superordinate
category, and part-level concepts which compose the leaf nodes of each object-level concept. We
manually define 10 distinct superordinate concept categories, ranging from generic concepts, e.g.,
vehicle, office supplies, to more complex concepts such as geography6. There are a total of
534 object-level concepts (e.g., banana boat under the boats category) These concepts contain
1976 concept-specific parts (e.g. biplane-wing, or 862 unique part types, each appearing in 1.6
object categories on average. Table 7 shows the full list of object categories with example object
labels.

5Dice loss when focal_tversky=False.
6We thank MIT Lincoln Lab and DARPA for developing an initial category and concept ontology as part of

the DARPA ECOLE effort, which we refine and expand to construct our part-centric ontology.
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Object Category Object Label Examples
airplanes agricultural, fighter jet, ultralight
boats amphibious, barge, submarine
drones firefighting, combat, recreational
garden hose, hand rake, hedge shears
geography airport, hot spring, roadmap
geometry angle, intersecting lines, ray
helicopter attack, medevac, law enforcement
kitchen air fryer, dish brush, soup spoon
office supplies shredder, staple remover, legal envelope
ships aircraft carrier, corvette, oil tanker
tools adjustable wrench, level, vise
vehicles bulldozer, racing car, tricycle
weapons anti-ballistic missile, handgun, sword

Table 7: List of object categories with example object labels from each.

Table 8: Full PARTONOMY statistics after normalizing object and part names across subsets.
For PartImageNet we define an “object” as its category (containing multiple classes), as the parts
are the same across each category. There are more object and part categories in the validation set as
PARTONOMY-Core is evaluation only.

Datasets # Object Labels # Part Labels # Object-Part Labels # Images # Seg. Masks
PARTONOMY (train) 89 216 563 58,706 321,751
PARTONOMY (val) 606 975 2,493 15,794 85,350
PARTONOMY 606 975 2507 74,500 407,101

Image Annotation Our image annotation consists of two stages: (i) Mask annotation with the
first group of annotators; (ii) Mask re-annotation and revision with the second group of annotators
(the authors of this paper) to ensure the quality and correctness of the mask annotation and the parts
associate with each coarse-level concept category. For the first stage of our mask annotation, we
first crawl the images using the object-level and part-level concept names in our ontology hierarchy
as queries and manually annotate masks for each image with human annotators. We assign each
annotator with at least 10 coarse-level concept categories and provide instructions to use an external
image annotation tool7 for the segmentation mask annotation. For the parts with fewer than m
annotations across the dataset, we remove the parts associated with a concept; we set a hard threshold
at m = 5.

Building off of Existing Part Segmentation Datasets Our pipeline allows us to generate questions-
answer pairs from any set of existing part annotations. Therefore, we use the Pascal-Part [7],
PartImageNet [11], and PACO [35] datasets to expand the diversity of our task data. We take the
training splits from each, divide them into training and evaluation sets by images in an 80/20 ratio,
then generate at most one question of each type for each image. Depending on the question type,
number of objects in the image, and the objects’ parts, generating multiple questions for a single
image is possible—however, to maintain dataset balance we cap the number of questions per question
type for each image to one.

The PACO dataset frequently has multiple instances of the same object class in an image. To
disambiguate the referenced object when asked to ground parts of “the object”, we annotate the
images with bounding boxes for those with multiple object instances. We select the object instance
which is largest and which has the most annotated parts for use in our dataset.

Dataset statistics for our merged PARTONOMY dataset, containing all subsets (Pascal Part, PartIma-
geNet, PACO, and PARTONOMY-Core) can be found in Table 8.

7https://www.cvat.ai/

17



C Additional Experiments

To examine how Explanatory Part Segmentation models behave beyond the Partonomy Core split,
we evaluate the same set of systems on three public, large–scale part–segmentation benchmarks that
vary in object vocabulary size and annotation granularity: PACO_LVIS [35], PartImageNet [11], and
PascalParts [7]. The quantitative results are summarized in Tables 9–11. Below we highlight the key
findings.

C.1 Zero-shot generalization

In Tables 9, 10 and 11, we show that PLUM-13B generalizes best without extra segmentation data.
Despite using no part masks during pre-training, PLUM-13B outperforms every other zero-shot model
on all three datasets (e.g., Identification macro-gIoU = 16.0 on PACO_LVIS vs. ≤ 1.1 for baselines;
Difference macro-gIoU = 14.3 vs. ≤ 0.8). The gains are most pronounced on PACO_LVIS—an open-
vocabulary benchmark with 406 object categories—suggesting that PLUM’s part mask-language
alignment carries over to out-of-distribution objects with minimal degradation.

Additional segmentation-supervision helps but is not sufficient. PixelLM-13B and GLaMM leverage
large-scale mask supervision during pre-training (✓in the Extra Seg Data column) and indeed achieve
higher zero-shot scores than LISA-13B on PartImageNet and PascalParts. However, they still fall
far short of PLUM in every metric, indicating that PLUM’s special token-agnostic approach is more
sample-efficient than the additional incorporationg of specialized tokens during segmenting LMM
training.

C.2 Effect of fine-tuning on Partonomy

Fine-tuning on only the Partonomy training split yields double-digit improvements across our
baselines, with three consistent patterns emerging. PLUM (ft) attains the strongest macro-gIoU
scores. It tops all three datasets in Identification and Intersection (e.g., 80.3 and 77.4 on PartImageNet),
and remains within ≤ 2.0 micro-gIoU of the best performer, demonstrating excellent part recall on
rare classes. GLaMM (ft) is highly competitive on micro metrics. GLaMM (ft) slightly edges out
PLUM on Difference-micro for PartImageNet and PascalParts. Nevertheless, the gap in macro-gIoU
(≥ 4.0 gIoU) shows that GLaMM still under-segments uncommon parts. PixelLM-13B (ft) saturates
early without Intersection gains.

C.3 Dataset difficulty and domain shift

PACO_LVIS is the hardest split. Even after fine-tuning, macro-gIoU scores on PACO_LVIS are
20.0 to 30.0 points lower than on PartImageNet, reflecting its long-tailed distribution and heavy
occlusions. PLUM’s lead here (e.g., 9.0 macro-gIoU over GLaMM in Difference) underscores its
robustness to open-vocabulary shift. PartImageNet rewards holistic part coverage. High Identification
and Intersection numbers (e.g., 70.0 to 73.0 macro-gIoU for GLaMM/PLUM) reveal that most
methods can capture coarse part extents when objects are canonical and well-cropped. Nonetheless,
PLUM’s advantage (≈ 9.0 macro-gIoU) suggests better treatment of fine-grained tails (e.g., bird
beaks, insect legs). PascalParts exhibits the largest fine-tuning boost. All models gain > 38.0 macro-
gIoU in Identification after fine-tuning—a potential consequence of its limited category set and
high annotation quality. Here, PLUM (ft) again leads the macro-gIoU metrics, validating that its
robustness.

Table 9: Explanatory Part Segmentation’s segmentation performance (gIoU) on PARTONOMY-
PACO_LVIS. “ft” = fine-tuned on Partonomy; Part2Whole and Whole2Part are not yet reported for
this dataset.

Methods Extra Seg Data Identification Intersection Difference Part2Whole Whole2Part
micro macro micro macro micro macro micro macro micro macro

LISA-13B ✗ 0.8 1.1 1.0 1.2 0.7 0.8 0.8 1.0 0.8 1.1
PixelLM-13B ✓ 0.9 1.1 1.3 1.5 1.3 1.5 1.2 1.5 1.1 1.2
GLaMM [37] ✓ 0.6 0.8 0.6 0.8 0.5 0.6 0.5 0.6 0.5 0.7
PLUM-13B ✗ 6.7 16.0 8.2 17.3 5.2 14.3 – – – –

LISA-13B (ft) ✗ 29.0 30.7 30.6 32.4 26.8 28.0 16.9 15.8 28.4 30.0
PixelLM-13B (ft) ✓ 37.8 40.5 34.8 42.7 36.0 36.5 6.8 8.5 6.8 8.4
GLaMM (ft) [37] ✓ 36.8 39.3 38.9 41.2 34.7 36.7 17.4 16.0 31.0 33.3
PLUM-13B (ft) ✗ 34.5 49.4 35.6 50.8 32.2 46.1 – – – –
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Table 10: Explanatory Part Segmentation’s segmentation performance (gIoU) on PARTONOMY-
PartImageNet. “ft” = fine-tuned on Partonomy; Part2Whole and Whole2Part are not yet reported for
this dataset.

Methods Extra Seg Data Identification Intersection Difference Part2Whole Whole2Part
micro macro micro macro micro macro micro macro micro macro

LISA-13B ✗ 7.4 8.7 7.4 8.5 5.0 5.7 7.3 8.5 7.1 8.3
PixelLM-13B ✓ 8.0 9.4 10.3 12.8 1.5 1.4 1.7 1.8 8.4 10.1
GLaMM [37] ✓ 5.0 6.1 5.3 5.9 3.9 4.6 4.8 5.7 4.4 5.3
PLUM-13B ✗ 25.6 11.6 26.9 12.2 21.7 14.0 – – – –

LISA-13B (ft) ✗ 65.6 67.7 68.4 70.4 60.8 61.5 62.9 65.0 65.3 67.3
PixelLM-13B (ft) ✓ 21.5 35.7 26.2 39.6 18.2 28.7 60.4 63.0 61.2 64.7
GLaMM (ft) [37] ✓ 68.9 70.8 71.2 73.1 64.7 65.4 61.1 64.0 62.9 65.9
PLUM-13B (ft) ✗ 67.9 80.3 70.2 77.4 63.3 60.7 – – – –

Table 11: Explanatory Part Segmentation’s segmentation performance (gIoU) on PARTONOMY-
PascalParts. “ft” = fine-tuned on Partonomy; Part2Whole and Whole2Part are not yet reported for
this dataset.

Methods Extra Seg Data Identification Intersection Difference Part2Whole Whole2Part
micro macro micro macro micro macro micro macro micro macro

LISA-13B ✗ 2.2 2.4 2.4 2.6 1.7 1.8 2.1 2.3 2.1 2.4
PixelLM-13B ✓ 3.6 4.0 3.7 4.1 3.7 4.1 3.5 3.8 3.0 3.2
GLaMM [37] ✓ 2.0 2.1 2.4 2.4 1.2 1.4 1.7 1.8 1.6 1.8
PLUM-13B ✗ 10.8 18.0 8.8 11.6 11.4 10.7 – – – –

LISA-13B (ft) ✗ 42.9 44.6 44.2 46.4 38.2 39.8 37.4 38.7 42.5 44.3
PixelLM-13B (ft) ✓ 39.9 54.1 38.8 55.0 38.8 55.0 37.6 51.5 40.9 42.5
GLaMM (ft) [37] ✓ 48.8 50.6 49.8 52.0 44.6 45.8 40.0 39.9 42.2 41.7
PLUM-13B (ft) ✗ 48.4 64.0 49.3 65.5 44.4 54.0 – – – –

C.4 Additional Ablation Studies

In addition to the main experiments, we conducted several ablations and follow-up analyses. These
studies validate PLUM’s architectural choices, loss formulation, robustness, and dataset design.

Bidirectional attention for BIO tagging. We confirmed that bidirectional attention is critical
for accurate span extraction. Removing it severely degraded “I” tag accuracy on both Parton-
omy–PartImageNet and RefCOCO.

Table 12: Bidirectional attention ablation. Removing bidirectionality collapses span tagging
performance.

Model B-Acc I-Acc O-Acc

PLUM (bi) 98.59 87.32 99.98
PLUM (no bi) 100.00 15.86 99.78
PLUM (bi, RefCOCO) 99.98 99.87 100.00
PLUM (no bi, RefCOCO) 6.68 4.92 99.98

Loss function comparison. To isolate the impact of the Focal–Tversky loss (FTL), we retrained
PLUM with Dice loss under identical conditions.

Table 13: DICE vs. Focal–Tversky. PLUM’s gains stem from its architecture choices; FTL provides
marginal improvement over DICE.

Loss micro-gIoU macro-gIoU B-Acc I-Acc O-Acc

DICE 66.47 79.86 92.99 86.48 99.99
Focal–Tversky 67.90 80.30 98.59 87.32 99.98

Component ablations. We ablated PLUM’s span extractor (SE) and feedback loop (F). Both
contribute independently and jointly yield the best results.
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Feedback loop robustness. While conditioning on past inputs may theoretically introduce error
accumulation, manual inspection showed that even when early masks were incorrect, PLUM’s
feedback loop still produced correct later masks by relying on text embeddings. The loop also
reduced duplicate or overlapping predictions. For example, the model without feedback repeated the
same region for a lizard’s foot and tail, while PLUM with feedback predicted them distinctly.

Computational cost of feedback loop. Timing experiments show that mask prediction is dominated
by the LLM’s forward pass: averaged over 1000 examples, the LLM forward pass took 2.47 seconds,
decoding without a feedback loop took .0097 seconds, and decoding with a feedback loop took .0162
seconds, a .2% increase compared to the language model’s time for its forward pass.

Loss weight sensitivity. We varied the loss weights to verify stability with respect to λKL and λseg.
Performance changed modestly, confirming robustness.

Table 14: Loss weight sensitivity. PLUM is stable; slightly higher λKL improves performance.
λKL λseg λBCE LR gIoU cIoU

2.0 2.0 0.1 3e-4 0.385 0.331
4.0 2.0 0.1 3e-4 0.489 0.506
5.0 2.0 0.1 3e-4 0.517 0.494
6.0 2.0 0.1 3e-4 0.527 0.501
8.0 2.0 0.1 3e-4 0.573 0.546

Overall, these ablations confirm that PLUM’s architectural innovations—bidirectional span extraction,
mask feedback conditioning, and Focal–Tversky optimization—jointly account for its strong fine-
grained segmentation and reasoning capabilities with minimal computational overhead.

C.5 PARTONOMY-Core Samples

Fig. 7 provides an example of each question type for the Explanatory Part Segmentation task from
PARTONOMY-Core.
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(a) An Identification question.

(b) An Intersection question.
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(c) An Difference question.

(d) A Whole-to-Part question.
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(e) A Part-to-Whole question.

Figure 7: Examples of the different question types from the Partonomy-Core dataset.
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