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ABSTRACT

Diffusion models have shown remarkable performance on diverse generation
tasks. Recent work finds that imposing representation alignment on the hidden
states of diffusion networks can both facilitate training convergence and enhance
sampling quality, yet the mechanism driving this synergy remains insufficiently
understood. In this paper, we investigate the connection between self-supervised
spectral representation learning and diffusion generative models through a shared
perspective on perturbation kernels. On the diffusion side, samples (e.g., images,
videos) are produced by reversing a stochastic noise-injection process specified by
Gaussian kernels; on the spectral representation side, spectral embeddings emerge
from contrasting positive and negative relations induced by random perturbation
kernels. Motivated by this, we propose a self-supervised spectral representation
alignment method to facilitate diffusion model training. In addition, we clarify
how joint spectral learning can benefit diffusion training from a geometric per-
spective. Furthermore, we find that the optimization of the spectral alignment
objective is in an equivalent form of diffusion score distillation in the represen-
tation space. Building on these findings, we integrate a spectral regularizer into
diffusion training objectives to improve the performance of diffusion models on
multiple datasets. Experiments across images and 3D point clouds show consis-
tent gains in generation quality.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2021) have demonstrated strong generative capabilities across diverse domains, including images
(Rombach et al., 2022; Dhariwal & Nichol, 2021), videos (Brooks et al., 2024; Bao et al., 2024),
3D shapes Nichol et al. (2022); Zhao et al. (2025), molecules (Hoogeboom et al., 2022), etc. Their
core idea is to reverse a diffusion process defined by a Gaussian perturbation kernel Song et al.
(2021). To achieve this, diffusion models learn to estimate the time-dependent score functions on
perturbed data. Notably, this learning setup closely mirrors self-supervised representation learn-
ing, where models are also trained on data deliberately altered through perturbations or augmen-
tations (HaoChen et al., 2021; Zbontar et al., 2021; Bardes et al., 2022; Sohn, 2016; Oord et al.,
2018; Tian et al., 2020). In both cases, performance hinges on extracting useful structure from
perturbed inputs: self-supervised methods aim to capture universal representations for downstream
tasks, while diffusion models are dependent on appropriate representations to recover clean sam-
ples for the specific generation task. This parallel motivates a key question: Do diffusion models
and self-supervised representation learning share a fundamental connection, and can exploiting it
improve generative modeling?

Recent works have begun to explore the link between diffusion models and self-supervised repre-
sentation learning (Preechakul et al., 2022; Yang et al., 2022; Abstreiter et al., 2021; Mittal et al.,
2022). On the one hand, several studies reuse diffusion models as self-supervised representation
learners (Chen et al., 2024; Xiang et al., 2023; Mukhopadhyay et al., 2023; Zhang et al., 2022),
showing that meaningful features emerge during diffusion training and transfer well to downstream
tasks (Tang et al., 2023; Park et al., 2023). On the other hand, REPA (Yu et al., 2024) takes the op-
posite direction, demonstrating that representation learning can in turn benefit diffusion models. By
aligning the hidden states of denoising networks with clean-image embeddings from pretrained en-
coders such as DINOv2 (Oquab et al., 2023), REPA achieves faster convergence and stronger image
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generation. Nevertheless, REPA relies on representations from external foundation models, which
are often unavailable for other modalities such as point clouds or graphs. Moreover, the broader
intrinsic connection between diffusion and self-supervised learning remains unclear.

In this work, we conduct a pilot study on the synergy between self-supervised representation learning
and diffusion-based generative modeling. Specifically, we focus on spectral representation learning
(SRL) within self-supervised methods, inspired by prior works that admit multiple effective for-
mulations built from perturbation kernels (HaoChen et al., 2021; Deng et al., 2022a; Pfau et al.,
2018). Through the lens of perturbation kernels, we first review and unify the formulations of diffu-
sion models and SRL under a shared stochastic process parameterization (Section 2 and Section 3).
Given that spectral representations preserve neighborhood structure on the underlying data manifold
(Deng et al., 2022a), it is plausible that incorporating spectral representation into diffusion training
can inform the denoising networks of the latent, time-evolving local data geometry, thereby lead-
ing to better generative performance. Motivated by this, we propose a novel training strategy for
diffusion models that regularizes the diffusion model’s intermediate representations to align with
the eigenfunctions of a time-varying kernel integral operator defined by a shared diffusion pertur-
bation kernel (Section 4.1). Moreover, we establish a theoretical duality between representation
learning and generative modeling (Section 4.2). In particular, we show that optimizing our spectral
self-supervised objective is (in gradient) equivalent to diffusion score distillation (Poole et al., 2022)
formulated via a KL divergence. This distributional alignment induces mode-seeking dynamics in
representation space: embeddings are pulled toward their local data distribution and pushed away
from mismatched regions, thereby facilitating the end goal of generative modeling.

Experimentally, our proposed self-supervised spectral representation alignment yields consistent
gains in diffusion training for image generation across four datasets with different data diversity,
scales, and domains. Moreover, on point-cloud generation where pretrained encoders are unavail-
able, it attains strong performance over the baseline method, highlighting the method’s potential to
complex generative settings in which encoder pretraining is impractical.

2 REVIEW DIFFUSION MODELS FROM PERTURBATION KERNELS

In diffusion-based generative models (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021),
data samples x0 ∼ pdata(x0) in d-dimensional space (x0 ∈ Rd) are first transported to a standard
Gaussian distribution by gradually perturbing the original data distribution with random Gaussian
noise. Specifically, the perturbation kernel p0t(xt|x0) is defined as N

(
xt; s(t)x0, s(t)

2σ(t)2I
)
,

where t is the timestep of the diffusion process, s(t) is a scaling coefficient, and σ(t) is the noise
scale at t. Given this perturbation kernel, the SDE of the forward process is determined as follows:

dx = f(t)x dt+ g(t)dwt, (1)

where f(t)x is a drift term, g(t) : R → R is the diffusion coefficient of x, and wt is the standard
Wiener process. The following equations describe the relations between f(t), g(t), s(t), and σ(t),
which illustrate how the SDE can be derived from the perturbation kernel (Karras et al., 2022):

f(t) = ṡ(t)/s(t) g(t) = s(t)
√
2σ̇(t)σ(t). (2)

Conversely, the scaling and noise scale terms in the perturbation kernel p0t can be rewritten with
respect to f(t) and g(t):

s(t) = exp

(∫ t

0

f(ξ)dξ

)
, σ(t) =

√∫ t

0

g(ξ)2

s(ξ)2
dξ. (3)

To sample the original data distribution from a randomly sampled noise, we can reverse the diffusion
process. As introduced in the literature (Song et al., 2021), the reverse process of Equation 1 can be
described as the SDE below:

dx =
[
ft(x)− g(t)2∇x log pt(x)

]
dt+ g(t)dwt, (4)

where pt(x) is the perturbed data distribution evolving over the process time-dependently, and
∇x log pt(x) is a score function which can be estimated by training deep neural networks sϕ to
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match the true scores:

Ldiff(θ) = Et
[
ω(t)Ex0∼pdata, xt∼p0t(xt|x0)

[
∥sθ(xt, t)−∇xt log p0t(xt|x0)∥22

]]
(5)

= Et

[
ω(t)Ex0∼pdata, xt∼p0t(xt|x0)

[∥∥∥∥sϕ(xt, t) + xt − s(t)x0

s(t)2σ(t)2

∥∥∥∥2
2

]]
, (6)

where ω(t) is a time-dependent re-weighting of score-matching losses across different t. Formulat-
ing diffusion processes with perturbation kernels facilitates score matching in the two aspects: 1)
Given x0 and xt, the true scores have analytic expressions. 2) The perturbation kernel p0t allows for
a “simulation-free” forward process, i.e., one can sample xt = s(t)x0 + s(t)σ(t)ϵ without numer-
ically simulating the SDE in Equation 1. Moreover, flow-based diffusion models (Liu et al., 2022)
can be defined by perturbation kernels as well (see Appendix A for the derivation).

3 SPECTRAL REPRESENTATION FROM PERTURBATION KERNELS

In this section, we will revisit a family of self-supervised learning approach that restores data repre-
sentations in the spectral domain of kernels, a.k.a spectral representation learning (SRL). In particu-
lar, we examine Neural Eigenmap (Deng et al., 2022a), which trains a neural network to approximate
the principal eigenfunctions of a kernel integral operator. Solving the resulting eigenvalue problem
then yields representations in the eigenspace. Given a kernel κ(x,x′), the corresponding kernel
integral operator can be defined as:

(Tκh)(x) =
∫
κ(x,x′)h(x′)p(x′)dx′, (7)

where f ∈ L2(X , p), i.e., f is a square-integrable function w.r.t p. X is a support, and p is a
probability distribution defined over the support. Intuitively, this operator can be understood as the
continuous-domain analogue of matrix multiplication. Here, we consider this type of kernel:

κ(x,x′) =
p(x,x′)

p(x)p(x′)
, p(x,x′) = Ex̄∼pdata [p(x|x̄)p(x′|x̄)], (8)

where pdata is a clean data distribution, p(x|x̄) is a data perturbation kernel. Following NeuralEF
(Deng et al., 2022b), Neural Eigenmap reformulates the eigenfunction problem of Tκψj = µψj into
an optimization problem:

max
ψj

Rj,j − α

j−1∑
i=1

R2
i,j , for j = 1, ..,K, (9)

R = Ep(x,x′)

[
ψ(x)ψ(x′)⊤

]
≈ 1

B

B∑
b=1

ψ(xb)ψ(x
′
b)

⊤, (10)

where K is the number of eigenfunctions, ψ(x) =
[
ψ1(x), ..., ψK(x)

]
∈ RK denotes the vector

comprising the first K eigenfunctions evaluated at x, B is the number of data samples, xb and x′
b

are independently sampled from the perturbation kernel p(x|x̄b) conducted on the same clean data
x̄b. We can parameterize ψ by a neural network, and the network parameters θ can be optimized
through the following loss function:

Lef (θ) = −
K∑
j=1

(
ψθ(XB)ψθ(X

′
B)

⊤)
j,j

+ α

K∑
j=1

j−1∑
i=1

(
sg(ψθ(XB))ψθ(X

′
B)

⊤)2
i,j
, (11)

where sg(·) denotes stop-gradient operator that converts its argument as an constant with zero
derivative, α is the coefficient weighting the regularization applied to the upper-triangular elements,
XB = [x1, ...,xB ], X ′

B = [x′
1, ...,x

′
B ] are batched input data, xb and x′

b are perturbed from
the same clean data x̄b for b = 1, ..., B, and B is the batch size for mini-batch training. Thereby
ψθ(XB) is a K × B matrix with the element at j-th row, b-th column representing the j-th eigen-
function evaluated at the b-th data sample in the training batch.
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The loss function in Equation 11 bears a strong resemblance to other contrastive representation
learning objectives (Li et al., 2022; Zbontar et al., 2021). This connection offers a compelling
interpretation: data representations can be encoded through the eigenfunctions of a kernel integral
operator. Specifically, in the Neural Eigenmap framework, the kernel is constructed from positive
pairs obtained via data perturbation, while negative relations among samples perturbed from differ-
ent clean data points are implicitly imposed as orthogonality regularization of eigenfunctions. Those
associated eigenfunctions span a low-dimensional subspace that captures the intrinsic geometry of
the data distribution (Coifman & Lafon, 2006).

The perturbation kernels p(x|x̄) used for SRL are usually designed as composed data augmenta-
tions. For instance, for representation learning on images, p(x|x̄) can be a composition of image
manipulations, such as color jittering, random flip, Gaussian blur, etc. However, there is no restric-
tion for defining p(x|x̄). To study the synergy of SRL and diffusion models, we adopt the same
perturbation kernel in diffusion models, i.e, p0t(xt|x0). Therefore, once the SDE of a diffusion
process is given, a time-dependent perturbation kernel is also determined for SRL.

4 BRIDGING SPECTRAL REPRESENTATIONS AND DIFFUSION MODELS

We have reviewed diffusion models and spectral representations through the lens of perturbation ker-
nels. Motivated by their shared principle of learning from perturbed data, we further develop their
connection. First, we reformulate Neural Eigenmap within the diffusion framework and integrate
spectral representations as a joint training objective to enable self-supervised representation align-
ment during diffusion model training. Second, we show that spectral representation regularization
in our proposed training objective can be interpreted as a special case of diffusion score distillation
(Poole et al., 2022; Zhou et al., 2024).

4.1 NEURAL EIGENMAP REGULARIZER WITH DIFFUSION PERTURBATION KERNELS

Following Yu et al. (2024), we incorporate SRL as a regularizer within diffusion training, providing
self-supervised representation alignment to enhance sampling quality. To establish compatibility
between the two objectives, we first recast spectral learning in terms of the diffusion perturbation
kernel p0t(xt|x0) = N (xt; (1− t)x0, tI) (the one used in rectified flow), where x0 is a clean data
sampled from pdata. Note that our subsequent analysis is insensitive to the specific parameteriza-
tion of the perturbation kernel; the particular choices of s(t) and σ(t) for pdata will not affect our
following discussion. Then, a time-varying normalized joint kernel can be defined as follows:

κt(x,x
′) =

pt(x,x
′)

pt(x)pt(x′)
, pt(x,x

′) = Ex0∼pdata [p0t(xt|x0)p0t(x
′
t|x0)]. (12)

Using this kernel, we further construct its time-varying kernel integral operator Kt:

(Kth)(x) =
∫
κt(x,x

′)h(x′)pt(x
′)dx′. (13)

Since this operator is time-varying, its eigenfunctions also need to be formulated in a time-dependent
manner: Ktψjθ(xt, t) = µtψ

j
θ(xt, t). By putting the the mostK primary eigenfunctions into vectors:

[ψ1
θ(xt, t), · · · , ψKθ (xt, t)], time-varying embeddings are obtained as “multi-scale” representations,

learned for data under different levels of noise. Plugging κt into Neural Eigenmap, we can solve the
eigenfunction problem using the following spectral loss:

Ls(θ) = E t, x0∼pdata
xt,x

′
t∼p0t(xt|x0)

−Tr
(
ψθ(xt, t)ψθ(x

′
t, t)

⊤)+ α

K∑
j=1

j−1∑
i=1

(
sg (ψθ(xt, t))ψθ(x

′
t, t)

⊤)2
i,j

 ,
(14)

where t ∈ (0, 1] is a randomly sampled time step, xt and x′
t are two i.i.d perturbed views of the

same clean data samples x0, and the time-conditioned neural network ψθ(xt, t) parameterizes the
eigenfunctions of Kt. Comparing Ls and Ldiff in Equation 6, both involve sampling random time
steps t and perturbed data xt ∼ p0t(xt|x0), whereas Equation 14 additionally requires an indepen-
dently sampled x′

t. This permits a practical implementation that jointly optimizes the diffusion and
spectral objectives while reusing the same perturbed input, leading to our final training objective:

L(θ, ϕ) = Ldiff(ϕ) + λLs(θ), (15)
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Baseline (t=1.0) Ours (t=1.0) Training Data Baseline (t=1.0) Ours (t=1.0) Training Data

Figure 1: Results on synthetic 2D data distributions. Our method produces a cleaner, more
compact sample distribution than the baseline, with fewer outliers.

where θ denotes parameters of the spectral learner ψθ, ϕ is a set of parameters of diffusion networks,
and λ is the coefficient controlling the strength of the spectral regularization.

Implementation Details. We follow the implementation of representation alignment in REPA:
• Given input xt and x′

t, extract their intermediate hidden states from a chosen layer of the diffu-
sion network as the features to align.

• Feed these states to a shared projection head Pθ′ (θ′ ⊂ θ) to obtain ψθ(xt, t) and ψθ(x′
t, t).

• Evaluate Ls at ψθ(xt, t) and ψθ(x′
t, t), and back-propagate its gradients to update both the dif-

fusion parameters ϕ and the spectral learner parameters θ.
The projection head is a two-layer MLP. We condition it on the timestep, identical to the time mod-
ulation in (Peebles & Xie, 2023). We apply L2-BN at the final layer to enforce a normalization
constraint on the estimated eigenfunctions (Deng et al., 2022b). To stabilize training, we also nor-
malize each output embedding to bound its magnitude.

Geometric Interpretation. The time-dependent embeddings defined by the learned eigenfunc-
tions preserve the local geometry of data points on a latent, time-evolving manifold. This follows
the classical spectral paradigm: in algorithms such as spectral clustering (Ng et al., 2001; Shi & Ma-
lik, 2000) and diffusion maps (Coifman & Lafon, 2006; Coifman et al., 2005; Nadler et al., 2005),
eigenspace embeddings of constructed kernel operators yield coordinates that respect neighborhood
structure and facilitate unsupervised clustering. In our setting, the kernel operator Kt varies with
time via the SDE-defined perturbation (Marshall & Hirn, 2018), and the embeddings ψθ(xt, t) track
the local geometry as it evolves following the diffusion process. In Appendix B, we show that Eu-
clidean distances in the time-dependent eigenspace of Kt approximate the time-varying diffusion
distance (Coifman et al., 2005). This yields multi-scale representations that reflect the intrinsic
geometry at each t: for small t, data remain well separated, so only nearby points have small em-
bedding distances; as t increases and noise dominates, eigenspace distances progressively collapse
and become less discriminative.

In Figure 1, we evaluate on two synthetic 2D distributions using simple MLPs trained either with
a vanilla diffusion loss or with our spectral regularizer. Our method yields cleaner, more compact
samples with markedly fewer out-of-distribution points. On the “2-spirals” data, in particular, it
recovers the fine spiral geometry that the baseline misses. These results illustrate that our proposed
method can better capture the underlying data geometry prior.

4.2 SPECTRAL REPRESENTATION LEARNING AS DIFFUSION SCORE DISTILLATION

We further look into the self-supervised learning objective in Equation 14. Unlike sample-
contrastive methods (e.g., HaoChen et al. (2021)), Eq. 14 does not explicitly construct negative
examples. Consequently, the spectral regularizer belongs to the dimension-contrastive family in
Garrido et al. (2022), which is provably dual to sample-contrastive learning with positives and neg-
atives. From this viewpoint, for a given perturbed sample as an anchor, instances perturbed from
different clean examples can be interpreted as negatives, whereas instances perturbed from the same
clean example play the role of positives. Interestingly, in its dual (sample-contrastive) form, our
spectral regularizer admits a reformulation as diffusion score distillation (Poole et al., 2022).

Proposition 4.1. Minimizing the self-supervised learning objective in Equation 14 via a gradient-
based optimizer is equivalent to minimizing the KL divergence DKL(p

ψθ
t (xt) ∥ p+), as the following

5
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Figure 2: Visualization of Training Progress. We plot FID against training iterations for three
datasets. These results suggest that our representation learning strategy sustains effective optimiza-
tion and mitigates the mid-training stagnation observed in the baseline.

Dataset Model Metric
FID (↓) sFID (↓) IS (↑) Precision (↑) Recall (↑)

ImageNet
(res. = 64)

DiT-L/4 baseline 9.441 7.653 102.069 0.871 0.393
Ours (DiT-L/4) 7.994 7.372 78.366 0.858 0.397

ImageNet
(res. = 256, latent)

DiT-XL/2 baseline 2.508 5.630 247.891 0.822 0.566
REPA (DiT-XL/2) 1.745 5.459 296.726 0.807 0.615
Ours (DiT-XL/2) 2.298 5.510 257.741 0.824 0.570

CIFAR10
(res. = 32)

DiT-S/2 baseline 11.588 10.680 9.042 0.719 0.384
Ours (DiT-S/2) 8.742 6.836 9.174 0.735 0.405

CelebA
(res. = 32)

DiT-S/2 baseline 28.806 20.569 3.431 0.685 0.453
Ours (DiT-S/2) 25.678 20.061 3.388 0.702 0.472

FFHQ
(res. = 64, uncond.)

DiT-S/2 baseline 13.766 21.982 2.997 0.731 0.331
Ours (DiT-S/2) 13.074 21.915 2.998 0.737 0.340

Table 1: Evaluation of image generation across four datasets, with image resolutions and model
sizes adapted accordingly. We report FID as the primary metric, and sFID, Inception Scores, Preci-
sion/Recall as secondary metrics.

identity shows:

∂Ls
∂θ

= Ex∼pt

[
(∇θψθ(x, t))

⊤ ∇ψθ(x,t)Ls
]
≡ ∇θDKL(p

ψθ
t ∥ p+) (16)

where ∇xt
log pψθ

t is equal to the closed-form diffusion scores (Scarvelis et al., 2023) evaluated
over negative samples, and the target score ∇xt

log p+ matches the closed-form diffusion scores
evaluated over positive samples.

Complete steps to show the above proposition are provided in Appendix C. Intuitively, this KL term
measures, at the anchor representation ψθ(xt), the discrepancy between a distribution of negative
samples and a distribution of positive samples. Since our spectral regularizer applies a stop-gradient
to the negatives, minimizing DKL

(
pψθ
t ∥ p+

)
updates θ so that the anchor ψθ(xt) moves to reconcile

the score fields of the positive and negative distributions. The resulting dynamics are mode-seeking
in representation space, tightening clusters of similar samples while pushing dissimilar ones apart.

5 EXPERIMENTS

To validate the effectiveness of guiding diffusion model training via the spectral representation reg-
ularization, we conduct experiments on both image (Section 5.1) and point cloud (Section 5.2) gen-
eration to validate our proposed method.

5.1 IMAGE GENERATION

Dataset. We test our method on CIFAR10 (Krizhevsky et al., 2009), CelebA (Liu et al., 2015),
FFHQ (Karras et al., 2019), ImageNet (Deng et al., 2009) datasets, which are standard datasets used
for training image generation with different data diversity, domain, and scale. For CIFAR10 and
CelebA datasets, we resize images into 32 × 32 resolution. While for FFHQ, images are resized to
64× 64. For ImageNet, we resize images to two different resolutions: 64× 64 and 256× 256. For

6
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ImageNet 256× 256 experiments, each image is further encoded to 32× 32× 4 latents using Stable
Diffusion VAE (Rombach et al., 2022), and latent diffusion models are trained on those encoded
latents. For other image generation tasks, we conduct diffusion model training on pixel space.

Training details. We use DiT (Peebles & Xie, 2023) as the base model and employ the parame-
terization and training objective of rectified flow Liu et al. (2022). For small datasets (CIFAR-10,
CelebA, FFHQ), to mitigate overfitting, we train a small DiT (S, 13M parameters) and patchify im-
ages into 2 × 2 pixel patches (patch size 2). For ImageNet 64 × 64 experiment (models work in
pixel space), we train an L/4 model (558M parameters, patch size 4). For ImageNet 256 × 256 ex-
periment (models work in latent space), we follow the XL/2 configuration of Peebles & Xie (2023),
yielding a 681M-parameter model. Training schedules are adjusted to the dataset scales: S/2 models
on CIFAR-10, CelebA, and FFHQ are trained and evaluated at 70k iterations; ImageNet 64 × 64
models are trained and evaluated at 100k iterations; and the latent ImageNet 256 × 256 model is
trained and evaluated at 400k iterations. Since our spectral regularizer requires an additional batch
of perturbed samples, we halve the base batch size so that each optimizer step processes the same
total number of training examples.

Evaluation protocol and baselines. We evaluate generation quality using Fréchet Inception Dis-
tance (FID) as the primary metric, complemented by sFID, Inception Score (IS), and the preci-
sion/recall pair as secondary measures. All the reported metrics are measured on EMA checkpoints.
For pixel-space diffusion, we compare against a vanilla DiT baseline trained under the same set-
ting with ours except no use of our proposed representation learning loss. To further understand
the effectiveness of our proposed method, for latent diffusion, we also compare against REPA (Yu
et al., 2024), a leading representation-alignment method that leverages encoders pretrained on large-
scale external data, which serves as the upper bound of performance. We employ Euler ODE for
pixel-space generation and SDE Euler-Maruyama sampler for latent-space generation.

Results. As shown in Table 1, using our proposed method for representation learning significantly
improves model performance compared to baselines. These performance gains are consistent across
different datasets, image resolutions, model scales, and whether the diffusion model applies to pixel
or latent spaces. In detail, our method improves FID by 1.5 (15% relatively) on ImageNet with DiT-
L/4, 0.2 (8% relatively) on ImageNet with DiT-XL/2, 2.8 (25% relatively) on CIFAR10, 3.1 (11%
relatively) on CelebA, and 0.7 (5% relatively) on FFHQ. For latent-space generation, REPA attains
the best results, while our method ranks between the baseline and REPA without using any external
pretrained encoder. We also include the evaluation results at different training stages. As shown in
Figure 2, our method achieves consistently better performance in the second half of training.

5.2 POINT CLOUD GENERATION

Dataset. Following prior work (Yang et al., 2019; Mo et al., 2023), we use the ShapeNet (Chang
et al., 2015) Chair, Airplane, and Car categories with the same preprocessing and data split as Yang
et al. (2019). We sample 2,048 points for each shape instance.

Training details. For each subset, we use DiT-3D model (Mo et al., 2023) as the base model,
which employs 3D window attention in transformer blocks. As the dataset of 3D shapes is relatively
small, we use the S/4 configuration (33M parameters, patch size 4). We train the models on each
shape category for 10k iterations. We use the same batch-size scheme as in the image-generation
experiments.

Evaluation protocol and baseline. We follow DiT-3D to evaluate the generated samples with
1-nearest neighbor accuracy (1-NNA) and generated sample coverage (COV). To evaluate 1-NNA,
we combine the generated and real samples, use chamfer distance (CD) or earth mover’s distance
(EMD) to retrieve the most similar sample for each generated sample, and calculate binary clas-
sification accuracy of whether the retrieved sample is generated or real (the lower the better). To
calculate COV, for each generated shape, we use CD or EMD to retrieve its nearest neighbor in
the real data set. After finishing calculation of all generated shapes, we measure the ratio of real
reference shape got matched to measure generation diversity (the higher the better).
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Figure 3: Visualization of point cloud generation results. We include generated samples on air-
planes (top two rows, generated when model trained with 3K iterations) and chairs (bottom two
rows, generated when model trained with 5k iterations).

Dataset Iteration Model 1-NNA (↓) COV (↑)

CD EMD CD EMD

Chair
5K DiT 3D-S/4 baseline 0.850 0.875 0.295 0.221

Ours (DiT 3D-S/4) 0.583 0.627 0.488 0.493

10K DiT 3D-S/4 baseline 0.565 0.545 0.504 0.511
Ours (DiT 3D-S/4) 0.520 0.527 0.517 0.543

Airplane
5K DiT 3D-S/4 baseline 0.714 0.668 0.522 0.519

Ours (DiT 3D-S/4) 0.601 0.556 0.561 0.523

10K DiT 3D-S/4 baseline 0.852 0.785 0.397 0.389
Ours (DiT 3D-S/4) 0.607 0.562 0.570 0.600

Car
5K DiT 3D-S/4 baseline 0.788 0.738 0.378 0.482

Ours (DiT 3D-S/4) 0.605 0.586 0.458 0.549

10K DiT 3D-S/4 baseline 0.730 0.682 0.427 0.427
Ours (DiT 3D-S/4) 0.582 0.500 0.505 0.573

Table 2: Evaluation of 3D point cloud generation on three subsets of ShapeNet objects. We
include 1-NNA and COV computed by either using chamfer distance (CD) or earth mover’s distance
(EMD) as the criterion for shape retrieval.

Qualitative results. Figure 3 shows comparisons between generated point clouds of our method
and the baseline in “Car” and “Airplane” categories. Our method demonstrates significantly faster
convergence compared to DiT-3D. At an early training stage (3k iterations for airplanes and 5k
iterations for chairs), the generations from DiT-3D remain noisy and fragmented, producing messy
point distributions without clear geometric structure. In contrast, our approach already produces
compact and coherent point clouds that exhibit well-defined shapes with fine-grained details.

Quantitative results. Table 2 presents the point cloud generation evaluation results, where our
method consistently demonstrates both faster convergence and superior final performance compared
to the DiT 3D-S/4 baseline. Notably, after only 5K iterations, our approach already achieves sub-
stantial improvements across all datasets. For instance, on the Chair dataset, the 1-NNA (CD/EMD)
drops from 0.850/0.875 to 0.583/0.627 (31% and 28% relative improvement, respectively), while
the COV (CD/EMD) rises from 0.295/0.221 to 0.488/0.493 (65% and 123% relative improvement,
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respectively). Similar trends are observed for Airplane and Car, where our model attains a lower
1-NNA and a higher COV at the early stage of training, highlighting its ability to converge more
rapidly. With longer training, our method further improves upon these gains, achieving the best
overall results across all metrics. These results clearly indicate that our approach not only converges
faster with fewer iterations but also achieves better quality and diversity of generated shapes upon
full convergence.

6 RELATED WORK

Improving Representations in Diffusion Models. Recent work strengthens diffusion by enhanc-
ing internal representations. REPA (Yu et al., 2024) aligns denoiser features to pretrained vision
encoders (e.g., DINOv2), accelerating convergence and improving sample quality. Its extensions
include U-REPA for U-Nets (Tian et al., 2025), REPA-E for joint VAE training (Leng et al., 2025),
VideoREPA for video (Zhang et al., 2025), and VAE-side alignment (Yao et al., 2025). REG (Wu
et al., 2025) introduces a global semantic token to mitigate the lack of alignment at test time, and
HASTE (Wang et al., 2025) adds holistic representation/attention alignment with an alignment-
termination criterion to further speed training. However, these approaches assume access to strong
foundation encoders, an assumption often violated in resource-constrained domains (e.g., 3D shapes,
proteins). Relatedly, You et al. (2023) leverages small-scale category labels, incurring additional an-
notation cost.

A more relevant line of work builds on the connection between self-supervised representation
learning and diffusion models. Early works in this direction aim to understand the internal rep-
resentations of self-supervised diffusion models (Park et al., 2023; Preechakul et al., 2022; Mittal
et al., 2022; Chen et al., 2024; Xiang et al., 2023; Mukhopadhyay et al., 2023; Hudson et al., 2024;
Li et al., 2025). They show that hidden activations in different time steps encode semantically mean-
ingful information that can be linearly manipulated for image editing and analysis (Park et al., 2023;
Tang et al., 2023). Stoica et al. (2025) applies contrastive learning on flow trajectories, improving
the uniqueness of flows. A concurrent study (Wang & He, 2025) introduces a dispersive loss that
encourages internal representations of different samples to spread apart. While empirically effective,
this advance offers primarily an intuitive, self-supervised rationale for improving diffusion models.

Self-supervised representation learning. Contrastive learning has emerged as a dominant
paradigm for self-supervised visual representation learning (HaoChen et al., 2021; Wang & Isola,
2020; Tian et al., 2020). Early frameworks such as SimCLR (Chen et al., 2020) and MoCo (He
et al., 2020; Chen et al., 2021) establish the importance of instance discrimination with large-scale
negative sampling. Subsequent works remove the need for negatives, including BYOL (Grill et al.,
2020) and SimSiam (Chen & He, 2021), showing that representation quality can emerge purely from
positive-pair consistency. Other approaches reformulate contrastive learning through clustering and
redundancy reduction, such as SwAV (Caron et al., 2020), Barlow Twins (Zbontar et al., 2021), and
VICReg (Bardes et al., 2022). More recently, DINO (Caron et al., 2021; Oquab et al., 2023; Siméoni
et al., 2025) advanced self-distillation with vision transformers, producing strong transferable fea-
tures that have become standard teachers for aligning diffusion models. Collectively, these methods
provide the foundation for self-supervised representation alignment in generative models.

7 CONCLUSION

In this work, we investigate the connection between self-supervised spectral representation learning
and diffusion models through the shared lens of perturbation kernels. Leveraging this alignment, we
introduce a spectral representation alignment approach to diffusion models, offer a geometric inter-
pretation of why joint spectral learning benefits diffusion training, and establish its equivalence to
diffusion score distillation in representation space. Integrating the resulting spectral regularizer into
standard diffusion objectives yields consistent gains on image and 3D point cloud generation. These
findings suggest a practical, principled path for further exploring the synergy between diffusion
modeling and representation learning.
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THE USE OF LARGE LANGUAGE MODELS

Large language models were used solely for sentence-level proofreading and typographical correc-
tion. All research conception and manuscript writing were conducted by the authors.

REPRODUCIBILITY STATEMENT

We include our experiment details in Section 5. Complete derivations and proofs are provided in
Appendix B and Appendix C.
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Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. arXiv
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A PERTURBATION KERNELS OF CLASSIC DIFFUSION MODELS

Rectified Flow. We show how to derive the forward SDE of rectified flow (Liu et al., 2022) from
its perturbation kernel. Note that, the forward process in the original rectified flow is originally
defined as xt = (1 − t)x0 + tϵ, x0 ∼ pdata, ϵ ∼ N (0, I). It appears this forward process is a
linear interpolation between random noise and clean data samples, rather than in the form of SDE.
In fact, it can be rewritten as an SDE using the perturbation kernel defined by the interpolation:
p0t(xt|x0) = N (xt; (1 − t)x0, tI). Then, s(t) = 1 − t, σ(t) = t

1−t . By Equation 2, f(t) =

− 1
1−t , g(t) =

√
2t
1−t . Then, we can write down the forward SDE as:

dx = − 1

1− t
x dt+

√
2t

1− t
dwt. (17)

The corresponding reverse SDE is:

dx =

[
− 1

1− t
x− 2t

1− t
∇x log pt(x)

]
dt+

√
2t

1− t
dwt. (18)

This SDE can be further converted into an ODE that preserves the marginal distribution pt(x):

dx = − 1

1− t
[x+ t∇x log pt(x)]︸ ︷︷ ︸

velocity field: vt(x)

dt, (19)

which yields the velocity field directly adopted in the original rectified flow approach. This relation
between the score function and the velocity field in rectified flow is also shown in CFDM (Scarvelis
et al., 2023).

B GEOMETRIC INTERPRETATION OF REPRESENTATIONS IN EIGENSPACE

In this section, we aim to give an interpretation of the representation learned from the diffusion
process. Suppose all data points form a manifold M. To find the similarity between data points
on the manifold, diffusion distance is a metric measuring the probabilistic connectivity between
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two data points via a random walk. Following the definition in Coifman & Lafon (2006), diffusion
distance can be written as:

D2
t (x,x

′) =

∫
M

[
p0t(x | y)
pt(x)

− p0t(x
′ | y)

pt(x′)

]2
p0(y) dy (20)

This diffusion distance is equivalent to the following one with respect to κt(x,x′):

D2
κt
(x,x′) =

∫
M

[κt(x,y)− κt(x
′,y)]

2
pt(y) dy (21)

To see this, we can rewrite Equation 20 as:

D2
t (x,x

′) =

∫
M

[(
p0t(x | y)
pt(x)

)2

+

(
p0t(x

′ | y)
pt(x′)

)2

− 2
p0t(x | y)p0t(x′ | y)

pt(x)pt(x′)

]
p0(y)dy (22)

=

∫
M

p20t(x | y)
p2t (x)

p0(y)dy +

∫
M

p20t(x
′ | y)

p2t (x
′)

p0(y)dy − 2

∫
M

p0t(x | y)p0t(x′ | y)
pt(x)pt(x′)

p0(y) dy

(23)

= κt(x,x) + κt(x
′,x′)− 2κt(x,x

′) (24)
Next, Equation 21 can be expanded into the following equation:

D2
κt
(x,x′) =

∫
κ2t (x,y)pt(y) dy +

∫
κ2t (x

′,y)pt(y) dy − 2

∫
κt(x

′,y)κt(x,y)pt(y) dy︸ ︷︷ ︸
I1

(25)
To show the equivalence, we begin with the simplification of the integral I1:

I1 :=

∫
κt(x

′,y)κt(x,y)pt(y) dy (26)

=

∫ ∫
p0t(x

′|w)p0t(y|w)p0(w)dw

pt(x′)pt(y)

∫
p0t(x|u)p0t(y|u)p0(u)du

pt(x)pt(y)
pt(y)dy (27)

=
1

pt(x)pt(x′)

∫ ∫
p0t(x

′|w)p0t(y|w)p0(w)dw

∫
p0t(x|u)p0t(y|u)p0(u)du

1

pt(y)
dy

(28)

=
1

pt(x)pt(x′)

∫∫∫
p0t(x

′|w)p0t(y|w)p0(w)p0t(x|u)p0t(y|u)p0(u)
1

pt(y)
dwdudy (29)

=
1

pt(x)pt(x′)

∫
[p0t(x

′|w)p0(w)] [p0t(x|u)p0(u)]
[∫

p0t(y|w)p0t(y|u)
1

pt(y)
dy

]
︸ ︷︷ ︸

I2

dwdu

(30)

In fact, the inner integral I2 is equal to 1
p0(w)δ(w − u) by Bayes’ rule:

I2 =

∫
pt0(w|y)pt(y)p0t(y|u)

p0(w)pt(y)
dy =

1

p0(w)

∫
pt0(w|y)p0t(y|u)dy (31)

By Chapman-Kolmogorov equation, we have:

I2 =
1

p0(w)

∫
pt0(w|y)p0t(y|u)dy =

1

p0(w)
pt→t(w|u) = 1

p0(w)
δ(w − u) (32)

Then, we can substitute the simplified result of I2 to the Equation 30:

I1 =
1

pt(x)pt(x′)

∫
[p0t(x

′|w)p0(w)] [p0t(x|u)p0(u)]
1

p0(w)
δ(w − u)dwdu (33)

=
1

pt(x)pt(x′)

∫
[p0t(x

′|w)p0(w)] [p0t(x|w)p0(w)]
1

p0(w)
dw (34)

=
1

pt(x)pt(x′)

∫
p0t(x

′|w)p0t(x|w)p0(w)dw (35)

=
Ew[p0t(x

′|w)p0t(x|w)]

pt(x)pt(x′)
= κt(x,x

′) (36)
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The other two integrals in Equation 25 can be treated as special cases of I1. Thus, we can finally
approach the desired equivalence of Equation 20 and Equation 21:

D2
κt
(x,x′) =

∫
M

[κt(x,y)− κt(x
′,y)]

2
pt(y) dy (37)

= κt(x,x) + κt(x
′,x′)− 2κt(x,x

′) = D2
t (x,x

′) (38)

By Mercer’s theorem, since κt(x,x′) is symmetric and positive definite, we have the following
expansion of κt(x,x′):

κt(x,x
′) =

∞∑
l=0

λt,lψt,l(x)ψt,l(x
′), (39)

where ψt,l(x) is the l-th eigenfunction of the integral operator Kt. Note that {ψt,l(x)}l is a set of
orthonormal functions, where ψt,l(x) is corresponding to the l-th largest eigenvalue λt,l(x):

δlm =

∫
ψt,l(w)ψt,m(w)pt(w)dw =

{
1, l = m,

0, l ̸= m
. (40)

We can further use this set of orthonormal eigenfunctions to represent the diffusion distance:

D2
t (x,x

′) =

∫
[κt(x,w)− κt(x

′,w)]
2
pt(w) dw (41)

=

∫ [ ∞∑
l=0

λt,lψt,l(x)ψt,l(w)−
∞∑
m=0

λt,mψt,m(x′)ψt,m(w)

]2

pt(w) dw (42)

=

∫ [ ∞∑
l=0

λt,l (ψt,l(x)− ψt,l(x
′))ψt,l(w)

]2

pt(w) dw (43)

=

∫  ∞∑
l,m=0

λt,lλt,m [ψt,l(x)− ψt,l(x
′)] [ψt,m(x)− ψt,m(x′)]ψt,l(w)ψt,m(w)pt(w)

 dw
(44)

=

∞∑
l,m=0

λt,lλt,m [ψt,l(x)− ψt,l(x
′)] [ψt,m(x)− ψt,m(x′)]

∫
ψt,l(w)ψt,m(w)pt(w)dw

(45)

=

∞∑
l,m=0

λt,lλt,m [ψt,l(x)− ψt,l(x
′)] [ψt,m(x)− ψt,m(x′)] δlm (46)

=

∞∑
l=0

λ2t,l [ψt,l(x)− ψt,l(x
′)]

2 (47)

By constructing the firstK eigenfunctions as an embedding: ξt(x) = [λt,0ψt,0(x), ..., λKψt,K(x)],
the L2 distance between ξt(x) and ξt(x

′) approximates the diffusion distance between x and x′ on
the manifold evolved at t. Therefore, applying Neural Eigenmap objectives to regularize diffusion
model training can be interpreted as

enforcing time-evolving geometric structure on the intermediate hidden states of networks. This
geometric regularization guides the model to denoise data with varying perturbations in a consistent
manner, which is expected to alleviate the training challenges in diffusion models.

C DUALITY OF SPECTRAL REPRESENTATION LEARNING AND
CLOSED-FORM DIFFUSION SCORE DISTILLATION

We adopt the result of Garrido et al. (2022) that dimension-contrastive and sample-contrastive self-
supervised objectives are equivalent when representation embeddings are normalized across chan-
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nels and mini-batches. The spectral regularization can finally have this equivalent form:

min
θ

−
B∑
i=1

ψθ(xi, t)
⊤ψθ(x

′
i, t) +

B∑
i=1

∑
j ̸=i

ψθ(xi, t)
⊤ψθ(xj , t) (48)

⇔ min
θ

−
B∑
i=1

(
ψθ(xi, t)

⊤ψθ(x
′
i, t)

τ

)
+

B∑
i=1

log

∑
j ̸=i

exp

(
ψθ(xi, t)

⊤ψθ(xj , t)

τ

) , (49)

where τ denotes a temperature hyperparameter. As the spectral embedding ψ(xi, t) is normalized,
the above optimization problem can be further re-written as the following one:

min
θ

−
B∑
i=1

log

[
exp

(
−∥ψθ(xi, t)− ψθ(x

′
i, t)∥22

τ

)]
︸ ︷︷ ︸

:=L+
s

(50)

+

B∑
i=1

log

∑
j ̸=i

exp

(
−∥ψθ(xi, t)− ψθ(xj , t)∥22

τ

)
︸ ︷︷ ︸

:=L−
s

, (51)

where we transform the dot product operations to L2 distance. Interestingly, when ψθ(xj , t) in L−
s

and ψθ(x′
i, t) in L+

s are detached from gradient propagation (which is true in our adopt NeuralEF
(Deng et al., 2022b) approach), their derivatives regarding ψθ(xi, t) are in the similar form of batch-
wise closed-form score of diffusion models in the representation embedding space:

∇ψθ(xi,t)L
+
s =

2

τ
(ψθ(xi, t)− ψθ(x

′
i, t)) (52)

∇ψθ(xi,t)L
−
s =

2

τ

∑
k ̸=i

exp
(
−∥ψθ(xi, t)− ψθ(xk, t)∥22/τ

)∑
j ̸=i exp (−∥ψθ(xi, t)− ψθ(xj , t)∥22/τ)

(ψθ(xk, t)− ψθ(xi, t)) (53)

The gradient expressions in Equation 53 and 52 resemble the closed-form score of diffusion mod-
els (Scarvelis et al., 2023). Given a training set D = {xi}Di=0 with D samples, the closed-form
expression of the score function under the rectified flow formulation can be written as:

∇z log pt(z) =
1

t2

D∑
k=1

exp
(
−∥z − (1− t)xk∥22/2t2

)∑D
j=1 exp (−∥z − (1− t)xj∥22/2t2)

((1− t)xk − z) , (54)

where z = (1− t)x+ tϵ, x ∼ D, ϵ ∼ N (0, I), ∀t ∈ (0, 1]. By comparing equations 54 and 53: the
temperature τ can be seen as 2t2, the counterparts of ψθ(xk, t) in the numerator and ψθ(xj , t) in the
denominator are (1− t)xk and (1− t)xj , and data samples for evaluating the gradient in Equation
53 are those negative samples. The notation in Equation 52 is defined analogously; the difference is
that the score is evaluated at a single positive sample.

In this sense, the total derivative ∂Ls/∂ψθ(xi, t) = ∇ψθ(xi,t)L+
s + ∇ψθ(xi,t)L−

s is a score func-
tion evaluated on a sampled data batch. Intuitively, ∇ψθ(xi,t)L−

s points at the direction which is
a weighted sum of displacement vectors from ψθ(xi, t) to ψθ(xk, t) for all k ̸= i, k ∈ [B]. The
pairwise weights decrease with the squared L2 distances and are normalized by the softmax func-
tion. Once ψθ is learned to represent eigenfunctions, the displacement vectors are weighted by the
diffusion distance (without eigenvalue weighting) of data samples (see Appendix ??). Conversely,
∇ψθ(xi,t)L+

s points away from the positive sample’s representation ψθ(x′
i, t), akin to the negative-

prompting in diffusion models.

Next, we can show that optimizing our spectral regularization term is actually conducting a score
distillation. For x ∼ pt(x), ψθ(·, t) can be seen as a generator: ψθ(x, t) ∼ pψθ

t , where pψθ
t is a latent

distribution of spectral embeddings. A score distillation step from pψθ
t to a target distribution ptarget

can be achieved by minimizing their KL divergence through a gradient-based optimizer. Specifically,
the gradient of KL divergence w.r.t θ is:

∇θDKL(p
ψθ
t ∥ ptarget) = Ex∼pt

[
(∇θψθ(x, t))

⊤
(
∇ψθ(x,t) log p

ψθ
t −∇ψθ(x,t) log ptarget

)]
(55)
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Let ptarget be a Gaussian mixture centered at positive samples with bandwidth τ (in our case,
there is only one positive sample), and model the latent distribution pψθ

t as a Gaussian mixture
over negative samples with the same bandwidth τ , we have ∇ψθ(x,t) log p

ψθ
t = ∇ψθ(xi,t)L−

s and
∇ψθ(x,t) log ptarget = −∇ψθ(xi,t)L+

s .

Therefore, the gradient of the score distillation step turns out to be:

∇θDKL(p
ψθ
t ∥ ptarget) = Ex∼pt

[
(∇θψθ(x, t))

⊤ (
∇ψθ(x,t)L

−
s +∇ψθ(x,t)L

+
s

)]
(56)

= Ex∼pt

[
(∇θψθ(x, t))

⊤ ∇ψθ(x,t)Ls
]

(57)

By the chain rule, the gradient of the original spectral representation objective w.r.t θ is:

∂Ls
∂θ

= Ex∼pt

[
(∇θψθ(x, t))

⊤ ∇ψθ(x,t)Ls
]
≡ ∇θDKL(p

ψθ
t ∥ ptarget) (58)

This concludes the proof that shows optimizing the spectral representation regularizer is performing
diffusion score distillation.
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