OBJECT 3DIT:
Language-guided 3D-aware Image Editing
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Figure 1: We present 3DIT, a model to edit individual objects in the context of a rich scene with
language conditioning. 3DIT is able to effectively edit objects while considering their scale and
viewpoint, is able to add, remove and edit shadows to be consistent with the scene lighting and is
able to account for object occlusions. Training on our new benchmark OBJECT, 3DIT remarkably
generalizes to images in the CLEVR dataset as well as the real world.

Abstract

Existing image editing tools, while powerful, typically disregard the underlying 3D
geometry from which the image is projected. As a result, edits made using these
tools may become detached from the geometry and lighting conditions that are at
the foundation of the image formation process. In this work, we formulate the new
task of language-guided 3D-aware editing, where objects in an image should be
edited according to a language instruction in context of the underlying 3D scene.
To promote progress towards this goal, we release OBJECT: a dataset consisting
of 400K editing examples created from procedurally generated 3D scenes. Each
example consists of an input image, editing instruction in language, and the edited
image. We also introduce 3DIT: single and multi-task models for four editing
tasks. Our models show impressive abilities to understand the 3D composition
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of entire scenes, factoring in surrounding objects, surfaces, lighting conditions,
shadows, and physically-plausible object configurations. Surprisingly, training
on only synthetic scenes from OBJECT, editing capabilities of 3DIT generalize
to real-world images. More information can be found on the project page at
https://prior.allenai.org/projects/object-edit.

1 Introduction

In today’s visually-oriented society, the art of image editing has become an indispensable necessity.
With the proliferation of camera phones and influences from social media platforms, amateur photog-
raphers want to transform ordinary snapshots into visual masterpieces. Unfortunately, the process
of image editing is still in its infancy. Professional tools such as Photoshop allow pixel-level edits
that can adjust lighting, insert objects, remove clutter, and introduce new shadows; however, these
tools, with their steep learning curves are often daunting for novices. With the hopes of pulling image
editors out from the minutiae of painstaking pixel-level edits, generative models have been heralded
as a promise for object-level edits [57, 158} 131} 152].

Unfortunately, object-centric editing—translating or rotating an object while preserving the 3D
geometry of the original photograph—is out of reach for generative models [29, 25, [73 47, [70].
Although recent strides can take a segmented object and rotate and translate it, they typically operate
on objects in isolation and often disregard any scene and lighting context [47} 54, [70]. Others require
multiple viewpoints to reconstruct an object in 3D [6} 25, [73]]. There is a need for models that can
edit objects from a single image while preserving the structure of 3D objects and re-render shadows
for the edited scene with the original lighting conditions.

To enable 3D-aware editing of objects in an image, we introduce OBJECT, Objaverse Editing
in ContexT, a large-scale benchmark to train and evaluate language-conditioned models that edit
objects in images. We develop OBJECT by combining Objaverse [[14]], a recent 3D asset library,
and Blender [12]], a 3D rendering engine. OBJECT contains 400k editing examples derived from
procedurally generated 3D scenes. Scenes consist of up to four objects, chosen from 59k unique
objects, placed on a flat textured surface with an environment lighting map, a three-point lighting
system that moves with the camera, and a directional light. As shown in Figure|l} we support four
types of object edits: (a) translation across the surface; (b) rotating around the axis orthogonal to
the surface; (c) inserting new objects; and (d) removing existing ones. Our 3D rendering engine
ensures that all edits are physically plausible and the generated images capture realistic changes in
3D geometry, illumination, and shading resulting from the underlying edit. For instance, rotation and
translation require maintaining contact with the surface; inserting new objects requires identifying
stable supported poses for new objects; and removing objects often requires rendering occluded
objects. Each image contains a language instruction describing one of the four edits and a resulting
ground truth edited image. Edited images are evaluated using quantitative metrics that capture realism
and faithfulness to the ground truth.

We also introduce 3DIT (3D-aware Diffusion Image-editing with Text), a model which supports
each of the four manipulation tasks with language conditioning. 3DIT is initialized with the
Zero-1-to-3 [47] diffusion model (which was trained to perform novel view synthesis) and finetuned
on the OBJECT dataset for object-centric image editing. The resultant model has effectively been
obtained using a three-stage learning curriculum, starting with massive stable diffusion’s web-scale
pre-training on image-text pairs, followed by Zero-1-to-3’s pre-training stage to enhance the model’s
understanding of 3D objects, and finally with fine-tuning on OBJECT to enable object-centric edits.

On OBJECT’s test images, 3DIT outperforms baselines across all four tasks on metrics that capture
the faithfulness of the scene edit. Given the known limitations of automatic quantitative metrics,
we also provide a human evaluation study, where 3DIT’s outputs are preferred to the baselines
over 70% of the time. Edits produced by 3DIT tend to preserve the original scene’s structure and
not just the edited object. 3DIT preserves the scale and viewpoint of objects, it removes and adds
appropriate shadows wherever necessary, and even infills previously occluded portions of the image
when the occluder is translated or removed. A multi-task variant of 3DIT performs well despite
having to support all four transformations using a single set of parameters. Finally, 3DIT generalizes
surprisingly well to new image domains such as CLEVR, a popular synthetic dataset for visual
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reasoning, as well as real-world images (see Figure[T). This highlights 3DIT’s remarkable capability
given that OBJECT is a synthetic, procedurally generated dataset.

2 Related work

Image editing with generative models: The goals of editing objects and semantic regions in images
with language have been active for over a decade [45]]. Back then, productizable edits were limited
to simple changes like cropping, colorization and resizing to complex procedures such as object
removal, addition, and rearrangement [59, 30} |18 146} [16} 85} 22} 14} [71}153]. Traditionally, these tasks
were performed manually using tools like Adobe Photoshop. However, the origin of Generative
Adversarial Networks (GANs) [23] revolutionized the field, propelling significant strides toward
automation. StyleGAN [36] 137, [35] notably facilitated intricate modifications to the synthesized
images, paving the way for sophisticated GAN-based editing techniques with greater control and
flexibility [66} 84} [11,160L 10} 5,1} 167]]. Since then, advancements in generative image architectures
have been marked by the emergence of diffusion models [17]. When coupled with the availability
of large-scale image-text datasets [64]], these models have facilitated the generation of high-fidelity,
diverse scenes [51,158}162163,134]]. Concurrent with these developments, a new wave of image editing
methodologies utilizing these large-scale diffusion models have been introduced [83, 150, 138 29|
43,19, [72]. Despite these advancements, models lack the 3D awareness necessary for maintaining
geometric and lighting consistency. Our dataset, OBJECT, aims to bridge this gap by enhancing
existing methods and serving to evaluate future methodologies.

3D image editing: A host of recent research, including StyleNeRF [25]], ViewGen [3]], EG3D [6],
SJC [73]], DreamFusion [54]], Zero-1-to-3 [47]], and Make-It-3D [70]], has explored lifting 2D images
to 3D. By contrast, our model—3DIT— comprehensively considers the entire scene, not just the
object of interest, encompassing geometry, lighting, and other salient attributes of the background.

Scene rearrangement: Current research in scene rearrangement tasks primarily involve solving
rearrangement from robotic manipulation and embodied agents [39, [55] |56} 48] to provide more
intuitive and human-like commands for scene manipulation and navigation. Specific attempts have
also been made to apply these techniques to room rearrangements [74} (79, [78]] using datasets like
AI2-THOR [41], Habitat [[69], Gibson [80],3D-FRONT [20] or fine-tuning diffusion models with
convex decomposition [72]]. For instance, LegoNet [78] focuses on room rearrangements without the
need to specify the goal state, learning arrangements that satisfy human criteria from professionally
arranged datasets provided by 3D-FRONT [20]. Distinct from these works, our research introduces a
unique perspective. We focus on object-level rearrangements with a primary emphasis on 3D-aware
image editing using language instructions. 3DIT is trained with OBJECT to edit scenes with a high
degree of realism and 3D coherence.

3D asset datasets: A diverse set of 3D asset dataset such as ShapeNet [7] and the recent Obja-
verse [14] have played a pivotal role in 3D computer vision. ShapeNet provides a richly-annotated,
large-scale dataset of 3D shapes that has found numerous applications in object recognition, scene
understanding, and 3D reconstruction. Objaverse has offered a large collection of 3D objects that
are semantically segmented and paired with natural language descriptions. Objaverse has been
instrumental in the construction of OBJECT and also advancing several other related research areas,
including generating textured meshes [8, 21}, 27]] zero-shot single image 3D generation [47] and
enriching simulators [42} 15] for Embodied Al

Synthetic datasets for vision models: Diagnostic datasets such as CLEVR [33]] and CLEV-
ERER [81] provide a rigorous test bed for the visual reasoning abilities of models. They con-
tain synthetically generated images of 3D scenes with simple primitives and associated questions
that require an understanding of the scene’s objects, attributes, and relations to answer correctly.
Kubric [24]] is an image and video dataset generation engine that can model physical interactions
between objects. In a similar vein, OBJECT offers procedurally generated scenes of commonly
occurring natural objects derived from ObjaVerse [14]] with configurable 3D objects and associated
language instructions.

Benchmarks for image editing: There is currently a scarcity of benchmarks to evaluate generative
models [32], especially for 3D scene editing. Existing ones, including light probes [76], repopulating
street scenes [77], GeoSim [9] and CADSim [75] are not publicly available. Our presented OBJECT
benchmark will be made publicly available.



3 OBJECT: A benchmark for Object Editing in Context

Our goal is to design and evaluate image editing models capable of editing objects in scenes. To
enable training and evaluation of such models, we develop OBJECT. OBJECT contains scenes with
multiple objects placed on a flat textured surface and illuminated with realistic lighting. These
edits are described to the model using a combination of language and numerical values (e.g. pixel
coordinates and object rotation angle). All edits result in structural changes to the scene which in
turn affect illumination changes such as inter-object reflections and shadows. The model does not
have access to the underlying 3D scene (including object segmentations, locations, 3D structure, and
lighting direction); it must infer these from the input pixels.

3.1 Object editing tasks

OBJECT supports four fundamental object editing tasks: Each of the following manipulations targets
a single object within a scene that may contain multiple objects. We now describe each task and the
capabilities required from an image editing model to succeed at the task. For specifying locations
in an image, we use a coordinate system where (0,0) represents the bottom-left corner and (1,1) the
top-right corner. Objects are specified in each task using their crowdsourced descriptions.

Translation: Given the x-y coordinates of a target location, a specified object is moved from its
original location in the scene to the target location while preserving its angular pose and surface
contact. Since the camera is fixed relative to the scene, a change in object location requires to model
to synthesize newly visible portions of the object. The model is required to change the object’s
scale in the image due to perspective projection i.e. the objects should appear smaller when moved
further away from the camera and vice-versa. The new location may also result in drastically different
illumination of the object.

Rotation: A specified object is rotated counter-clockwise around the vertical axis passing through
the object’s center of mass and perpendicular to the ground by a given angle. To succeed, the model
must localize the object, extrapolate the object’s shape from a single viewpoint, and re-imagine the
scene with the rotated object. Rotating objects leads to intricate changes to the shadow projected on
the ground plane which are challenging to accurately produce.

Insertion: Given a language description, an ob-
ject matching the description is added to the
scene at a designated x-y location. The model
must perform object generation at the desired
location with stable pose and surface contact.
Besides modeling the object shape, the model
also needs to understand the interaction of the
geometry with scene lighting to generate a real-
istic shadow for the object.

Removal: A specified object is removed from

the scene. The model must not only be able to

locate and segment the object, but also in-paint

the object region using scene context. This often Figure 2: Scene generation in OBJECT depicting

requires inpainting an object that was previously ~camera constraints, directional lighting (environ-

partially or fully occluded. ment and three-point lighting not shown), and the
resulting object shadows.

3.2 Benchmark curation

Paired image-&-text data is plentiful on the internet and large corpora are commonly used to train text-
to-image models. However, there is a lack of image editing data consisting of initial and edited image
pairs, with a description of the edit. Gathering such a dataset at scale from the real world requires
significant manipulation and annotation effort. Our key insight is that while object manipulation
data is difficult to acquire, it is much easier to synthesize large volumes of this data leveraging the
latest advances in photorealistic rendering and large 3D asset libraries. Therefore, OBJECT contains
procedurally generated 3D scenes rendered with objects from these asset libraries.



Object source. OBJECT scenes are constructed using one to four 3D objects from the Objaverse
dataset[[14]. The entire Objaverse dataset contains more than 800k assets. Since objaverse contains
objects with errors (some objects are not fully rendered or contain no texture), we filter the objects
down to a set of 59k via a combination of Sketchfab metadata-based filtering and crowdsourcing. The
resulting objects all have various textures, are easily recognizable, are of high quality and resolution,
are free of copyrighted material, are in isolation (as opposed to a single asset with multiple objects),
and are free floating (so that they may be placed on any surface in the generated scenes).

Each of these assets is annotated with one of 1613 unique semantic categories using crowdsourcing.
Workers were shown a rotating 3D rendering of a particular object and asked to apply a category
label; they were provided with a handy autocomplete list of roughly 1400 categories sourced from
LVIS [26]categories. If, however, workers were unable to find an appropriate category, they had the
option of generating a new category. After this they were asked to write a sentence that describes the
object, pointing out any interesting or noteworthy details that would distinguish it from other objects
in the same category. Finally, category names were cleaned up to remove spelling errors; we removed
unusual or rare categories.

We randomly choose 1513 categories to be seen during training while holding out the remaining 100
as unseen categories for validation and testing. This category split helps quantify the generalization
gap in editing previously seen vs novel objects. We use a library of 17 texture maps obtained from
[2] to simulate wooden, cobblestone, and brick flooring for the scenes.

Scene construction. We limit all scenes to a minimum of one and a maximum of four objects. To
identify a natural resting pose for these objects, we perform a physical simulation in Blender where
we drop each object onto an XY ground plane and record its resting pose. Then to identify object
placements, we sample a bounding box of the same x-y aspect ratio as the object and uniformly scale
the object to lie in this bounding box. We ensure that objects, when rotated, do not intersect each
other: bounding boxes who’s circumscribed circles intersect are rejected. To avoid tiny objects being
placed in the same scene as very large objects, we enforce the ratio between the smallest and longest
largest side of each bounding box to be greater than 0.8. We randomly place the camera in the upper
hemisphere surrounding the plane and point it towards the origin which lies on the ground plane. We
further constrain the camera elevation angle from the ground between 40° to 80° to ensure that the
viewing angle is neither too close to the ground nor completely vertical which are both relatively
unnatural. In each scene, there is a designated object that is manipulated. If this object is not visible
from the camera, we move the camera away from the origin until the object is visible both before and
after the manipulation.

Scene lighting. We use several light sources to realistically illuminate the scene. First, we add a
random environment lighting map, which are special images that capture the light in a real-world
scene from all directions, giving the impression that our constructed scenes are imbedded in various
indoor and outdoor locations in the real world. We download 18 of these environment maps with
CCO licences from https://polyhaven.com/. Next, we add a three-point lighting system that
automatically adapts to the camera view. This involves placing the key light for primary illumination,
the fill light to soften key light shadows, and the back light to distinguish the subject from the
background. These lights serve to effectively shade the objects in the front of the camera so that their
3D form is apparent. Finally, the scene is illuminated with directional lighting with the direction
randomly sampled within a conical neighborhood around the negative-z direction to simulate an
overhead light source. This consists of parallel rays emitted by a single light source infinitely far
away and therefore can be specified by intensity and direction without specifying a source position.

We generate 100k training examples for each task, and 1024 scenes for validation and testing. The
3D scenes are automatically generated using Blender and its Cycles ray tracer for rendering each
scene. We also render segmentation masks that denote object instances, plane and background pixels
for all scenes.

4 3DIT: a scene-aware editing model

Task setup. Consider a 3D scene, S, filled with multiple objects. Let 2; € R#*WX3 represent

an image of this scene produced by a rendering function f. Let [ represent the text description of
the edit, and v represent the task-specific numerial values (i.e. angle for the rotation task and x,y
coordinates for removal, insertion, and translation) to describe the desired edit to the scene S. In
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this paper, we consider object-centric manipulations including rotating, translating, inserting, and
removing objects. Manipulating the objects in S can yield a new image xo = f(M (S, 1, v)), where
M applied the transformation /, v in 3D.

Our goal is to produce z without access to the 3D scene S and instead, directly editing the source
image 1. Importantly, we have no explicit information about the scene (including scene geometry
and layout), no explicit information about the lighting (such as its location and intensity), and no
access to the camera parameters. All this information must be implicitly inferred from the single

source image z;. Concretely, we wish to produce the target image xo = fg(xl, l,v), where f isa
learned function with parameters 6.

Background. Diffusion models [61]] have recently shown spectacular results in generating images
conditioned on text descriptions. These models consist of an encoder £ that maps an image x into a
latent code z = £(x), a decoder, D that can map a latent code back to image space, and a U-Net ¢
with learned parameters § used for denoising. Some diffusion models are trained on large training
corpora such as LAION-5B [65] and are able to produce high-quality high-resolution images that
faithfully represent input text descriptions. The recently proposed Zero-1-to-3 model[47/] finetunes
image-conditioned Stable Diffusion[44] on the task of generating an image of a single object from a
novel viewpoint, conditioned on an input view and a relative camera transformation.

3DIT. Our model, 3DIT, builds upon Zero-1-to-3. We design fy(-) using the same base architecture
but make changes to its conditioning module ¢y(-). Our changes enable the conditioning module
to accept edit instructions in the form of language and location information to precisely define the
desired edit. In the cross-attention conditional module, Zero-1-to-3 uses a CLIP image encoding to
represent the initial image, followed by concatenating a four-dimensional vector encoding camera
pose information. This 772-dimensional vector gets passed through a multi-layered perceptron (MLP)
to map it back down to a size of 768 dimensions. Similarly, we encode the source image z; using the
same CLIP image encoder. We encode v and concatenated the vector with the image representation
and feed it into the MLP. Next, we append the MLP outputs with edit text tokens /, which are extracted
using CLIP’s text encoder.

We finetune our model from the 16, 500-step checkpoint of Zero-1-to-3. During training, the network
takes a noised latent encoding of z;, timestep ¢ and conditioning information ¢(z1, [, v), where z; is
the latent representation of the target image at time step ¢. and produces a denoising score estimate
€o(zt,t, c(w1,1,v)) where ¢(-) € R7%* outputs a sequence of conditional embedding vectors. We
finetune the network with the standard diffusion loss [31} 162]]:

Hbin Ez~59($1),t,e~./\f(0,1) ||6 - 69(2t7 t, C('rlv lv U))H

S Experiments

We now present experiments to evaluate our 3DIT model. First, we evaluate single task variants of
3DIT, i.e. one model for each of the four tasks — object rotation, translation, insertion and removal.
For each of these tasks, we evaluate the performance of the model on novel scenes with objects seen
at training time, and with objects unseen at training time. We also provide evaluations for a multi-task
model — trained to perform all four tasks.

5.1 Baselines

For each of the four tasks, we create strong baselines inspired by recent approaches like VisProg [28]
and Socratic models [82] that chain multiple foundation models together to create performant systems
for various tasks including image editing.

Removal: We first use SAM [40] in the generation mode to get candidate masks for the entire scene
and select the mask that contains the point and occupies no more than a third of the area of the entire
image. If no such mask is found, we attempt to get a mask by directly using the point as input to
SAM to get a mask. Then, we use Stable Diffusion (SD) to inpaint the masked region using the
prompt “a rendering of an uncluttered textured floor with no objects”.

Insertion: This baseline uses SD and the target location to re-imagine the scene with an object of the
provided category. The final image is generated by using the prompt “a 3D rendering of category on
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Figure 3: Generated examples from 3DIT as well as baselines for each of the four tasks in the
OBIJECT benchmark.

a textured floor" conditioned on the initial image and a fixed-size (200 x 200) square mask around
the target location.

Translation: Translation requires localizing the object given the category name, removing it from
the initial location, and inserting it at the target location. We use OWL-ViT [49] to localize the
object given the category name. The detected bounding box is fed into SAM to generate the object
segmentation mask which is then used for inpainting similar to the Removal baseline. Finally, the
segmented object is composited at the target location.

Rotation: Here we use Zero-1-to-3 [47] as a baseline which requires the object to be tightly centered
in the image with a white background. So, we first localize the object using OWL-ViT, crop the
localized region, and segment it using SAM to create the appropriate input for Zero-1-to-3 for
performing the rotation. The rotated object is composited back onto the image and the remaining
unfilled regions are inpainted using SD.

5.2 Quantitative evaluation

We follow Zero-1-to-3 and use four metrics to automatically evaluate the quality and accuracy of
the edited image - PSNR, SSIM, LPIPS, and FID. The first 3 directly compare the prediction to the
ground truth image, while FID measures the similarity between the predicted and ground truth sets
of images. Instead of computing the metrics for the whole image, we focus on the region where
the edits are targeted. To do this, we simply use the ground truth segmentation mask to crop the
targeted rectangular region of interest prior to computing the metrics. Since our model, as well as our
baselines, can generate multiple solutions for each input, our evaluation considers the best-of-four
prediction as per the SSIM metric to compute the final scores for all metrics. This considers the



Table 1: Quantitative evaluation using generated samples. For each method, four samples per test
image were generated. The best image according to the PSNR metric is selected to represent each
sample, and these values are averaged across samples. To ensure that the metrics focus on the
transformed object and not the background which mostly remains unchanged, metrics are computed
using the region around the transformed object’s mask.

Seen Objects Unseen Objects
Model PSNR1 SSIMt LPIP|] FID] PSNRt SSIMtT LPIP| FID|
Task: Translation
Baseline 13.699 0.309 0.485 0942  14.126 0.326 0467  0.968
3DIT(1-task) 14.546 0.273 0494 0254 14400 0.262 0.498  0.261

3DIT(Multitask) 15.21 0.300 0.472 0.244 15.200 0.292 0.477 0.253
Task: Rotation

Baseline 13.179 0.269 0.540 0997 12.848 0.270 0.538  1.693
3DIT(1-task) 16.828 0.386 0.428 0291  16.293 0.372 0.445 0.280
3DIT(Multitask)  16.859 0.382 0.429  0.248 16.279 0.366 0.447  0.236

Task: Insertion

Baseline 12.297 0.269 0.594 0969 12542 0.275 0.584  1.325
3DIT(1-task) 13.469 0.267 0549 0254 12974 0.261 0.566  0.233
3DIT(Multitask)  13.630 0.263 0.551  0.222  13.088 0.261 0.568  0.214

Task: Removal

Baseline 12.494 0.383 0465  0.801 12.123 0.379 0459  1.047
3DIT(1-task) 24.937 0.588 0254 0241 24474 0.561 0.260  0.258
3DIT(Multitask)  24.980 0.585 0249 0.236  24.661 0.568 0.260  0.240

typical use case for editing applications where a user has the flexibility to pick from a range of
generated solutions. We report metrics separately for seen and unseen object categories.

Table [T] presents quantitative evaluations for 3DIT in comparison to the baselines. 3DIToutperforms
the baselines for all four tasks at the metrics PSNR, SSIM and LPIP. Notably, the multi task model
does well in comparison to the single task variant, in spite of having to learn 4 tasks using the same
number of learnable parameters. The FID scores for the baseline models tend to be higher. This is
because the baselines tend to cut/paste objects in the image (for e.g. in the translation task), which
retains image fidelity, even if the scale of the object is incorrect. 3DIT on the other hand does not
explicitly cut/paste segments and instead must render them using the diffusion process, and is thus
prone to a poorer fidelity. On the contrary, our model is able to properly account for a variety of
challenging changes to the underlying 3D scene when editing images, as shown in Figure Its
worth noting that the automatic evaluation metrics have limitations and often do not capture editing
nuances encompassing geometry, lighting, and fidelity to the instruction. This motivates the need for
human evaluation studies.

5.3 Human evaluation studies

We conduct human preference evaluations between 3DIT and the relevant baseline by showing
two images and asking annotators to select the one that best matches the ground truth image. We
measure (1) Geometric consistency — This requires humans to consider the geometric correctness
of the transformed object, including the scale, positioning of the object on the ground plane and its
relationship to other objects. It also requires humans to consider the correctness of other objects
in the scene which may get occluded or unoccluded as a result of the transformation. the source
caption. (2) Lighting consistency — This requires humans to consider the lighting correctness of
the transformed object, including the direction and scale of the shadow as a result of the directional
lighting. It also requires humans to consider the correctness of the shadows of other objects in the
scene which may get occluded or unoccluded as a result of the transformation. Both evaluations also
allow a third option (Tie) to be selected. Each pairwise evaluation is carried out for 30 test samples
for OBJECT evaluation and 20 samples for real world evaluation.



Occlusion Lighting change

Figure 4: The figure shows the ability of 3DIT to handle various challenges of 3D-aware image
editing such as: (a) (Top left) perspective size changes; (b) (Top right) synthesizing novel view points;
(c) (Bottom left) generating occluded regions; (d) (Bottom right) accounting for scene lighting while
rendering objects and their shadows.

Table 2] presents a human evaluation study of the 3DIT model (in a single task setting) in comparison
to the corresponding baseline for all four tasks for images from OBJECT and the real world. 3DIT is
heavily favored by humans, consistently obtaining preference scores of 70 % and more across all four
tasks for geometric as well lighting consistency. The tied scores refer to instances where both models
did exceedingly poorly and where both models did a close to perfect job.

For the translation task, 3DIT is able to scale the object appropriately, as well rendering the shadow
correctly. The baseline, in particular, does a poor job of the shadow and gets the scale wrong, leading
to a physically implausible image. For the rotation task, 3DIT performs a rotation consistent with
the ground plane and also renders a superior shadow. For the removal task, 3DIT tends to inpaint
occluded objects well, and correctly adjusts their shadows. It also does well at removing the entire
extent of the correct object in contrast to the baseline.

5.4 Real-world transfer qualitative

While we train our models on simulated data, we test the model’s ability to transfer to real-world
images qualitatively. Figure [5] shows our model’s output for different prompts for the same input
image for all four tasks. We find these preliminary results encouraging as the outputs not only respect
the task description but also look reasonably photo-realistic with appropriate shadows despite never
seeing real-world editing examples during training.

6 Limitations and Broader Impact

Our work explores the use of synthetic data for training physically plausible and scene-aware image
editing models. Given that even training on scenes with limited realism and complexity results in
models that transfer well to the real world, there is tremendous potential to significantly improve
performance by using more advanced photo-realistic simulators. We give an analysis of the typical
failure cases of our model in the appendix. Finetuning on a small set of hand-crafted real-world
editing examples may also improve transfer to real-world images and enable compelling editing
applications. Our work leads the way towards easy-to-use and increasingly powerful image editing



Table 2: Outcome of the human evaluation. The table illustrates the evaluators’ preferences for
3DIT assessed on geometric accuracy and 3D lighting consistency. Baseline methods rarely gained
preference due to their limited capacity to maintain geometric quality and lighting consistency.

OBIJECT evaluation

Task Geometric consistency Lighting consistency
Baseline 3DIT(Ours) Tie Baseline 3DIT(Ours) Tie
Translation  20.0 % 73.3 % 6.6 % 33% 80.0 % 16.6 %
Rotation 33% 80.0 % 16.6 % 6.6 % 73.3 % 20.0 %
Insertion 13.3 % 70.0 % 16.6 % 10.0 % 733 % 16.6 %
Removal 33% 86.6 % 100% 0.0 % 86.6 % 133 %
Real world evaluation
Task Geometric consistency Lighting consistency

Baseline  3DIT(Ours) Tie Baseline 3DIT(Ours) Tie

Translation  25.0 % 60.0 % 150% 15.0% 70.0 % 15.0 %
Rotation 10.0 % 80.0 % 100% 10.0% 80.0 % 10.0 %
Insertion 35.0 % 55.0 % 100% 35.0% 55.0 % 10.0 %
Removal 10.0 % 75.0 % 15.0 % 5.0 % 80.0 % 15.0 %

Translation Rotation

3 i
orange (0.5, 0.8) green pear (0.3,0.3)  green pear (0.3, 0.8) mug 270°

G R

4 ™ 4 ’ / “ il \ d
Input red can (0.4, 0.5) red can (0.55,0.35) red can (0.7,0.2) shoe 45° shoe 90° shoe 180°

Insertion Removal

QQQQ

blue roy car (0.35,0.35)  lemon (0.35,0.35)  red book (0.35,0.35) Input toothpaste scissors mouse

Input sofa (0.25,0.65) doghouse (0.25,0.65) bookshelf (0.25,0.65) Input orange book blue and red book white book

Figure 5: 3DIT is able to generalize to the real world while only being trained on a synthetic dataset.
Here we show varying prompts for each of the four editing tasks.

capabilities for the broader society in the near future. Like any generative model, our work could also
potentially be misused for propagating misinformation.

7 Conclusion

This work presents 3DIT, a model capable of editing individual objects within images, given a
language instruction. 3DIT is trained on a new dataset, OBJECT, consisting of 400k 3D scenes
procedurally generated using Objaverse objects. 3DIT performs well across on OBJECT and shows
promising generalization to CLEVR as well as the real world.
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8 Appendix

8.1 Training and Inference Details

We closely follow the training procedure established by [47]], with a few modifications. Our approach
uses an effective batch size of 1024, which is smaller than the batch size of 1536 used by Zero-1-to-3.
This adjustment was necessary because of the additional memory requirements caused by the
reintroduction of the CLIP text encoder. This batch size is achieved by using a local batch size of 64
across 40GB NVIDIA RTX A6000 GPUs, along with two gradient accumulation steps. Similar to
Zero123, we train on images with a resolution of 256 x 256, resulting in a latent spatial dimension of
32 x 32. Following their protocol, we utilize the AdamW optimizer, with a learning rate of 1e-4 for
all parameters of the model except for those of the concatenation MLP, which uses a learning rate of
le — 3. Our training process runs for a total of 20,000 steps. We then select the best checkpoint based
on our metrics computed from an unseen object validation set. As was the case in StableDiffusion, we
freeze the CLIP text encoder during training. For inference, we generate images with the DDIM [68]]
sampler using 200 steps. We do not use classifier-free guidance, i.e. the cfg term is set to 1.0.

8.2 Robustness to severity of transformation

We analyze the robustness of our method by measuring the performance of the single task rotation
model as the complexity of the scene and severity of transformation changes. In Figure[6] we show
the average of our Mask PSNR metric as the number of objects in the scene varies from 1 to 4, where
a slight drop in performance occurs as the number of objects increases. In Figure[7] we show average
Mask PSNR for rotations in a given angle range on a pie chart, where it can be seen that the model
does better with smaller angle deviations.

Robustness to Angle of Rotation

60-120

120-180

Mask PSNR
=
&
Mask PSRN

180-240 300-360

240-300

10

Figure 6: Average Mask PSNR of the single- Figure 7: Average Mask PSNR of the single-
task rotation model as the number of objects task rotation model for rotation angles falling
in the scene varies. within a slice.

8.3 Model failure analysis

Here we analyze the most common failure model of 3DIT.
Incorrect geometry: The model incorrectly changes the object’s geometry.

Unintended global modifications: The model changes parts of the scene that are not intended to be
edited.

Incorrect texture: The model changes details on the surface of the object, failing to preserve its
identity.

Incorrect localization: The model performs the requested task, but on an object that is different
from the intended one.
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Figure 9: Frequency of most common failure

Figure 8: Qualitative examples of the four cases. We examine 50 random outputs of the
must common failure cases produced by the model and bucket the model errors by failure
model. type

8.4 Initialization ablation

To test the effect of the model’s initialization, we run an ablation training our model on three different
initializations: Image-conditioned Stable Diffusion [44]], Zero123 [47] (our standard initialization),
and the recently released Zero123-XL [13]], which is a Zero123 model trained on a much larger
version of the Objaverse dataset with 10M assets. We see that although Zero123-XL was is a more
performant base model for the task of rotating a single object, it does not cause an improvement
overall on the tasks we consider here.

Table 3: Quantitative results for training our single-task model across three different ablations:
Image-conditoined Stable Diffusion, Zero123, and the recently released Zero123-XL.

Seen Objects Unseen Objects
Model PSNRt+ SSIMt LPIP|] FID] PSNRtT SSIMtT LPIP| FID|
Task: Translation
SD 14.373 0.264 0.510  0.101  14.351 0.253 0.510  0.102
Zerol23 15.210 0.300 0472 0244  15.200 0.292 0477  0.253

Zerol23-XL  15.121 0.294 0.477 0.252 15.052 0.286 0.478 0.239
Task: Rotation

SD 15.074 0.368 0.430  0.089  14.558 0.359 0.438  0.095
Zerol23 16.859 0.382 0429 0248 16.279 0.366 0.447  0.236
Zerol23-XL  15.433 0.381 0.420 0241  15.008 0.378 0429 0.243

Task: Insertion

SD 13.220 0.253 0.570  0.108  13.131 0.255 0.572  0.100
Zerol23 13.630 0.263 0.551 0222 13.088 0.261 0.568 0.214
Zerol23-XL  13.481 0.264 0.557 0274  13.094 0.259 0.566  0.258

Task: Removal

SD 23.882 0.576 0263  0.117 23.352 0.542 0270  0.115
Zerol23 24.980 0.585 0249 0236 24.661 0.568 0.260  0.240
Zerol23-XL  24.775 0.585 0255 0247  24.830 0.568 0.253 0215

8.5 Additional qualitative results

In Figure[I0] we show qualitative results from our multitask model on each of the four editing tasks.
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Table 4: Summary of key statistics of the OBJECT dataset.

Total objects 62950
Total categories 1613
Object per category median 6.0
Object per category mean 39.03
Object per category std 138.00

8.6 Dataset Analysis

In this seciton, we provide some details about the composition and statistical makeup of our dataset.
In Table |4} we show a statistical overview of the dataset, including total number of objects and
categories, as well as the mean, median, and standard deviation of objects per category. We also
visualize the distribution of objects across categories, as can be show in the histogram in Figure[TT]
Finally, we visualize the frequency of category names in the wordcloud in Figure [12]

18



Task: Rotate Task: Remove

rotate the bottle
by 224°

rotate the lion by
189°

rotate the blimp ~ * “ s S “ remove the
by 101° unicycle

rotate the tomb
by 161°

remove the train

remove the blue ™2
lego brick

remove the
robot

rotate the radio
by 220°

remove the blue
toy figurine

remove the
wooden blocks

rotate the tank
by 338°

Task: Insert Task: Translate

insert a sofa at g % | g \ move the lettuce
(0.32,0.76) to (0.54,0.52)
insert a gold $ ! move the rock to

trophy at (0.48,0.61)
(0.42,0.71)
insert the plastic move the sofa to
bottleit (0.84,0.55)
(0.37,0.72)
insert the he o ,
wooden block mclJ:;FtJ ;m ;
Py 054,052

insert the first aid g ! F move the clay
kit at (0.77,0.45) * jug to (0.75,0.70)

insert a black
boot at
(0.62,0.69)

Prompt Input Image  Ground Ours Prompt Input Image  Ground Ours
Truth Truth

move the box to 7
(0.76,0.46)

Figure 10: Generated examples by the 3DIT multitask model.
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. seen
74 unseen

Object category frequency (log scale)

Figure 11: Object categories from seen and

unseen splits sorted by frequency, in log scale.
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Figure 12: A wordcloud visualizing the fre-
quency of various object category names.
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